2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "symfile.h" /* for entry_point_address */
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-frv.h"
36 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
37
38 extern void _initialize_frv_tdep (void);
39
40 static gdbarch_init_ftype frv_gdbarch_init;
41
42 static gdbarch_register_name_ftype frv_register_name;
43 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
44 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
45 static gdbarch_skip_prologue_ftype frv_skip_prologue;
46 static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
47
48 /* Register numbers. The order in which these appear define the
49 remote protocol, so take care in changing them. */
50 enum {
51 /* Register numbers 0 -- 63 are always reserved for general-purpose
52 registers. The chip at hand may have less. */
53 first_gpr_regnum = 0,
54 sp_regnum = 1,
55 fp_regnum = 2,
56 struct_return_regnum = 3,
57 last_gpr_regnum = 63,
58
59 /* Register numbers 64 -- 127 are always reserved for floating-point
60 registers. The chip at hand may have less. */
61 first_fpr_regnum = 64,
62 last_fpr_regnum = 127,
63
64 /* The PC register. */
65 pc_regnum = 128,
66
67 /* Register numbers 129 on up are always reserved for special-purpose
68 registers. */
69 first_spr_regnum = 129,
70 psr_regnum = 129,
71 ccr_regnum = 130,
72 cccr_regnum = 131,
73 tbr_regnum = 135,
74 brr_regnum = 136,
75 dbar0_regnum = 137,
76 dbar1_regnum = 138,
77 dbar2_regnum = 139,
78 dbar3_regnum = 140,
79 lr_regnum = 145,
80 lcr_regnum = 146,
81 iacc0h_regnum = 147,
82 iacc0l_regnum = 148,
83 last_spr_regnum = 148,
84
85 /* The total number of registers we know exist. */
86 frv_num_regs = last_spr_regnum + 1,
87
88 /* Pseudo registers */
89 first_pseudo_regnum = frv_num_regs,
90
91 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
92 iacc0_regnum = first_pseudo_regnum + 0,
93
94 last_pseudo_regnum = iacc0_regnum,
95 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
96 };
97
98 static LONGEST frv_call_dummy_words[] =
99 {0};
100
101
102 struct frv_unwind_cache /* was struct frame_extra_info */
103 {
104 /* The previous frame's inner-most stack address. Used as this
105 frame ID's stack_addr. */
106 CORE_ADDR prev_sp;
107
108 /* The frame's base, optionally used by the high-level debug info. */
109 CORE_ADDR base;
110
111 /* Table indicating the location of each and every register. */
112 struct trad_frame_saved_reg *saved_regs;
113 };
114
115
116 /* A structure describing a particular variant of the FRV.
117 We allocate and initialize one of these structures when we create
118 the gdbarch object for a variant.
119
120 At the moment, all the FR variants we support differ only in which
121 registers are present; the portable code of GDB knows that
122 registers whose names are the empty string don't exist, so the
123 `register_names' array captures all the per-variant information we
124 need.
125
126 in the future, if we need to have per-variant maps for raw size,
127 virtual type, etc., we should replace register_names with an array
128 of structures, each of which gives all the necessary info for one
129 register. Don't stick parallel arrays in here --- that's so
130 Fortran. */
131 struct gdbarch_tdep
132 {
133 /* How many general-purpose registers does this variant have? */
134 int num_gprs;
135
136 /* How many floating-point registers does this variant have? */
137 int num_fprs;
138
139 /* How many hardware watchpoints can it support? */
140 int num_hw_watchpoints;
141
142 /* How many hardware breakpoints can it support? */
143 int num_hw_breakpoints;
144
145 /* Register names. */
146 char **register_names;
147 };
148
149 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
150
151
152 /* Allocate a new variant structure, and set up default values for all
153 the fields. */
154 static struct gdbarch_tdep *
155 new_variant (void)
156 {
157 struct gdbarch_tdep *var;
158 int r;
159 char buf[20];
160
161 var = xmalloc (sizeof (*var));
162 memset (var, 0, sizeof (*var));
163
164 var->num_gprs = 64;
165 var->num_fprs = 64;
166 var->num_hw_watchpoints = 0;
167 var->num_hw_breakpoints = 0;
168
169 /* By default, don't supply any general-purpose or floating-point
170 register names. */
171 var->register_names
172 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
173 * sizeof (char *));
174 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
175 var->register_names[r] = "";
176
177 /* Do, however, supply default names for the known special-purpose
178 registers. */
179
180 var->register_names[pc_regnum] = "pc";
181 var->register_names[lr_regnum] = "lr";
182 var->register_names[lcr_regnum] = "lcr";
183
184 var->register_names[psr_regnum] = "psr";
185 var->register_names[ccr_regnum] = "ccr";
186 var->register_names[cccr_regnum] = "cccr";
187 var->register_names[tbr_regnum] = "tbr";
188
189 /* Debug registers. */
190 var->register_names[brr_regnum] = "brr";
191 var->register_names[dbar0_regnum] = "dbar0";
192 var->register_names[dbar1_regnum] = "dbar1";
193 var->register_names[dbar2_regnum] = "dbar2";
194 var->register_names[dbar3_regnum] = "dbar3";
195
196 /* iacc0 (Only found on MB93405.) */
197 var->register_names[iacc0h_regnum] = "iacc0h";
198 var->register_names[iacc0l_regnum] = "iacc0l";
199 var->register_names[iacc0_regnum] = "iacc0";
200
201 return var;
202 }
203
204
205 /* Indicate that the variant VAR has NUM_GPRS general-purpose
206 registers, and fill in the names array appropriately. */
207 static void
208 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
209 {
210 int r;
211
212 var->num_gprs = num_gprs;
213
214 for (r = 0; r < num_gprs; ++r)
215 {
216 char buf[20];
217
218 sprintf (buf, "gr%d", r);
219 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
220 }
221 }
222
223
224 /* Indicate that the variant VAR has NUM_FPRS floating-point
225 registers, and fill in the names array appropriately. */
226 static void
227 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
228 {
229 int r;
230
231 var->num_fprs = num_fprs;
232
233 for (r = 0; r < num_fprs; ++r)
234 {
235 char buf[20];
236
237 sprintf (buf, "fr%d", r);
238 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
239 }
240 }
241
242
243 static const char *
244 frv_register_name (int reg)
245 {
246 if (reg < 0)
247 return "?toosmall?";
248 if (reg >= frv_num_regs + frv_num_pseudo_regs)
249 return "?toolarge?";
250
251 return CURRENT_VARIANT->register_names[reg];
252 }
253
254
255 static struct type *
256 frv_register_type (struct gdbarch *gdbarch, int reg)
257 {
258 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
259 return builtin_type_float;
260 else if (reg == iacc0_regnum)
261 return builtin_type_int64;
262 else
263 return builtin_type_int32;
264 }
265
266 static void
267 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
268 int reg, void *buffer)
269 {
270 if (reg == iacc0_regnum)
271 {
272 regcache_raw_read (regcache, iacc0h_regnum, buffer);
273 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
274 }
275 }
276
277 static void
278 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
279 int reg, const void *buffer)
280 {
281 if (reg == iacc0_regnum)
282 {
283 regcache_raw_write (regcache, iacc0h_regnum, buffer);
284 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
285 }
286 }
287
288 static int
289 frv_register_sim_regno (int reg)
290 {
291 static const int spr_map[] =
292 {
293 H_SPR_PSR, /* psr_regnum */
294 H_SPR_CCR, /* ccr_regnum */
295 H_SPR_CCCR, /* cccr_regnum */
296 -1, /* 132 */
297 -1, /* 133 */
298 -1, /* 134 */
299 H_SPR_TBR, /* tbr_regnum */
300 H_SPR_BRR, /* brr_regnum */
301 H_SPR_DBAR0, /* dbar0_regnum */
302 H_SPR_DBAR1, /* dbar1_regnum */
303 H_SPR_DBAR2, /* dbar2_regnum */
304 H_SPR_DBAR3, /* dbar3_regnum */
305 -1, /* 141 */
306 -1, /* 142 */
307 -1, /* 143 */
308 -1, /* 144 */
309 H_SPR_LR, /* lr_regnum */
310 H_SPR_LCR, /* lcr_regnum */
311 H_SPR_IACC0H, /* iacc0h_regnum */
312 H_SPR_IACC0L /* iacc0l_regnum */
313 };
314
315 gdb_assert (reg >= 0 && reg < NUM_REGS);
316
317 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
318 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
319 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
320 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
321 else if (pc_regnum == reg)
322 return SIM_FRV_PC_REGNUM;
323 else if (reg >= first_spr_regnum
324 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
325 {
326 int spr_reg_offset = spr_map[reg - first_spr_regnum];
327
328 if (spr_reg_offset < 0)
329 return SIM_REGNO_DOES_NOT_EXIST;
330 else
331 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
332 }
333
334 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
335 }
336
337 static const unsigned char *
338 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
339 {
340 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
341 *lenp = sizeof (breakpoint);
342 return breakpoint;
343 }
344
345 /* Define the maximum number of instructions which may be packed into a
346 bundle (VLIW instruction). */
347 static const int max_instrs_per_bundle = 8;
348
349 /* Define the size (in bytes) of an FR-V instruction. */
350 static const int frv_instr_size = 4;
351
352 /* Adjust a breakpoint's address to account for the FR-V architecture's
353 constraint that a break instruction must not appear as any but the
354 first instruction in the bundle. */
355 static CORE_ADDR
356 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
357 {
358 int count = max_instrs_per_bundle;
359 CORE_ADDR addr = bpaddr - frv_instr_size;
360 CORE_ADDR func_start = get_pc_function_start (bpaddr);
361
362 /* Find the end of the previous packing sequence. This will be indicated
363 by either attempting to access some inaccessible memory or by finding
364 an instruction word whose packing bit is set to one. */
365 while (count-- > 0 && addr >= func_start)
366 {
367 char instr[frv_instr_size];
368 int status;
369
370 status = read_memory_nobpt (addr, instr, sizeof instr);
371
372 if (status != 0)
373 break;
374
375 /* This is a big endian architecture, so byte zero will have most
376 significant byte. The most significant bit of this byte is the
377 packing bit. */
378 if (instr[0] & 0x80)
379 break;
380
381 addr -= frv_instr_size;
382 }
383
384 if (count > 0)
385 bpaddr = addr + frv_instr_size;
386
387 return bpaddr;
388 }
389
390
391 /* Return true if REG is a caller-saves ("scratch") register,
392 false otherwise. */
393 static int
394 is_caller_saves_reg (int reg)
395 {
396 return ((4 <= reg && reg <= 7)
397 || (14 <= reg && reg <= 15)
398 || (32 <= reg && reg <= 47));
399 }
400
401
402 /* Return true if REG is a callee-saves register, false otherwise. */
403 static int
404 is_callee_saves_reg (int reg)
405 {
406 return ((16 <= reg && reg <= 31)
407 || (48 <= reg && reg <= 63));
408 }
409
410
411 /* Return true if REG is an argument register, false otherwise. */
412 static int
413 is_argument_reg (int reg)
414 {
415 return (8 <= reg && reg <= 13);
416 }
417
418 /* Given PC at the function's start address, attempt to find the
419 prologue end using SAL information. Return zero if the skip fails.
420
421 A non-optimized prologue traditionally has one SAL for the function
422 and a second for the function body. A single line function has
423 them both pointing at the same line.
424
425 An optimized prologue is similar but the prologue may contain
426 instructions (SALs) from the instruction body. Need to skip those
427 while not getting into the function body.
428
429 The functions end point and an increasing SAL line are used as
430 indicators of the prologue's endpoint.
431
432 This code is based on the function refine_prologue_limit (versions
433 found in both ia64 and ppc). */
434
435 static CORE_ADDR
436 skip_prologue_using_sal (CORE_ADDR func_addr)
437 {
438 struct symtab_and_line prologue_sal;
439 CORE_ADDR start_pc;
440 CORE_ADDR end_pc;
441
442 /* Get an initial range for the function. */
443 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
444 start_pc += FUNCTION_START_OFFSET;
445
446 prologue_sal = find_pc_line (start_pc, 0);
447 if (prologue_sal.line != 0)
448 {
449 while (prologue_sal.end < end_pc)
450 {
451 struct symtab_and_line sal;
452
453 sal = find_pc_line (prologue_sal.end, 0);
454 if (sal.line == 0)
455 break;
456 /* Assume that a consecutive SAL for the same (or larger)
457 line mark the prologue -> body transition. */
458 if (sal.line >= prologue_sal.line)
459 break;
460 /* The case in which compiler's optimizer/scheduler has
461 moved instructions into the prologue. We look ahead in
462 the function looking for address ranges whose
463 corresponding line number is less the first one that we
464 found for the function. This is more conservative then
465 refine_prologue_limit which scans a large number of SALs
466 looking for any in the prologue */
467 prologue_sal = sal;
468 }
469 }
470 return prologue_sal.end;
471 }
472
473
474 /* Scan an FR-V prologue, starting at PC, until frame->PC.
475 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
476 We assume FRAME's saved_regs array has already been allocated and cleared.
477 Return the first PC value after the prologue.
478
479 Note that, for unoptimized code, we almost don't need this function
480 at all; all arguments and locals live on the stack, so we just need
481 the FP to find everything. The catch: structures passed by value
482 have their addresses living in registers; they're never spilled to
483 the stack. So if you ever want to be able to get to these
484 arguments in any frame but the top, you'll need to do this serious
485 prologue analysis. */
486 static CORE_ADDR
487 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
488 struct frv_unwind_cache *info)
489 {
490 /* When writing out instruction bitpatterns, we use the following
491 letters to label instruction fields:
492 P - The parallel bit. We don't use this.
493 J - The register number of GRj in the instruction description.
494 K - The register number of GRk in the instruction description.
495 I - The register number of GRi.
496 S - a signed imediate offset.
497 U - an unsigned immediate offset.
498
499 The dots below the numbers indicate where hex digit boundaries
500 fall, to make it easier to check the numbers. */
501
502 /* Non-zero iff we've seen the instruction that initializes the
503 frame pointer for this function's frame. */
504 int fp_set = 0;
505
506 /* If fp_set is non_zero, then this is the distance from
507 the stack pointer to frame pointer: fp = sp + fp_offset. */
508 int fp_offset = 0;
509
510 /* Total size of frame prior to any alloca operations. */
511 int framesize = 0;
512
513 /* Flag indicating if lr has been saved on the stack. */
514 int lr_saved_on_stack = 0;
515
516 /* The number of the general-purpose register we saved the return
517 address ("link register") in, or -1 if we haven't moved it yet. */
518 int lr_save_reg = -1;
519
520 /* Offset (from sp) at which lr has been saved on the stack. */
521
522 int lr_sp_offset = 0;
523
524 /* If gr_saved[i] is non-zero, then we've noticed that general
525 register i has been saved at gr_sp_offset[i] from the stack
526 pointer. */
527 char gr_saved[64];
528 int gr_sp_offset[64];
529
530 /* The address of the most recently scanned prologue instruction. */
531 CORE_ADDR last_prologue_pc;
532
533 /* The address of the next instruction. */
534 CORE_ADDR next_pc;
535
536 /* The upper bound to of the pc values to scan. */
537 CORE_ADDR lim_pc;
538
539 memset (gr_saved, 0, sizeof (gr_saved));
540
541 last_prologue_pc = pc;
542
543 /* Try to compute an upper limit (on how far to scan) based on the
544 line number info. */
545 lim_pc = skip_prologue_using_sal (pc);
546 /* If there's no line number info, lim_pc will be 0. In that case,
547 set the limit to be 100 instructions away from pc. Hopefully, this
548 will be far enough away to account for the entire prologue. Don't
549 worry about overshooting the end of the function. The scan loop
550 below contains some checks to avoid scanning unreasonably far. */
551 if (lim_pc == 0)
552 lim_pc = pc + 400;
553
554 /* If we have a frame, we don't want to scan past the frame's pc. This
555 will catch those cases where the pc is in the prologue. */
556 if (next_frame)
557 {
558 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
559 if (frame_pc < lim_pc)
560 lim_pc = frame_pc;
561 }
562
563 /* Scan the prologue. */
564 while (pc < lim_pc)
565 {
566 LONGEST op = read_memory_integer (pc, 4);
567 next_pc = pc + 4;
568
569 /* The tests in this chain of ifs should be in order of
570 decreasing selectivity, so that more particular patterns get
571 to fire before less particular patterns. */
572
573 /* Some sort of control transfer instruction: stop scanning prologue.
574 Integer Conditional Branch:
575 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
576 Floating-point / media Conditional Branch:
577 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
578 LCR Conditional Branch to LR
579 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
580 Integer conditional Branches to LR
581 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
582 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
583 Floating-point/Media Branches to LR
584 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
585 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
586 Jump and Link
587 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
588 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
589 Call
590 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
591 Return from Trap
592 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
593 Integer Conditional Trap
594 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
595 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
596 Floating-point /media Conditional Trap
597 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
598 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
599 Break
600 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
601 Media Trap
602 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
603 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
604 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
605 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
606 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
607 {
608 /* Stop scanning; not in prologue any longer. */
609 break;
610 }
611
612 /* Loading something from memory into fp probably means that
613 we're in the epilogue. Stop scanning the prologue.
614 ld @(GRi, GRk), fp
615 X 000010 0000010 XXXXXX 000100 XXXXXX
616 ldi @(GRi, d12), fp
617 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
618 else if ((op & 0x7ffc0fc0) == 0x04080100
619 || (op & 0x7ffc0000) == 0x04c80000)
620 {
621 break;
622 }
623
624 /* Setting the FP from the SP:
625 ori sp, 0, fp
626 P 000010 0100010 000001 000000000000 = 0x04881000
627 0 111111 1111111 111111 111111111111 = 0x7fffffff
628 . . . . . . . .
629 We treat this as part of the prologue. */
630 else if ((op & 0x7fffffff) == 0x04881000)
631 {
632 fp_set = 1;
633 fp_offset = 0;
634 last_prologue_pc = next_pc;
635 }
636
637 /* Move the link register to the scratch register grJ, before saving:
638 movsg lr, grJ
639 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
640 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
641 . . . . . . . .
642 We treat this as part of the prologue. */
643 else if ((op & 0x7fffffc0) == 0x080d01c0)
644 {
645 int gr_j = op & 0x3f;
646
647 /* If we're moving it to a scratch register, that's fine. */
648 if (is_caller_saves_reg (gr_j))
649 {
650 lr_save_reg = gr_j;
651 last_prologue_pc = next_pc;
652 }
653 }
654
655 /* To save multiple callee-saves registers on the stack, at
656 offset zero:
657
658 std grK,@(sp,gr0)
659 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
660 0 000000 1111111 111111 111111 111111 = 0x01ffffff
661
662 stq grK,@(sp,gr0)
663 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
664 0 000000 1111111 111111 111111 111111 = 0x01ffffff
665 . . . . . . . .
666 We treat this as part of the prologue, and record the register's
667 saved address in the frame structure. */
668 else if ((op & 0x01ffffff) == 0x000c10c0
669 || (op & 0x01ffffff) == 0x000c1100)
670 {
671 int gr_k = ((op >> 25) & 0x3f);
672 int ope = ((op >> 6) & 0x3f);
673 int count;
674 int i;
675
676 /* Is it an std or an stq? */
677 if (ope == 0x03)
678 count = 2;
679 else
680 count = 4;
681
682 /* Is it really a callee-saves register? */
683 if (is_callee_saves_reg (gr_k))
684 {
685 for (i = 0; i < count; i++)
686 {
687 gr_saved[gr_k + i] = 1;
688 gr_sp_offset[gr_k + i] = 4 * i;
689 }
690 last_prologue_pc = next_pc;
691 }
692 }
693
694 /* Adjusting the stack pointer. (The stack pointer is GR1.)
695 addi sp, S, sp
696 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
697 0 111111 1111111 111111 000000000000 = 0x7ffff000
698 . . . . . . . .
699 We treat this as part of the prologue. */
700 else if ((op & 0x7ffff000) == 0x02401000)
701 {
702 if (framesize == 0)
703 {
704 /* Sign-extend the twelve-bit field.
705 (Isn't there a better way to do this?) */
706 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
707
708 framesize -= s;
709 last_prologue_pc = pc;
710 }
711 else
712 {
713 /* If the prologue is being adjusted again, we've
714 likely gone too far; i.e. we're probably in the
715 epilogue. */
716 break;
717 }
718 }
719
720 /* Setting the FP to a constant distance from the SP:
721 addi sp, S, fp
722 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
723 0 111111 1111111 111111 000000000000 = 0x7ffff000
724 . . . . . . . .
725 We treat this as part of the prologue. */
726 else if ((op & 0x7ffff000) == 0x04401000)
727 {
728 /* Sign-extend the twelve-bit field.
729 (Isn't there a better way to do this?) */
730 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
731 fp_set = 1;
732 fp_offset = s;
733 last_prologue_pc = pc;
734 }
735
736 /* To spill an argument register to a scratch register:
737 ori GRi, 0, GRk
738 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
739 0 000000 1111111 000000 111111111111 = 0x01fc0fff
740 . . . . . . . .
741 For the time being, we treat this as a prologue instruction,
742 assuming that GRi is an argument register. This one's kind
743 of suspicious, because it seems like it could be part of a
744 legitimate body instruction. But we only come here when the
745 source info wasn't helpful, so we have to do the best we can.
746 Hopefully once GCC and GDB agree on how to emit line number
747 info for prologues, then this code will never come into play. */
748 else if ((op & 0x01fc0fff) == 0x00880000)
749 {
750 int gr_i = ((op >> 12) & 0x3f);
751
752 /* Make sure that the source is an arg register; if it is, we'll
753 treat it as a prologue instruction. */
754 if (is_argument_reg (gr_i))
755 last_prologue_pc = next_pc;
756 }
757
758 /* To spill 16-bit values to the stack:
759 sthi GRk, @(fp, s)
760 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
761 0 000000 1111111 111111 000000000000 = 0x01fff000
762 . . . . . . . .
763 And for 8-bit values, we use STB instructions.
764 stbi GRk, @(fp, s)
765 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
766 0 000000 1111111 111111 000000000000 = 0x01fff000
767 . . . . . . . .
768 We check that GRk is really an argument register, and treat
769 all such as part of the prologue. */
770 else if ( (op & 0x01fff000) == 0x01442000
771 || (op & 0x01fff000) == 0x01402000)
772 {
773 int gr_k = ((op >> 25) & 0x3f);
774
775 /* Make sure that GRk is really an argument register; treat
776 it as a prologue instruction if so. */
777 if (is_argument_reg (gr_k))
778 last_prologue_pc = next_pc;
779 }
780
781 /* To save multiple callee-saves register on the stack, at a
782 non-zero offset:
783
784 stdi GRk, @(sp, s)
785 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
786 0 000000 1111111 111111 000000000000 = 0x01fff000
787 . . . . . . . .
788 stqi GRk, @(sp, s)
789 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
790 0 000000 1111111 111111 000000000000 = 0x01fff000
791 . . . . . . . .
792 We treat this as part of the prologue, and record the register's
793 saved address in the frame structure. */
794 else if ((op & 0x01fff000) == 0x014c1000
795 || (op & 0x01fff000) == 0x01501000)
796 {
797 int gr_k = ((op >> 25) & 0x3f);
798 int count;
799 int i;
800
801 /* Is it a stdi or a stqi? */
802 if ((op & 0x01fff000) == 0x014c1000)
803 count = 2;
804 else
805 count = 4;
806
807 /* Is it really a callee-saves register? */
808 if (is_callee_saves_reg (gr_k))
809 {
810 /* Sign-extend the twelve-bit field.
811 (Isn't there a better way to do this?) */
812 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
813
814 for (i = 0; i < count; i++)
815 {
816 gr_saved[gr_k + i] = 1;
817 gr_sp_offset[gr_k + i] = s + (4 * i);
818 }
819 last_prologue_pc = next_pc;
820 }
821 }
822
823 /* Storing any kind of integer register at any constant offset
824 from any other register.
825
826 st GRk, @(GRi, gr0)
827 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
828 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
829 . . . . . . . .
830 sti GRk, @(GRi, d12)
831 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
832 0 000000 1111111 000000 000000000000 = 0x01fc0000
833 . . . . . . . .
834 These could be almost anything, but a lot of prologue
835 instructions fall into this pattern, so let's decode the
836 instruction once, and then work at a higher level. */
837 else if (((op & 0x01fc0fff) == 0x000c0080)
838 || ((op & 0x01fc0000) == 0x01480000))
839 {
840 int gr_k = ((op >> 25) & 0x3f);
841 int gr_i = ((op >> 12) & 0x3f);
842 int offset;
843
844 /* Are we storing with gr0 as an offset, or using an
845 immediate value? */
846 if ((op & 0x01fc0fff) == 0x000c0080)
847 offset = 0;
848 else
849 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
850
851 /* If the address isn't relative to the SP or FP, it's not a
852 prologue instruction. */
853 if (gr_i != sp_regnum && gr_i != fp_regnum)
854 {
855 /* Do nothing; not a prologue instruction. */
856 }
857
858 /* Saving the old FP in the new frame (relative to the SP). */
859 else if (gr_k == fp_regnum && gr_i == sp_regnum)
860 {
861 gr_saved[fp_regnum] = 1;
862 gr_sp_offset[fp_regnum] = offset;
863 last_prologue_pc = next_pc;
864 }
865
866 /* Saving callee-saves register(s) on the stack, relative to
867 the SP. */
868 else if (gr_i == sp_regnum
869 && is_callee_saves_reg (gr_k))
870 {
871 gr_saved[gr_k] = 1;
872 if (gr_i == sp_regnum)
873 gr_sp_offset[gr_k] = offset;
874 else
875 gr_sp_offset[gr_k] = offset + fp_offset;
876 last_prologue_pc = next_pc;
877 }
878
879 /* Saving the scratch register holding the return address. */
880 else if (lr_save_reg != -1
881 && gr_k == lr_save_reg)
882 {
883 lr_saved_on_stack = 1;
884 if (gr_i == sp_regnum)
885 lr_sp_offset = offset;
886 else
887 lr_sp_offset = offset + fp_offset;
888 last_prologue_pc = next_pc;
889 }
890
891 /* Spilling int-sized arguments to the stack. */
892 else if (is_argument_reg (gr_k))
893 last_prologue_pc = next_pc;
894 }
895 pc = next_pc;
896 }
897
898 if (next_frame && info)
899 {
900 int i;
901 ULONGEST this_base;
902
903 /* If we know the relationship between the stack and frame
904 pointers, record the addresses of the registers we noticed.
905 Note that we have to do this as a separate step at the end,
906 because instructions may save relative to the SP, but we need
907 their addresses relative to the FP. */
908 if (fp_set)
909 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
910 else
911 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
912
913 for (i = 0; i < 64; i++)
914 if (gr_saved[i])
915 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
916
917 info->prev_sp = this_base - fp_offset + framesize;
918 info->base = this_base;
919
920 /* If LR was saved on the stack, record its location. */
921 if (lr_saved_on_stack)
922 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
923
924 /* The call instruction moves the caller's PC in the callee's LR.
925 Since this is an unwind, do the reverse. Copy the location of LR
926 into PC (the address / regnum) so that a request for PC will be
927 converted into a request for the LR. */
928 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
929
930 /* Save the previous frame's computed SP value. */
931 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
932 }
933
934 return last_prologue_pc;
935 }
936
937
938 static CORE_ADDR
939 frv_skip_prologue (CORE_ADDR pc)
940 {
941 CORE_ADDR func_addr, func_end, new_pc;
942
943 new_pc = pc;
944
945 /* If the line table has entry for a line *within* the function
946 (i.e., not in the prologue, and not past the end), then that's
947 our location. */
948 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
949 {
950 struct symtab_and_line sal;
951
952 sal = find_pc_line (func_addr, 0);
953
954 if (sal.line != 0 && sal.end < func_end)
955 {
956 new_pc = sal.end;
957 }
958 }
959
960 /* The FR-V prologue is at least five instructions long (twenty bytes).
961 If we didn't find a real source location past that, then
962 do a full analysis of the prologue. */
963 if (new_pc < pc + 20)
964 new_pc = frv_analyze_prologue (pc, 0, 0);
965
966 return new_pc;
967 }
968
969
970 static struct frv_unwind_cache *
971 frv_frame_unwind_cache (struct frame_info *next_frame,
972 void **this_prologue_cache)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (next_frame);
975 CORE_ADDR pc;
976 ULONGEST prev_sp;
977 ULONGEST this_base;
978 struct frv_unwind_cache *info;
979
980 if ((*this_prologue_cache))
981 return (*this_prologue_cache);
982
983 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
984 (*this_prologue_cache) = info;
985 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
986
987 /* Prologue analysis does the rest... */
988 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
989
990 return info;
991 }
992
993 static void
994 frv_extract_return_value (struct type *type, struct regcache *regcache,
995 void *valbuf)
996 {
997 int len = TYPE_LENGTH (type);
998
999 if (len <= 4)
1000 {
1001 ULONGEST gpr8_val;
1002 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1003 store_unsigned_integer (valbuf, len, gpr8_val);
1004 }
1005 else if (len == 8)
1006 {
1007 ULONGEST regval;
1008 regcache_cooked_read_unsigned (regcache, 8, &regval);
1009 store_unsigned_integer (valbuf, 4, regval);
1010 regcache_cooked_read_unsigned (regcache, 9, &regval);
1011 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1012 }
1013 else
1014 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1015 }
1016
1017 static CORE_ADDR
1018 frv_extract_struct_value_address (struct regcache *regcache)
1019 {
1020 ULONGEST addr;
1021 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1022 return addr;
1023 }
1024
1025 static void
1026 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1027 {
1028 write_register (struct_return_regnum, addr);
1029 }
1030
1031 static int
1032 frv_frameless_function_invocation (struct frame_info *frame)
1033 {
1034 return frameless_look_for_prologue (frame);
1035 }
1036
1037 static CORE_ADDR
1038 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1039 {
1040 /* Require dword alignment. */
1041 return align_down (sp, 8);
1042 }
1043
1044 static CORE_ADDR
1045 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1046 struct regcache *regcache, CORE_ADDR bp_addr,
1047 int nargs, struct value **args, CORE_ADDR sp,
1048 int struct_return, CORE_ADDR struct_addr)
1049 {
1050 int argreg;
1051 int argnum;
1052 char *val;
1053 char valbuf[4];
1054 struct value *arg;
1055 struct type *arg_type;
1056 int len;
1057 enum type_code typecode;
1058 CORE_ADDR regval;
1059 int stack_space;
1060 int stack_offset;
1061
1062 #if 0
1063 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1064 nargs, (int) sp, struct_return, struct_addr);
1065 #endif
1066
1067 stack_space = 0;
1068 for (argnum = 0; argnum < nargs; ++argnum)
1069 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1070
1071 stack_space -= (6 * 4);
1072 if (stack_space > 0)
1073 sp -= stack_space;
1074
1075 /* Make sure stack is dword aligned. */
1076 sp = align_down (sp, 8);
1077
1078 stack_offset = 0;
1079
1080 argreg = 8;
1081
1082 if (struct_return)
1083 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1084 struct_addr);
1085
1086 for (argnum = 0; argnum < nargs; ++argnum)
1087 {
1088 arg = args[argnum];
1089 arg_type = check_typedef (VALUE_TYPE (arg));
1090 len = TYPE_LENGTH (arg_type);
1091 typecode = TYPE_CODE (arg_type);
1092
1093 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1094 {
1095 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1096 typecode = TYPE_CODE_PTR;
1097 len = 4;
1098 val = valbuf;
1099 }
1100 else
1101 {
1102 val = (char *) VALUE_CONTENTS (arg);
1103 }
1104
1105 while (len > 0)
1106 {
1107 int partial_len = (len < 4 ? len : 4);
1108
1109 if (argreg < 14)
1110 {
1111 regval = extract_unsigned_integer (val, partial_len);
1112 #if 0
1113 printf(" Argnum %d data %x -> reg %d\n",
1114 argnum, (int) regval, argreg);
1115 #endif
1116 regcache_cooked_write_unsigned (regcache, argreg, regval);
1117 ++argreg;
1118 }
1119 else
1120 {
1121 #if 0
1122 printf(" Argnum %d data %x -> offset %d (%x)\n",
1123 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1124 #endif
1125 write_memory (sp + stack_offset, val, partial_len);
1126 stack_offset += align_up (partial_len, 4);
1127 }
1128 len -= partial_len;
1129 val += partial_len;
1130 }
1131 }
1132
1133 /* Set the return address. For the frv, the return breakpoint is
1134 always at BP_ADDR. */
1135 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1136
1137 /* Finally, update the SP register. */
1138 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1139
1140 return sp;
1141 }
1142
1143 static void
1144 frv_store_return_value (struct type *type, struct regcache *regcache,
1145 const void *valbuf)
1146 {
1147 int len = TYPE_LENGTH (type);
1148
1149 if (len <= 4)
1150 {
1151 bfd_byte val[4];
1152 memset (val, 0, sizeof (val));
1153 memcpy (val + (4 - len), valbuf, len);
1154 regcache_cooked_write (regcache, 8, val);
1155 }
1156 else if (len == 8)
1157 {
1158 regcache_cooked_write (regcache, 8, valbuf);
1159 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1160 }
1161 else
1162 internal_error (__FILE__, __LINE__,
1163 "Don't know how to return a %d-byte value.", len);
1164 }
1165
1166
1167 /* Hardware watchpoint / breakpoint support for the FR500
1168 and FR400. */
1169
1170 int
1171 frv_check_watch_resources (int type, int cnt, int ot)
1172 {
1173 struct gdbarch_tdep *var = CURRENT_VARIANT;
1174
1175 /* Watchpoints not supported on simulator. */
1176 if (strcmp (target_shortname, "sim") == 0)
1177 return 0;
1178
1179 if (type == bp_hardware_breakpoint)
1180 {
1181 if (var->num_hw_breakpoints == 0)
1182 return 0;
1183 else if (cnt <= var->num_hw_breakpoints)
1184 return 1;
1185 }
1186 else
1187 {
1188 if (var->num_hw_watchpoints == 0)
1189 return 0;
1190 else if (ot)
1191 return -1;
1192 else if (cnt <= var->num_hw_watchpoints)
1193 return 1;
1194 }
1195 return -1;
1196 }
1197
1198
1199 CORE_ADDR
1200 frv_stopped_data_address (void)
1201 {
1202 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1203
1204 brr = read_register (brr_regnum);
1205 dbar0 = read_register (dbar0_regnum);
1206 dbar1 = read_register (dbar1_regnum);
1207 dbar2 = read_register (dbar2_regnum);
1208 dbar3 = read_register (dbar3_regnum);
1209
1210 if (brr & (1<<11))
1211 return dbar0;
1212 else if (brr & (1<<10))
1213 return dbar1;
1214 else if (brr & (1<<9))
1215 return dbar2;
1216 else if (brr & (1<<8))
1217 return dbar3;
1218 else
1219 return 0;
1220 }
1221
1222 static CORE_ADDR
1223 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1224 {
1225 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1226 }
1227
1228 /* Given a GDB frame, determine the address of the calling function's
1229 frame. This will be used to create a new GDB frame struct. */
1230
1231 static void
1232 frv_frame_this_id (struct frame_info *next_frame,
1233 void **this_prologue_cache, struct frame_id *this_id)
1234 {
1235 struct frv_unwind_cache *info
1236 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1237 CORE_ADDR base;
1238 CORE_ADDR func;
1239 struct minimal_symbol *msym_stack;
1240 struct frame_id id;
1241
1242 /* The FUNC is easy. */
1243 func = frame_func_unwind (next_frame);
1244
1245 /* Check if the stack is empty. */
1246 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1247 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1248 return;
1249
1250 /* Hopefully the prologue analysis either correctly determined the
1251 frame's base (which is the SP from the previous frame), or set
1252 that base to "NULL". */
1253 base = info->prev_sp;
1254 if (base == 0)
1255 return;
1256
1257 id = frame_id_build (base, func);
1258
1259 /* Check that we're not going round in circles with the same frame
1260 ID (but avoid applying the test to sentinel frames which do go
1261 round in circles). Can't use frame_id_eq() as that doesn't yet
1262 compare the frame's PC value. */
1263 if (frame_relative_level (next_frame) >= 0
1264 && get_frame_type (next_frame) != DUMMY_FRAME
1265 && frame_id_eq (get_frame_id (next_frame), id))
1266 return;
1267
1268 (*this_id) = id;
1269 }
1270
1271 static void
1272 frv_frame_prev_register (struct frame_info *next_frame,
1273 void **this_prologue_cache,
1274 int regnum, int *optimizedp,
1275 enum lval_type *lvalp, CORE_ADDR *addrp,
1276 int *realnump, void *bufferp)
1277 {
1278 struct frv_unwind_cache *info
1279 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1280 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1281 optimizedp, lvalp, addrp, realnump, bufferp);
1282 }
1283
1284 static const struct frame_unwind frv_frame_unwind = {
1285 NORMAL_FRAME,
1286 frv_frame_this_id,
1287 frv_frame_prev_register
1288 };
1289
1290 static const struct frame_unwind *
1291 frv_frame_sniffer (struct frame_info *next_frame)
1292 {
1293 return &frv_frame_unwind;
1294 }
1295
1296 static CORE_ADDR
1297 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1298 {
1299 struct frv_unwind_cache *info
1300 = frv_frame_unwind_cache (next_frame, this_cache);
1301 return info->base;
1302 }
1303
1304 static const struct frame_base frv_frame_base = {
1305 &frv_frame_unwind,
1306 frv_frame_base_address,
1307 frv_frame_base_address,
1308 frv_frame_base_address
1309 };
1310
1311 static CORE_ADDR
1312 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1313 {
1314 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1315 }
1316
1317
1318 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1319 dummy frame. The frame ID's base needs to match the TOS value
1320 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1321 breakpoint. */
1322
1323 static struct frame_id
1324 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1325 {
1326 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1327 frame_pc_unwind (next_frame));
1328 }
1329
1330
1331 static struct gdbarch *
1332 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1333 {
1334 struct gdbarch *gdbarch;
1335 struct gdbarch_tdep *var;
1336
1337 /* Check to see if we've already built an appropriate architecture
1338 object for this executable. */
1339 arches = gdbarch_list_lookup_by_info (arches, &info);
1340 if (arches)
1341 return arches->gdbarch;
1342
1343 /* Select the right tdep structure for this variant. */
1344 var = new_variant ();
1345 switch (info.bfd_arch_info->mach)
1346 {
1347 case bfd_mach_frv:
1348 case bfd_mach_frvsimple:
1349 case bfd_mach_fr500:
1350 case bfd_mach_frvtomcat:
1351 case bfd_mach_fr550:
1352 set_variant_num_gprs (var, 64);
1353 set_variant_num_fprs (var, 64);
1354 break;
1355
1356 case bfd_mach_fr400:
1357 set_variant_num_gprs (var, 32);
1358 set_variant_num_fprs (var, 32);
1359 break;
1360
1361 default:
1362 /* Never heard of this variant. */
1363 return 0;
1364 }
1365
1366 gdbarch = gdbarch_alloc (&info, var);
1367
1368 set_gdbarch_short_bit (gdbarch, 16);
1369 set_gdbarch_int_bit (gdbarch, 32);
1370 set_gdbarch_long_bit (gdbarch, 32);
1371 set_gdbarch_long_long_bit (gdbarch, 64);
1372 set_gdbarch_float_bit (gdbarch, 32);
1373 set_gdbarch_double_bit (gdbarch, 64);
1374 set_gdbarch_long_double_bit (gdbarch, 64);
1375 set_gdbarch_ptr_bit (gdbarch, 32);
1376
1377 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1378 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1379
1380 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1381 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1382 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1383
1384 set_gdbarch_register_name (gdbarch, frv_register_name);
1385 set_gdbarch_register_type (gdbarch, frv_register_type);
1386 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1387
1388 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1389 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1390
1391 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1392 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1393 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1394
1395 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1396
1397 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1398 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1399
1400 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1401 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1402 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1403
1404 /* Frame stuff. */
1405 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1406 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1407 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1408 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1409 frame_base_set_default (gdbarch, &frv_frame_base);
1410
1411 /* Settings for calling functions in the inferior. */
1412 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1413 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1414
1415 /* Settings that should be unnecessary. */
1416 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1417
1418 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1419
1420 set_gdbarch_remote_translate_xfer_address
1421 (gdbarch, generic_remote_translate_xfer_address);
1422
1423 /* Hardware watchpoint / breakpoint support. */
1424 switch (info.bfd_arch_info->mach)
1425 {
1426 case bfd_mach_frv:
1427 case bfd_mach_frvsimple:
1428 case bfd_mach_fr500:
1429 case bfd_mach_frvtomcat:
1430 /* fr500-style hardware debugging support. */
1431 var->num_hw_watchpoints = 4;
1432 var->num_hw_breakpoints = 4;
1433 break;
1434
1435 case bfd_mach_fr400:
1436 /* fr400-style hardware debugging support. */
1437 var->num_hw_watchpoints = 2;
1438 var->num_hw_breakpoints = 4;
1439 break;
1440
1441 default:
1442 /* Otherwise, assume we don't have hardware debugging support. */
1443 var->num_hw_watchpoints = 0;
1444 var->num_hw_breakpoints = 0;
1445 break;
1446 }
1447
1448 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1449
1450 return gdbarch;
1451 }
1452
1453 void
1454 _initialize_frv_tdep (void)
1455 {
1456 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1457 }
This page took 0.058111 seconds and 4 git commands to generate.