1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
25 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
44 extern void _initialize_frv_tdep (void);
46 struct frv_unwind_cache
/* was struct frame_extra_info */
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
52 /* The frame's base, optionally used by the high-level debug info. */
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg
*saved_regs
;
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
76 /* Which ABI is in use? */
79 /* How many general-purpose registers does this variant have? */
82 /* How many floating-point registers does this variant have? */
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints
;
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints
;
92 char **register_names
;
95 /* Return the FR-V ABI associated with GDBARCH. */
97 frv_abi (struct gdbarch
*gdbarch
)
99 return gdbarch_tdep (gdbarch
)->frv_abi
;
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
106 frv_fdpic_loadmap_addresses (struct gdbarch
*gdbarch
, CORE_ADDR
*interp_addr
,
107 CORE_ADDR
*exec_addr
)
109 if (frv_abi (gdbarch
) != FRV_ABI_FDPIC
)
113 struct regcache
*regcache
= get_current_regcache ();
115 if (interp_addr
!= NULL
)
118 regcache_cooked_read_unsigned (regcache
,
119 fdpic_loadmap_interp_regnum
, &val
);
122 if (exec_addr
!= NULL
)
125 regcache_cooked_read_unsigned (regcache
,
126 fdpic_loadmap_exec_regnum
, &val
);
133 /* Allocate a new variant structure, and set up default values for all
135 static struct gdbarch_tdep
*
138 struct gdbarch_tdep
*var
;
142 var
= xmalloc (sizeof (*var
));
143 memset (var
, 0, sizeof (*var
));
145 var
->frv_abi
= FRV_ABI_EABI
;
148 var
->num_hw_watchpoints
= 0;
149 var
->num_hw_breakpoints
= 0;
151 /* By default, don't supply any general-purpose or floating-point
154 = (char **) xmalloc ((frv_num_regs
+ frv_num_pseudo_regs
)
156 for (r
= 0; r
< frv_num_regs
+ frv_num_pseudo_regs
; r
++)
157 var
->register_names
[r
] = "";
159 /* Do, however, supply default names for the known special-purpose
162 var
->register_names
[pc_regnum
] = "pc";
163 var
->register_names
[lr_regnum
] = "lr";
164 var
->register_names
[lcr_regnum
] = "lcr";
166 var
->register_names
[psr_regnum
] = "psr";
167 var
->register_names
[ccr_regnum
] = "ccr";
168 var
->register_names
[cccr_regnum
] = "cccr";
169 var
->register_names
[tbr_regnum
] = "tbr";
171 /* Debug registers. */
172 var
->register_names
[brr_regnum
] = "brr";
173 var
->register_names
[dbar0_regnum
] = "dbar0";
174 var
->register_names
[dbar1_regnum
] = "dbar1";
175 var
->register_names
[dbar2_regnum
] = "dbar2";
176 var
->register_names
[dbar3_regnum
] = "dbar3";
178 /* iacc0 (Only found on MB93405.) */
179 var
->register_names
[iacc0h_regnum
] = "iacc0h";
180 var
->register_names
[iacc0l_regnum
] = "iacc0l";
181 var
->register_names
[iacc0_regnum
] = "iacc0";
183 /* fsr0 (Found on FR555 and FR501.) */
184 var
->register_names
[fsr0_regnum
] = "fsr0";
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
190 for (r
= acc0_regnum
; r
<= acc7_regnum
; r
++)
193 buf
= xstrprintf ("acc%d", r
- acc0_regnum
);
194 var
->register_names
[r
] = buf
;
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
203 for (r
= accg0_regnum
; r
<= accg7_regnum
; r
++)
206 buf
= xstrprintf ("accg%d", r
- accg0_regnum
);
207 var
->register_names
[r
] = buf
;
212 var
->register_names
[msr0_regnum
] = "msr0";
213 var
->register_names
[msr1_regnum
] = "msr1";
215 /* gner and fner registers. */
216 var
->register_names
[gner0_regnum
] = "gner0";
217 var
->register_names
[gner1_regnum
] = "gner1";
218 var
->register_names
[fner0_regnum
] = "fner0";
219 var
->register_names
[fner1_regnum
] = "fner1";
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
228 set_variant_num_gprs (struct gdbarch_tdep
*var
, int num_gprs
)
232 var
->num_gprs
= num_gprs
;
234 for (r
= 0; r
< num_gprs
; ++r
)
238 sprintf (buf
, "gr%d", r
);
239 var
->register_names
[first_gpr_regnum
+ r
] = xstrdup (buf
);
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
247 set_variant_num_fprs (struct gdbarch_tdep
*var
, int num_fprs
)
251 var
->num_fprs
= num_fprs
;
253 for (r
= 0; r
< num_fprs
; ++r
)
257 sprintf (buf
, "fr%d", r
);
258 var
->register_names
[first_fpr_regnum
+ r
] = xstrdup (buf
);
263 set_variant_abi_fdpic (struct gdbarch_tdep
*var
)
265 var
->frv_abi
= FRV_ABI_FDPIC
;
266 var
->register_names
[fdpic_loadmap_exec_regnum
] = xstrdup ("loadmap_exec");
267 var
->register_names
[fdpic_loadmap_interp_regnum
]
268 = xstrdup ("loadmap_interp");
272 set_variant_scratch_registers (struct gdbarch_tdep
*var
)
274 var
->register_names
[scr0_regnum
] = xstrdup ("scr0");
275 var
->register_names
[scr1_regnum
] = xstrdup ("scr1");
276 var
->register_names
[scr2_regnum
] = xstrdup ("scr2");
277 var
->register_names
[scr3_regnum
] = xstrdup ("scr3");
281 frv_register_name (struct gdbarch
*gdbarch
, int reg
)
285 if (reg
>= frv_num_regs
+ frv_num_pseudo_regs
)
288 return gdbarch_tdep (gdbarch
)->register_names
[reg
];
293 frv_register_type (struct gdbarch
*gdbarch
, int reg
)
295 if (reg
>= first_fpr_regnum
&& reg
<= last_fpr_regnum
)
296 return builtin_type (gdbarch
)->builtin_float
;
297 else if (reg
== iacc0_regnum
)
298 return builtin_type (gdbarch
)->builtin_int64
;
300 return builtin_type (gdbarch
)->builtin_int32
;
304 frv_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
305 int reg
, gdb_byte
*buffer
)
307 if (reg
== iacc0_regnum
)
309 regcache_raw_read (regcache
, iacc0h_regnum
, buffer
);
310 regcache_raw_read (regcache
, iacc0l_regnum
, (bfd_byte
*) buffer
+ 4);
312 else if (accg0_regnum
<= reg
&& reg
<= accg7_regnum
)
314 /* The accg raw registers have four values in each slot with the
315 lowest register number occupying the first byte. */
317 int raw_regnum
= accg0123_regnum
+ (reg
- accg0_regnum
) / 4;
318 int byte_num
= (reg
- accg0_regnum
) % 4;
321 regcache_raw_read (regcache
, raw_regnum
, buf
);
322 memset (buffer
, 0, 4);
323 /* FR-V is big endian, so put the requested byte in the first byte
324 of the buffer allocated to hold the pseudo-register. */
325 ((bfd_byte
*) buffer
)[0] = buf
[byte_num
];
330 frv_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
331 int reg
, const gdb_byte
*buffer
)
333 if (reg
== iacc0_regnum
)
335 regcache_raw_write (regcache
, iacc0h_regnum
, buffer
);
336 regcache_raw_write (regcache
, iacc0l_regnum
, (bfd_byte
*) buffer
+ 4);
338 else if (accg0_regnum
<= reg
&& reg
<= accg7_regnum
)
340 /* The accg raw registers have four values in each slot with the
341 lowest register number occupying the first byte. */
343 int raw_regnum
= accg0123_regnum
+ (reg
- accg0_regnum
) / 4;
344 int byte_num
= (reg
- accg0_regnum
) % 4;
347 regcache_raw_read (regcache
, raw_regnum
, buf
);
348 buf
[byte_num
] = ((bfd_byte
*) buffer
)[0];
349 regcache_raw_write (regcache
, raw_regnum
, buf
);
354 frv_register_sim_regno (struct gdbarch
*gdbarch
, int reg
)
356 static const int spr_map
[] =
358 H_SPR_PSR
, /* psr_regnum */
359 H_SPR_CCR
, /* ccr_regnum */
360 H_SPR_CCCR
, /* cccr_regnum */
361 -1, /* fdpic_loadmap_exec_regnum */
362 -1, /* fdpic_loadmap_interp_regnum */
364 H_SPR_TBR
, /* tbr_regnum */
365 H_SPR_BRR
, /* brr_regnum */
366 H_SPR_DBAR0
, /* dbar0_regnum */
367 H_SPR_DBAR1
, /* dbar1_regnum */
368 H_SPR_DBAR2
, /* dbar2_regnum */
369 H_SPR_DBAR3
, /* dbar3_regnum */
370 H_SPR_SCR0
, /* scr0_regnum */
371 H_SPR_SCR1
, /* scr1_regnum */
372 H_SPR_SCR2
, /* scr2_regnum */
373 H_SPR_SCR3
, /* scr3_regnum */
374 H_SPR_LR
, /* lr_regnum */
375 H_SPR_LCR
, /* lcr_regnum */
376 H_SPR_IACC0H
, /* iacc0h_regnum */
377 H_SPR_IACC0L
, /* iacc0l_regnum */
378 H_SPR_FSR0
, /* fsr0_regnum */
379 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
380 -1, /* acc0_regnum */
381 -1, /* acc1_regnum */
382 -1, /* acc2_regnum */
383 -1, /* acc3_regnum */
384 -1, /* acc4_regnum */
385 -1, /* acc5_regnum */
386 -1, /* acc6_regnum */
387 -1, /* acc7_regnum */
388 -1, /* acc0123_regnum */
389 -1, /* acc4567_regnum */
390 H_SPR_MSR0
, /* msr0_regnum */
391 H_SPR_MSR1
, /* msr1_regnum */
392 H_SPR_GNER0
, /* gner0_regnum */
393 H_SPR_GNER1
, /* gner1_regnum */
394 H_SPR_FNER0
, /* fner0_regnum */
395 H_SPR_FNER1
, /* fner1_regnum */
398 gdb_assert (reg
>= 0 && reg
< gdbarch_num_regs (gdbarch
));
400 if (first_gpr_regnum
<= reg
&& reg
<= last_gpr_regnum
)
401 return reg
- first_gpr_regnum
+ SIM_FRV_GR0_REGNUM
;
402 else if (first_fpr_regnum
<= reg
&& reg
<= last_fpr_regnum
)
403 return reg
- first_fpr_regnum
+ SIM_FRV_FR0_REGNUM
;
404 else if (pc_regnum
== reg
)
405 return SIM_FRV_PC_REGNUM
;
406 else if (reg
>= first_spr_regnum
407 && reg
< first_spr_regnum
+ sizeof (spr_map
) / sizeof (spr_map
[0]))
409 int spr_reg_offset
= spr_map
[reg
- first_spr_regnum
];
411 if (spr_reg_offset
< 0)
412 return SIM_REGNO_DOES_NOT_EXIST
;
414 return SIM_FRV_SPR0_REGNUM
+ spr_reg_offset
;
417 internal_error (__FILE__
, __LINE__
, _("Bad register number %d"), reg
);
420 static const unsigned char *
421 frv_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
, int *lenp
)
423 static unsigned char breakpoint
[] = {0xc0, 0x70, 0x00, 0x01};
424 *lenp
= sizeof (breakpoint
);
428 /* Define the maximum number of instructions which may be packed into a
429 bundle (VLIW instruction). */
430 static const int max_instrs_per_bundle
= 8;
432 /* Define the size (in bytes) of an FR-V instruction. */
433 static const int frv_instr_size
= 4;
435 /* Adjust a breakpoint's address to account for the FR-V architecture's
436 constraint that a break instruction must not appear as any but the
437 first instruction in the bundle. */
439 frv_adjust_breakpoint_address (struct gdbarch
*gdbarch
, CORE_ADDR bpaddr
)
441 int count
= max_instrs_per_bundle
;
442 CORE_ADDR addr
= bpaddr
- frv_instr_size
;
443 CORE_ADDR func_start
= get_pc_function_start (bpaddr
);
445 /* Find the end of the previous packing sequence. This will be indicated
446 by either attempting to access some inaccessible memory or by finding
447 an instruction word whose packing bit is set to one. */
448 while (count
-- > 0 && addr
>= func_start
)
450 char instr
[frv_instr_size
];
453 status
= target_read_memory (addr
, instr
, sizeof instr
);
458 /* This is a big endian architecture, so byte zero will have most
459 significant byte. The most significant bit of this byte is the
464 addr
-= frv_instr_size
;
468 bpaddr
= addr
+ frv_instr_size
;
474 /* Return true if REG is a caller-saves ("scratch") register,
477 is_caller_saves_reg (int reg
)
479 return ((4 <= reg
&& reg
<= 7)
480 || (14 <= reg
&& reg
<= 15)
481 || (32 <= reg
&& reg
<= 47));
485 /* Return true if REG is a callee-saves register, false otherwise. */
487 is_callee_saves_reg (int reg
)
489 return ((16 <= reg
&& reg
<= 31)
490 || (48 <= reg
&& reg
<= 63));
494 /* Return true if REG is an argument register, false otherwise. */
496 is_argument_reg (int reg
)
498 return (8 <= reg
&& reg
<= 13);
501 /* Scan an FR-V prologue, starting at PC, until frame->PC.
502 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
503 We assume FRAME's saved_regs array has already been allocated and cleared.
504 Return the first PC value after the prologue.
506 Note that, for unoptimized code, we almost don't need this function
507 at all; all arguments and locals live on the stack, so we just need
508 the FP to find everything. The catch: structures passed by value
509 have their addresses living in registers; they're never spilled to
510 the stack. So if you ever want to be able to get to these
511 arguments in any frame but the top, you'll need to do this serious
512 prologue analysis. */
514 frv_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
515 struct frame_info
*this_frame
,
516 struct frv_unwind_cache
*info
)
518 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
520 /* When writing out instruction bitpatterns, we use the following
521 letters to label instruction fields:
522 P - The parallel bit. We don't use this.
523 J - The register number of GRj in the instruction description.
524 K - The register number of GRk in the instruction description.
525 I - The register number of GRi.
526 S - a signed imediate offset.
527 U - an unsigned immediate offset.
529 The dots below the numbers indicate where hex digit boundaries
530 fall, to make it easier to check the numbers. */
532 /* Non-zero iff we've seen the instruction that initializes the
533 frame pointer for this function's frame. */
536 /* If fp_set is non_zero, then this is the distance from
537 the stack pointer to frame pointer: fp = sp + fp_offset. */
540 /* Total size of frame prior to any alloca operations. */
543 /* Flag indicating if lr has been saved on the stack. */
544 int lr_saved_on_stack
= 0;
546 /* The number of the general-purpose register we saved the return
547 address ("link register") in, or -1 if we haven't moved it yet. */
548 int lr_save_reg
= -1;
550 /* Offset (from sp) at which lr has been saved on the stack. */
552 int lr_sp_offset
= 0;
554 /* If gr_saved[i] is non-zero, then we've noticed that general
555 register i has been saved at gr_sp_offset[i] from the stack
558 int gr_sp_offset
[64];
560 /* The address of the most recently scanned prologue instruction. */
561 CORE_ADDR last_prologue_pc
;
563 /* The address of the next instruction. */
566 /* The upper bound to of the pc values to scan. */
569 memset (gr_saved
, 0, sizeof (gr_saved
));
571 last_prologue_pc
= pc
;
573 /* Try to compute an upper limit (on how far to scan) based on the
575 lim_pc
= skip_prologue_using_sal (gdbarch
, pc
);
576 /* If there's no line number info, lim_pc will be 0. In that case,
577 set the limit to be 100 instructions away from pc. Hopefully, this
578 will be far enough away to account for the entire prologue. Don't
579 worry about overshooting the end of the function. The scan loop
580 below contains some checks to avoid scanning unreasonably far. */
584 /* If we have a frame, we don't want to scan past the frame's pc. This
585 will catch those cases where the pc is in the prologue. */
588 CORE_ADDR frame_pc
= get_frame_pc (this_frame
);
589 if (frame_pc
< lim_pc
)
593 /* Scan the prologue. */
596 char buf
[frv_instr_size
];
599 if (target_read_memory (pc
, buf
, sizeof buf
) != 0)
601 op
= extract_signed_integer (buf
, sizeof buf
, byte_order
);
605 /* The tests in this chain of ifs should be in order of
606 decreasing selectivity, so that more particular patterns get
607 to fire before less particular patterns. */
609 /* Some sort of control transfer instruction: stop scanning prologue.
610 Integer Conditional Branch:
611 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
612 Floating-point / media Conditional Branch:
613 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
614 LCR Conditional Branch to LR
615 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
616 Integer conditional Branches to LR
617 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
619 Floating-point/Media Branches to LR
620 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
623 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
624 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
626 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
628 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
629 Integer Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
631 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
632 Floating-point /media Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
634 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
636 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
638 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
639 if ((op
& 0x01d80000) == 0x00180000 /* Conditional branches and Call */
640 || (op
& 0x01f80000) == 0x00300000 /* Jump and Link */
641 || (op
& 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
642 || (op
& 0x01f80000) == 0x00700000) /* Trap immediate */
644 /* Stop scanning; not in prologue any longer. */
648 /* Loading something from memory into fp probably means that
649 we're in the epilogue. Stop scanning the prologue.
651 X 000010 0000010 XXXXXX 000100 XXXXXX
653 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
654 else if ((op
& 0x7ffc0fc0) == 0x04080100
655 || (op
& 0x7ffc0000) == 0x04c80000)
660 /* Setting the FP from the SP:
662 P 000010 0100010 000001 000000000000 = 0x04881000
663 0 111111 1111111 111111 111111111111 = 0x7fffffff
665 We treat this as part of the prologue. */
666 else if ((op
& 0x7fffffff) == 0x04881000)
670 last_prologue_pc
= next_pc
;
673 /* Move the link register to the scratch register grJ, before saving:
675 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
676 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
678 We treat this as part of the prologue. */
679 else if ((op
& 0x7fffffc0) == 0x080d01c0)
681 int gr_j
= op
& 0x3f;
683 /* If we're moving it to a scratch register, that's fine. */
684 if (is_caller_saves_reg (gr_j
))
687 last_prologue_pc
= next_pc
;
691 /* To save multiple callee-saves registers on the stack, at
695 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
696 0 000000 1111111 111111 111111 111111 = 0x01ffffff
699 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
700 0 000000 1111111 111111 111111 111111 = 0x01ffffff
702 We treat this as part of the prologue, and record the register's
703 saved address in the frame structure. */
704 else if ((op
& 0x01ffffff) == 0x000c10c0
705 || (op
& 0x01ffffff) == 0x000c1100)
707 int gr_k
= ((op
>> 25) & 0x3f);
708 int ope
= ((op
>> 6) & 0x3f);
712 /* Is it an std or an stq? */
718 /* Is it really a callee-saves register? */
719 if (is_callee_saves_reg (gr_k
))
721 for (i
= 0; i
< count
; i
++)
723 gr_saved
[gr_k
+ i
] = 1;
724 gr_sp_offset
[gr_k
+ i
] = 4 * i
;
726 last_prologue_pc
= next_pc
;
730 /* Adjusting the stack pointer. (The stack pointer is GR1.)
732 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
733 0 111111 1111111 111111 000000000000 = 0x7ffff000
735 We treat this as part of the prologue. */
736 else if ((op
& 0x7ffff000) == 0x02401000)
740 /* Sign-extend the twelve-bit field.
741 (Isn't there a better way to do this?) */
742 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
745 last_prologue_pc
= pc
;
749 /* If the prologue is being adjusted again, we've
750 likely gone too far; i.e. we're probably in the
756 /* Setting the FP to a constant distance from the SP:
758 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
759 0 111111 1111111 111111 000000000000 = 0x7ffff000
761 We treat this as part of the prologue. */
762 else if ((op
& 0x7ffff000) == 0x04401000)
764 /* Sign-extend the twelve-bit field.
765 (Isn't there a better way to do this?) */
766 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
769 last_prologue_pc
= pc
;
772 /* To spill an argument register to a scratch register:
774 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
775 0 000000 1111111 000000 111111111111 = 0x01fc0fff
777 For the time being, we treat this as a prologue instruction,
778 assuming that GRi is an argument register. This one's kind
779 of suspicious, because it seems like it could be part of a
780 legitimate body instruction. But we only come here when the
781 source info wasn't helpful, so we have to do the best we can.
782 Hopefully once GCC and GDB agree on how to emit line number
783 info for prologues, then this code will never come into play. */
784 else if ((op
& 0x01fc0fff) == 0x00880000)
786 int gr_i
= ((op
>> 12) & 0x3f);
788 /* Make sure that the source is an arg register; if it is, we'll
789 treat it as a prologue instruction. */
790 if (is_argument_reg (gr_i
))
791 last_prologue_pc
= next_pc
;
794 /* To spill 16-bit values to the stack:
796 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
797 0 000000 1111111 111111 000000000000 = 0x01fff000
799 And for 8-bit values, we use STB instructions.
801 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
802 0 000000 1111111 111111 000000000000 = 0x01fff000
804 We check that GRk is really an argument register, and treat
805 all such as part of the prologue. */
806 else if ( (op
& 0x01fff000) == 0x01442000
807 || (op
& 0x01fff000) == 0x01402000)
809 int gr_k
= ((op
>> 25) & 0x3f);
811 /* Make sure that GRk is really an argument register; treat
812 it as a prologue instruction if so. */
813 if (is_argument_reg (gr_k
))
814 last_prologue_pc
= next_pc
;
817 /* To save multiple callee-saves register on the stack, at a
821 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
822 0 000000 1111111 111111 000000000000 = 0x01fff000
825 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
826 0 000000 1111111 111111 000000000000 = 0x01fff000
828 We treat this as part of the prologue, and record the register's
829 saved address in the frame structure. */
830 else if ((op
& 0x01fff000) == 0x014c1000
831 || (op
& 0x01fff000) == 0x01501000)
833 int gr_k
= ((op
>> 25) & 0x3f);
837 /* Is it a stdi or a stqi? */
838 if ((op
& 0x01fff000) == 0x014c1000)
843 /* Is it really a callee-saves register? */
844 if (is_callee_saves_reg (gr_k
))
846 /* Sign-extend the twelve-bit field.
847 (Isn't there a better way to do this?) */
848 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
850 for (i
= 0; i
< count
; i
++)
852 gr_saved
[gr_k
+ i
] = 1;
853 gr_sp_offset
[gr_k
+ i
] = s
+ (4 * i
);
855 last_prologue_pc
= next_pc
;
859 /* Storing any kind of integer register at any constant offset
860 from any other register.
863 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
864 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
867 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
868 0 000000 1111111 000000 000000000000 = 0x01fc0000
870 These could be almost anything, but a lot of prologue
871 instructions fall into this pattern, so let's decode the
872 instruction once, and then work at a higher level. */
873 else if (((op
& 0x01fc0fff) == 0x000c0080)
874 || ((op
& 0x01fc0000) == 0x01480000))
876 int gr_k
= ((op
>> 25) & 0x3f);
877 int gr_i
= ((op
>> 12) & 0x3f);
880 /* Are we storing with gr0 as an offset, or using an
882 if ((op
& 0x01fc0fff) == 0x000c0080)
885 offset
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
887 /* If the address isn't relative to the SP or FP, it's not a
888 prologue instruction. */
889 if (gr_i
!= sp_regnum
&& gr_i
!= fp_regnum
)
891 /* Do nothing; not a prologue instruction. */
894 /* Saving the old FP in the new frame (relative to the SP). */
895 else if (gr_k
== fp_regnum
&& gr_i
== sp_regnum
)
897 gr_saved
[fp_regnum
] = 1;
898 gr_sp_offset
[fp_regnum
] = offset
;
899 last_prologue_pc
= next_pc
;
902 /* Saving callee-saves register(s) on the stack, relative to
904 else if (gr_i
== sp_regnum
905 && is_callee_saves_reg (gr_k
))
908 if (gr_i
== sp_regnum
)
909 gr_sp_offset
[gr_k
] = offset
;
911 gr_sp_offset
[gr_k
] = offset
+ fp_offset
;
912 last_prologue_pc
= next_pc
;
915 /* Saving the scratch register holding the return address. */
916 else if (lr_save_reg
!= -1
917 && gr_k
== lr_save_reg
)
919 lr_saved_on_stack
= 1;
920 if (gr_i
== sp_regnum
)
921 lr_sp_offset
= offset
;
923 lr_sp_offset
= offset
+ fp_offset
;
924 last_prologue_pc
= next_pc
;
927 /* Spilling int-sized arguments to the stack. */
928 else if (is_argument_reg (gr_k
))
929 last_prologue_pc
= next_pc
;
934 if (this_frame
&& info
)
939 /* If we know the relationship between the stack and frame
940 pointers, record the addresses of the registers we noticed.
941 Note that we have to do this as a separate step at the end,
942 because instructions may save relative to the SP, but we need
943 their addresses relative to the FP. */
945 this_base
= get_frame_register_unsigned (this_frame
, fp_regnum
);
947 this_base
= get_frame_register_unsigned (this_frame
, sp_regnum
);
949 for (i
= 0; i
< 64; i
++)
951 info
->saved_regs
[i
].addr
= this_base
- fp_offset
+ gr_sp_offset
[i
];
953 info
->prev_sp
= this_base
- fp_offset
+ framesize
;
954 info
->base
= this_base
;
956 /* If LR was saved on the stack, record its location. */
957 if (lr_saved_on_stack
)
958 info
->saved_regs
[lr_regnum
].addr
959 = this_base
- fp_offset
+ lr_sp_offset
;
961 /* The call instruction moves the caller's PC in the callee's LR.
962 Since this is an unwind, do the reverse. Copy the location of LR
963 into PC (the address / regnum) so that a request for PC will be
964 converted into a request for the LR. */
965 info
->saved_regs
[pc_regnum
] = info
->saved_regs
[lr_regnum
];
967 /* Save the previous frame's computed SP value. */
968 trad_frame_set_value (info
->saved_regs
, sp_regnum
, info
->prev_sp
);
971 return last_prologue_pc
;
976 frv_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
978 CORE_ADDR func_addr
, func_end
, new_pc
;
982 /* If the line table has entry for a line *within* the function
983 (i.e., not in the prologue, and not past the end), then that's
985 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
987 struct symtab_and_line sal
;
989 sal
= find_pc_line (func_addr
, 0);
991 if (sal
.line
!= 0 && sal
.end
< func_end
)
997 /* The FR-V prologue is at least five instructions long (twenty bytes).
998 If we didn't find a real source location past that, then
999 do a full analysis of the prologue. */
1000 if (new_pc
< pc
+ 20)
1001 new_pc
= frv_analyze_prologue (gdbarch
, pc
, 0, 0);
1007 /* Examine the instruction pointed to by PC. If it corresponds to
1008 a call to __main, return the address of the next instruction.
1009 Otherwise, return PC. */
1012 frv_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1014 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1017 CORE_ADDR orig_pc
= pc
;
1019 if (target_read_memory (pc
, buf
, 4))
1021 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1023 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1024 to the call instruction.
1026 Skip over this instruction if present. It won't be present in
1027 non-PIC code, and even in PIC code, it might not be present.
1028 (This is due to the fact that GR15, the FDPIC register, already
1029 contains the correct value.)
1031 The general form of the LDI is given first, followed by the
1032 specific instruction with the GRi and GRk filled in as FP and
1035 ldi @(GRi, d12), GRk
1036 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1037 0 000000 1111111 000000 000000000000 = 0x01fc0000
1039 ldi @(FP, d12), GR15
1040 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1041 0 001111 1111111 000010 000000000000 = 0x7ffff000
1044 if ((op
& 0x7ffff000) == 0x1ec82000)
1047 if (target_read_memory (pc
, buf
, 4))
1049 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1052 /* The format of an FRV CALL instruction is as follows:
1055 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1056 0 000000 1111111 000000000000000000 = 0x01fc0000
1059 where label24 is constructed by concatenating the H bits with the
1060 L bits. The call target is PC + (4 * sign_ext(label24)). */
1062 if ((op
& 0x01fc0000) == 0x003c0000)
1065 CORE_ADDR call_dest
;
1066 struct minimal_symbol
*s
;
1068 displ
= ((op
& 0xfe000000) >> 7) | (op
& 0x0003ffff);
1069 if ((displ
& 0x00800000) != 0)
1070 displ
|= ~((LONGEST
) 0x00ffffff);
1072 call_dest
= pc
+ 4 * displ
;
1073 s
= lookup_minimal_symbol_by_pc (call_dest
);
1076 && SYMBOL_LINKAGE_NAME (s
) != NULL
1077 && strcmp (SYMBOL_LINKAGE_NAME (s
), "__main") == 0)
1087 static struct frv_unwind_cache
*
1088 frv_frame_unwind_cache (struct frame_info
*this_frame
,
1089 void **this_prologue_cache
)
1091 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1094 struct frv_unwind_cache
*info
;
1096 if ((*this_prologue_cache
))
1097 return (*this_prologue_cache
);
1099 info
= FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache
);
1100 (*this_prologue_cache
) = info
;
1101 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1103 /* Prologue analysis does the rest... */
1104 frv_analyze_prologue (gdbarch
,
1105 get_frame_func (this_frame
), this_frame
, info
);
1111 frv_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1114 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1115 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1116 int len
= TYPE_LENGTH (type
);
1121 regcache_cooked_read_unsigned (regcache
, 8, &gpr8_val
);
1122 store_unsigned_integer (valbuf
, len
, byte_order
, gpr8_val
);
1128 regcache_cooked_read_unsigned (regcache
, 8, ®val
);
1129 store_unsigned_integer (valbuf
, 4, byte_order
, regval
);
1130 regcache_cooked_read_unsigned (regcache
, 9, ®val
);
1131 store_unsigned_integer ((bfd_byte
*) valbuf
+ 4, 4, byte_order
, regval
);
1134 internal_error (__FILE__
, __LINE__
,
1135 _("Illegal return value length: %d"), len
);
1139 frv_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
1141 /* Require dword alignment. */
1142 return align_down (sp
, 8);
1146 find_func_descr (struct gdbarch
*gdbarch
, CORE_ADDR entry_point
)
1148 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1151 CORE_ADDR start_addr
;
1153 /* If we can't find the function in the symbol table, then we assume
1154 that the function address is already in descriptor form. */
1155 if (!find_pc_partial_function (entry_point
, NULL
, &start_addr
, NULL
)
1156 || entry_point
!= start_addr
)
1159 descr
= frv_fdpic_find_canonical_descriptor (entry_point
);
1164 /* Construct a non-canonical descriptor from space allocated on
1167 descr
= value_as_long (value_allocate_space_in_inferior (8));
1168 store_unsigned_integer (valbuf
, 4, byte_order
, entry_point
);
1169 write_memory (descr
, valbuf
, 4);
1170 store_unsigned_integer (valbuf
, 4, byte_order
,
1171 frv_fdpic_find_global_pointer (entry_point
));
1172 write_memory (descr
+ 4, valbuf
, 4);
1177 frv_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
1178 struct target_ops
*targ
)
1180 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1181 CORE_ADDR entry_point
;
1182 CORE_ADDR got_address
;
1184 entry_point
= get_target_memory_unsigned (targ
, addr
, 4, byte_order
);
1185 got_address
= get_target_memory_unsigned (targ
, addr
+ 4, 4, byte_order
);
1187 if (got_address
== frv_fdpic_find_global_pointer (entry_point
))
1194 frv_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1195 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1196 int nargs
, struct value
**args
, CORE_ADDR sp
,
1197 int struct_return
, CORE_ADDR struct_addr
)
1199 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1205 struct type
*arg_type
;
1207 enum type_code typecode
;
1211 enum frv_abi abi
= frv_abi (gdbarch
);
1212 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
1215 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1216 nargs
, (int) sp
, struct_return
, struct_addr
);
1220 for (argnum
= 0; argnum
< nargs
; ++argnum
)
1221 stack_space
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])), 4);
1223 stack_space
-= (6 * 4);
1224 if (stack_space
> 0)
1227 /* Make sure stack is dword aligned. */
1228 sp
= align_down (sp
, 8);
1235 regcache_cooked_write_unsigned (regcache
, struct_return_regnum
,
1238 for (argnum
= 0; argnum
< nargs
; ++argnum
)
1241 arg_type
= check_typedef (value_type (arg
));
1242 len
= TYPE_LENGTH (arg_type
);
1243 typecode
= TYPE_CODE (arg_type
);
1245 if (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
)
1247 store_unsigned_integer (valbuf
, 4, byte_order
,
1248 value_address (arg
));
1249 typecode
= TYPE_CODE_PTR
;
1253 else if (abi
== FRV_ABI_FDPIC
1255 && typecode
== TYPE_CODE_PTR
1256 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type
)) == TYPE_CODE_FUNC
)
1258 /* The FDPIC ABI requires function descriptors to be passed instead
1260 CORE_ADDR addr
= extract_unsigned_integer
1261 (value_contents (arg
), 4, byte_order
);
1262 addr
= find_func_descr (gdbarch
, addr
);
1263 store_unsigned_integer (valbuf
, 4, byte_order
, addr
);
1264 typecode
= TYPE_CODE_PTR
;
1270 val
= (char *) value_contents (arg
);
1275 int partial_len
= (len
< 4 ? len
: 4);
1279 regval
= extract_unsigned_integer (val
, partial_len
, byte_order
);
1281 printf(" Argnum %d data %x -> reg %d\n",
1282 argnum
, (int) regval
, argreg
);
1284 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1290 printf(" Argnum %d data %x -> offset %d (%x)\n",
1291 argnum
, *((int *)val
), stack_offset
,
1292 (int) (sp
+ stack_offset
));
1294 write_memory (sp
+ stack_offset
, val
, partial_len
);
1295 stack_offset
+= align_up (partial_len
, 4);
1302 /* Set the return address. For the frv, the return breakpoint is
1303 always at BP_ADDR. */
1304 regcache_cooked_write_unsigned (regcache
, lr_regnum
, bp_addr
);
1306 if (abi
== FRV_ABI_FDPIC
)
1308 /* Set the GOT register for the FDPIC ABI. */
1309 regcache_cooked_write_unsigned
1310 (regcache
, first_gpr_regnum
+ 15,
1311 frv_fdpic_find_global_pointer (func_addr
));
1314 /* Finally, update the SP register. */
1315 regcache_cooked_write_unsigned (regcache
, sp_regnum
, sp
);
1321 frv_store_return_value (struct type
*type
, struct regcache
*regcache
,
1322 const gdb_byte
*valbuf
)
1324 int len
= TYPE_LENGTH (type
);
1329 memset (val
, 0, sizeof (val
));
1330 memcpy (val
+ (4 - len
), valbuf
, len
);
1331 regcache_cooked_write (regcache
, 8, val
);
1335 regcache_cooked_write (regcache
, 8, valbuf
);
1336 regcache_cooked_write (regcache
, 9, (bfd_byte
*) valbuf
+ 4);
1339 internal_error (__FILE__
, __LINE__
,
1340 _("Don't know how to return a %d-byte value."), len
);
1343 static enum return_value_convention
1344 frv_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1345 struct type
*valtype
, struct regcache
*regcache
,
1346 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1348 int struct_return
= TYPE_CODE (valtype
) == TYPE_CODE_STRUCT
1349 || TYPE_CODE (valtype
) == TYPE_CODE_UNION
1350 || TYPE_CODE (valtype
) == TYPE_CODE_ARRAY
;
1352 if (writebuf
!= NULL
)
1354 gdb_assert (!struct_return
);
1355 frv_store_return_value (valtype
, regcache
, writebuf
);
1358 if (readbuf
!= NULL
)
1360 gdb_assert (!struct_return
);
1361 frv_extract_return_value (valtype
, regcache
, readbuf
);
1365 return RETURN_VALUE_STRUCT_CONVENTION
;
1367 return RETURN_VALUE_REGISTER_CONVENTION
;
1371 /* Hardware watchpoint / breakpoint support for the FR500
1375 frv_check_watch_resources (struct gdbarch
*gdbarch
, int type
, int cnt
, int ot
)
1377 struct gdbarch_tdep
*var
= gdbarch_tdep (gdbarch
);
1379 /* Watchpoints not supported on simulator. */
1380 if (strcmp (target_shortname
, "sim") == 0)
1383 if (type
== bp_hardware_breakpoint
)
1385 if (var
->num_hw_breakpoints
== 0)
1387 else if (cnt
<= var
->num_hw_breakpoints
)
1392 if (var
->num_hw_watchpoints
== 0)
1396 else if (cnt
<= var
->num_hw_watchpoints
)
1404 frv_stopped_data_address (CORE_ADDR
*addr_p
)
1406 struct frame_info
*frame
= get_current_frame ();
1407 CORE_ADDR brr
, dbar0
, dbar1
, dbar2
, dbar3
;
1409 brr
= get_frame_register_unsigned (frame
, brr_regnum
);
1410 dbar0
= get_frame_register_unsigned (frame
, dbar0_regnum
);
1411 dbar1
= get_frame_register_unsigned (frame
, dbar1_regnum
);
1412 dbar2
= get_frame_register_unsigned (frame
, dbar2_regnum
);
1413 dbar3
= get_frame_register_unsigned (frame
, dbar3_regnum
);
1417 else if (brr
& (1<<10))
1419 else if (brr
& (1<<9))
1421 else if (brr
& (1<<8))
1430 frv_have_stopped_data_address (void)
1433 return frv_stopped_data_address (&addr
);
1437 frv_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1439 return frame_unwind_register_unsigned (next_frame
, pc_regnum
);
1442 /* Given a GDB frame, determine the address of the calling function's
1443 frame. This will be used to create a new GDB frame struct. */
1446 frv_frame_this_id (struct frame_info
*this_frame
,
1447 void **this_prologue_cache
, struct frame_id
*this_id
)
1449 struct frv_unwind_cache
*info
1450 = frv_frame_unwind_cache (this_frame
, this_prologue_cache
);
1453 struct minimal_symbol
*msym_stack
;
1456 /* The FUNC is easy. */
1457 func
= get_frame_func (this_frame
);
1459 /* Check if the stack is empty. */
1460 msym_stack
= lookup_minimal_symbol ("_stack", NULL
, NULL
);
1461 if (msym_stack
&& info
->base
== SYMBOL_VALUE_ADDRESS (msym_stack
))
1464 /* Hopefully the prologue analysis either correctly determined the
1465 frame's base (which is the SP from the previous frame), or set
1466 that base to "NULL". */
1467 base
= info
->prev_sp
;
1471 id
= frame_id_build (base
, func
);
1475 static struct value
*
1476 frv_frame_prev_register (struct frame_info
*this_frame
,
1477 void **this_prologue_cache
, int regnum
)
1479 struct frv_unwind_cache
*info
1480 = frv_frame_unwind_cache (this_frame
, this_prologue_cache
);
1481 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
1484 static const struct frame_unwind frv_frame_unwind
= {
1487 frv_frame_prev_register
,
1489 default_frame_sniffer
1493 frv_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1495 struct frv_unwind_cache
*info
1496 = frv_frame_unwind_cache (this_frame
, this_cache
);
1500 static const struct frame_base frv_frame_base
= {
1502 frv_frame_base_address
,
1503 frv_frame_base_address
,
1504 frv_frame_base_address
1508 frv_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1510 return frame_unwind_register_unsigned (next_frame
, sp_regnum
);
1514 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1515 frame. The frame ID's base needs to match the TOS value saved by
1516 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1518 static struct frame_id
1519 frv_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1521 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, sp_regnum
);
1522 return frame_id_build (sp
, get_frame_pc (this_frame
));
1525 static struct gdbarch
*
1526 frv_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1528 struct gdbarch
*gdbarch
;
1529 struct gdbarch_tdep
*var
;
1532 /* Check to see if we've already built an appropriate architecture
1533 object for this executable. */
1534 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1536 return arches
->gdbarch
;
1538 /* Select the right tdep structure for this variant. */
1539 var
= new_variant ();
1540 switch (info
.bfd_arch_info
->mach
)
1543 case bfd_mach_frvsimple
:
1544 case bfd_mach_fr500
:
1545 case bfd_mach_frvtomcat
:
1546 case bfd_mach_fr550
:
1547 set_variant_num_gprs (var
, 64);
1548 set_variant_num_fprs (var
, 64);
1551 case bfd_mach_fr400
:
1552 case bfd_mach_fr450
:
1553 set_variant_num_gprs (var
, 32);
1554 set_variant_num_fprs (var
, 32);
1558 /* Never heard of this variant. */
1562 /* Extract the ELF flags, if available. */
1563 if (info
.abfd
&& bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
1564 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
1566 if (elf_flags
& EF_FRV_FDPIC
)
1567 set_variant_abi_fdpic (var
);
1569 if (elf_flags
& EF_FRV_CPU_FR450
)
1570 set_variant_scratch_registers (var
);
1572 gdbarch
= gdbarch_alloc (&info
, var
);
1574 set_gdbarch_short_bit (gdbarch
, 16);
1575 set_gdbarch_int_bit (gdbarch
, 32);
1576 set_gdbarch_long_bit (gdbarch
, 32);
1577 set_gdbarch_long_long_bit (gdbarch
, 64);
1578 set_gdbarch_float_bit (gdbarch
, 32);
1579 set_gdbarch_double_bit (gdbarch
, 64);
1580 set_gdbarch_long_double_bit (gdbarch
, 64);
1581 set_gdbarch_ptr_bit (gdbarch
, 32);
1583 set_gdbarch_num_regs (gdbarch
, frv_num_regs
);
1584 set_gdbarch_num_pseudo_regs (gdbarch
, frv_num_pseudo_regs
);
1586 set_gdbarch_sp_regnum (gdbarch
, sp_regnum
);
1587 set_gdbarch_deprecated_fp_regnum (gdbarch
, fp_regnum
);
1588 set_gdbarch_pc_regnum (gdbarch
, pc_regnum
);
1590 set_gdbarch_register_name (gdbarch
, frv_register_name
);
1591 set_gdbarch_register_type (gdbarch
, frv_register_type
);
1592 set_gdbarch_register_sim_regno (gdbarch
, frv_register_sim_regno
);
1594 set_gdbarch_pseudo_register_read (gdbarch
, frv_pseudo_register_read
);
1595 set_gdbarch_pseudo_register_write (gdbarch
, frv_pseudo_register_write
);
1597 set_gdbarch_skip_prologue (gdbarch
, frv_skip_prologue
);
1598 set_gdbarch_skip_main_prologue (gdbarch
, frv_skip_main_prologue
);
1599 set_gdbarch_breakpoint_from_pc (gdbarch
, frv_breakpoint_from_pc
);
1600 set_gdbarch_adjust_breakpoint_address
1601 (gdbarch
, frv_adjust_breakpoint_address
);
1603 set_gdbarch_return_value (gdbarch
, frv_return_value
);
1606 set_gdbarch_unwind_pc (gdbarch
, frv_unwind_pc
);
1607 set_gdbarch_unwind_sp (gdbarch
, frv_unwind_sp
);
1608 set_gdbarch_frame_align (gdbarch
, frv_frame_align
);
1609 frame_base_set_default (gdbarch
, &frv_frame_base
);
1610 /* We set the sniffer lower down after the OSABI hooks have been
1613 /* Settings for calling functions in the inferior. */
1614 set_gdbarch_push_dummy_call (gdbarch
, frv_push_dummy_call
);
1615 set_gdbarch_dummy_id (gdbarch
, frv_dummy_id
);
1617 /* Settings that should be unnecessary. */
1618 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1620 /* Hardware watchpoint / breakpoint support. */
1621 switch (info
.bfd_arch_info
->mach
)
1624 case bfd_mach_frvsimple
:
1625 case bfd_mach_fr500
:
1626 case bfd_mach_frvtomcat
:
1627 /* fr500-style hardware debugging support. */
1628 var
->num_hw_watchpoints
= 4;
1629 var
->num_hw_breakpoints
= 4;
1632 case bfd_mach_fr400
:
1633 case bfd_mach_fr450
:
1634 /* fr400-style hardware debugging support. */
1635 var
->num_hw_watchpoints
= 2;
1636 var
->num_hw_breakpoints
= 4;
1640 /* Otherwise, assume we don't have hardware debugging support. */
1641 var
->num_hw_watchpoints
= 0;
1642 var
->num_hw_breakpoints
= 0;
1646 set_gdbarch_print_insn (gdbarch
, print_insn_frv
);
1647 if (frv_abi (gdbarch
) == FRV_ABI_FDPIC
)
1648 set_gdbarch_convert_from_func_ptr_addr (gdbarch
,
1649 frv_convert_from_func_ptr_addr
);
1651 set_solib_ops (gdbarch
, &frv_so_ops
);
1653 /* Hook in ABI-specific overrides, if they have been registered. */
1654 gdbarch_init_osabi (info
, gdbarch
);
1656 /* Set the fallback (prologue based) frame sniffer. */
1657 frame_unwind_append_unwinder (gdbarch
, &frv_frame_unwind
);
1659 /* Enable TLS support. */
1660 set_gdbarch_fetch_tls_load_module_address (gdbarch
,
1661 frv_fetch_objfile_link_map
);
1667 _initialize_frv_tdep (void)
1669 register_gdbarch_init (bfd_arch_frv
, frv_gdbarch_init
);