* gc++filt.m4: New file.
[deliverable/binutils-gdb.git] / gdb / frv-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on the Fujitsu FR-V,
2 for GDB.
3
4 Copyright (C) 2004, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "frame.h"
26 #include "osabi.h"
27 #include "regcache.h"
28 #include "elf-bfd.h"
29 #include "elf/frv.h"
30 #include "frv-tdep.h"
31 #include "trad-frame.h"
32 #include "frame-unwind.h"
33 #include "regset.h"
34 #include "gdb_string.h"
35
36 /* Define the size (in bytes) of an FR-V instruction. */
37 static const int frv_instr_size = 4;
38
39 enum {
40 NORMAL_SIGTRAMP = 1,
41 RT_SIGTRAMP = 2
42 };
43
44 static int
45 frv_linux_pc_in_sigtramp (struct gdbarch *gdbarch, CORE_ADDR pc, char *name)
46 {
47 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48 char buf[frv_instr_size];
49 LONGEST instr;
50 int retval = 0;
51
52 if (target_read_memory (pc, buf, sizeof buf) != 0)
53 return 0;
54
55 instr = extract_unsigned_integer (buf, sizeof buf, byte_order);
56
57 if (instr == 0x8efc0077) /* setlos #__NR_sigreturn, gr7 */
58 retval = NORMAL_SIGTRAMP;
59 else if (instr -= 0x8efc00ad) /* setlos #__NR_rt_sigreturn, gr7 */
60 retval = RT_SIGTRAMP;
61 else
62 return 0;
63
64 if (target_read_memory (pc + frv_instr_size, buf, sizeof buf) != 0)
65 return 0;
66 instr = extract_unsigned_integer (buf, sizeof buf, byte_order);
67 if (instr != 0xc0700000) /* tira gr0, 0 */
68 return 0;
69
70 /* If we get this far, we'll return a non-zero value, either
71 NORMAL_SIGTRAMP (1) or RT_SIGTRAMP (2). */
72 return retval;
73 }
74
75 /* Given NEXT_FRAME, the "callee" frame of the sigtramp frame that we
76 wish to decode, and REGNO, one of the frv register numbers defined
77 in frv-tdep.h, return the address of the saved register (corresponding
78 to REGNO) in the sigtramp frame. Return -1 if the register is not
79 found in the sigtramp frame. The magic numbers in the code below
80 were computed by examining the following kernel structs:
81
82 From arch/frv/kernel/signal.c:
83
84 struct sigframe
85 {
86 void (*pretcode)(void);
87 int sig;
88 struct sigcontext sc;
89 unsigned long extramask[_NSIG_WORDS-1];
90 uint32_t retcode[2];
91 };
92
93 struct rt_sigframe
94 {
95 void (*pretcode)(void);
96 int sig;
97 struct siginfo *pinfo;
98 void *puc;
99 struct siginfo info;
100 struct ucontext uc;
101 uint32_t retcode[2];
102 };
103
104 From include/asm-frv/ucontext.h:
105
106 struct ucontext {
107 unsigned long uc_flags;
108 struct ucontext *uc_link;
109 stack_t uc_stack;
110 struct sigcontext uc_mcontext;
111 sigset_t uc_sigmask;
112 };
113
114 From include/asm-frv/signal.h:
115
116 typedef struct sigaltstack {
117 void *ss_sp;
118 int ss_flags;
119 size_t ss_size;
120 } stack_t;
121
122 From include/asm-frv/sigcontext.h:
123
124 struct sigcontext {
125 struct user_context sc_context;
126 unsigned long sc_oldmask;
127 } __attribute__((aligned(8)));
128
129 From include/asm-frv/registers.h:
130 struct user_int_regs
131 {
132 unsigned long psr;
133 unsigned long isr;
134 unsigned long ccr;
135 unsigned long cccr;
136 unsigned long lr;
137 unsigned long lcr;
138 unsigned long pc;
139 unsigned long __status;
140 unsigned long syscallno;
141 unsigned long orig_gr8;
142 unsigned long gner[2];
143 unsigned long long iacc[1];
144
145 union {
146 unsigned long tbr;
147 unsigned long gr[64];
148 };
149 };
150
151 struct user_fpmedia_regs
152 {
153 unsigned long fr[64];
154 unsigned long fner[2];
155 unsigned long msr[2];
156 unsigned long acc[8];
157 unsigned char accg[8];
158 unsigned long fsr[1];
159 };
160
161 struct user_context
162 {
163 struct user_int_regs i;
164 struct user_fpmedia_regs f;
165
166 void *extension;
167 } __attribute__((aligned(8))); */
168
169 static LONGEST
170 frv_linux_sigcontext_reg_addr (struct frame_info *this_frame, int regno,
171 CORE_ADDR *sc_addr_cache_ptr)
172 {
173 struct gdbarch *gdbarch = get_frame_arch (this_frame);
174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
175 CORE_ADDR sc_addr;
176
177 if (sc_addr_cache_ptr && *sc_addr_cache_ptr)
178 {
179 sc_addr = *sc_addr_cache_ptr;
180 }
181 else
182 {
183 CORE_ADDR pc, sp;
184 char buf[4];
185 int tramp_type;
186
187 pc = get_frame_pc (this_frame);
188 tramp_type = frv_linux_pc_in_sigtramp (gdbarch, pc, 0);
189
190 get_frame_register (this_frame, sp_regnum, buf);
191 sp = extract_unsigned_integer (buf, sizeof buf, byte_order);
192
193 if (tramp_type == NORMAL_SIGTRAMP)
194 {
195 /* For a normal sigtramp frame, the sigcontext struct starts
196 at SP + 8. */
197 sc_addr = sp + 8;
198 }
199 else if (tramp_type == RT_SIGTRAMP)
200 {
201 /* For a realtime sigtramp frame, SP + 12 contains a pointer
202 to a ucontext struct. The ucontext struct contains a
203 sigcontext struct starting 24 bytes in. (The offset of
204 uc_mcontext within struct ucontext is derived as follows:
205 stack_t is a 12-byte struct and struct sigcontext is
206 8-byte aligned. This gives an offset of 8 + 12 + 4 (for
207 padding) = 24.) */
208 if (target_read_memory (sp + 12, buf, sizeof buf) != 0)
209 {
210 warning (_("Can't read realtime sigtramp frame."));
211 return 0;
212 }
213 sc_addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
214 sc_addr += 24;
215 }
216 else
217 internal_error (__FILE__, __LINE__, _("not a signal trampoline"));
218
219 if (sc_addr_cache_ptr)
220 *sc_addr_cache_ptr = sc_addr;
221 }
222
223 switch (regno)
224 {
225 case psr_regnum :
226 return sc_addr + 0;
227 /* sc_addr + 4 has "isr", the Integer Status Register. */
228 case ccr_regnum :
229 return sc_addr + 8;
230 case cccr_regnum :
231 return sc_addr + 12;
232 case lr_regnum :
233 return sc_addr + 16;
234 case lcr_regnum :
235 return sc_addr + 20;
236 case pc_regnum :
237 return sc_addr + 24;
238 /* sc_addr + 28 is __status, the exception status.
239 sc_addr + 32 is syscallno, the syscall number or -1.
240 sc_addr + 36 is orig_gr8, the original syscall arg #1.
241 sc_addr + 40 is gner[0].
242 sc_addr + 44 is gner[1]. */
243 case iacc0h_regnum :
244 return sc_addr + 48;
245 case iacc0l_regnum :
246 return sc_addr + 52;
247 default :
248 if (first_gpr_regnum <= regno && regno <= last_gpr_regnum)
249 return sc_addr + 56 + 4 * (regno - first_gpr_regnum);
250 else if (first_fpr_regnum <= regno && regno <= last_fpr_regnum)
251 return sc_addr + 312 + 4 * (regno - first_fpr_regnum);
252 else
253 return -1; /* not saved. */
254 }
255 }
256
257 /* Signal trampolines. */
258
259 static struct trad_frame_cache *
260 frv_linux_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
261 {
262 struct gdbarch *gdbarch = get_frame_arch (this_frame);
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
265 struct trad_frame_cache *cache;
266 CORE_ADDR addr;
267 char buf[4];
268 int regnum;
269 CORE_ADDR sc_addr_cache_val = 0;
270 struct frame_id this_id;
271
272 if (*this_cache)
273 return *this_cache;
274
275 cache = trad_frame_cache_zalloc (this_frame);
276
277 /* FIXME: cagney/2004-05-01: This is is long standing broken code.
278 The frame ID's code address should be the start-address of the
279 signal trampoline and not the current PC within that
280 trampoline. */
281 get_frame_register (this_frame, sp_regnum, buf);
282 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
283 this_id = frame_id_build (addr, get_frame_pc (this_frame));
284 trad_frame_set_id (cache, this_id);
285
286 for (regnum = 0; regnum < frv_num_regs; regnum++)
287 {
288 LONGEST reg_addr = frv_linux_sigcontext_reg_addr (this_frame, regnum,
289 &sc_addr_cache_val);
290 if (reg_addr != -1)
291 trad_frame_set_reg_addr (cache, regnum, reg_addr);
292 }
293
294 *this_cache = cache;
295 return cache;
296 }
297
298 static void
299 frv_linux_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
300 struct frame_id *this_id)
301 {
302 struct trad_frame_cache *cache =
303 frv_linux_sigtramp_frame_cache (this_frame, this_cache);
304 trad_frame_get_id (cache, this_id);
305 }
306
307 static struct value *
308 frv_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
309 void **this_cache, int regnum)
310 {
311 /* Make sure we've initialized the cache. */
312 struct trad_frame_cache *cache =
313 frv_linux_sigtramp_frame_cache (this_frame, this_cache);
314 return trad_frame_get_register (cache, this_frame, regnum);
315 }
316
317 static int
318 frv_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
319 struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 CORE_ADDR pc = get_frame_pc (this_frame);
324 char *name;
325
326 find_pc_partial_function (pc, &name, NULL, NULL);
327 if (frv_linux_pc_in_sigtramp (gdbarch, pc, name))
328 return 1;
329
330 return 0;
331 }
332
333 static const struct frame_unwind frv_linux_sigtramp_frame_unwind =
334 {
335 SIGTRAMP_FRAME,
336 frv_linux_sigtramp_frame_this_id,
337 frv_linux_sigtramp_frame_prev_register,
338 NULL,
339 frv_linux_sigtramp_frame_sniffer
340 };
341 \f
342 /* The FRV kernel defines ELF_NGREG as 46. We add 2 in order to include
343 the loadmap addresses in the register set. (See below for more info.) */
344 #define FRV_ELF_NGREG (46 + 2)
345 typedef unsigned char frv_elf_greg_t[4];
346 typedef struct { frv_elf_greg_t reg[FRV_ELF_NGREG]; } frv_elf_gregset_t;
347
348 typedef unsigned char frv_elf_fpreg_t[4];
349 typedef struct
350 {
351 frv_elf_fpreg_t fr[64];
352 frv_elf_fpreg_t fner[2];
353 frv_elf_fpreg_t msr[2];
354 frv_elf_fpreg_t acc[8];
355 unsigned char accg[8];
356 frv_elf_fpreg_t fsr[1];
357 } frv_elf_fpregset_t;
358
359 /* Constants for accessing elements of frv_elf_gregset_t. */
360
361 #define FRV_PT_PSR 0
362 #define FRV_PT_ISR 1
363 #define FRV_PT_CCR 2
364 #define FRV_PT_CCCR 3
365 #define FRV_PT_LR 4
366 #define FRV_PT_LCR 5
367 #define FRV_PT_PC 6
368 #define FRV_PT_GNER0 10
369 #define FRV_PT_GNER1 11
370 #define FRV_PT_IACC0H 12
371 #define FRV_PT_IACC0L 13
372
373 /* Note: Only 32 of the GRs will be found in the corefile. */
374 #define FRV_PT_GR(j) ( 14 + (j)) /* GRj for 0<=j<=63. */
375
376 #define FRV_PT_TBR FRV_PT_GR(0) /* gr0 is always 0, so TBR is stuffed
377 there. */
378
379 /* Technically, the loadmap addresses are not part of `pr_reg' as
380 found in the elf_prstatus struct. The fields which communicate the
381 loadmap address appear (by design) immediately after `pr_reg'
382 though, and the BFD function elf32_frv_grok_prstatus() has been
383 implemented to include these fields in the register section that it
384 extracts from the core file. So, for our purposes, they may be
385 viewed as registers. */
386
387 #define FRV_PT_EXEC_FDPIC_LOADMAP 46
388 #define FRV_PT_INTERP_FDPIC_LOADMAP 47
389
390
391 /* Unpack an frv_elf_gregset_t into GDB's register cache. */
392
393 static void
394 frv_linux_supply_gregset (const struct regset *regset,
395 struct regcache *regcache,
396 int regnum, const void *gregs, size_t len)
397 {
398 int regi;
399 char zerobuf[MAX_REGISTER_SIZE];
400 const frv_elf_gregset_t *gregsetp = gregs;
401
402 memset (zerobuf, 0, MAX_REGISTER_SIZE);
403
404 /* gr0 always contains 0. Also, the kernel passes the TBR value in
405 this slot. */
406 regcache_raw_supply (regcache, first_gpr_regnum, zerobuf);
407
408 for (regi = first_gpr_regnum + 1; regi <= last_gpr_regnum; regi++)
409 {
410 if (regi >= first_gpr_regnum + 32)
411 regcache_raw_supply (regcache, regi, zerobuf);
412 else
413 regcache_raw_supply (regcache, regi,
414 gregsetp->reg[FRV_PT_GR (regi - first_gpr_regnum)]);
415 }
416
417 regcache_raw_supply (regcache, pc_regnum, gregsetp->reg[FRV_PT_PC]);
418 regcache_raw_supply (regcache, psr_regnum, gregsetp->reg[FRV_PT_PSR]);
419 regcache_raw_supply (regcache, ccr_regnum, gregsetp->reg[FRV_PT_CCR]);
420 regcache_raw_supply (regcache, cccr_regnum, gregsetp->reg[FRV_PT_CCCR]);
421 regcache_raw_supply (regcache, lr_regnum, gregsetp->reg[FRV_PT_LR]);
422 regcache_raw_supply (regcache, lcr_regnum, gregsetp->reg[FRV_PT_LCR]);
423 regcache_raw_supply (regcache, gner0_regnum, gregsetp->reg[FRV_PT_GNER0]);
424 regcache_raw_supply (regcache, gner1_regnum, gregsetp->reg[FRV_PT_GNER1]);
425 regcache_raw_supply (regcache, tbr_regnum, gregsetp->reg[FRV_PT_TBR]);
426 regcache_raw_supply (regcache, fdpic_loadmap_exec_regnum,
427 gregsetp->reg[FRV_PT_EXEC_FDPIC_LOADMAP]);
428 regcache_raw_supply (regcache, fdpic_loadmap_interp_regnum,
429 gregsetp->reg[FRV_PT_INTERP_FDPIC_LOADMAP]);
430 }
431
432 /* Unpack an frv_elf_fpregset_t into GDB's register cache. */
433
434 static void
435 frv_linux_supply_fpregset (const struct regset *regset,
436 struct regcache *regcache,
437 int regnum, const void *gregs, size_t len)
438 {
439 int regi;
440 const frv_elf_fpregset_t *fpregsetp = gregs;
441
442 for (regi = first_fpr_regnum; regi <= last_fpr_regnum; regi++)
443 regcache_raw_supply (regcache, regi, fpregsetp->fr[regi - first_fpr_regnum]);
444
445 regcache_raw_supply (regcache, fner0_regnum, fpregsetp->fner[0]);
446 regcache_raw_supply (regcache, fner1_regnum, fpregsetp->fner[1]);
447
448 regcache_raw_supply (regcache, msr0_regnum, fpregsetp->msr[0]);
449 regcache_raw_supply (regcache, msr1_regnum, fpregsetp->msr[1]);
450
451 for (regi = acc0_regnum; regi <= acc7_regnum; regi++)
452 regcache_raw_supply (regcache, regi, fpregsetp->acc[regi - acc0_regnum]);
453
454 regcache_raw_supply (regcache, accg0123_regnum, fpregsetp->accg);
455 regcache_raw_supply (regcache, accg4567_regnum, fpregsetp->accg + 4);
456
457 regcache_raw_supply (regcache, fsr0_regnum, fpregsetp->fsr[0]);
458 }
459
460 /* FRV Linux kernel register sets. */
461
462 static struct regset frv_linux_gregset =
463 {
464 NULL,
465 frv_linux_supply_gregset
466 };
467
468 static struct regset frv_linux_fpregset =
469 {
470 NULL,
471 frv_linux_supply_fpregset
472 };
473
474 static const struct regset *
475 frv_linux_regset_from_core_section (struct gdbarch *gdbarch,
476 const char *sect_name, size_t sect_size)
477 {
478 if (strcmp (sect_name, ".reg") == 0
479 && sect_size >= sizeof (frv_elf_gregset_t))
480 return &frv_linux_gregset;
481
482 if (strcmp (sect_name, ".reg2") == 0
483 && sect_size >= sizeof (frv_elf_fpregset_t))
484 return &frv_linux_fpregset;
485
486 return NULL;
487 }
488
489 \f
490 static void
491 frv_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
492 {
493 /* Set the sigtramp frame sniffer. */
494 frame_unwind_append_unwinder (gdbarch, &frv_linux_sigtramp_frame_unwind);
495 set_gdbarch_regset_from_core_section (gdbarch,
496 frv_linux_regset_from_core_section);
497 }
498
499 static enum gdb_osabi
500 frv_linux_elf_osabi_sniffer (bfd *abfd)
501 {
502 int elf_flags;
503
504 elf_flags = elf_elfheader (abfd)->e_flags;
505
506 /* Assume GNU/Linux if using the FDPIC ABI. If/when another OS shows
507 up that uses this ABI, we'll need to start using .note sections
508 or some such. */
509 if (elf_flags & EF_FRV_FDPIC)
510 return GDB_OSABI_LINUX;
511 else
512 return GDB_OSABI_UNKNOWN;
513 }
514
515 /* Provide a prototype to silence -Wmissing-prototypes. */
516 void _initialize_frv_linux_tdep (void);
517
518 void
519 _initialize_frv_linux_tdep (void)
520 {
521 gdbarch_register_osabi (bfd_arch_frv, 0, GDB_OSABI_LINUX, frv_linux_init_abi);
522 gdbarch_register_osabi_sniffer (bfd_arch_frv,
523 bfd_target_elf_flavour,
524 frv_linux_elf_osabi_sniffer);
525 }
This page took 0.049833 seconds and 4 git commands to generate.