C++: dlsym casts in gdb/linux-thread-db.c and gdb/gdbserver/thread-db.c
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "regcache.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dis-asm.h"
30 #include "sim-regno.h"
31 #include "gdb/sim-frv.h"
32 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
33 #include "symtab.h"
34 #include "elf-bfd.h"
35 #include "elf/frv.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "solib.h"
39 #include "frv-tdep.h"
40 #include "objfiles.h"
41
42 extern void _initialize_frv_tdep (void);
43
44 struct frv_unwind_cache /* was struct frame_extra_info */
45 {
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
49
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
55 };
56
57 /* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72 struct gdbarch_tdep
73 {
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
90 char **register_names;
91 };
92
93 /* Return the FR-V ABI associated with GDBARCH. */
94 enum frv_abi
95 frv_abi (struct gdbarch *gdbarch)
96 {
97 return gdbarch_tdep (gdbarch)->frv_abi;
98 }
99
100 /* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103 int
104 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106 {
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
111 struct regcache *regcache = get_current_regcache ();
112
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
116 regcache_cooked_read_unsigned (regcache,
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129 }
130
131 /* Allocate a new variant structure, and set up default values for all
132 the fields. */
133 static struct gdbarch_tdep *
134 new_variant (void)
135 {
136 struct gdbarch_tdep *var;
137 int r;
138
139 var = xmalloc (sizeof (*var));
140 memset (var, 0, sizeof (*var));
141
142 var->frv_abi = FRV_ABI_EABI;
143 var->num_gprs = 64;
144 var->num_fprs = 64;
145 var->num_hw_watchpoints = 0;
146 var->num_hw_breakpoints = 0;
147
148 /* By default, don't supply any general-purpose or floating-point
149 register names. */
150 var->register_names
151 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
152 * sizeof (char *));
153 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
154 var->register_names[r] = "";
155
156 /* Do, however, supply default names for the known special-purpose
157 registers. */
158
159 var->register_names[pc_regnum] = "pc";
160 var->register_names[lr_regnum] = "lr";
161 var->register_names[lcr_regnum] = "lcr";
162
163 var->register_names[psr_regnum] = "psr";
164 var->register_names[ccr_regnum] = "ccr";
165 var->register_names[cccr_regnum] = "cccr";
166 var->register_names[tbr_regnum] = "tbr";
167
168 /* Debug registers. */
169 var->register_names[brr_regnum] = "brr";
170 var->register_names[dbar0_regnum] = "dbar0";
171 var->register_names[dbar1_regnum] = "dbar1";
172 var->register_names[dbar2_regnum] = "dbar2";
173 var->register_names[dbar3_regnum] = "dbar3";
174
175 /* iacc0 (Only found on MB93405.) */
176 var->register_names[iacc0h_regnum] = "iacc0h";
177 var->register_names[iacc0l_regnum] = "iacc0l";
178 var->register_names[iacc0_regnum] = "iacc0";
179
180 /* fsr0 (Found on FR555 and FR501.) */
181 var->register_names[fsr0_regnum] = "fsr0";
182
183 /* acc0 - acc7. The architecture provides for the possibility of many
184 more (up to 64 total), but we don't want to make that big of a hole
185 in the G packet. If we need more in the future, we'll add them
186 elsewhere. */
187 for (r = acc0_regnum; r <= acc7_regnum; r++)
188 {
189 char *buf;
190 buf = xstrprintf ("acc%d", r - acc0_regnum);
191 var->register_names[r] = buf;
192 }
193
194 /* accg0 - accg7: These are one byte registers. The remote protocol
195 provides the raw values packed four into a slot. accg0123 and
196 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
197 We don't provide names for accg0123 and accg4567 since the user will
198 likely not want to see these raw values. */
199
200 for (r = accg0_regnum; r <= accg7_regnum; r++)
201 {
202 char *buf;
203 buf = xstrprintf ("accg%d", r - accg0_regnum);
204 var->register_names[r] = buf;
205 }
206
207 /* msr0 and msr1. */
208
209 var->register_names[msr0_regnum] = "msr0";
210 var->register_names[msr1_regnum] = "msr1";
211
212 /* gner and fner registers. */
213 var->register_names[gner0_regnum] = "gner0";
214 var->register_names[gner1_regnum] = "gner1";
215 var->register_names[fner0_regnum] = "fner0";
216 var->register_names[fner1_regnum] = "fner1";
217
218 return var;
219 }
220
221
222 /* Indicate that the variant VAR has NUM_GPRS general-purpose
223 registers, and fill in the names array appropriately. */
224 static void
225 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
226 {
227 int r;
228
229 var->num_gprs = num_gprs;
230
231 for (r = 0; r < num_gprs; ++r)
232 {
233 char buf[20];
234
235 xsnprintf (buf, sizeof (buf), "gr%d", r);
236 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
237 }
238 }
239
240
241 /* Indicate that the variant VAR has NUM_FPRS floating-point
242 registers, and fill in the names array appropriately. */
243 static void
244 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
245 {
246 int r;
247
248 var->num_fprs = num_fprs;
249
250 for (r = 0; r < num_fprs; ++r)
251 {
252 char buf[20];
253
254 xsnprintf (buf, sizeof (buf), "fr%d", r);
255 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
256 }
257 }
258
259 static void
260 set_variant_abi_fdpic (struct gdbarch_tdep *var)
261 {
262 var->frv_abi = FRV_ABI_FDPIC;
263 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
264 var->register_names[fdpic_loadmap_interp_regnum]
265 = xstrdup ("loadmap_interp");
266 }
267
268 static void
269 set_variant_scratch_registers (struct gdbarch_tdep *var)
270 {
271 var->register_names[scr0_regnum] = xstrdup ("scr0");
272 var->register_names[scr1_regnum] = xstrdup ("scr1");
273 var->register_names[scr2_regnum] = xstrdup ("scr2");
274 var->register_names[scr3_regnum] = xstrdup ("scr3");
275 }
276
277 static const char *
278 frv_register_name (struct gdbarch *gdbarch, int reg)
279 {
280 if (reg < 0)
281 return "?toosmall?";
282 if (reg >= frv_num_regs + frv_num_pseudo_regs)
283 return "?toolarge?";
284
285 return gdbarch_tdep (gdbarch)->register_names[reg];
286 }
287
288
289 static struct type *
290 frv_register_type (struct gdbarch *gdbarch, int reg)
291 {
292 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
293 return builtin_type (gdbarch)->builtin_float;
294 else if (reg == iacc0_regnum)
295 return builtin_type (gdbarch)->builtin_int64;
296 else
297 return builtin_type (gdbarch)->builtin_int32;
298 }
299
300 static enum register_status
301 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
302 int reg, gdb_byte *buffer)
303 {
304 enum register_status status;
305
306 if (reg == iacc0_regnum)
307 {
308 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 if (status == REG_VALID)
310 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
311 }
312 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 {
314 /* The accg raw registers have four values in each slot with the
315 lowest register number occupying the first byte. */
316
317 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
318 int byte_num = (reg - accg0_regnum) % 4;
319 gdb_byte buf[4];
320
321 status = regcache_raw_read (regcache, raw_regnum, buf);
322 if (status == REG_VALID)
323 {
324 memset (buffer, 0, 4);
325 /* FR-V is big endian, so put the requested byte in the
326 first byte of the buffer allocated to hold the
327 pseudo-register. */
328 buffer[0] = buf[byte_num];
329 }
330 }
331 else
332 gdb_assert_not_reached ("invalid pseudo register number");
333
334 return status;
335 }
336
337 static void
338 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
339 int reg, const gdb_byte *buffer)
340 {
341 if (reg == iacc0_regnum)
342 {
343 regcache_raw_write (regcache, iacc0h_regnum, buffer);
344 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
345 }
346 else if (accg0_regnum <= reg && reg <= accg7_regnum)
347 {
348 /* The accg raw registers have four values in each slot with the
349 lowest register number occupying the first byte. */
350
351 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
352 int byte_num = (reg - accg0_regnum) % 4;
353 gdb_byte buf[4];
354
355 regcache_raw_read (regcache, raw_regnum, buf);
356 buf[byte_num] = ((bfd_byte *) buffer)[0];
357 regcache_raw_write (regcache, raw_regnum, buf);
358 }
359 }
360
361 static int
362 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
363 {
364 static const int spr_map[] =
365 {
366 H_SPR_PSR, /* psr_regnum */
367 H_SPR_CCR, /* ccr_regnum */
368 H_SPR_CCCR, /* cccr_regnum */
369 -1, /* fdpic_loadmap_exec_regnum */
370 -1, /* fdpic_loadmap_interp_regnum */
371 -1, /* 134 */
372 H_SPR_TBR, /* tbr_regnum */
373 H_SPR_BRR, /* brr_regnum */
374 H_SPR_DBAR0, /* dbar0_regnum */
375 H_SPR_DBAR1, /* dbar1_regnum */
376 H_SPR_DBAR2, /* dbar2_regnum */
377 H_SPR_DBAR3, /* dbar3_regnum */
378 H_SPR_SCR0, /* scr0_regnum */
379 H_SPR_SCR1, /* scr1_regnum */
380 H_SPR_SCR2, /* scr2_regnum */
381 H_SPR_SCR3, /* scr3_regnum */
382 H_SPR_LR, /* lr_regnum */
383 H_SPR_LCR, /* lcr_regnum */
384 H_SPR_IACC0H, /* iacc0h_regnum */
385 H_SPR_IACC0L, /* iacc0l_regnum */
386 H_SPR_FSR0, /* fsr0_regnum */
387 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
388 -1, /* acc0_regnum */
389 -1, /* acc1_regnum */
390 -1, /* acc2_regnum */
391 -1, /* acc3_regnum */
392 -1, /* acc4_regnum */
393 -1, /* acc5_regnum */
394 -1, /* acc6_regnum */
395 -1, /* acc7_regnum */
396 -1, /* acc0123_regnum */
397 -1, /* acc4567_regnum */
398 H_SPR_MSR0, /* msr0_regnum */
399 H_SPR_MSR1, /* msr1_regnum */
400 H_SPR_GNER0, /* gner0_regnum */
401 H_SPR_GNER1, /* gner1_regnum */
402 H_SPR_FNER0, /* fner0_regnum */
403 H_SPR_FNER1, /* fner1_regnum */
404 };
405
406 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
407
408 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
409 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
410 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
411 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
412 else if (pc_regnum == reg)
413 return SIM_FRV_PC_REGNUM;
414 else if (reg >= first_spr_regnum
415 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
416 {
417 int spr_reg_offset = spr_map[reg - first_spr_regnum];
418
419 if (spr_reg_offset < 0)
420 return SIM_REGNO_DOES_NOT_EXIST;
421 else
422 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
423 }
424
425 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
426 }
427
428 static const unsigned char *
429 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
430 {
431 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
432 *lenp = sizeof (breakpoint);
433 return breakpoint;
434 }
435
436 /* Define the maximum number of instructions which may be packed into a
437 bundle (VLIW instruction). */
438 static const int max_instrs_per_bundle = 8;
439
440 /* Define the size (in bytes) of an FR-V instruction. */
441 static const int frv_instr_size = 4;
442
443 /* Adjust a breakpoint's address to account for the FR-V architecture's
444 constraint that a break instruction must not appear as any but the
445 first instruction in the bundle. */
446 static CORE_ADDR
447 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
448 {
449 int count = max_instrs_per_bundle;
450 CORE_ADDR addr = bpaddr - frv_instr_size;
451 CORE_ADDR func_start = get_pc_function_start (bpaddr);
452
453 /* Find the end of the previous packing sequence. This will be indicated
454 by either attempting to access some inaccessible memory or by finding
455 an instruction word whose packing bit is set to one. */
456 while (count-- > 0 && addr >= func_start)
457 {
458 gdb_byte instr[frv_instr_size];
459 int status;
460
461 status = target_read_memory (addr, instr, sizeof instr);
462
463 if (status != 0)
464 break;
465
466 /* This is a big endian architecture, so byte zero will have most
467 significant byte. The most significant bit of this byte is the
468 packing bit. */
469 if (instr[0] & 0x80)
470 break;
471
472 addr -= frv_instr_size;
473 }
474
475 if (count > 0)
476 bpaddr = addr + frv_instr_size;
477
478 return bpaddr;
479 }
480
481
482 /* Return true if REG is a caller-saves ("scratch") register,
483 false otherwise. */
484 static int
485 is_caller_saves_reg (int reg)
486 {
487 return ((4 <= reg && reg <= 7)
488 || (14 <= reg && reg <= 15)
489 || (32 <= reg && reg <= 47));
490 }
491
492
493 /* Return true if REG is a callee-saves register, false otherwise. */
494 static int
495 is_callee_saves_reg (int reg)
496 {
497 return ((16 <= reg && reg <= 31)
498 || (48 <= reg && reg <= 63));
499 }
500
501
502 /* Return true if REG is an argument register, false otherwise. */
503 static int
504 is_argument_reg (int reg)
505 {
506 return (8 <= reg && reg <= 13);
507 }
508
509 /* Scan an FR-V prologue, starting at PC, until frame->PC.
510 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
511 We assume FRAME's saved_regs array has already been allocated and cleared.
512 Return the first PC value after the prologue.
513
514 Note that, for unoptimized code, we almost don't need this function
515 at all; all arguments and locals live on the stack, so we just need
516 the FP to find everything. The catch: structures passed by value
517 have their addresses living in registers; they're never spilled to
518 the stack. So if you ever want to be able to get to these
519 arguments in any frame but the top, you'll need to do this serious
520 prologue analysis. */
521 static CORE_ADDR
522 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
523 struct frame_info *this_frame,
524 struct frv_unwind_cache *info)
525 {
526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
527
528 /* When writing out instruction bitpatterns, we use the following
529 letters to label instruction fields:
530 P - The parallel bit. We don't use this.
531 J - The register number of GRj in the instruction description.
532 K - The register number of GRk in the instruction description.
533 I - The register number of GRi.
534 S - a signed imediate offset.
535 U - an unsigned immediate offset.
536
537 The dots below the numbers indicate where hex digit boundaries
538 fall, to make it easier to check the numbers. */
539
540 /* Non-zero iff we've seen the instruction that initializes the
541 frame pointer for this function's frame. */
542 int fp_set = 0;
543
544 /* If fp_set is non_zero, then this is the distance from
545 the stack pointer to frame pointer: fp = sp + fp_offset. */
546 int fp_offset = 0;
547
548 /* Total size of frame prior to any alloca operations. */
549 int framesize = 0;
550
551 /* Flag indicating if lr has been saved on the stack. */
552 int lr_saved_on_stack = 0;
553
554 /* The number of the general-purpose register we saved the return
555 address ("link register") in, or -1 if we haven't moved it yet. */
556 int lr_save_reg = -1;
557
558 /* Offset (from sp) at which lr has been saved on the stack. */
559
560 int lr_sp_offset = 0;
561
562 /* If gr_saved[i] is non-zero, then we've noticed that general
563 register i has been saved at gr_sp_offset[i] from the stack
564 pointer. */
565 char gr_saved[64];
566 int gr_sp_offset[64];
567
568 /* The address of the most recently scanned prologue instruction. */
569 CORE_ADDR last_prologue_pc;
570
571 /* The address of the next instruction. */
572 CORE_ADDR next_pc;
573
574 /* The upper bound to of the pc values to scan. */
575 CORE_ADDR lim_pc;
576
577 memset (gr_saved, 0, sizeof (gr_saved));
578
579 last_prologue_pc = pc;
580
581 /* Try to compute an upper limit (on how far to scan) based on the
582 line number info. */
583 lim_pc = skip_prologue_using_sal (gdbarch, pc);
584 /* If there's no line number info, lim_pc will be 0. In that case,
585 set the limit to be 100 instructions away from pc. Hopefully, this
586 will be far enough away to account for the entire prologue. Don't
587 worry about overshooting the end of the function. The scan loop
588 below contains some checks to avoid scanning unreasonably far. */
589 if (lim_pc == 0)
590 lim_pc = pc + 400;
591
592 /* If we have a frame, we don't want to scan past the frame's pc. This
593 will catch those cases where the pc is in the prologue. */
594 if (this_frame)
595 {
596 CORE_ADDR frame_pc = get_frame_pc (this_frame);
597 if (frame_pc < lim_pc)
598 lim_pc = frame_pc;
599 }
600
601 /* Scan the prologue. */
602 while (pc < lim_pc)
603 {
604 gdb_byte buf[frv_instr_size];
605 LONGEST op;
606
607 if (target_read_memory (pc, buf, sizeof buf) != 0)
608 break;
609 op = extract_signed_integer (buf, sizeof buf, byte_order);
610
611 next_pc = pc + 4;
612
613 /* The tests in this chain of ifs should be in order of
614 decreasing selectivity, so that more particular patterns get
615 to fire before less particular patterns. */
616
617 /* Some sort of control transfer instruction: stop scanning prologue.
618 Integer Conditional Branch:
619 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
620 Floating-point / media Conditional Branch:
621 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
622 LCR Conditional Branch to LR
623 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
624 Integer conditional Branches to LR
625 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
626 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
627 Floating-point/Media Branches to LR
628 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
629 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
630 Jump and Link
631 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
632 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
633 Call
634 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
635 Return from Trap
636 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
637 Integer Conditional Trap
638 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
639 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
640 Floating-point /media Conditional Trap
641 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
642 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
643 Break
644 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
645 Media Trap
646 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
647 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
648 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
649 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
650 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
651 {
652 /* Stop scanning; not in prologue any longer. */
653 break;
654 }
655
656 /* Loading something from memory into fp probably means that
657 we're in the epilogue. Stop scanning the prologue.
658 ld @(GRi, GRk), fp
659 X 000010 0000010 XXXXXX 000100 XXXXXX
660 ldi @(GRi, d12), fp
661 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
662 else if ((op & 0x7ffc0fc0) == 0x04080100
663 || (op & 0x7ffc0000) == 0x04c80000)
664 {
665 break;
666 }
667
668 /* Setting the FP from the SP:
669 ori sp, 0, fp
670 P 000010 0100010 000001 000000000000 = 0x04881000
671 0 111111 1111111 111111 111111111111 = 0x7fffffff
672 . . . . . . . .
673 We treat this as part of the prologue. */
674 else if ((op & 0x7fffffff) == 0x04881000)
675 {
676 fp_set = 1;
677 fp_offset = 0;
678 last_prologue_pc = next_pc;
679 }
680
681 /* Move the link register to the scratch register grJ, before saving:
682 movsg lr, grJ
683 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
684 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
685 . . . . . . . .
686 We treat this as part of the prologue. */
687 else if ((op & 0x7fffffc0) == 0x080d01c0)
688 {
689 int gr_j = op & 0x3f;
690
691 /* If we're moving it to a scratch register, that's fine. */
692 if (is_caller_saves_reg (gr_j))
693 {
694 lr_save_reg = gr_j;
695 last_prologue_pc = next_pc;
696 }
697 }
698
699 /* To save multiple callee-saves registers on the stack, at
700 offset zero:
701
702 std grK,@(sp,gr0)
703 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
704 0 000000 1111111 111111 111111 111111 = 0x01ffffff
705
706 stq grK,@(sp,gr0)
707 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
708 0 000000 1111111 111111 111111 111111 = 0x01ffffff
709 . . . . . . . .
710 We treat this as part of the prologue, and record the register's
711 saved address in the frame structure. */
712 else if ((op & 0x01ffffff) == 0x000c10c0
713 || (op & 0x01ffffff) == 0x000c1100)
714 {
715 int gr_k = ((op >> 25) & 0x3f);
716 int ope = ((op >> 6) & 0x3f);
717 int count;
718 int i;
719
720 /* Is it an std or an stq? */
721 if (ope == 0x03)
722 count = 2;
723 else
724 count = 4;
725
726 /* Is it really a callee-saves register? */
727 if (is_callee_saves_reg (gr_k))
728 {
729 for (i = 0; i < count; i++)
730 {
731 gr_saved[gr_k + i] = 1;
732 gr_sp_offset[gr_k + i] = 4 * i;
733 }
734 last_prologue_pc = next_pc;
735 }
736 }
737
738 /* Adjusting the stack pointer. (The stack pointer is GR1.)
739 addi sp, S, sp
740 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
741 0 111111 1111111 111111 000000000000 = 0x7ffff000
742 . . . . . . . .
743 We treat this as part of the prologue. */
744 else if ((op & 0x7ffff000) == 0x02401000)
745 {
746 if (framesize == 0)
747 {
748 /* Sign-extend the twelve-bit field.
749 (Isn't there a better way to do this?) */
750 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
751
752 framesize -= s;
753 last_prologue_pc = pc;
754 }
755 else
756 {
757 /* If the prologue is being adjusted again, we've
758 likely gone too far; i.e. we're probably in the
759 epilogue. */
760 break;
761 }
762 }
763
764 /* Setting the FP to a constant distance from the SP:
765 addi sp, S, fp
766 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
767 0 111111 1111111 111111 000000000000 = 0x7ffff000
768 . . . . . . . .
769 We treat this as part of the prologue. */
770 else if ((op & 0x7ffff000) == 0x04401000)
771 {
772 /* Sign-extend the twelve-bit field.
773 (Isn't there a better way to do this?) */
774 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
775 fp_set = 1;
776 fp_offset = s;
777 last_prologue_pc = pc;
778 }
779
780 /* To spill an argument register to a scratch register:
781 ori GRi, 0, GRk
782 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
783 0 000000 1111111 000000 111111111111 = 0x01fc0fff
784 . . . . . . . .
785 For the time being, we treat this as a prologue instruction,
786 assuming that GRi is an argument register. This one's kind
787 of suspicious, because it seems like it could be part of a
788 legitimate body instruction. But we only come here when the
789 source info wasn't helpful, so we have to do the best we can.
790 Hopefully once GCC and GDB agree on how to emit line number
791 info for prologues, then this code will never come into play. */
792 else if ((op & 0x01fc0fff) == 0x00880000)
793 {
794 int gr_i = ((op >> 12) & 0x3f);
795
796 /* Make sure that the source is an arg register; if it is, we'll
797 treat it as a prologue instruction. */
798 if (is_argument_reg (gr_i))
799 last_prologue_pc = next_pc;
800 }
801
802 /* To spill 16-bit values to the stack:
803 sthi GRk, @(fp, s)
804 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
806 . . . . . . . .
807 And for 8-bit values, we use STB instructions.
808 stbi GRk, @(fp, s)
809 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
810 0 000000 1111111 111111 000000000000 = 0x01fff000
811 . . . . . . . .
812 We check that GRk is really an argument register, and treat
813 all such as part of the prologue. */
814 else if ( (op & 0x01fff000) == 0x01442000
815 || (op & 0x01fff000) == 0x01402000)
816 {
817 int gr_k = ((op >> 25) & 0x3f);
818
819 /* Make sure that GRk is really an argument register; treat
820 it as a prologue instruction if so. */
821 if (is_argument_reg (gr_k))
822 last_prologue_pc = next_pc;
823 }
824
825 /* To save multiple callee-saves register on the stack, at a
826 non-zero offset:
827
828 stdi GRk, @(sp, s)
829 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
830 0 000000 1111111 111111 000000000000 = 0x01fff000
831 . . . . . . . .
832 stqi GRk, @(sp, s)
833 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
834 0 000000 1111111 111111 000000000000 = 0x01fff000
835 . . . . . . . .
836 We treat this as part of the prologue, and record the register's
837 saved address in the frame structure. */
838 else if ((op & 0x01fff000) == 0x014c1000
839 || (op & 0x01fff000) == 0x01501000)
840 {
841 int gr_k = ((op >> 25) & 0x3f);
842 int count;
843 int i;
844
845 /* Is it a stdi or a stqi? */
846 if ((op & 0x01fff000) == 0x014c1000)
847 count = 2;
848 else
849 count = 4;
850
851 /* Is it really a callee-saves register? */
852 if (is_callee_saves_reg (gr_k))
853 {
854 /* Sign-extend the twelve-bit field.
855 (Isn't there a better way to do this?) */
856 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
857
858 for (i = 0; i < count; i++)
859 {
860 gr_saved[gr_k + i] = 1;
861 gr_sp_offset[gr_k + i] = s + (4 * i);
862 }
863 last_prologue_pc = next_pc;
864 }
865 }
866
867 /* Storing any kind of integer register at any constant offset
868 from any other register.
869
870 st GRk, @(GRi, gr0)
871 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
872 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
873 . . . . . . . .
874 sti GRk, @(GRi, d12)
875 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
876 0 000000 1111111 000000 000000000000 = 0x01fc0000
877 . . . . . . . .
878 These could be almost anything, but a lot of prologue
879 instructions fall into this pattern, so let's decode the
880 instruction once, and then work at a higher level. */
881 else if (((op & 0x01fc0fff) == 0x000c0080)
882 || ((op & 0x01fc0000) == 0x01480000))
883 {
884 int gr_k = ((op >> 25) & 0x3f);
885 int gr_i = ((op >> 12) & 0x3f);
886 int offset;
887
888 /* Are we storing with gr0 as an offset, or using an
889 immediate value? */
890 if ((op & 0x01fc0fff) == 0x000c0080)
891 offset = 0;
892 else
893 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
894
895 /* If the address isn't relative to the SP or FP, it's not a
896 prologue instruction. */
897 if (gr_i != sp_regnum && gr_i != fp_regnum)
898 {
899 /* Do nothing; not a prologue instruction. */
900 }
901
902 /* Saving the old FP in the new frame (relative to the SP). */
903 else if (gr_k == fp_regnum && gr_i == sp_regnum)
904 {
905 gr_saved[fp_regnum] = 1;
906 gr_sp_offset[fp_regnum] = offset;
907 last_prologue_pc = next_pc;
908 }
909
910 /* Saving callee-saves register(s) on the stack, relative to
911 the SP. */
912 else if (gr_i == sp_regnum
913 && is_callee_saves_reg (gr_k))
914 {
915 gr_saved[gr_k] = 1;
916 if (gr_i == sp_regnum)
917 gr_sp_offset[gr_k] = offset;
918 else
919 gr_sp_offset[gr_k] = offset + fp_offset;
920 last_prologue_pc = next_pc;
921 }
922
923 /* Saving the scratch register holding the return address. */
924 else if (lr_save_reg != -1
925 && gr_k == lr_save_reg)
926 {
927 lr_saved_on_stack = 1;
928 if (gr_i == sp_regnum)
929 lr_sp_offset = offset;
930 else
931 lr_sp_offset = offset + fp_offset;
932 last_prologue_pc = next_pc;
933 }
934
935 /* Spilling int-sized arguments to the stack. */
936 else if (is_argument_reg (gr_k))
937 last_prologue_pc = next_pc;
938 }
939 pc = next_pc;
940 }
941
942 if (this_frame && info)
943 {
944 int i;
945 ULONGEST this_base;
946
947 /* If we know the relationship between the stack and frame
948 pointers, record the addresses of the registers we noticed.
949 Note that we have to do this as a separate step at the end,
950 because instructions may save relative to the SP, but we need
951 their addresses relative to the FP. */
952 if (fp_set)
953 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
954 else
955 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
956
957 for (i = 0; i < 64; i++)
958 if (gr_saved[i])
959 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
960
961 info->prev_sp = this_base - fp_offset + framesize;
962 info->base = this_base;
963
964 /* If LR was saved on the stack, record its location. */
965 if (lr_saved_on_stack)
966 info->saved_regs[lr_regnum].addr
967 = this_base - fp_offset + lr_sp_offset;
968
969 /* The call instruction moves the caller's PC in the callee's LR.
970 Since this is an unwind, do the reverse. Copy the location of LR
971 into PC (the address / regnum) so that a request for PC will be
972 converted into a request for the LR. */
973 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
974
975 /* Save the previous frame's computed SP value. */
976 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
977 }
978
979 return last_prologue_pc;
980 }
981
982
983 static CORE_ADDR
984 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
985 {
986 CORE_ADDR func_addr, func_end, new_pc;
987
988 new_pc = pc;
989
990 /* If the line table has entry for a line *within* the function
991 (i.e., not in the prologue, and not past the end), then that's
992 our location. */
993 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
994 {
995 struct symtab_and_line sal;
996
997 sal = find_pc_line (func_addr, 0);
998
999 if (sal.line != 0 && sal.end < func_end)
1000 {
1001 new_pc = sal.end;
1002 }
1003 }
1004
1005 /* The FR-V prologue is at least five instructions long (twenty bytes).
1006 If we didn't find a real source location past that, then
1007 do a full analysis of the prologue. */
1008 if (new_pc < pc + 20)
1009 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1010
1011 return new_pc;
1012 }
1013
1014
1015 /* Examine the instruction pointed to by PC. If it corresponds to
1016 a call to __main, return the address of the next instruction.
1017 Otherwise, return PC. */
1018
1019 static CORE_ADDR
1020 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1021 {
1022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1023 gdb_byte buf[4];
1024 unsigned long op;
1025 CORE_ADDR orig_pc = pc;
1026
1027 if (target_read_memory (pc, buf, 4))
1028 return pc;
1029 op = extract_unsigned_integer (buf, 4, byte_order);
1030
1031 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1032 to the call instruction.
1033
1034 Skip over this instruction if present. It won't be present in
1035 non-PIC code, and even in PIC code, it might not be present.
1036 (This is due to the fact that GR15, the FDPIC register, already
1037 contains the correct value.)
1038
1039 The general form of the LDI is given first, followed by the
1040 specific instruction with the GRi and GRk filled in as FP and
1041 GR15.
1042
1043 ldi @(GRi, d12), GRk
1044 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1045 0 000000 1111111 000000 000000000000 = 0x01fc0000
1046 . . . . . . . .
1047 ldi @(FP, d12), GR15
1048 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1049 0 001111 1111111 000010 000000000000 = 0x7ffff000
1050 . . . . . . . . */
1051
1052 if ((op & 0x7ffff000) == 0x1ec82000)
1053 {
1054 pc += 4;
1055 if (target_read_memory (pc, buf, 4))
1056 return orig_pc;
1057 op = extract_unsigned_integer (buf, 4, byte_order);
1058 }
1059
1060 /* The format of an FRV CALL instruction is as follows:
1061
1062 call label24
1063 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1064 0 000000 1111111 000000000000000000 = 0x01fc0000
1065 . . . . . . . .
1066
1067 where label24 is constructed by concatenating the H bits with the
1068 L bits. The call target is PC + (4 * sign_ext(label24)). */
1069
1070 if ((op & 0x01fc0000) == 0x003c0000)
1071 {
1072 LONGEST displ;
1073 CORE_ADDR call_dest;
1074 struct bound_minimal_symbol s;
1075
1076 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1077 if ((displ & 0x00800000) != 0)
1078 displ |= ~((LONGEST) 0x00ffffff);
1079
1080 call_dest = pc + 4 * displ;
1081 s = lookup_minimal_symbol_by_pc (call_dest);
1082
1083 if (s.minsym != NULL
1084 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1085 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1086 {
1087 pc += 4;
1088 return pc;
1089 }
1090 }
1091 return orig_pc;
1092 }
1093
1094
1095 static struct frv_unwind_cache *
1096 frv_frame_unwind_cache (struct frame_info *this_frame,
1097 void **this_prologue_cache)
1098 {
1099 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1100 struct frv_unwind_cache *info;
1101
1102 if ((*this_prologue_cache))
1103 return (*this_prologue_cache);
1104
1105 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1106 (*this_prologue_cache) = info;
1107 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1108
1109 /* Prologue analysis does the rest... */
1110 frv_analyze_prologue (gdbarch,
1111 get_frame_func (this_frame), this_frame, info);
1112
1113 return info;
1114 }
1115
1116 static void
1117 frv_extract_return_value (struct type *type, struct regcache *regcache,
1118 gdb_byte *valbuf)
1119 {
1120 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1122 int len = TYPE_LENGTH (type);
1123
1124 if (len <= 4)
1125 {
1126 ULONGEST gpr8_val;
1127 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1128 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1129 }
1130 else if (len == 8)
1131 {
1132 ULONGEST regval;
1133
1134 regcache_cooked_read_unsigned (regcache, 8, &regval);
1135 store_unsigned_integer (valbuf, 4, byte_order, regval);
1136 regcache_cooked_read_unsigned (regcache, 9, &regval);
1137 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1138 }
1139 else
1140 internal_error (__FILE__, __LINE__,
1141 _("Illegal return value length: %d"), len);
1142 }
1143
1144 static CORE_ADDR
1145 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1146 {
1147 /* Require dword alignment. */
1148 return align_down (sp, 8);
1149 }
1150
1151 static CORE_ADDR
1152 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1153 {
1154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1155 CORE_ADDR descr;
1156 gdb_byte valbuf[4];
1157 CORE_ADDR start_addr;
1158
1159 /* If we can't find the function in the symbol table, then we assume
1160 that the function address is already in descriptor form. */
1161 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1162 || entry_point != start_addr)
1163 return entry_point;
1164
1165 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1166
1167 if (descr != 0)
1168 return descr;
1169
1170 /* Construct a non-canonical descriptor from space allocated on
1171 the stack. */
1172
1173 descr = value_as_long (value_allocate_space_in_inferior (8));
1174 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1175 write_memory (descr, valbuf, 4);
1176 store_unsigned_integer (valbuf, 4, byte_order,
1177 frv_fdpic_find_global_pointer (entry_point));
1178 write_memory (descr + 4, valbuf, 4);
1179 return descr;
1180 }
1181
1182 static CORE_ADDR
1183 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1184 struct target_ops *targ)
1185 {
1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 CORE_ADDR entry_point;
1188 CORE_ADDR got_address;
1189
1190 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1191 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1192
1193 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1194 return entry_point;
1195 else
1196 return addr;
1197 }
1198
1199 static CORE_ADDR
1200 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1201 struct regcache *regcache, CORE_ADDR bp_addr,
1202 int nargs, struct value **args, CORE_ADDR sp,
1203 int struct_return, CORE_ADDR struct_addr)
1204 {
1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1206 int argreg;
1207 int argnum;
1208 const gdb_byte *val;
1209 gdb_byte valbuf[4];
1210 struct value *arg;
1211 struct type *arg_type;
1212 int len;
1213 enum type_code typecode;
1214 CORE_ADDR regval;
1215 int stack_space;
1216 int stack_offset;
1217 enum frv_abi abi = frv_abi (gdbarch);
1218 CORE_ADDR func_addr = find_function_addr (function, NULL);
1219
1220 #if 0
1221 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1222 nargs, (int) sp, struct_return, struct_addr);
1223 #endif
1224
1225 stack_space = 0;
1226 for (argnum = 0; argnum < nargs; ++argnum)
1227 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1228
1229 stack_space -= (6 * 4);
1230 if (stack_space > 0)
1231 sp -= stack_space;
1232
1233 /* Make sure stack is dword aligned. */
1234 sp = align_down (sp, 8);
1235
1236 stack_offset = 0;
1237
1238 argreg = 8;
1239
1240 if (struct_return)
1241 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1242 struct_addr);
1243
1244 for (argnum = 0; argnum < nargs; ++argnum)
1245 {
1246 arg = args[argnum];
1247 arg_type = check_typedef (value_type (arg));
1248 len = TYPE_LENGTH (arg_type);
1249 typecode = TYPE_CODE (arg_type);
1250
1251 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1252 {
1253 store_unsigned_integer (valbuf, 4, byte_order,
1254 value_address (arg));
1255 typecode = TYPE_CODE_PTR;
1256 len = 4;
1257 val = valbuf;
1258 }
1259 else if (abi == FRV_ABI_FDPIC
1260 && len == 4
1261 && typecode == TYPE_CODE_PTR
1262 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1263 {
1264 /* The FDPIC ABI requires function descriptors to be passed instead
1265 of entry points. */
1266 CORE_ADDR addr = extract_unsigned_integer
1267 (value_contents (arg), 4, byte_order);
1268 addr = find_func_descr (gdbarch, addr);
1269 store_unsigned_integer (valbuf, 4, byte_order, addr);
1270 typecode = TYPE_CODE_PTR;
1271 len = 4;
1272 val = valbuf;
1273 }
1274 else
1275 {
1276 val = value_contents (arg);
1277 }
1278
1279 while (len > 0)
1280 {
1281 int partial_len = (len < 4 ? len : 4);
1282
1283 if (argreg < 14)
1284 {
1285 regval = extract_unsigned_integer (val, partial_len, byte_order);
1286 #if 0
1287 printf(" Argnum %d data %x -> reg %d\n",
1288 argnum, (int) regval, argreg);
1289 #endif
1290 regcache_cooked_write_unsigned (regcache, argreg, regval);
1291 ++argreg;
1292 }
1293 else
1294 {
1295 #if 0
1296 printf(" Argnum %d data %x -> offset %d (%x)\n",
1297 argnum, *((int *)val), stack_offset,
1298 (int) (sp + stack_offset));
1299 #endif
1300 write_memory (sp + stack_offset, val, partial_len);
1301 stack_offset += align_up (partial_len, 4);
1302 }
1303 len -= partial_len;
1304 val += partial_len;
1305 }
1306 }
1307
1308 /* Set the return address. For the frv, the return breakpoint is
1309 always at BP_ADDR. */
1310 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1311
1312 if (abi == FRV_ABI_FDPIC)
1313 {
1314 /* Set the GOT register for the FDPIC ABI. */
1315 regcache_cooked_write_unsigned
1316 (regcache, first_gpr_regnum + 15,
1317 frv_fdpic_find_global_pointer (func_addr));
1318 }
1319
1320 /* Finally, update the SP register. */
1321 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1322
1323 return sp;
1324 }
1325
1326 static void
1327 frv_store_return_value (struct type *type, struct regcache *regcache,
1328 const gdb_byte *valbuf)
1329 {
1330 int len = TYPE_LENGTH (type);
1331
1332 if (len <= 4)
1333 {
1334 bfd_byte val[4];
1335 memset (val, 0, sizeof (val));
1336 memcpy (val + (4 - len), valbuf, len);
1337 regcache_cooked_write (regcache, 8, val);
1338 }
1339 else if (len == 8)
1340 {
1341 regcache_cooked_write (regcache, 8, valbuf);
1342 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1343 }
1344 else
1345 internal_error (__FILE__, __LINE__,
1346 _("Don't know how to return a %d-byte value."), len);
1347 }
1348
1349 static enum return_value_convention
1350 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1351 struct type *valtype, struct regcache *regcache,
1352 gdb_byte *readbuf, const gdb_byte *writebuf)
1353 {
1354 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1355 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1356 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1357
1358 if (writebuf != NULL)
1359 {
1360 gdb_assert (!struct_return);
1361 frv_store_return_value (valtype, regcache, writebuf);
1362 }
1363
1364 if (readbuf != NULL)
1365 {
1366 gdb_assert (!struct_return);
1367 frv_extract_return_value (valtype, regcache, readbuf);
1368 }
1369
1370 if (struct_return)
1371 return RETURN_VALUE_STRUCT_CONVENTION;
1372 else
1373 return RETURN_VALUE_REGISTER_CONVENTION;
1374 }
1375
1376 static CORE_ADDR
1377 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1378 {
1379 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1380 }
1381
1382 /* Given a GDB frame, determine the address of the calling function's
1383 frame. This will be used to create a new GDB frame struct. */
1384
1385 static void
1386 frv_frame_this_id (struct frame_info *this_frame,
1387 void **this_prologue_cache, struct frame_id *this_id)
1388 {
1389 struct frv_unwind_cache *info
1390 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1391 CORE_ADDR base;
1392 CORE_ADDR func;
1393 struct bound_minimal_symbol msym_stack;
1394 struct frame_id id;
1395
1396 /* The FUNC is easy. */
1397 func = get_frame_func (this_frame);
1398
1399 /* Check if the stack is empty. */
1400 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1401 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1402 return;
1403
1404 /* Hopefully the prologue analysis either correctly determined the
1405 frame's base (which is the SP from the previous frame), or set
1406 that base to "NULL". */
1407 base = info->prev_sp;
1408 if (base == 0)
1409 return;
1410
1411 id = frame_id_build (base, func);
1412 (*this_id) = id;
1413 }
1414
1415 static struct value *
1416 frv_frame_prev_register (struct frame_info *this_frame,
1417 void **this_prologue_cache, int regnum)
1418 {
1419 struct frv_unwind_cache *info
1420 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1421 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1422 }
1423
1424 static const struct frame_unwind frv_frame_unwind = {
1425 NORMAL_FRAME,
1426 default_frame_unwind_stop_reason,
1427 frv_frame_this_id,
1428 frv_frame_prev_register,
1429 NULL,
1430 default_frame_sniffer
1431 };
1432
1433 static CORE_ADDR
1434 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1435 {
1436 struct frv_unwind_cache *info
1437 = frv_frame_unwind_cache (this_frame, this_cache);
1438 return info->base;
1439 }
1440
1441 static const struct frame_base frv_frame_base = {
1442 &frv_frame_unwind,
1443 frv_frame_base_address,
1444 frv_frame_base_address,
1445 frv_frame_base_address
1446 };
1447
1448 static CORE_ADDR
1449 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1450 {
1451 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1452 }
1453
1454
1455 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1456 frame. The frame ID's base needs to match the TOS value saved by
1457 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1458
1459 static struct frame_id
1460 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1461 {
1462 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1463 return frame_id_build (sp, get_frame_pc (this_frame));
1464 }
1465
1466 static struct gdbarch *
1467 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1468 {
1469 struct gdbarch *gdbarch;
1470 struct gdbarch_tdep *var;
1471 int elf_flags = 0;
1472
1473 /* Check to see if we've already built an appropriate architecture
1474 object for this executable. */
1475 arches = gdbarch_list_lookup_by_info (arches, &info);
1476 if (arches)
1477 return arches->gdbarch;
1478
1479 /* Select the right tdep structure for this variant. */
1480 var = new_variant ();
1481 switch (info.bfd_arch_info->mach)
1482 {
1483 case bfd_mach_frv:
1484 case bfd_mach_frvsimple:
1485 case bfd_mach_fr500:
1486 case bfd_mach_frvtomcat:
1487 case bfd_mach_fr550:
1488 set_variant_num_gprs (var, 64);
1489 set_variant_num_fprs (var, 64);
1490 break;
1491
1492 case bfd_mach_fr400:
1493 case bfd_mach_fr450:
1494 set_variant_num_gprs (var, 32);
1495 set_variant_num_fprs (var, 32);
1496 break;
1497
1498 default:
1499 /* Never heard of this variant. */
1500 return 0;
1501 }
1502
1503 /* Extract the ELF flags, if available. */
1504 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1505 elf_flags = elf_elfheader (info.abfd)->e_flags;
1506
1507 if (elf_flags & EF_FRV_FDPIC)
1508 set_variant_abi_fdpic (var);
1509
1510 if (elf_flags & EF_FRV_CPU_FR450)
1511 set_variant_scratch_registers (var);
1512
1513 gdbarch = gdbarch_alloc (&info, var);
1514
1515 set_gdbarch_short_bit (gdbarch, 16);
1516 set_gdbarch_int_bit (gdbarch, 32);
1517 set_gdbarch_long_bit (gdbarch, 32);
1518 set_gdbarch_long_long_bit (gdbarch, 64);
1519 set_gdbarch_float_bit (gdbarch, 32);
1520 set_gdbarch_double_bit (gdbarch, 64);
1521 set_gdbarch_long_double_bit (gdbarch, 64);
1522 set_gdbarch_ptr_bit (gdbarch, 32);
1523
1524 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1525 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1526
1527 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1528 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1529 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1530
1531 set_gdbarch_register_name (gdbarch, frv_register_name);
1532 set_gdbarch_register_type (gdbarch, frv_register_type);
1533 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1534
1535 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1536 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1537
1538 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1539 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1540 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1541 set_gdbarch_adjust_breakpoint_address
1542 (gdbarch, frv_adjust_breakpoint_address);
1543
1544 set_gdbarch_return_value (gdbarch, frv_return_value);
1545
1546 /* Frame stuff. */
1547 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1548 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1549 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1550 frame_base_set_default (gdbarch, &frv_frame_base);
1551 /* We set the sniffer lower down after the OSABI hooks have been
1552 established. */
1553
1554 /* Settings for calling functions in the inferior. */
1555 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1556 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1557
1558 /* Settings that should be unnecessary. */
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560
1561 /* Hardware watchpoint / breakpoint support. */
1562 switch (info.bfd_arch_info->mach)
1563 {
1564 case bfd_mach_frv:
1565 case bfd_mach_frvsimple:
1566 case bfd_mach_fr500:
1567 case bfd_mach_frvtomcat:
1568 /* fr500-style hardware debugging support. */
1569 var->num_hw_watchpoints = 4;
1570 var->num_hw_breakpoints = 4;
1571 break;
1572
1573 case bfd_mach_fr400:
1574 case bfd_mach_fr450:
1575 /* fr400-style hardware debugging support. */
1576 var->num_hw_watchpoints = 2;
1577 var->num_hw_breakpoints = 4;
1578 break;
1579
1580 default:
1581 /* Otherwise, assume we don't have hardware debugging support. */
1582 var->num_hw_watchpoints = 0;
1583 var->num_hw_breakpoints = 0;
1584 break;
1585 }
1586
1587 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1588 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1589 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1590 frv_convert_from_func_ptr_addr);
1591
1592 set_solib_ops (gdbarch, &frv_so_ops);
1593
1594 /* Hook in ABI-specific overrides, if they have been registered. */
1595 gdbarch_init_osabi (info, gdbarch);
1596
1597 /* Set the fallback (prologue based) frame sniffer. */
1598 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1599
1600 /* Enable TLS support. */
1601 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1602 frv_fetch_objfile_link_map);
1603
1604 return gdbarch;
1605 }
1606
1607 void
1608 _initialize_frv_tdep (void)
1609 {
1610 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1611 }
This page took 0.06172 seconds and 4 git commands to generate.