*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "regcache.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dis-asm.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdb/sim-frv.h"
34 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
35 #include "symtab.h"
36 #include "elf-bfd.h"
37 #include "elf/frv.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "solib.h"
41 #include "frv-tdep.h"
42
43 extern void _initialize_frv_tdep (void);
44
45 struct frv_unwind_cache /* was struct frame_extra_info */
46 {
47 /* The previous frame's inner-most stack address. Used as this
48 frame ID's stack_addr. */
49 CORE_ADDR prev_sp;
50
51 /* The frame's base, optionally used by the high-level debug info. */
52 CORE_ADDR base;
53
54 /* Table indicating the location of each and every register. */
55 struct trad_frame_saved_reg *saved_regs;
56 };
57
58 /* A structure describing a particular variant of the FRV.
59 We allocate and initialize one of these structures when we create
60 the gdbarch object for a variant.
61
62 At the moment, all the FR variants we support differ only in which
63 registers are present; the portable code of GDB knows that
64 registers whose names are the empty string don't exist, so the
65 `register_names' array captures all the per-variant information we
66 need.
67
68 in the future, if we need to have per-variant maps for raw size,
69 virtual type, etc., we should replace register_names with an array
70 of structures, each of which gives all the necessary info for one
71 register. Don't stick parallel arrays in here --- that's so
72 Fortran. */
73 struct gdbarch_tdep
74 {
75 /* Which ABI is in use? */
76 enum frv_abi frv_abi;
77
78 /* How many general-purpose registers does this variant have? */
79 int num_gprs;
80
81 /* How many floating-point registers does this variant have? */
82 int num_fprs;
83
84 /* How many hardware watchpoints can it support? */
85 int num_hw_watchpoints;
86
87 /* How many hardware breakpoints can it support? */
88 int num_hw_breakpoints;
89
90 /* Register names. */
91 char **register_names;
92 };
93
94 /* Return the FR-V ABI associated with GDBARCH. */
95 enum frv_abi
96 frv_abi (struct gdbarch *gdbarch)
97 {
98 return gdbarch_tdep (gdbarch)->frv_abi;
99 }
100
101 /* Fetch the interpreter and executable loadmap addresses (for shared
102 library support) for the FDPIC ABI. Return 0 if successful, -1 if
103 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
104 int
105 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
106 CORE_ADDR *exec_addr)
107 {
108 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
109 return -1;
110 else
111 {
112 struct regcache *regcache = get_current_regcache ();
113
114 if (interp_addr != NULL)
115 {
116 ULONGEST val;
117 regcache_cooked_read_unsigned (regcache,
118 fdpic_loadmap_interp_regnum, &val);
119 *interp_addr = val;
120 }
121 if (exec_addr != NULL)
122 {
123 ULONGEST val;
124 regcache_cooked_read_unsigned (regcache,
125 fdpic_loadmap_exec_regnum, &val);
126 *exec_addr = val;
127 }
128 return 0;
129 }
130 }
131
132 /* Allocate a new variant structure, and set up default values for all
133 the fields. */
134 static struct gdbarch_tdep *
135 new_variant (void)
136 {
137 struct gdbarch_tdep *var;
138 int r;
139 char buf[20];
140
141 var = xmalloc (sizeof (*var));
142 memset (var, 0, sizeof (*var));
143
144 var->frv_abi = FRV_ABI_EABI;
145 var->num_gprs = 64;
146 var->num_fprs = 64;
147 var->num_hw_watchpoints = 0;
148 var->num_hw_breakpoints = 0;
149
150 /* By default, don't supply any general-purpose or floating-point
151 register names. */
152 var->register_names
153 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
154 * sizeof (char *));
155 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
156 var->register_names[r] = "";
157
158 /* Do, however, supply default names for the known special-purpose
159 registers. */
160
161 var->register_names[pc_regnum] = "pc";
162 var->register_names[lr_regnum] = "lr";
163 var->register_names[lcr_regnum] = "lcr";
164
165 var->register_names[psr_regnum] = "psr";
166 var->register_names[ccr_regnum] = "ccr";
167 var->register_names[cccr_regnum] = "cccr";
168 var->register_names[tbr_regnum] = "tbr";
169
170 /* Debug registers. */
171 var->register_names[brr_regnum] = "brr";
172 var->register_names[dbar0_regnum] = "dbar0";
173 var->register_names[dbar1_regnum] = "dbar1";
174 var->register_names[dbar2_regnum] = "dbar2";
175 var->register_names[dbar3_regnum] = "dbar3";
176
177 /* iacc0 (Only found on MB93405.) */
178 var->register_names[iacc0h_regnum] = "iacc0h";
179 var->register_names[iacc0l_regnum] = "iacc0l";
180 var->register_names[iacc0_regnum] = "iacc0";
181
182 /* fsr0 (Found on FR555 and FR501.) */
183 var->register_names[fsr0_regnum] = "fsr0";
184
185 /* acc0 - acc7. The architecture provides for the possibility of many
186 more (up to 64 total), but we don't want to make that big of a hole
187 in the G packet. If we need more in the future, we'll add them
188 elsewhere. */
189 for (r = acc0_regnum; r <= acc7_regnum; r++)
190 {
191 char *buf;
192 buf = xstrprintf ("acc%d", r - acc0_regnum);
193 var->register_names[r] = buf;
194 }
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
203 {
204 char *buf;
205 buf = xstrprintf ("accg%d", r - accg0_regnum);
206 var->register_names[r] = buf;
207 }
208
209 /* msr0 and msr1. */
210
211 var->register_names[msr0_regnum] = "msr0";
212 var->register_names[msr1_regnum] = "msr1";
213
214 /* gner and fner registers. */
215 var->register_names[gner0_regnum] = "gner0";
216 var->register_names[gner1_regnum] = "gner1";
217 var->register_names[fner0_regnum] = "fner0";
218 var->register_names[fner1_regnum] = "fner1";
219
220 return var;
221 }
222
223
224 /* Indicate that the variant VAR has NUM_GPRS general-purpose
225 registers, and fill in the names array appropriately. */
226 static void
227 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
228 {
229 int r;
230
231 var->num_gprs = num_gprs;
232
233 for (r = 0; r < num_gprs; ++r)
234 {
235 char buf[20];
236
237 sprintf (buf, "gr%d", r);
238 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
239 }
240 }
241
242
243 /* Indicate that the variant VAR has NUM_FPRS floating-point
244 registers, and fill in the names array appropriately. */
245 static void
246 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
247 {
248 int r;
249
250 var->num_fprs = num_fprs;
251
252 for (r = 0; r < num_fprs; ++r)
253 {
254 char buf[20];
255
256 sprintf (buf, "fr%d", r);
257 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
258 }
259 }
260
261 static void
262 set_variant_abi_fdpic (struct gdbarch_tdep *var)
263 {
264 var->frv_abi = FRV_ABI_FDPIC;
265 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
266 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
267 }
268
269 static void
270 set_variant_scratch_registers (struct gdbarch_tdep *var)
271 {
272 var->register_names[scr0_regnum] = xstrdup ("scr0");
273 var->register_names[scr1_regnum] = xstrdup ("scr1");
274 var->register_names[scr2_regnum] = xstrdup ("scr2");
275 var->register_names[scr3_regnum] = xstrdup ("scr3");
276 }
277
278 static const char *
279 frv_register_name (struct gdbarch *gdbarch, int reg)
280 {
281 if (reg < 0)
282 return "?toosmall?";
283 if (reg >= frv_num_regs + frv_num_pseudo_regs)
284 return "?toolarge?";
285
286 return gdbarch_tdep (gdbarch)->register_names[reg];
287 }
288
289
290 static struct type *
291 frv_register_type (struct gdbarch *gdbarch, int reg)
292 {
293 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
294 return builtin_type_float;
295 else if (reg == iacc0_regnum)
296 return builtin_type_int64;
297 else
298 return builtin_type_int32;
299 }
300
301 static void
302 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
303 int reg, gdb_byte *buffer)
304 {
305 if (reg == iacc0_regnum)
306 {
307 regcache_raw_read (regcache, iacc0h_regnum, buffer);
308 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
309 }
310 else if (accg0_regnum <= reg && reg <= accg7_regnum)
311 {
312 /* The accg raw registers have four values in each slot with the
313 lowest register number occupying the first byte. */
314
315 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
316 int byte_num = (reg - accg0_regnum) % 4;
317 bfd_byte buf[4];
318
319 regcache_raw_read (regcache, raw_regnum, buf);
320 memset (buffer, 0, 4);
321 /* FR-V is big endian, so put the requested byte in the first byte
322 of the buffer allocated to hold the pseudo-register. */
323 ((bfd_byte *) buffer)[0] = buf[byte_num];
324 }
325 }
326
327 static void
328 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
329 int reg, const gdb_byte *buffer)
330 {
331 if (reg == iacc0_regnum)
332 {
333 regcache_raw_write (regcache, iacc0h_regnum, buffer);
334 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
335 }
336 else if (accg0_regnum <= reg && reg <= accg7_regnum)
337 {
338 /* The accg raw registers have four values in each slot with the
339 lowest register number occupying the first byte. */
340
341 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
342 int byte_num = (reg - accg0_regnum) % 4;
343 char buf[4];
344
345 regcache_raw_read (regcache, raw_regnum, buf);
346 buf[byte_num] = ((bfd_byte *) buffer)[0];
347 regcache_raw_write (regcache, raw_regnum, buf);
348 }
349 }
350
351 static int
352 frv_register_sim_regno (int reg)
353 {
354 static const int spr_map[] =
355 {
356 H_SPR_PSR, /* psr_regnum */
357 H_SPR_CCR, /* ccr_regnum */
358 H_SPR_CCCR, /* cccr_regnum */
359 -1, /* fdpic_loadmap_exec_regnum */
360 -1, /* fdpic_loadmap_interp_regnum */
361 -1, /* 134 */
362 H_SPR_TBR, /* tbr_regnum */
363 H_SPR_BRR, /* brr_regnum */
364 H_SPR_DBAR0, /* dbar0_regnum */
365 H_SPR_DBAR1, /* dbar1_regnum */
366 H_SPR_DBAR2, /* dbar2_regnum */
367 H_SPR_DBAR3, /* dbar3_regnum */
368 H_SPR_SCR0, /* scr0_regnum */
369 H_SPR_SCR1, /* scr1_regnum */
370 H_SPR_SCR2, /* scr2_regnum */
371 H_SPR_SCR3, /* scr3_regnum */
372 H_SPR_LR, /* lr_regnum */
373 H_SPR_LCR, /* lcr_regnum */
374 H_SPR_IACC0H, /* iacc0h_regnum */
375 H_SPR_IACC0L, /* iacc0l_regnum */
376 H_SPR_FSR0, /* fsr0_regnum */
377 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
378 -1, /* acc0_regnum */
379 -1, /* acc1_regnum */
380 -1, /* acc2_regnum */
381 -1, /* acc3_regnum */
382 -1, /* acc4_regnum */
383 -1, /* acc5_regnum */
384 -1, /* acc6_regnum */
385 -1, /* acc7_regnum */
386 -1, /* acc0123_regnum */
387 -1, /* acc4567_regnum */
388 H_SPR_MSR0, /* msr0_regnum */
389 H_SPR_MSR1, /* msr1_regnum */
390 H_SPR_GNER0, /* gner0_regnum */
391 H_SPR_GNER1, /* gner1_regnum */
392 H_SPR_FNER0, /* fner0_regnum */
393 H_SPR_FNER1, /* fner1_regnum */
394 };
395
396 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
397
398 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
399 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
400 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
401 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
402 else if (pc_regnum == reg)
403 return SIM_FRV_PC_REGNUM;
404 else if (reg >= first_spr_regnum
405 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
406 {
407 int spr_reg_offset = spr_map[reg - first_spr_regnum];
408
409 if (spr_reg_offset < 0)
410 return SIM_REGNO_DOES_NOT_EXIST;
411 else
412 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
413 }
414
415 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
416 }
417
418 static const unsigned char *
419 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
420 {
421 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
422 *lenp = sizeof (breakpoint);
423 return breakpoint;
424 }
425
426 /* Define the maximum number of instructions which may be packed into a
427 bundle (VLIW instruction). */
428 static const int max_instrs_per_bundle = 8;
429
430 /* Define the size (in bytes) of an FR-V instruction. */
431 static const int frv_instr_size = 4;
432
433 /* Adjust a breakpoint's address to account for the FR-V architecture's
434 constraint that a break instruction must not appear as any but the
435 first instruction in the bundle. */
436 static CORE_ADDR
437 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
438 {
439 int count = max_instrs_per_bundle;
440 CORE_ADDR addr = bpaddr - frv_instr_size;
441 CORE_ADDR func_start = get_pc_function_start (bpaddr);
442
443 /* Find the end of the previous packing sequence. This will be indicated
444 by either attempting to access some inaccessible memory or by finding
445 an instruction word whose packing bit is set to one. */
446 while (count-- > 0 && addr >= func_start)
447 {
448 char instr[frv_instr_size];
449 int status;
450
451 status = read_memory_nobpt (addr, instr, sizeof instr);
452
453 if (status != 0)
454 break;
455
456 /* This is a big endian architecture, so byte zero will have most
457 significant byte. The most significant bit of this byte is the
458 packing bit. */
459 if (instr[0] & 0x80)
460 break;
461
462 addr -= frv_instr_size;
463 }
464
465 if (count > 0)
466 bpaddr = addr + frv_instr_size;
467
468 return bpaddr;
469 }
470
471
472 /* Return true if REG is a caller-saves ("scratch") register,
473 false otherwise. */
474 static int
475 is_caller_saves_reg (int reg)
476 {
477 return ((4 <= reg && reg <= 7)
478 || (14 <= reg && reg <= 15)
479 || (32 <= reg && reg <= 47));
480 }
481
482
483 /* Return true if REG is a callee-saves register, false otherwise. */
484 static int
485 is_callee_saves_reg (int reg)
486 {
487 return ((16 <= reg && reg <= 31)
488 || (48 <= reg && reg <= 63));
489 }
490
491
492 /* Return true if REG is an argument register, false otherwise. */
493 static int
494 is_argument_reg (int reg)
495 {
496 return (8 <= reg && reg <= 13);
497 }
498
499 /* Scan an FR-V prologue, starting at PC, until frame->PC.
500 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
501 We assume FRAME's saved_regs array has already been allocated and cleared.
502 Return the first PC value after the prologue.
503
504 Note that, for unoptimized code, we almost don't need this function
505 at all; all arguments and locals live on the stack, so we just need
506 the FP to find everything. The catch: structures passed by value
507 have their addresses living in registers; they're never spilled to
508 the stack. So if you ever want to be able to get to these
509 arguments in any frame but the top, you'll need to do this serious
510 prologue analysis. */
511 static CORE_ADDR
512 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
513 struct frv_unwind_cache *info)
514 {
515 /* When writing out instruction bitpatterns, we use the following
516 letters to label instruction fields:
517 P - The parallel bit. We don't use this.
518 J - The register number of GRj in the instruction description.
519 K - The register number of GRk in the instruction description.
520 I - The register number of GRi.
521 S - a signed imediate offset.
522 U - an unsigned immediate offset.
523
524 The dots below the numbers indicate where hex digit boundaries
525 fall, to make it easier to check the numbers. */
526
527 /* Non-zero iff we've seen the instruction that initializes the
528 frame pointer for this function's frame. */
529 int fp_set = 0;
530
531 /* If fp_set is non_zero, then this is the distance from
532 the stack pointer to frame pointer: fp = sp + fp_offset. */
533 int fp_offset = 0;
534
535 /* Total size of frame prior to any alloca operations. */
536 int framesize = 0;
537
538 /* Flag indicating if lr has been saved on the stack. */
539 int lr_saved_on_stack = 0;
540
541 /* The number of the general-purpose register we saved the return
542 address ("link register") in, or -1 if we haven't moved it yet. */
543 int lr_save_reg = -1;
544
545 /* Offset (from sp) at which lr has been saved on the stack. */
546
547 int lr_sp_offset = 0;
548
549 /* If gr_saved[i] is non-zero, then we've noticed that general
550 register i has been saved at gr_sp_offset[i] from the stack
551 pointer. */
552 char gr_saved[64];
553 int gr_sp_offset[64];
554
555 /* The address of the most recently scanned prologue instruction. */
556 CORE_ADDR last_prologue_pc;
557
558 /* The address of the next instruction. */
559 CORE_ADDR next_pc;
560
561 /* The upper bound to of the pc values to scan. */
562 CORE_ADDR lim_pc;
563
564 memset (gr_saved, 0, sizeof (gr_saved));
565
566 last_prologue_pc = pc;
567
568 /* Try to compute an upper limit (on how far to scan) based on the
569 line number info. */
570 lim_pc = skip_prologue_using_sal (pc);
571 /* If there's no line number info, lim_pc will be 0. In that case,
572 set the limit to be 100 instructions away from pc. Hopefully, this
573 will be far enough away to account for the entire prologue. Don't
574 worry about overshooting the end of the function. The scan loop
575 below contains some checks to avoid scanning unreasonably far. */
576 if (lim_pc == 0)
577 lim_pc = pc + 400;
578
579 /* If we have a frame, we don't want to scan past the frame's pc. This
580 will catch those cases where the pc is in the prologue. */
581 if (next_frame)
582 {
583 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
584 if (frame_pc < lim_pc)
585 lim_pc = frame_pc;
586 }
587
588 /* Scan the prologue. */
589 while (pc < lim_pc)
590 {
591 char buf[frv_instr_size];
592 LONGEST op;
593
594 if (target_read_memory (pc, buf, sizeof buf) != 0)
595 break;
596 op = extract_signed_integer (buf, sizeof buf);
597
598 next_pc = pc + 4;
599
600 /* The tests in this chain of ifs should be in order of
601 decreasing selectivity, so that more particular patterns get
602 to fire before less particular patterns. */
603
604 /* Some sort of control transfer instruction: stop scanning prologue.
605 Integer Conditional Branch:
606 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
607 Floating-point / media Conditional Branch:
608 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
609 LCR Conditional Branch to LR
610 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
611 Integer conditional Branches to LR
612 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
613 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
614 Floating-point/Media Branches to LR
615 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
617 Jump and Link
618 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
619 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
620 Call
621 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
622 Return from Trap
623 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
624 Integer Conditional Trap
625 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
626 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
627 Floating-point /media Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
629 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
630 Break
631 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
632 Media Trap
633 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
634 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
635 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
636 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
637 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
638 {
639 /* Stop scanning; not in prologue any longer. */
640 break;
641 }
642
643 /* Loading something from memory into fp probably means that
644 we're in the epilogue. Stop scanning the prologue.
645 ld @(GRi, GRk), fp
646 X 000010 0000010 XXXXXX 000100 XXXXXX
647 ldi @(GRi, d12), fp
648 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
649 else if ((op & 0x7ffc0fc0) == 0x04080100
650 || (op & 0x7ffc0000) == 0x04c80000)
651 {
652 break;
653 }
654
655 /* Setting the FP from the SP:
656 ori sp, 0, fp
657 P 000010 0100010 000001 000000000000 = 0x04881000
658 0 111111 1111111 111111 111111111111 = 0x7fffffff
659 . . . . . . . .
660 We treat this as part of the prologue. */
661 else if ((op & 0x7fffffff) == 0x04881000)
662 {
663 fp_set = 1;
664 fp_offset = 0;
665 last_prologue_pc = next_pc;
666 }
667
668 /* Move the link register to the scratch register grJ, before saving:
669 movsg lr, grJ
670 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
671 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
672 . . . . . . . .
673 We treat this as part of the prologue. */
674 else if ((op & 0x7fffffc0) == 0x080d01c0)
675 {
676 int gr_j = op & 0x3f;
677
678 /* If we're moving it to a scratch register, that's fine. */
679 if (is_caller_saves_reg (gr_j))
680 {
681 lr_save_reg = gr_j;
682 last_prologue_pc = next_pc;
683 }
684 }
685
686 /* To save multiple callee-saves registers on the stack, at
687 offset zero:
688
689 std grK,@(sp,gr0)
690 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
691 0 000000 1111111 111111 111111 111111 = 0x01ffffff
692
693 stq grK,@(sp,gr0)
694 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696 . . . . . . . .
697 We treat this as part of the prologue, and record the register's
698 saved address in the frame structure. */
699 else if ((op & 0x01ffffff) == 0x000c10c0
700 || (op & 0x01ffffff) == 0x000c1100)
701 {
702 int gr_k = ((op >> 25) & 0x3f);
703 int ope = ((op >> 6) & 0x3f);
704 int count;
705 int i;
706
707 /* Is it an std or an stq? */
708 if (ope == 0x03)
709 count = 2;
710 else
711 count = 4;
712
713 /* Is it really a callee-saves register? */
714 if (is_callee_saves_reg (gr_k))
715 {
716 for (i = 0; i < count; i++)
717 {
718 gr_saved[gr_k + i] = 1;
719 gr_sp_offset[gr_k + i] = 4 * i;
720 }
721 last_prologue_pc = next_pc;
722 }
723 }
724
725 /* Adjusting the stack pointer. (The stack pointer is GR1.)
726 addi sp, S, sp
727 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
728 0 111111 1111111 111111 000000000000 = 0x7ffff000
729 . . . . . . . .
730 We treat this as part of the prologue. */
731 else if ((op & 0x7ffff000) == 0x02401000)
732 {
733 if (framesize == 0)
734 {
735 /* Sign-extend the twelve-bit field.
736 (Isn't there a better way to do this?) */
737 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
738
739 framesize -= s;
740 last_prologue_pc = pc;
741 }
742 else
743 {
744 /* If the prologue is being adjusted again, we've
745 likely gone too far; i.e. we're probably in the
746 epilogue. */
747 break;
748 }
749 }
750
751 /* Setting the FP to a constant distance from the SP:
752 addi sp, S, fp
753 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
754 0 111111 1111111 111111 000000000000 = 0x7ffff000
755 . . . . . . . .
756 We treat this as part of the prologue. */
757 else if ((op & 0x7ffff000) == 0x04401000)
758 {
759 /* Sign-extend the twelve-bit field.
760 (Isn't there a better way to do this?) */
761 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
762 fp_set = 1;
763 fp_offset = s;
764 last_prologue_pc = pc;
765 }
766
767 /* To spill an argument register to a scratch register:
768 ori GRi, 0, GRk
769 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
770 0 000000 1111111 000000 111111111111 = 0x01fc0fff
771 . . . . . . . .
772 For the time being, we treat this as a prologue instruction,
773 assuming that GRi is an argument register. This one's kind
774 of suspicious, because it seems like it could be part of a
775 legitimate body instruction. But we only come here when the
776 source info wasn't helpful, so we have to do the best we can.
777 Hopefully once GCC and GDB agree on how to emit line number
778 info for prologues, then this code will never come into play. */
779 else if ((op & 0x01fc0fff) == 0x00880000)
780 {
781 int gr_i = ((op >> 12) & 0x3f);
782
783 /* Make sure that the source is an arg register; if it is, we'll
784 treat it as a prologue instruction. */
785 if (is_argument_reg (gr_i))
786 last_prologue_pc = next_pc;
787 }
788
789 /* To spill 16-bit values to the stack:
790 sthi GRk, @(fp, s)
791 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
792 0 000000 1111111 111111 000000000000 = 0x01fff000
793 . . . . . . . .
794 And for 8-bit values, we use STB instructions.
795 stbi GRk, @(fp, s)
796 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
797 0 000000 1111111 111111 000000000000 = 0x01fff000
798 . . . . . . . .
799 We check that GRk is really an argument register, and treat
800 all such as part of the prologue. */
801 else if ( (op & 0x01fff000) == 0x01442000
802 || (op & 0x01fff000) == 0x01402000)
803 {
804 int gr_k = ((op >> 25) & 0x3f);
805
806 /* Make sure that GRk is really an argument register; treat
807 it as a prologue instruction if so. */
808 if (is_argument_reg (gr_k))
809 last_prologue_pc = next_pc;
810 }
811
812 /* To save multiple callee-saves register on the stack, at a
813 non-zero offset:
814
815 stdi GRk, @(sp, s)
816 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
817 0 000000 1111111 111111 000000000000 = 0x01fff000
818 . . . . . . . .
819 stqi GRk, @(sp, s)
820 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
822 . . . . . . . .
823 We treat this as part of the prologue, and record the register's
824 saved address in the frame structure. */
825 else if ((op & 0x01fff000) == 0x014c1000
826 || (op & 0x01fff000) == 0x01501000)
827 {
828 int gr_k = ((op >> 25) & 0x3f);
829 int count;
830 int i;
831
832 /* Is it a stdi or a stqi? */
833 if ((op & 0x01fff000) == 0x014c1000)
834 count = 2;
835 else
836 count = 4;
837
838 /* Is it really a callee-saves register? */
839 if (is_callee_saves_reg (gr_k))
840 {
841 /* Sign-extend the twelve-bit field.
842 (Isn't there a better way to do this?) */
843 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
844
845 for (i = 0; i < count; i++)
846 {
847 gr_saved[gr_k + i] = 1;
848 gr_sp_offset[gr_k + i] = s + (4 * i);
849 }
850 last_prologue_pc = next_pc;
851 }
852 }
853
854 /* Storing any kind of integer register at any constant offset
855 from any other register.
856
857 st GRk, @(GRi, gr0)
858 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
859 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
860 . . . . . . . .
861 sti GRk, @(GRi, d12)
862 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
863 0 000000 1111111 000000 000000000000 = 0x01fc0000
864 . . . . . . . .
865 These could be almost anything, but a lot of prologue
866 instructions fall into this pattern, so let's decode the
867 instruction once, and then work at a higher level. */
868 else if (((op & 0x01fc0fff) == 0x000c0080)
869 || ((op & 0x01fc0000) == 0x01480000))
870 {
871 int gr_k = ((op >> 25) & 0x3f);
872 int gr_i = ((op >> 12) & 0x3f);
873 int offset;
874
875 /* Are we storing with gr0 as an offset, or using an
876 immediate value? */
877 if ((op & 0x01fc0fff) == 0x000c0080)
878 offset = 0;
879 else
880 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
881
882 /* If the address isn't relative to the SP or FP, it's not a
883 prologue instruction. */
884 if (gr_i != sp_regnum && gr_i != fp_regnum)
885 {
886 /* Do nothing; not a prologue instruction. */
887 }
888
889 /* Saving the old FP in the new frame (relative to the SP). */
890 else if (gr_k == fp_regnum && gr_i == sp_regnum)
891 {
892 gr_saved[fp_regnum] = 1;
893 gr_sp_offset[fp_regnum] = offset;
894 last_prologue_pc = next_pc;
895 }
896
897 /* Saving callee-saves register(s) on the stack, relative to
898 the SP. */
899 else if (gr_i == sp_regnum
900 && is_callee_saves_reg (gr_k))
901 {
902 gr_saved[gr_k] = 1;
903 if (gr_i == sp_regnum)
904 gr_sp_offset[gr_k] = offset;
905 else
906 gr_sp_offset[gr_k] = offset + fp_offset;
907 last_prologue_pc = next_pc;
908 }
909
910 /* Saving the scratch register holding the return address. */
911 else if (lr_save_reg != -1
912 && gr_k == lr_save_reg)
913 {
914 lr_saved_on_stack = 1;
915 if (gr_i == sp_regnum)
916 lr_sp_offset = offset;
917 else
918 lr_sp_offset = offset + fp_offset;
919 last_prologue_pc = next_pc;
920 }
921
922 /* Spilling int-sized arguments to the stack. */
923 else if (is_argument_reg (gr_k))
924 last_prologue_pc = next_pc;
925 }
926 pc = next_pc;
927 }
928
929 if (next_frame && info)
930 {
931 int i;
932 ULONGEST this_base;
933
934 /* If we know the relationship between the stack and frame
935 pointers, record the addresses of the registers we noticed.
936 Note that we have to do this as a separate step at the end,
937 because instructions may save relative to the SP, but we need
938 their addresses relative to the FP. */
939 if (fp_set)
940 this_base = frame_unwind_register_unsigned (next_frame, fp_regnum);
941 else
942 this_base = frame_unwind_register_unsigned (next_frame, sp_regnum);
943
944 for (i = 0; i < 64; i++)
945 if (gr_saved[i])
946 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
947
948 info->prev_sp = this_base - fp_offset + framesize;
949 info->base = this_base;
950
951 /* If LR was saved on the stack, record its location. */
952 if (lr_saved_on_stack)
953 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
954
955 /* The call instruction moves the caller's PC in the callee's LR.
956 Since this is an unwind, do the reverse. Copy the location of LR
957 into PC (the address / regnum) so that a request for PC will be
958 converted into a request for the LR. */
959 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
960
961 /* Save the previous frame's computed SP value. */
962 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
963 }
964
965 return last_prologue_pc;
966 }
967
968
969 static CORE_ADDR
970 frv_skip_prologue (CORE_ADDR pc)
971 {
972 CORE_ADDR func_addr, func_end, new_pc;
973
974 new_pc = pc;
975
976 /* If the line table has entry for a line *within* the function
977 (i.e., not in the prologue, and not past the end), then that's
978 our location. */
979 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
980 {
981 struct symtab_and_line sal;
982
983 sal = find_pc_line (func_addr, 0);
984
985 if (sal.line != 0 && sal.end < func_end)
986 {
987 new_pc = sal.end;
988 }
989 }
990
991 /* The FR-V prologue is at least five instructions long (twenty bytes).
992 If we didn't find a real source location past that, then
993 do a full analysis of the prologue. */
994 if (new_pc < pc + 20)
995 new_pc = frv_analyze_prologue (pc, 0, 0);
996
997 return new_pc;
998 }
999
1000
1001 static struct frv_unwind_cache *
1002 frv_frame_unwind_cache (struct frame_info *next_frame,
1003 void **this_prologue_cache)
1004 {
1005 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1006 CORE_ADDR pc;
1007 ULONGEST this_base;
1008 struct frv_unwind_cache *info;
1009
1010 if ((*this_prologue_cache))
1011 return (*this_prologue_cache);
1012
1013 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1014 (*this_prologue_cache) = info;
1015 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1016
1017 /* Prologue analysis does the rest... */
1018 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1019 next_frame, info);
1020
1021 return info;
1022 }
1023
1024 static void
1025 frv_extract_return_value (struct type *type, struct regcache *regcache,
1026 gdb_byte *valbuf)
1027 {
1028 int len = TYPE_LENGTH (type);
1029
1030 if (len <= 4)
1031 {
1032 ULONGEST gpr8_val;
1033 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1034 store_unsigned_integer (valbuf, len, gpr8_val);
1035 }
1036 else if (len == 8)
1037 {
1038 ULONGEST regval;
1039 regcache_cooked_read_unsigned (regcache, 8, &regval);
1040 store_unsigned_integer (valbuf, 4, regval);
1041 regcache_cooked_read_unsigned (regcache, 9, &regval);
1042 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1043 }
1044 else
1045 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1046 }
1047
1048 static CORE_ADDR
1049 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1050 {
1051 /* Require dword alignment. */
1052 return align_down (sp, 8);
1053 }
1054
1055 static CORE_ADDR
1056 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1057 {
1058 CORE_ADDR descr;
1059 char valbuf[4];
1060 CORE_ADDR start_addr;
1061
1062 /* If we can't find the function in the symbol table, then we assume
1063 that the function address is already in descriptor form. */
1064 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1065 || entry_point != start_addr)
1066 return entry_point;
1067
1068 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1069
1070 if (descr != 0)
1071 return descr;
1072
1073 /* Construct a non-canonical descriptor from space allocated on
1074 the stack. */
1075
1076 descr = value_as_long (value_allocate_space_in_inferior (8));
1077 store_unsigned_integer (valbuf, 4, entry_point);
1078 write_memory (descr, valbuf, 4);
1079 store_unsigned_integer (valbuf, 4,
1080 frv_fdpic_find_global_pointer (entry_point));
1081 write_memory (descr + 4, valbuf, 4);
1082 return descr;
1083 }
1084
1085 static CORE_ADDR
1086 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1087 struct target_ops *targ)
1088 {
1089 CORE_ADDR entry_point;
1090 CORE_ADDR got_address;
1091
1092 entry_point = get_target_memory_unsigned (targ, addr, 4);
1093 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1094
1095 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1096 return entry_point;
1097 else
1098 return addr;
1099 }
1100
1101 static CORE_ADDR
1102 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
1106 {
1107 int argreg;
1108 int argnum;
1109 char *val;
1110 char valbuf[4];
1111 struct value *arg;
1112 struct type *arg_type;
1113 int len;
1114 enum type_code typecode;
1115 CORE_ADDR regval;
1116 int stack_space;
1117 int stack_offset;
1118 enum frv_abi abi = frv_abi (gdbarch);
1119 CORE_ADDR func_addr = find_function_addr (function, NULL);
1120
1121 #if 0
1122 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1123 nargs, (int) sp, struct_return, struct_addr);
1124 #endif
1125
1126 stack_space = 0;
1127 for (argnum = 0; argnum < nargs; ++argnum)
1128 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1129
1130 stack_space -= (6 * 4);
1131 if (stack_space > 0)
1132 sp -= stack_space;
1133
1134 /* Make sure stack is dword aligned. */
1135 sp = align_down (sp, 8);
1136
1137 stack_offset = 0;
1138
1139 argreg = 8;
1140
1141 if (struct_return)
1142 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1143 struct_addr);
1144
1145 for (argnum = 0; argnum < nargs; ++argnum)
1146 {
1147 arg = args[argnum];
1148 arg_type = check_typedef (value_type (arg));
1149 len = TYPE_LENGTH (arg_type);
1150 typecode = TYPE_CODE (arg_type);
1151
1152 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1153 {
1154 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1155 typecode = TYPE_CODE_PTR;
1156 len = 4;
1157 val = valbuf;
1158 }
1159 else if (abi == FRV_ABI_FDPIC
1160 && len == 4
1161 && typecode == TYPE_CODE_PTR
1162 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1163 {
1164 /* The FDPIC ABI requires function descriptors to be passed instead
1165 of entry points. */
1166 store_unsigned_integer
1167 (valbuf, 4,
1168 find_func_descr (gdbarch,
1169 extract_unsigned_integer (value_contents (arg),
1170 4)));
1171 typecode = TYPE_CODE_PTR;
1172 len = 4;
1173 val = valbuf;
1174 }
1175 else
1176 {
1177 val = (char *) value_contents (arg);
1178 }
1179
1180 while (len > 0)
1181 {
1182 int partial_len = (len < 4 ? len : 4);
1183
1184 if (argreg < 14)
1185 {
1186 regval = extract_unsigned_integer (val, partial_len);
1187 #if 0
1188 printf(" Argnum %d data %x -> reg %d\n",
1189 argnum, (int) regval, argreg);
1190 #endif
1191 regcache_cooked_write_unsigned (regcache, argreg, regval);
1192 ++argreg;
1193 }
1194 else
1195 {
1196 #if 0
1197 printf(" Argnum %d data %x -> offset %d (%x)\n",
1198 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1199 #endif
1200 write_memory (sp + stack_offset, val, partial_len);
1201 stack_offset += align_up (partial_len, 4);
1202 }
1203 len -= partial_len;
1204 val += partial_len;
1205 }
1206 }
1207
1208 /* Set the return address. For the frv, the return breakpoint is
1209 always at BP_ADDR. */
1210 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1211
1212 if (abi == FRV_ABI_FDPIC)
1213 {
1214 /* Set the GOT register for the FDPIC ABI. */
1215 regcache_cooked_write_unsigned
1216 (regcache, first_gpr_regnum + 15,
1217 frv_fdpic_find_global_pointer (func_addr));
1218 }
1219
1220 /* Finally, update the SP register. */
1221 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1222
1223 return sp;
1224 }
1225
1226 static void
1227 frv_store_return_value (struct type *type, struct regcache *regcache,
1228 const gdb_byte *valbuf)
1229 {
1230 int len = TYPE_LENGTH (type);
1231
1232 if (len <= 4)
1233 {
1234 bfd_byte val[4];
1235 memset (val, 0, sizeof (val));
1236 memcpy (val + (4 - len), valbuf, len);
1237 regcache_cooked_write (regcache, 8, val);
1238 }
1239 else if (len == 8)
1240 {
1241 regcache_cooked_write (regcache, 8, valbuf);
1242 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1243 }
1244 else
1245 internal_error (__FILE__, __LINE__,
1246 _("Don't know how to return a %d-byte value."), len);
1247 }
1248
1249 enum return_value_convention
1250 frv_return_value (struct gdbarch *gdbarch, struct type *valtype,
1251 struct regcache *regcache, gdb_byte *readbuf,
1252 const gdb_byte *writebuf)
1253 {
1254 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1256 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1257
1258 if (writebuf != NULL)
1259 {
1260 gdb_assert (!struct_return);
1261 frv_store_return_value (valtype, regcache, writebuf);
1262 }
1263
1264 if (readbuf != NULL)
1265 {
1266 gdb_assert (!struct_return);
1267 frv_extract_return_value (valtype, regcache, readbuf);
1268 }
1269
1270 if (struct_return)
1271 return RETURN_VALUE_STRUCT_CONVENTION;
1272 else
1273 return RETURN_VALUE_REGISTER_CONVENTION;
1274 }
1275
1276
1277 /* Hardware watchpoint / breakpoint support for the FR500
1278 and FR400. */
1279
1280 int
1281 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1282 {
1283 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1284
1285 /* Watchpoints not supported on simulator. */
1286 if (strcmp (target_shortname, "sim") == 0)
1287 return 0;
1288
1289 if (type == bp_hardware_breakpoint)
1290 {
1291 if (var->num_hw_breakpoints == 0)
1292 return 0;
1293 else if (cnt <= var->num_hw_breakpoints)
1294 return 1;
1295 }
1296 else
1297 {
1298 if (var->num_hw_watchpoints == 0)
1299 return 0;
1300 else if (ot)
1301 return -1;
1302 else if (cnt <= var->num_hw_watchpoints)
1303 return 1;
1304 }
1305 return -1;
1306 }
1307
1308
1309 int
1310 frv_stopped_data_address (CORE_ADDR *addr_p)
1311 {
1312 struct frame_info *frame = get_current_frame ();
1313 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1314
1315 brr = get_frame_register_unsigned (frame, brr_regnum);
1316 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1317 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1318 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1319 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1320
1321 if (brr & (1<<11))
1322 *addr_p = dbar0;
1323 else if (brr & (1<<10))
1324 *addr_p = dbar1;
1325 else if (brr & (1<<9))
1326 *addr_p = dbar2;
1327 else if (brr & (1<<8))
1328 *addr_p = dbar3;
1329 else
1330 return 0;
1331
1332 return 1;
1333 }
1334
1335 int
1336 frv_have_stopped_data_address (void)
1337 {
1338 CORE_ADDR addr = 0;
1339 return frv_stopped_data_address (&addr);
1340 }
1341
1342 static CORE_ADDR
1343 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1344 {
1345 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1346 }
1347
1348 /* Given a GDB frame, determine the address of the calling function's
1349 frame. This will be used to create a new GDB frame struct. */
1350
1351 static void
1352 frv_frame_this_id (struct frame_info *next_frame,
1353 void **this_prologue_cache, struct frame_id *this_id)
1354 {
1355 struct frv_unwind_cache *info
1356 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1357 CORE_ADDR base;
1358 CORE_ADDR func;
1359 struct minimal_symbol *msym_stack;
1360 struct frame_id id;
1361
1362 /* The FUNC is easy. */
1363 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1364
1365 /* Check if the stack is empty. */
1366 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1367 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1368 return;
1369
1370 /* Hopefully the prologue analysis either correctly determined the
1371 frame's base (which is the SP from the previous frame), or set
1372 that base to "NULL". */
1373 base = info->prev_sp;
1374 if (base == 0)
1375 return;
1376
1377 id = frame_id_build (base, func);
1378 (*this_id) = id;
1379 }
1380
1381 static void
1382 frv_frame_prev_register (struct frame_info *next_frame,
1383 void **this_prologue_cache,
1384 int regnum, int *optimizedp,
1385 enum lval_type *lvalp, CORE_ADDR *addrp,
1386 int *realnump, gdb_byte *bufferp)
1387 {
1388 struct frv_unwind_cache *info
1389 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1390 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1391 optimizedp, lvalp, addrp, realnump, bufferp);
1392 }
1393
1394 static const struct frame_unwind frv_frame_unwind = {
1395 NORMAL_FRAME,
1396 frv_frame_this_id,
1397 frv_frame_prev_register
1398 };
1399
1400 static const struct frame_unwind *
1401 frv_frame_sniffer (struct frame_info *next_frame)
1402 {
1403 return &frv_frame_unwind;
1404 }
1405
1406 static CORE_ADDR
1407 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1408 {
1409 struct frv_unwind_cache *info
1410 = frv_frame_unwind_cache (next_frame, this_cache);
1411 return info->base;
1412 }
1413
1414 static const struct frame_base frv_frame_base = {
1415 &frv_frame_unwind,
1416 frv_frame_base_address,
1417 frv_frame_base_address,
1418 frv_frame_base_address
1419 };
1420
1421 static CORE_ADDR
1422 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1423 {
1424 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1425 }
1426
1427
1428 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1429 dummy frame. The frame ID's base needs to match the TOS value
1430 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1431 breakpoint. */
1432
1433 static struct frame_id
1434 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1435 {
1436 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1437 frame_pc_unwind (next_frame));
1438 }
1439
1440 static struct gdbarch *
1441 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1442 {
1443 struct gdbarch *gdbarch;
1444 struct gdbarch_tdep *var;
1445 int elf_flags = 0;
1446
1447 /* Check to see if we've already built an appropriate architecture
1448 object for this executable. */
1449 arches = gdbarch_list_lookup_by_info (arches, &info);
1450 if (arches)
1451 return arches->gdbarch;
1452
1453 /* Select the right tdep structure for this variant. */
1454 var = new_variant ();
1455 switch (info.bfd_arch_info->mach)
1456 {
1457 case bfd_mach_frv:
1458 case bfd_mach_frvsimple:
1459 case bfd_mach_fr500:
1460 case bfd_mach_frvtomcat:
1461 case bfd_mach_fr550:
1462 set_variant_num_gprs (var, 64);
1463 set_variant_num_fprs (var, 64);
1464 break;
1465
1466 case bfd_mach_fr400:
1467 case bfd_mach_fr450:
1468 set_variant_num_gprs (var, 32);
1469 set_variant_num_fprs (var, 32);
1470 break;
1471
1472 default:
1473 /* Never heard of this variant. */
1474 return 0;
1475 }
1476
1477 /* Extract the ELF flags, if available. */
1478 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1479 elf_flags = elf_elfheader (info.abfd)->e_flags;
1480
1481 if (elf_flags & EF_FRV_FDPIC)
1482 set_variant_abi_fdpic (var);
1483
1484 if (elf_flags & EF_FRV_CPU_FR450)
1485 set_variant_scratch_registers (var);
1486
1487 gdbarch = gdbarch_alloc (&info, var);
1488
1489 set_gdbarch_short_bit (gdbarch, 16);
1490 set_gdbarch_int_bit (gdbarch, 32);
1491 set_gdbarch_long_bit (gdbarch, 32);
1492 set_gdbarch_long_long_bit (gdbarch, 64);
1493 set_gdbarch_float_bit (gdbarch, 32);
1494 set_gdbarch_double_bit (gdbarch, 64);
1495 set_gdbarch_long_double_bit (gdbarch, 64);
1496 set_gdbarch_ptr_bit (gdbarch, 32);
1497
1498 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1499 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1500
1501 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1502 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1503 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1504
1505 set_gdbarch_register_name (gdbarch, frv_register_name);
1506 set_gdbarch_register_type (gdbarch, frv_register_type);
1507 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1508
1509 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1510 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1511
1512 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1513 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1514 set_gdbarch_adjust_breakpoint_address
1515 (gdbarch, frv_adjust_breakpoint_address);
1516
1517 set_gdbarch_return_value (gdbarch, frv_return_value);
1518
1519 /* Frame stuff. */
1520 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1521 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1522 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1523 frame_base_set_default (gdbarch, &frv_frame_base);
1524 /* We set the sniffer lower down after the OSABI hooks have been
1525 established. */
1526
1527 /* Settings for calling functions in the inferior. */
1528 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1529 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1530
1531 /* Settings that should be unnecessary. */
1532 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1533
1534 /* Hardware watchpoint / breakpoint support. */
1535 switch (info.bfd_arch_info->mach)
1536 {
1537 case bfd_mach_frv:
1538 case bfd_mach_frvsimple:
1539 case bfd_mach_fr500:
1540 case bfd_mach_frvtomcat:
1541 /* fr500-style hardware debugging support. */
1542 var->num_hw_watchpoints = 4;
1543 var->num_hw_breakpoints = 4;
1544 break;
1545
1546 case bfd_mach_fr400:
1547 case bfd_mach_fr450:
1548 /* fr400-style hardware debugging support. */
1549 var->num_hw_watchpoints = 2;
1550 var->num_hw_breakpoints = 4;
1551 break;
1552
1553 default:
1554 /* Otherwise, assume we don't have hardware debugging support. */
1555 var->num_hw_watchpoints = 0;
1556 var->num_hw_breakpoints = 0;
1557 break;
1558 }
1559
1560 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1561 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1562 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1563 frv_convert_from_func_ptr_addr);
1564
1565 set_solib_ops (gdbarch, &frv_so_ops);
1566
1567 /* Hook in ABI-specific overrides, if they have been registered. */
1568 gdbarch_init_osabi (info, gdbarch);
1569
1570 /* Set the fallback (prologue based) frame sniffer. */
1571 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1572
1573 /* Enable TLS support. */
1574 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1575 frv_fetch_objfile_link_map);
1576
1577 return gdbarch;
1578 }
1579
1580 void
1581 _initialize_frv_tdep (void)
1582 {
1583 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1584 }
This page took 0.077293 seconds and 4 git commands to generate.