*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "infcall.h"
41 #include "solib.h"
42 #include "frv-tdep.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 /* Return the FR-V ABI associated with GDBARCH. */
96 enum frv_abi
97 frv_abi (struct gdbarch *gdbarch)
98 {
99 return gdbarch_tdep (gdbarch)->frv_abi;
100 }
101
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105 int
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108 {
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
113 struct regcache *regcache = get_current_regcache ();
114
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static struct gdbarch_tdep *
136 new_variant (void)
137 {
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
145 var->frv_abi = FRV_ABI_EABI;
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
158
159 /* Do, however, supply default names for the known special-purpose
160 registers. */
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
182
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
221 return var;
222 }
223
224
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227 static void
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229 {
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241 }
242
243
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246 static void
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248 {
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260 }
261
262 static void
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
264 {
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum]
268 = xstrdup ("loadmap_interp");
269 }
270
271 static void
272 set_variant_scratch_registers (struct gdbarch_tdep *var)
273 {
274 var->register_names[scr0_regnum] = xstrdup ("scr0");
275 var->register_names[scr1_regnum] = xstrdup ("scr1");
276 var->register_names[scr2_regnum] = xstrdup ("scr2");
277 var->register_names[scr3_regnum] = xstrdup ("scr3");
278 }
279
280 static const char *
281 frv_register_name (struct gdbarch *gdbarch, int reg)
282 {
283 if (reg < 0)
284 return "?toosmall?";
285 if (reg >= frv_num_regs + frv_num_pseudo_regs)
286 return "?toolarge?";
287
288 return gdbarch_tdep (gdbarch)->register_names[reg];
289 }
290
291
292 static struct type *
293 frv_register_type (struct gdbarch *gdbarch, int reg)
294 {
295 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
296 return builtin_type (gdbarch)->builtin_float;
297 else if (reg == iacc0_regnum)
298 return builtin_type (gdbarch)->builtin_int64;
299 else
300 return builtin_type (gdbarch)->builtin_int32;
301 }
302
303 static void
304 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
305 int reg, gdb_byte *buffer)
306 {
307 if (reg == iacc0_regnum)
308 {
309 regcache_raw_read (regcache, iacc0h_regnum, buffer);
310 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
311 }
312 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 {
314 /* The accg raw registers have four values in each slot with the
315 lowest register number occupying the first byte. */
316
317 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
318 int byte_num = (reg - accg0_regnum) % 4;
319 bfd_byte buf[4];
320
321 regcache_raw_read (regcache, raw_regnum, buf);
322 memset (buffer, 0, 4);
323 /* FR-V is big endian, so put the requested byte in the first byte
324 of the buffer allocated to hold the pseudo-register. */
325 ((bfd_byte *) buffer)[0] = buf[byte_num];
326 }
327 }
328
329 static void
330 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
331 int reg, const gdb_byte *buffer)
332 {
333 if (reg == iacc0_regnum)
334 {
335 regcache_raw_write (regcache, iacc0h_regnum, buffer);
336 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
337 }
338 else if (accg0_regnum <= reg && reg <= accg7_regnum)
339 {
340 /* The accg raw registers have four values in each slot with the
341 lowest register number occupying the first byte. */
342
343 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
344 int byte_num = (reg - accg0_regnum) % 4;
345 char buf[4];
346
347 regcache_raw_read (regcache, raw_regnum, buf);
348 buf[byte_num] = ((bfd_byte *) buffer)[0];
349 regcache_raw_write (regcache, raw_regnum, buf);
350 }
351 }
352
353 static int
354 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 static const int spr_map[] =
357 {
358 H_SPR_PSR, /* psr_regnum */
359 H_SPR_CCR, /* ccr_regnum */
360 H_SPR_CCCR, /* cccr_regnum */
361 -1, /* fdpic_loadmap_exec_regnum */
362 -1, /* fdpic_loadmap_interp_regnum */
363 -1, /* 134 */
364 H_SPR_TBR, /* tbr_regnum */
365 H_SPR_BRR, /* brr_regnum */
366 H_SPR_DBAR0, /* dbar0_regnum */
367 H_SPR_DBAR1, /* dbar1_regnum */
368 H_SPR_DBAR2, /* dbar2_regnum */
369 H_SPR_DBAR3, /* dbar3_regnum */
370 H_SPR_SCR0, /* scr0_regnum */
371 H_SPR_SCR1, /* scr1_regnum */
372 H_SPR_SCR2, /* scr2_regnum */
373 H_SPR_SCR3, /* scr3_regnum */
374 H_SPR_LR, /* lr_regnum */
375 H_SPR_LCR, /* lcr_regnum */
376 H_SPR_IACC0H, /* iacc0h_regnum */
377 H_SPR_IACC0L, /* iacc0l_regnum */
378 H_SPR_FSR0, /* fsr0_regnum */
379 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
380 -1, /* acc0_regnum */
381 -1, /* acc1_regnum */
382 -1, /* acc2_regnum */
383 -1, /* acc3_regnum */
384 -1, /* acc4_regnum */
385 -1, /* acc5_regnum */
386 -1, /* acc6_regnum */
387 -1, /* acc7_regnum */
388 -1, /* acc0123_regnum */
389 -1, /* acc4567_regnum */
390 H_SPR_MSR0, /* msr0_regnum */
391 H_SPR_MSR1, /* msr1_regnum */
392 H_SPR_GNER0, /* gner0_regnum */
393 H_SPR_GNER1, /* gner1_regnum */
394 H_SPR_FNER0, /* fner0_regnum */
395 H_SPR_FNER1, /* fner1_regnum */
396 };
397
398 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
399
400 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
401 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
402 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
403 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
404 else if (pc_regnum == reg)
405 return SIM_FRV_PC_REGNUM;
406 else if (reg >= first_spr_regnum
407 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
408 {
409 int spr_reg_offset = spr_map[reg - first_spr_regnum];
410
411 if (spr_reg_offset < 0)
412 return SIM_REGNO_DOES_NOT_EXIST;
413 else
414 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
415 }
416
417 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
418 }
419
420 static const unsigned char *
421 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
422 {
423 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
424 *lenp = sizeof (breakpoint);
425 return breakpoint;
426 }
427
428 /* Define the maximum number of instructions which may be packed into a
429 bundle (VLIW instruction). */
430 static const int max_instrs_per_bundle = 8;
431
432 /* Define the size (in bytes) of an FR-V instruction. */
433 static const int frv_instr_size = 4;
434
435 /* Adjust a breakpoint's address to account for the FR-V architecture's
436 constraint that a break instruction must not appear as any but the
437 first instruction in the bundle. */
438 static CORE_ADDR
439 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
440 {
441 int count = max_instrs_per_bundle;
442 CORE_ADDR addr = bpaddr - frv_instr_size;
443 CORE_ADDR func_start = get_pc_function_start (bpaddr);
444
445 /* Find the end of the previous packing sequence. This will be indicated
446 by either attempting to access some inaccessible memory or by finding
447 an instruction word whose packing bit is set to one. */
448 while (count-- > 0 && addr >= func_start)
449 {
450 char instr[frv_instr_size];
451 int status;
452
453 status = target_read_memory (addr, instr, sizeof instr);
454
455 if (status != 0)
456 break;
457
458 /* This is a big endian architecture, so byte zero will have most
459 significant byte. The most significant bit of this byte is the
460 packing bit. */
461 if (instr[0] & 0x80)
462 break;
463
464 addr -= frv_instr_size;
465 }
466
467 if (count > 0)
468 bpaddr = addr + frv_instr_size;
469
470 return bpaddr;
471 }
472
473
474 /* Return true if REG is a caller-saves ("scratch") register,
475 false otherwise. */
476 static int
477 is_caller_saves_reg (int reg)
478 {
479 return ((4 <= reg && reg <= 7)
480 || (14 <= reg && reg <= 15)
481 || (32 <= reg && reg <= 47));
482 }
483
484
485 /* Return true if REG is a callee-saves register, false otherwise. */
486 static int
487 is_callee_saves_reg (int reg)
488 {
489 return ((16 <= reg && reg <= 31)
490 || (48 <= reg && reg <= 63));
491 }
492
493
494 /* Return true if REG is an argument register, false otherwise. */
495 static int
496 is_argument_reg (int reg)
497 {
498 return (8 <= reg && reg <= 13);
499 }
500
501 /* Scan an FR-V prologue, starting at PC, until frame->PC.
502 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
503 We assume FRAME's saved_regs array has already been allocated and cleared.
504 Return the first PC value after the prologue.
505
506 Note that, for unoptimized code, we almost don't need this function
507 at all; all arguments and locals live on the stack, so we just need
508 the FP to find everything. The catch: structures passed by value
509 have their addresses living in registers; they're never spilled to
510 the stack. So if you ever want to be able to get to these
511 arguments in any frame but the top, you'll need to do this serious
512 prologue analysis. */
513 static CORE_ADDR
514 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
515 struct frame_info *this_frame,
516 struct frv_unwind_cache *info)
517 {
518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
519
520 /* When writing out instruction bitpatterns, we use the following
521 letters to label instruction fields:
522 P - The parallel bit. We don't use this.
523 J - The register number of GRj in the instruction description.
524 K - The register number of GRk in the instruction description.
525 I - The register number of GRi.
526 S - a signed imediate offset.
527 U - an unsigned immediate offset.
528
529 The dots below the numbers indicate where hex digit boundaries
530 fall, to make it easier to check the numbers. */
531
532 /* Non-zero iff we've seen the instruction that initializes the
533 frame pointer for this function's frame. */
534 int fp_set = 0;
535
536 /* If fp_set is non_zero, then this is the distance from
537 the stack pointer to frame pointer: fp = sp + fp_offset. */
538 int fp_offset = 0;
539
540 /* Total size of frame prior to any alloca operations. */
541 int framesize = 0;
542
543 /* Flag indicating if lr has been saved on the stack. */
544 int lr_saved_on_stack = 0;
545
546 /* The number of the general-purpose register we saved the return
547 address ("link register") in, or -1 if we haven't moved it yet. */
548 int lr_save_reg = -1;
549
550 /* Offset (from sp) at which lr has been saved on the stack. */
551
552 int lr_sp_offset = 0;
553
554 /* If gr_saved[i] is non-zero, then we've noticed that general
555 register i has been saved at gr_sp_offset[i] from the stack
556 pointer. */
557 char gr_saved[64];
558 int gr_sp_offset[64];
559
560 /* The address of the most recently scanned prologue instruction. */
561 CORE_ADDR last_prologue_pc;
562
563 /* The address of the next instruction. */
564 CORE_ADDR next_pc;
565
566 /* The upper bound to of the pc values to scan. */
567 CORE_ADDR lim_pc;
568
569 memset (gr_saved, 0, sizeof (gr_saved));
570
571 last_prologue_pc = pc;
572
573 /* Try to compute an upper limit (on how far to scan) based on the
574 line number info. */
575 lim_pc = skip_prologue_using_sal (gdbarch, pc);
576 /* If there's no line number info, lim_pc will be 0. In that case,
577 set the limit to be 100 instructions away from pc. Hopefully, this
578 will be far enough away to account for the entire prologue. Don't
579 worry about overshooting the end of the function. The scan loop
580 below contains some checks to avoid scanning unreasonably far. */
581 if (lim_pc == 0)
582 lim_pc = pc + 400;
583
584 /* If we have a frame, we don't want to scan past the frame's pc. This
585 will catch those cases where the pc is in the prologue. */
586 if (this_frame)
587 {
588 CORE_ADDR frame_pc = get_frame_pc (this_frame);
589 if (frame_pc < lim_pc)
590 lim_pc = frame_pc;
591 }
592
593 /* Scan the prologue. */
594 while (pc < lim_pc)
595 {
596 char buf[frv_instr_size];
597 LONGEST op;
598
599 if (target_read_memory (pc, buf, sizeof buf) != 0)
600 break;
601 op = extract_signed_integer (buf, sizeof buf, byte_order);
602
603 next_pc = pc + 4;
604
605 /* The tests in this chain of ifs should be in order of
606 decreasing selectivity, so that more particular patterns get
607 to fire before less particular patterns. */
608
609 /* Some sort of control transfer instruction: stop scanning prologue.
610 Integer Conditional Branch:
611 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
612 Floating-point / media Conditional Branch:
613 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
614 LCR Conditional Branch to LR
615 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
616 Integer conditional Branches to LR
617 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
619 Floating-point/Media Branches to LR
620 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
622 Jump and Link
623 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
624 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
625 Call
626 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
627 Return from Trap
628 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
629 Integer Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
631 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
632 Floating-point /media Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
634 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
635 Break
636 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
637 Media Trap
638 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
639 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
640 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
641 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
642 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
643 {
644 /* Stop scanning; not in prologue any longer. */
645 break;
646 }
647
648 /* Loading something from memory into fp probably means that
649 we're in the epilogue. Stop scanning the prologue.
650 ld @(GRi, GRk), fp
651 X 000010 0000010 XXXXXX 000100 XXXXXX
652 ldi @(GRi, d12), fp
653 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
654 else if ((op & 0x7ffc0fc0) == 0x04080100
655 || (op & 0x7ffc0000) == 0x04c80000)
656 {
657 break;
658 }
659
660 /* Setting the FP from the SP:
661 ori sp, 0, fp
662 P 000010 0100010 000001 000000000000 = 0x04881000
663 0 111111 1111111 111111 111111111111 = 0x7fffffff
664 . . . . . . . .
665 We treat this as part of the prologue. */
666 else if ((op & 0x7fffffff) == 0x04881000)
667 {
668 fp_set = 1;
669 fp_offset = 0;
670 last_prologue_pc = next_pc;
671 }
672
673 /* Move the link register to the scratch register grJ, before saving:
674 movsg lr, grJ
675 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
676 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
677 . . . . . . . .
678 We treat this as part of the prologue. */
679 else if ((op & 0x7fffffc0) == 0x080d01c0)
680 {
681 int gr_j = op & 0x3f;
682
683 /* If we're moving it to a scratch register, that's fine. */
684 if (is_caller_saves_reg (gr_j))
685 {
686 lr_save_reg = gr_j;
687 last_prologue_pc = next_pc;
688 }
689 }
690
691 /* To save multiple callee-saves registers on the stack, at
692 offset zero:
693
694 std grK,@(sp,gr0)
695 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
696 0 000000 1111111 111111 111111 111111 = 0x01ffffff
697
698 stq grK,@(sp,gr0)
699 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
700 0 000000 1111111 111111 111111 111111 = 0x01ffffff
701 . . . . . . . .
702 We treat this as part of the prologue, and record the register's
703 saved address in the frame structure. */
704 else if ((op & 0x01ffffff) == 0x000c10c0
705 || (op & 0x01ffffff) == 0x000c1100)
706 {
707 int gr_k = ((op >> 25) & 0x3f);
708 int ope = ((op >> 6) & 0x3f);
709 int count;
710 int i;
711
712 /* Is it an std or an stq? */
713 if (ope == 0x03)
714 count = 2;
715 else
716 count = 4;
717
718 /* Is it really a callee-saves register? */
719 if (is_callee_saves_reg (gr_k))
720 {
721 for (i = 0; i < count; i++)
722 {
723 gr_saved[gr_k + i] = 1;
724 gr_sp_offset[gr_k + i] = 4 * i;
725 }
726 last_prologue_pc = next_pc;
727 }
728 }
729
730 /* Adjusting the stack pointer. (The stack pointer is GR1.)
731 addi sp, S, sp
732 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
733 0 111111 1111111 111111 000000000000 = 0x7ffff000
734 . . . . . . . .
735 We treat this as part of the prologue. */
736 else if ((op & 0x7ffff000) == 0x02401000)
737 {
738 if (framesize == 0)
739 {
740 /* Sign-extend the twelve-bit field.
741 (Isn't there a better way to do this?) */
742 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
743
744 framesize -= s;
745 last_prologue_pc = pc;
746 }
747 else
748 {
749 /* If the prologue is being adjusted again, we've
750 likely gone too far; i.e. we're probably in the
751 epilogue. */
752 break;
753 }
754 }
755
756 /* Setting the FP to a constant distance from the SP:
757 addi sp, S, fp
758 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
759 0 111111 1111111 111111 000000000000 = 0x7ffff000
760 . . . . . . . .
761 We treat this as part of the prologue. */
762 else if ((op & 0x7ffff000) == 0x04401000)
763 {
764 /* Sign-extend the twelve-bit field.
765 (Isn't there a better way to do this?) */
766 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
767 fp_set = 1;
768 fp_offset = s;
769 last_prologue_pc = pc;
770 }
771
772 /* To spill an argument register to a scratch register:
773 ori GRi, 0, GRk
774 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
775 0 000000 1111111 000000 111111111111 = 0x01fc0fff
776 . . . . . . . .
777 For the time being, we treat this as a prologue instruction,
778 assuming that GRi is an argument register. This one's kind
779 of suspicious, because it seems like it could be part of a
780 legitimate body instruction. But we only come here when the
781 source info wasn't helpful, so we have to do the best we can.
782 Hopefully once GCC and GDB agree on how to emit line number
783 info for prologues, then this code will never come into play. */
784 else if ((op & 0x01fc0fff) == 0x00880000)
785 {
786 int gr_i = ((op >> 12) & 0x3f);
787
788 /* Make sure that the source is an arg register; if it is, we'll
789 treat it as a prologue instruction. */
790 if (is_argument_reg (gr_i))
791 last_prologue_pc = next_pc;
792 }
793
794 /* To spill 16-bit values to the stack:
795 sthi GRk, @(fp, s)
796 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
797 0 000000 1111111 111111 000000000000 = 0x01fff000
798 . . . . . . . .
799 And for 8-bit values, we use STB instructions.
800 stbi GRk, @(fp, s)
801 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
802 0 000000 1111111 111111 000000000000 = 0x01fff000
803 . . . . . . . .
804 We check that GRk is really an argument register, and treat
805 all such as part of the prologue. */
806 else if ( (op & 0x01fff000) == 0x01442000
807 || (op & 0x01fff000) == 0x01402000)
808 {
809 int gr_k = ((op >> 25) & 0x3f);
810
811 /* Make sure that GRk is really an argument register; treat
812 it as a prologue instruction if so. */
813 if (is_argument_reg (gr_k))
814 last_prologue_pc = next_pc;
815 }
816
817 /* To save multiple callee-saves register on the stack, at a
818 non-zero offset:
819
820 stdi GRk, @(sp, s)
821 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
822 0 000000 1111111 111111 000000000000 = 0x01fff000
823 . . . . . . . .
824 stqi GRk, @(sp, s)
825 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
826 0 000000 1111111 111111 000000000000 = 0x01fff000
827 . . . . . . . .
828 We treat this as part of the prologue, and record the register's
829 saved address in the frame structure. */
830 else if ((op & 0x01fff000) == 0x014c1000
831 || (op & 0x01fff000) == 0x01501000)
832 {
833 int gr_k = ((op >> 25) & 0x3f);
834 int count;
835 int i;
836
837 /* Is it a stdi or a stqi? */
838 if ((op & 0x01fff000) == 0x014c1000)
839 count = 2;
840 else
841 count = 4;
842
843 /* Is it really a callee-saves register? */
844 if (is_callee_saves_reg (gr_k))
845 {
846 /* Sign-extend the twelve-bit field.
847 (Isn't there a better way to do this?) */
848 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
849
850 for (i = 0; i < count; i++)
851 {
852 gr_saved[gr_k + i] = 1;
853 gr_sp_offset[gr_k + i] = s + (4 * i);
854 }
855 last_prologue_pc = next_pc;
856 }
857 }
858
859 /* Storing any kind of integer register at any constant offset
860 from any other register.
861
862 st GRk, @(GRi, gr0)
863 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
864 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
865 . . . . . . . .
866 sti GRk, @(GRi, d12)
867 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
868 0 000000 1111111 000000 000000000000 = 0x01fc0000
869 . . . . . . . .
870 These could be almost anything, but a lot of prologue
871 instructions fall into this pattern, so let's decode the
872 instruction once, and then work at a higher level. */
873 else if (((op & 0x01fc0fff) == 0x000c0080)
874 || ((op & 0x01fc0000) == 0x01480000))
875 {
876 int gr_k = ((op >> 25) & 0x3f);
877 int gr_i = ((op >> 12) & 0x3f);
878 int offset;
879
880 /* Are we storing with gr0 as an offset, or using an
881 immediate value? */
882 if ((op & 0x01fc0fff) == 0x000c0080)
883 offset = 0;
884 else
885 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
886
887 /* If the address isn't relative to the SP or FP, it's not a
888 prologue instruction. */
889 if (gr_i != sp_regnum && gr_i != fp_regnum)
890 {
891 /* Do nothing; not a prologue instruction. */
892 }
893
894 /* Saving the old FP in the new frame (relative to the SP). */
895 else if (gr_k == fp_regnum && gr_i == sp_regnum)
896 {
897 gr_saved[fp_regnum] = 1;
898 gr_sp_offset[fp_regnum] = offset;
899 last_prologue_pc = next_pc;
900 }
901
902 /* Saving callee-saves register(s) on the stack, relative to
903 the SP. */
904 else if (gr_i == sp_regnum
905 && is_callee_saves_reg (gr_k))
906 {
907 gr_saved[gr_k] = 1;
908 if (gr_i == sp_regnum)
909 gr_sp_offset[gr_k] = offset;
910 else
911 gr_sp_offset[gr_k] = offset + fp_offset;
912 last_prologue_pc = next_pc;
913 }
914
915 /* Saving the scratch register holding the return address. */
916 else if (lr_save_reg != -1
917 && gr_k == lr_save_reg)
918 {
919 lr_saved_on_stack = 1;
920 if (gr_i == sp_regnum)
921 lr_sp_offset = offset;
922 else
923 lr_sp_offset = offset + fp_offset;
924 last_prologue_pc = next_pc;
925 }
926
927 /* Spilling int-sized arguments to the stack. */
928 else if (is_argument_reg (gr_k))
929 last_prologue_pc = next_pc;
930 }
931 pc = next_pc;
932 }
933
934 if (this_frame && info)
935 {
936 int i;
937 ULONGEST this_base;
938
939 /* If we know the relationship between the stack and frame
940 pointers, record the addresses of the registers we noticed.
941 Note that we have to do this as a separate step at the end,
942 because instructions may save relative to the SP, but we need
943 their addresses relative to the FP. */
944 if (fp_set)
945 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
946 else
947 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
948
949 for (i = 0; i < 64; i++)
950 if (gr_saved[i])
951 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
952
953 info->prev_sp = this_base - fp_offset + framesize;
954 info->base = this_base;
955
956 /* If LR was saved on the stack, record its location. */
957 if (lr_saved_on_stack)
958 info->saved_regs[lr_regnum].addr
959 = this_base - fp_offset + lr_sp_offset;
960
961 /* The call instruction moves the caller's PC in the callee's LR.
962 Since this is an unwind, do the reverse. Copy the location of LR
963 into PC (the address / regnum) so that a request for PC will be
964 converted into a request for the LR. */
965 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
966
967 /* Save the previous frame's computed SP value. */
968 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
969 }
970
971 return last_prologue_pc;
972 }
973
974
975 static CORE_ADDR
976 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
977 {
978 CORE_ADDR func_addr, func_end, new_pc;
979
980 new_pc = pc;
981
982 /* If the line table has entry for a line *within* the function
983 (i.e., not in the prologue, and not past the end), then that's
984 our location. */
985 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
986 {
987 struct symtab_and_line sal;
988
989 sal = find_pc_line (func_addr, 0);
990
991 if (sal.line != 0 && sal.end < func_end)
992 {
993 new_pc = sal.end;
994 }
995 }
996
997 /* The FR-V prologue is at least five instructions long (twenty bytes).
998 If we didn't find a real source location past that, then
999 do a full analysis of the prologue. */
1000 if (new_pc < pc + 20)
1001 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1002
1003 return new_pc;
1004 }
1005
1006
1007 /* Examine the instruction pointed to by PC. If it corresponds to
1008 a call to __main, return the address of the next instruction.
1009 Otherwise, return PC. */
1010
1011 static CORE_ADDR
1012 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1013 {
1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1015 gdb_byte buf[4];
1016 unsigned long op;
1017 CORE_ADDR orig_pc = pc;
1018
1019 if (target_read_memory (pc, buf, 4))
1020 return pc;
1021 op = extract_unsigned_integer (buf, 4, byte_order);
1022
1023 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1024 to the call instruction.
1025
1026 Skip over this instruction if present. It won't be present in
1027 non-PIC code, and even in PIC code, it might not be present.
1028 (This is due to the fact that GR15, the FDPIC register, already
1029 contains the correct value.)
1030
1031 The general form of the LDI is given first, followed by the
1032 specific instruction with the GRi and GRk filled in as FP and
1033 GR15.
1034
1035 ldi @(GRi, d12), GRk
1036 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1037 0 000000 1111111 000000 000000000000 = 0x01fc0000
1038 . . . . . . . .
1039 ldi @(FP, d12), GR15
1040 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1041 0 001111 1111111 000010 000000000000 = 0x7ffff000
1042 . . . . . . . . */
1043
1044 if ((op & 0x7ffff000) == 0x1ec82000)
1045 {
1046 pc += 4;
1047 if (target_read_memory (pc, buf, 4))
1048 return orig_pc;
1049 op = extract_unsigned_integer (buf, 4, byte_order);
1050 }
1051
1052 /* The format of an FRV CALL instruction is as follows:
1053
1054 call label24
1055 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1056 0 000000 1111111 000000000000000000 = 0x01fc0000
1057 . . . . . . . .
1058
1059 where label24 is constructed by concatenating the H bits with the
1060 L bits. The call target is PC + (4 * sign_ext(label24)). */
1061
1062 if ((op & 0x01fc0000) == 0x003c0000)
1063 {
1064 LONGEST displ;
1065 CORE_ADDR call_dest;
1066 struct minimal_symbol *s;
1067
1068 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1069 if ((displ & 0x00800000) != 0)
1070 displ |= ~((LONGEST) 0x00ffffff);
1071
1072 call_dest = pc + 4 * displ;
1073 s = lookup_minimal_symbol_by_pc (call_dest);
1074
1075 if (s != NULL
1076 && SYMBOL_LINKAGE_NAME (s) != NULL
1077 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1078 {
1079 pc += 4;
1080 return pc;
1081 }
1082 }
1083 return orig_pc;
1084 }
1085
1086
1087 static struct frv_unwind_cache *
1088 frv_frame_unwind_cache (struct frame_info *this_frame,
1089 void **this_prologue_cache)
1090 {
1091 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1092 CORE_ADDR pc;
1093 ULONGEST this_base;
1094 struct frv_unwind_cache *info;
1095
1096 if ((*this_prologue_cache))
1097 return (*this_prologue_cache);
1098
1099 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1100 (*this_prologue_cache) = info;
1101 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1102
1103 /* Prologue analysis does the rest... */
1104 frv_analyze_prologue (gdbarch,
1105 get_frame_func (this_frame), this_frame, info);
1106
1107 return info;
1108 }
1109
1110 static void
1111 frv_extract_return_value (struct type *type, struct regcache *regcache,
1112 gdb_byte *valbuf)
1113 {
1114 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1116 int len = TYPE_LENGTH (type);
1117
1118 if (len <= 4)
1119 {
1120 ULONGEST gpr8_val;
1121 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1122 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1123 }
1124 else if (len == 8)
1125 {
1126 ULONGEST regval;
1127
1128 regcache_cooked_read_unsigned (regcache, 8, &regval);
1129 store_unsigned_integer (valbuf, 4, byte_order, regval);
1130 regcache_cooked_read_unsigned (regcache, 9, &regval);
1131 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1132 }
1133 else
1134 internal_error (__FILE__, __LINE__,
1135 _("Illegal return value length: %d"), len);
1136 }
1137
1138 static CORE_ADDR
1139 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1140 {
1141 /* Require dword alignment. */
1142 return align_down (sp, 8);
1143 }
1144
1145 static CORE_ADDR
1146 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1147 {
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1149 CORE_ADDR descr;
1150 char valbuf[4];
1151 CORE_ADDR start_addr;
1152
1153 /* If we can't find the function in the symbol table, then we assume
1154 that the function address is already in descriptor form. */
1155 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1156 || entry_point != start_addr)
1157 return entry_point;
1158
1159 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1160
1161 if (descr != 0)
1162 return descr;
1163
1164 /* Construct a non-canonical descriptor from space allocated on
1165 the stack. */
1166
1167 descr = value_as_long (value_allocate_space_in_inferior (8));
1168 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1169 write_memory (descr, valbuf, 4);
1170 store_unsigned_integer (valbuf, 4, byte_order,
1171 frv_fdpic_find_global_pointer (entry_point));
1172 write_memory (descr + 4, valbuf, 4);
1173 return descr;
1174 }
1175
1176 static CORE_ADDR
1177 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1178 struct target_ops *targ)
1179 {
1180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1181 CORE_ADDR entry_point;
1182 CORE_ADDR got_address;
1183
1184 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1185 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1186
1187 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1188 return entry_point;
1189 else
1190 return addr;
1191 }
1192
1193 static CORE_ADDR
1194 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1195 struct regcache *regcache, CORE_ADDR bp_addr,
1196 int nargs, struct value **args, CORE_ADDR sp,
1197 int struct_return, CORE_ADDR struct_addr)
1198 {
1199 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1200 int argreg;
1201 int argnum;
1202 char *val;
1203 char valbuf[4];
1204 struct value *arg;
1205 struct type *arg_type;
1206 int len;
1207 enum type_code typecode;
1208 CORE_ADDR regval;
1209 int stack_space;
1210 int stack_offset;
1211 enum frv_abi abi = frv_abi (gdbarch);
1212 CORE_ADDR func_addr = find_function_addr (function, NULL);
1213
1214 #if 0
1215 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1216 nargs, (int) sp, struct_return, struct_addr);
1217 #endif
1218
1219 stack_space = 0;
1220 for (argnum = 0; argnum < nargs; ++argnum)
1221 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1222
1223 stack_space -= (6 * 4);
1224 if (stack_space > 0)
1225 sp -= stack_space;
1226
1227 /* Make sure stack is dword aligned. */
1228 sp = align_down (sp, 8);
1229
1230 stack_offset = 0;
1231
1232 argreg = 8;
1233
1234 if (struct_return)
1235 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1236 struct_addr);
1237
1238 for (argnum = 0; argnum < nargs; ++argnum)
1239 {
1240 arg = args[argnum];
1241 arg_type = check_typedef (value_type (arg));
1242 len = TYPE_LENGTH (arg_type);
1243 typecode = TYPE_CODE (arg_type);
1244
1245 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1246 {
1247 store_unsigned_integer (valbuf, 4, byte_order,
1248 value_address (arg));
1249 typecode = TYPE_CODE_PTR;
1250 len = 4;
1251 val = valbuf;
1252 }
1253 else if (abi == FRV_ABI_FDPIC
1254 && len == 4
1255 && typecode == TYPE_CODE_PTR
1256 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1257 {
1258 /* The FDPIC ABI requires function descriptors to be passed instead
1259 of entry points. */
1260 CORE_ADDR addr = extract_unsigned_integer
1261 (value_contents (arg), 4, byte_order);
1262 addr = find_func_descr (gdbarch, addr);
1263 store_unsigned_integer (valbuf, 4, byte_order, addr);
1264 typecode = TYPE_CODE_PTR;
1265 len = 4;
1266 val = valbuf;
1267 }
1268 else
1269 {
1270 val = (char *) value_contents (arg);
1271 }
1272
1273 while (len > 0)
1274 {
1275 int partial_len = (len < 4 ? len : 4);
1276
1277 if (argreg < 14)
1278 {
1279 regval = extract_unsigned_integer (val, partial_len, byte_order);
1280 #if 0
1281 printf(" Argnum %d data %x -> reg %d\n",
1282 argnum, (int) regval, argreg);
1283 #endif
1284 regcache_cooked_write_unsigned (regcache, argreg, regval);
1285 ++argreg;
1286 }
1287 else
1288 {
1289 #if 0
1290 printf(" Argnum %d data %x -> offset %d (%x)\n",
1291 argnum, *((int *)val), stack_offset,
1292 (int) (sp + stack_offset));
1293 #endif
1294 write_memory (sp + stack_offset, val, partial_len);
1295 stack_offset += align_up (partial_len, 4);
1296 }
1297 len -= partial_len;
1298 val += partial_len;
1299 }
1300 }
1301
1302 /* Set the return address. For the frv, the return breakpoint is
1303 always at BP_ADDR. */
1304 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1305
1306 if (abi == FRV_ABI_FDPIC)
1307 {
1308 /* Set the GOT register for the FDPIC ABI. */
1309 regcache_cooked_write_unsigned
1310 (regcache, first_gpr_regnum + 15,
1311 frv_fdpic_find_global_pointer (func_addr));
1312 }
1313
1314 /* Finally, update the SP register. */
1315 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1316
1317 return sp;
1318 }
1319
1320 static void
1321 frv_store_return_value (struct type *type, struct regcache *regcache,
1322 const gdb_byte *valbuf)
1323 {
1324 int len = TYPE_LENGTH (type);
1325
1326 if (len <= 4)
1327 {
1328 bfd_byte val[4];
1329 memset (val, 0, sizeof (val));
1330 memcpy (val + (4 - len), valbuf, len);
1331 regcache_cooked_write (regcache, 8, val);
1332 }
1333 else if (len == 8)
1334 {
1335 regcache_cooked_write (regcache, 8, valbuf);
1336 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1337 }
1338 else
1339 internal_error (__FILE__, __LINE__,
1340 _("Don't know how to return a %d-byte value."), len);
1341 }
1342
1343 static enum return_value_convention
1344 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1345 struct type *valtype, struct regcache *regcache,
1346 gdb_byte *readbuf, const gdb_byte *writebuf)
1347 {
1348 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1349 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1350 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1351
1352 if (writebuf != NULL)
1353 {
1354 gdb_assert (!struct_return);
1355 frv_store_return_value (valtype, regcache, writebuf);
1356 }
1357
1358 if (readbuf != NULL)
1359 {
1360 gdb_assert (!struct_return);
1361 frv_extract_return_value (valtype, regcache, readbuf);
1362 }
1363
1364 if (struct_return)
1365 return RETURN_VALUE_STRUCT_CONVENTION;
1366 else
1367 return RETURN_VALUE_REGISTER_CONVENTION;
1368 }
1369
1370
1371 /* Hardware watchpoint / breakpoint support for the FR500
1372 and FR400. */
1373
1374 int
1375 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1376 {
1377 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1378
1379 /* Watchpoints not supported on simulator. */
1380 if (strcmp (target_shortname, "sim") == 0)
1381 return 0;
1382
1383 if (type == bp_hardware_breakpoint)
1384 {
1385 if (var->num_hw_breakpoints == 0)
1386 return 0;
1387 else if (cnt <= var->num_hw_breakpoints)
1388 return 1;
1389 }
1390 else
1391 {
1392 if (var->num_hw_watchpoints == 0)
1393 return 0;
1394 else if (ot)
1395 return -1;
1396 else if (cnt <= var->num_hw_watchpoints)
1397 return 1;
1398 }
1399 return -1;
1400 }
1401
1402
1403 int
1404 frv_stopped_data_address (CORE_ADDR *addr_p)
1405 {
1406 struct frame_info *frame = get_current_frame ();
1407 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1408
1409 brr = get_frame_register_unsigned (frame, brr_regnum);
1410 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1411 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1412 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1413 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1414
1415 if (brr & (1<<11))
1416 *addr_p = dbar0;
1417 else if (brr & (1<<10))
1418 *addr_p = dbar1;
1419 else if (brr & (1<<9))
1420 *addr_p = dbar2;
1421 else if (brr & (1<<8))
1422 *addr_p = dbar3;
1423 else
1424 return 0;
1425
1426 return 1;
1427 }
1428
1429 int
1430 frv_have_stopped_data_address (void)
1431 {
1432 CORE_ADDR addr = 0;
1433 return frv_stopped_data_address (&addr);
1434 }
1435
1436 static CORE_ADDR
1437 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1438 {
1439 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1440 }
1441
1442 /* Given a GDB frame, determine the address of the calling function's
1443 frame. This will be used to create a new GDB frame struct. */
1444
1445 static void
1446 frv_frame_this_id (struct frame_info *this_frame,
1447 void **this_prologue_cache, struct frame_id *this_id)
1448 {
1449 struct frv_unwind_cache *info
1450 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1451 CORE_ADDR base;
1452 CORE_ADDR func;
1453 struct minimal_symbol *msym_stack;
1454 struct frame_id id;
1455
1456 /* The FUNC is easy. */
1457 func = get_frame_func (this_frame);
1458
1459 /* Check if the stack is empty. */
1460 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1461 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1462 return;
1463
1464 /* Hopefully the prologue analysis either correctly determined the
1465 frame's base (which is the SP from the previous frame), or set
1466 that base to "NULL". */
1467 base = info->prev_sp;
1468 if (base == 0)
1469 return;
1470
1471 id = frame_id_build (base, func);
1472 (*this_id) = id;
1473 }
1474
1475 static struct value *
1476 frv_frame_prev_register (struct frame_info *this_frame,
1477 void **this_prologue_cache, int regnum)
1478 {
1479 struct frv_unwind_cache *info
1480 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1481 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1482 }
1483
1484 static const struct frame_unwind frv_frame_unwind = {
1485 NORMAL_FRAME,
1486 frv_frame_this_id,
1487 frv_frame_prev_register,
1488 NULL,
1489 default_frame_sniffer
1490 };
1491
1492 static CORE_ADDR
1493 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1494 {
1495 struct frv_unwind_cache *info
1496 = frv_frame_unwind_cache (this_frame, this_cache);
1497 return info->base;
1498 }
1499
1500 static const struct frame_base frv_frame_base = {
1501 &frv_frame_unwind,
1502 frv_frame_base_address,
1503 frv_frame_base_address,
1504 frv_frame_base_address
1505 };
1506
1507 static CORE_ADDR
1508 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1509 {
1510 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1511 }
1512
1513
1514 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1515 frame. The frame ID's base needs to match the TOS value saved by
1516 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1517
1518 static struct frame_id
1519 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1520 {
1521 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1522 return frame_id_build (sp, get_frame_pc (this_frame));
1523 }
1524
1525 static struct gdbarch *
1526 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1527 {
1528 struct gdbarch *gdbarch;
1529 struct gdbarch_tdep *var;
1530 int elf_flags = 0;
1531
1532 /* Check to see if we've already built an appropriate architecture
1533 object for this executable. */
1534 arches = gdbarch_list_lookup_by_info (arches, &info);
1535 if (arches)
1536 return arches->gdbarch;
1537
1538 /* Select the right tdep structure for this variant. */
1539 var = new_variant ();
1540 switch (info.bfd_arch_info->mach)
1541 {
1542 case bfd_mach_frv:
1543 case bfd_mach_frvsimple:
1544 case bfd_mach_fr500:
1545 case bfd_mach_frvtomcat:
1546 case bfd_mach_fr550:
1547 set_variant_num_gprs (var, 64);
1548 set_variant_num_fprs (var, 64);
1549 break;
1550
1551 case bfd_mach_fr400:
1552 case bfd_mach_fr450:
1553 set_variant_num_gprs (var, 32);
1554 set_variant_num_fprs (var, 32);
1555 break;
1556
1557 default:
1558 /* Never heard of this variant. */
1559 return 0;
1560 }
1561
1562 /* Extract the ELF flags, if available. */
1563 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1564 elf_flags = elf_elfheader (info.abfd)->e_flags;
1565
1566 if (elf_flags & EF_FRV_FDPIC)
1567 set_variant_abi_fdpic (var);
1568
1569 if (elf_flags & EF_FRV_CPU_FR450)
1570 set_variant_scratch_registers (var);
1571
1572 gdbarch = gdbarch_alloc (&info, var);
1573
1574 set_gdbarch_short_bit (gdbarch, 16);
1575 set_gdbarch_int_bit (gdbarch, 32);
1576 set_gdbarch_long_bit (gdbarch, 32);
1577 set_gdbarch_long_long_bit (gdbarch, 64);
1578 set_gdbarch_float_bit (gdbarch, 32);
1579 set_gdbarch_double_bit (gdbarch, 64);
1580 set_gdbarch_long_double_bit (gdbarch, 64);
1581 set_gdbarch_ptr_bit (gdbarch, 32);
1582
1583 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1584 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1585
1586 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1587 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1588 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1589
1590 set_gdbarch_register_name (gdbarch, frv_register_name);
1591 set_gdbarch_register_type (gdbarch, frv_register_type);
1592 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1593
1594 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1595 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1596
1597 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1598 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1599 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1600 set_gdbarch_adjust_breakpoint_address
1601 (gdbarch, frv_adjust_breakpoint_address);
1602
1603 set_gdbarch_return_value (gdbarch, frv_return_value);
1604
1605 /* Frame stuff. */
1606 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1607 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1608 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1609 frame_base_set_default (gdbarch, &frv_frame_base);
1610 /* We set the sniffer lower down after the OSABI hooks have been
1611 established. */
1612
1613 /* Settings for calling functions in the inferior. */
1614 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1615 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1616
1617 /* Settings that should be unnecessary. */
1618 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1619
1620 /* Hardware watchpoint / breakpoint support. */
1621 switch (info.bfd_arch_info->mach)
1622 {
1623 case bfd_mach_frv:
1624 case bfd_mach_frvsimple:
1625 case bfd_mach_fr500:
1626 case bfd_mach_frvtomcat:
1627 /* fr500-style hardware debugging support. */
1628 var->num_hw_watchpoints = 4;
1629 var->num_hw_breakpoints = 4;
1630 break;
1631
1632 case bfd_mach_fr400:
1633 case bfd_mach_fr450:
1634 /* fr400-style hardware debugging support. */
1635 var->num_hw_watchpoints = 2;
1636 var->num_hw_breakpoints = 4;
1637 break;
1638
1639 default:
1640 /* Otherwise, assume we don't have hardware debugging support. */
1641 var->num_hw_watchpoints = 0;
1642 var->num_hw_breakpoints = 0;
1643 break;
1644 }
1645
1646 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1647 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1648 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1649 frv_convert_from_func_ptr_addr);
1650
1651 set_solib_ops (gdbarch, &frv_so_ops);
1652
1653 /* Hook in ABI-specific overrides, if they have been registered. */
1654 gdbarch_init_osabi (info, gdbarch);
1655
1656 /* Set the fallback (prologue based) frame sniffer. */
1657 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1658
1659 /* Enable TLS support. */
1660 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1661 frv_fetch_objfile_link_map);
1662
1663 return gdbarch;
1664 }
1665
1666 void
1667 _initialize_frv_tdep (void)
1668 {
1669 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1670 }
This page took 0.066173 seconds and 4 git commands to generate.