Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 /* Local non-gdb includes. */
23 #include "../opcodes/frv-desc.h"
24 #include "arch-utils.h"
25 #include "dis-asm.h"
26 #include "elf-bfd.h"
27 #include "elf/frv.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "frame.h"
31 #include "frv-tdep.h"
32 #include "gdb/sim-frv.h"
33 #include "gdbcore.h"
34 #include "infcall.h"
35 #include "inferior.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "sim-regno.h"
40 #include "solib.h"
41 #include "symtab.h"
42 #include "trad-frame.h"
43
44 struct frv_unwind_cache /* was struct frame_extra_info */
45 {
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
49
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
55 };
56
57 /* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72 struct gdbarch_tdep
73 {
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
90 const char **register_names;
91 };
92
93 /* Return the FR-V ABI associated with GDBARCH. */
94 enum frv_abi
95 frv_abi (struct gdbarch *gdbarch)
96 {
97 return gdbarch_tdep (gdbarch)->frv_abi;
98 }
99
100 /* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103 int
104 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106 {
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
111 struct regcache *regcache = get_current_regcache ();
112
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
116 regcache_cooked_read_unsigned (regcache,
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129 }
130
131 /* Allocate a new variant structure, and set up default values for all
132 the fields. */
133 static struct gdbarch_tdep *
134 new_variant (void)
135 {
136 struct gdbarch_tdep *var;
137 int r;
138
139 var = XCNEW (struct gdbarch_tdep);
140
141 var->frv_abi = FRV_ABI_EABI;
142 var->num_gprs = 64;
143 var->num_fprs = 64;
144 var->num_hw_watchpoints = 0;
145 var->num_hw_breakpoints = 0;
146
147 /* By default, don't supply any general-purpose or floating-point
148 register names. */
149 var->register_names
150 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
151 * sizeof (const char *));
152 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
153 var->register_names[r] = "";
154
155 /* Do, however, supply default names for the known special-purpose
156 registers. */
157
158 var->register_names[pc_regnum] = "pc";
159 var->register_names[lr_regnum] = "lr";
160 var->register_names[lcr_regnum] = "lcr";
161
162 var->register_names[psr_regnum] = "psr";
163 var->register_names[ccr_regnum] = "ccr";
164 var->register_names[cccr_regnum] = "cccr";
165 var->register_names[tbr_regnum] = "tbr";
166
167 /* Debug registers. */
168 var->register_names[brr_regnum] = "brr";
169 var->register_names[dbar0_regnum] = "dbar0";
170 var->register_names[dbar1_regnum] = "dbar1";
171 var->register_names[dbar2_regnum] = "dbar2";
172 var->register_names[dbar3_regnum] = "dbar3";
173
174 /* iacc0 (Only found on MB93405.) */
175 var->register_names[iacc0h_regnum] = "iacc0h";
176 var->register_names[iacc0l_regnum] = "iacc0l";
177 var->register_names[iacc0_regnum] = "iacc0";
178
179 /* fsr0 (Found on FR555 and FR501.) */
180 var->register_names[fsr0_regnum] = "fsr0";
181
182 /* acc0 - acc7. The architecture provides for the possibility of many
183 more (up to 64 total), but we don't want to make that big of a hole
184 in the G packet. If we need more in the future, we'll add them
185 elsewhere. */
186 for (r = acc0_regnum; r <= acc7_regnum; r++)
187 {
188 char *buf;
189 buf = xstrprintf ("acc%d", r - acc0_regnum);
190 var->register_names[r] = buf;
191 }
192
193 /* accg0 - accg7: These are one byte registers. The remote protocol
194 provides the raw values packed four into a slot. accg0123 and
195 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
196 We don't provide names for accg0123 and accg4567 since the user will
197 likely not want to see these raw values. */
198
199 for (r = accg0_regnum; r <= accg7_regnum; r++)
200 {
201 char *buf;
202 buf = xstrprintf ("accg%d", r - accg0_regnum);
203 var->register_names[r] = buf;
204 }
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
217 return var;
218 }
219
220
221 /* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223 static void
224 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
225 {
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
234 xsnprintf (buf, sizeof (buf), "gr%d", r);
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237 }
238
239
240 /* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242 static void
243 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
244 {
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
253 xsnprintf (buf, sizeof (buf), "fr%d", r);
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256 }
257
258 static void
259 set_variant_abi_fdpic (struct gdbarch_tdep *var)
260 {
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
265 }
266
267 static void
268 set_variant_scratch_registers (struct gdbarch_tdep *var)
269 {
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274 }
275
276 static const char *
277 frv_register_name (struct gdbarch *gdbarch, int reg)
278 {
279 if (reg < 0)
280 return "?toosmall?";
281 if (reg >= frv_num_regs + frv_num_pseudo_regs)
282 return "?toolarge?";
283
284 return gdbarch_tdep (gdbarch)->register_names[reg];
285 }
286
287
288 static struct type *
289 frv_register_type (struct gdbarch *gdbarch, int reg)
290 {
291 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
292 return builtin_type (gdbarch)->builtin_float;
293 else if (reg == iacc0_regnum)
294 return builtin_type (gdbarch)->builtin_int64;
295 else
296 return builtin_type (gdbarch)->builtin_int32;
297 }
298
299 static enum register_status
300 frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
301 int reg, gdb_byte *buffer)
302 {
303 enum register_status status;
304
305 if (reg == iacc0_regnum)
306 {
307 status = regcache->raw_read (iacc0h_regnum, buffer);
308 if (status == REG_VALID)
309 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 gdb_byte buf[4];
319
320 status = regcache->raw_read (raw_regnum, buf);
321 if (status == REG_VALID)
322 {
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the
325 first byte of the buffer allocated to hold the
326 pseudo-register. */
327 buffer[0] = buf[byte_num];
328 }
329 }
330 else
331 gdb_assert_not_reached ("invalid pseudo register number");
332
333 return status;
334 }
335
336 static void
337 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
338 int reg, const gdb_byte *buffer)
339 {
340 if (reg == iacc0_regnum)
341 {
342 regcache->raw_write (iacc0h_regnum, buffer);
343 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
344 }
345 else if (accg0_regnum <= reg && reg <= accg7_regnum)
346 {
347 /* The accg raw registers have four values in each slot with the
348 lowest register number occupying the first byte. */
349
350 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
351 int byte_num = (reg - accg0_regnum) % 4;
352 gdb_byte buf[4];
353
354 regcache->raw_read (raw_regnum, buf);
355 buf[byte_num] = ((bfd_byte *) buffer)[0];
356 regcache->raw_write (raw_regnum, buf);
357 }
358 }
359
360 static int
361 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
362 {
363 static const int spr_map[] =
364 {
365 H_SPR_PSR, /* psr_regnum */
366 H_SPR_CCR, /* ccr_regnum */
367 H_SPR_CCCR, /* cccr_regnum */
368 -1, /* fdpic_loadmap_exec_regnum */
369 -1, /* fdpic_loadmap_interp_regnum */
370 -1, /* 134 */
371 H_SPR_TBR, /* tbr_regnum */
372 H_SPR_BRR, /* brr_regnum */
373 H_SPR_DBAR0, /* dbar0_regnum */
374 H_SPR_DBAR1, /* dbar1_regnum */
375 H_SPR_DBAR2, /* dbar2_regnum */
376 H_SPR_DBAR3, /* dbar3_regnum */
377 H_SPR_SCR0, /* scr0_regnum */
378 H_SPR_SCR1, /* scr1_regnum */
379 H_SPR_SCR2, /* scr2_regnum */
380 H_SPR_SCR3, /* scr3_regnum */
381 H_SPR_LR, /* lr_regnum */
382 H_SPR_LCR, /* lcr_regnum */
383 H_SPR_IACC0H, /* iacc0h_regnum */
384 H_SPR_IACC0L, /* iacc0l_regnum */
385 H_SPR_FSR0, /* fsr0_regnum */
386 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
387 -1, /* acc0_regnum */
388 -1, /* acc1_regnum */
389 -1, /* acc2_regnum */
390 -1, /* acc3_regnum */
391 -1, /* acc4_regnum */
392 -1, /* acc5_regnum */
393 -1, /* acc6_regnum */
394 -1, /* acc7_regnum */
395 -1, /* acc0123_regnum */
396 -1, /* acc4567_regnum */
397 H_SPR_MSR0, /* msr0_regnum */
398 H_SPR_MSR1, /* msr1_regnum */
399 H_SPR_GNER0, /* gner0_regnum */
400 H_SPR_GNER1, /* gner1_regnum */
401 H_SPR_FNER0, /* fner0_regnum */
402 H_SPR_FNER1, /* fner1_regnum */
403 };
404
405 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
406
407 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
408 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
409 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
410 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
411 else if (pc_regnum == reg)
412 return SIM_FRV_PC_REGNUM;
413 else if (reg >= first_spr_regnum
414 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
415 {
416 int spr_reg_offset = spr_map[reg - first_spr_regnum];
417
418 if (spr_reg_offset < 0)
419 return SIM_REGNO_DOES_NOT_EXIST;
420 else
421 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
422 }
423
424 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
425 }
426
427 constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
428
429 typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
430
431 /* Define the maximum number of instructions which may be packed into a
432 bundle (VLIW instruction). */
433 static const int max_instrs_per_bundle = 8;
434
435 /* Define the size (in bytes) of an FR-V instruction. */
436 static const int frv_instr_size = 4;
437
438 /* Adjust a breakpoint's address to account for the FR-V architecture's
439 constraint that a break instruction must not appear as any but the
440 first instruction in the bundle. */
441 static CORE_ADDR
442 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
443 {
444 int count = max_instrs_per_bundle;
445 CORE_ADDR addr = bpaddr - frv_instr_size;
446 CORE_ADDR func_start = get_pc_function_start (bpaddr);
447
448 /* Find the end of the previous packing sequence. This will be indicated
449 by either attempting to access some inaccessible memory or by finding
450 an instruction word whose packing bit is set to one. */
451 while (count-- > 0 && addr >= func_start)
452 {
453 gdb_byte instr[frv_instr_size];
454 int status;
455
456 status = target_read_memory (addr, instr, sizeof instr);
457
458 if (status != 0)
459 break;
460
461 /* This is a big endian architecture, so byte zero will have most
462 significant byte. The most significant bit of this byte is the
463 packing bit. */
464 if (instr[0] & 0x80)
465 break;
466
467 addr -= frv_instr_size;
468 }
469
470 if (count > 0)
471 bpaddr = addr + frv_instr_size;
472
473 return bpaddr;
474 }
475
476
477 /* Return true if REG is a caller-saves ("scratch") register,
478 false otherwise. */
479 static int
480 is_caller_saves_reg (int reg)
481 {
482 return ((4 <= reg && reg <= 7)
483 || (14 <= reg && reg <= 15)
484 || (32 <= reg && reg <= 47));
485 }
486
487
488 /* Return true if REG is a callee-saves register, false otherwise. */
489 static int
490 is_callee_saves_reg (int reg)
491 {
492 return ((16 <= reg && reg <= 31)
493 || (48 <= reg && reg <= 63));
494 }
495
496
497 /* Return true if REG is an argument register, false otherwise. */
498 static int
499 is_argument_reg (int reg)
500 {
501 return (8 <= reg && reg <= 13);
502 }
503
504 /* Scan an FR-V prologue, starting at PC, until frame->PC.
505 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
506 We assume FRAME's saved_regs array has already been allocated and cleared.
507 Return the first PC value after the prologue.
508
509 Note that, for unoptimized code, we almost don't need this function
510 at all; all arguments and locals live on the stack, so we just need
511 the FP to find everything. The catch: structures passed by value
512 have their addresses living in registers; they're never spilled to
513 the stack. So if you ever want to be able to get to these
514 arguments in any frame but the top, you'll need to do this serious
515 prologue analysis. */
516 static CORE_ADDR
517 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
518 struct frame_info *this_frame,
519 struct frv_unwind_cache *info)
520 {
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522
523 /* When writing out instruction bitpatterns, we use the following
524 letters to label instruction fields:
525 P - The parallel bit. We don't use this.
526 J - The register number of GRj in the instruction description.
527 K - The register number of GRk in the instruction description.
528 I - The register number of GRi.
529 S - a signed imediate offset.
530 U - an unsigned immediate offset.
531
532 The dots below the numbers indicate where hex digit boundaries
533 fall, to make it easier to check the numbers. */
534
535 /* Non-zero iff we've seen the instruction that initializes the
536 frame pointer for this function's frame. */
537 int fp_set = 0;
538
539 /* If fp_set is non_zero, then this is the distance from
540 the stack pointer to frame pointer: fp = sp + fp_offset. */
541 int fp_offset = 0;
542
543 /* Total size of frame prior to any alloca operations. */
544 int framesize = 0;
545
546 /* Flag indicating if lr has been saved on the stack. */
547 int lr_saved_on_stack = 0;
548
549 /* The number of the general-purpose register we saved the return
550 address ("link register") in, or -1 if we haven't moved it yet. */
551 int lr_save_reg = -1;
552
553 /* Offset (from sp) at which lr has been saved on the stack. */
554
555 int lr_sp_offset = 0;
556
557 /* If gr_saved[i] is non-zero, then we've noticed that general
558 register i has been saved at gr_sp_offset[i] from the stack
559 pointer. */
560 char gr_saved[64];
561 int gr_sp_offset[64];
562
563 /* The address of the most recently scanned prologue instruction. */
564 CORE_ADDR last_prologue_pc;
565
566 /* The address of the next instruction. */
567 CORE_ADDR next_pc;
568
569 /* The upper bound to of the pc values to scan. */
570 CORE_ADDR lim_pc;
571
572 memset (gr_saved, 0, sizeof (gr_saved));
573
574 last_prologue_pc = pc;
575
576 /* Try to compute an upper limit (on how far to scan) based on the
577 line number info. */
578 lim_pc = skip_prologue_using_sal (gdbarch, pc);
579 /* If there's no line number info, lim_pc will be 0. In that case,
580 set the limit to be 100 instructions away from pc. Hopefully, this
581 will be far enough away to account for the entire prologue. Don't
582 worry about overshooting the end of the function. The scan loop
583 below contains some checks to avoid scanning unreasonably far. */
584 if (lim_pc == 0)
585 lim_pc = pc + 400;
586
587 /* If we have a frame, we don't want to scan past the frame's pc. This
588 will catch those cases where the pc is in the prologue. */
589 if (this_frame)
590 {
591 CORE_ADDR frame_pc = get_frame_pc (this_frame);
592 if (frame_pc < lim_pc)
593 lim_pc = frame_pc;
594 }
595
596 /* Scan the prologue. */
597 while (pc < lim_pc)
598 {
599 gdb_byte buf[frv_instr_size];
600 LONGEST op;
601
602 if (target_read_memory (pc, buf, sizeof buf) != 0)
603 break;
604 op = extract_signed_integer (buf, sizeof buf, byte_order);
605
606 next_pc = pc + 4;
607
608 /* The tests in this chain of ifs should be in order of
609 decreasing selectivity, so that more particular patterns get
610 to fire before less particular patterns. */
611
612 /* Some sort of control transfer instruction: stop scanning prologue.
613 Integer Conditional Branch:
614 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615 Floating-point / media Conditional Branch:
616 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617 LCR Conditional Branch to LR
618 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619 Integer conditional Branches to LR
620 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622 Floating-point/Media Branches to LR
623 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
625 Jump and Link
626 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
628 Call
629 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
630 Return from Trap
631 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632 Integer Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635 Floating-point /media Conditional Trap
636 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
638 Break
639 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
640 Media Trap
641 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
644 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
645 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
646 {
647 /* Stop scanning; not in prologue any longer. */
648 break;
649 }
650
651 /* Loading something from memory into fp probably means that
652 we're in the epilogue. Stop scanning the prologue.
653 ld @(GRi, GRk), fp
654 X 000010 0000010 XXXXXX 000100 XXXXXX
655 ldi @(GRi, d12), fp
656 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657 else if ((op & 0x7ffc0fc0) == 0x04080100
658 || (op & 0x7ffc0000) == 0x04c80000)
659 {
660 break;
661 }
662
663 /* Setting the FP from the SP:
664 ori sp, 0, fp
665 P 000010 0100010 000001 000000000000 = 0x04881000
666 0 111111 1111111 111111 111111111111 = 0x7fffffff
667 . . . . . . . .
668 We treat this as part of the prologue. */
669 else if ((op & 0x7fffffff) == 0x04881000)
670 {
671 fp_set = 1;
672 fp_offset = 0;
673 last_prologue_pc = next_pc;
674 }
675
676 /* Move the link register to the scratch register grJ, before saving:
677 movsg lr, grJ
678 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
680 . . . . . . . .
681 We treat this as part of the prologue. */
682 else if ((op & 0x7fffffc0) == 0x080d01c0)
683 {
684 int gr_j = op & 0x3f;
685
686 /* If we're moving it to a scratch register, that's fine. */
687 if (is_caller_saves_reg (gr_j))
688 {
689 lr_save_reg = gr_j;
690 last_prologue_pc = next_pc;
691 }
692 }
693
694 /* To save multiple callee-saves registers on the stack, at
695 offset zero:
696
697 std grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700
701 stq grK,@(sp,gr0)
702 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704 . . . . . . . .
705 We treat this as part of the prologue, and record the register's
706 saved address in the frame structure. */
707 else if ((op & 0x01ffffff) == 0x000c10c0
708 || (op & 0x01ffffff) == 0x000c1100)
709 {
710 int gr_k = ((op >> 25) & 0x3f);
711 int ope = ((op >> 6) & 0x3f);
712 int count;
713 int i;
714
715 /* Is it an std or an stq? */
716 if (ope == 0x03)
717 count = 2;
718 else
719 count = 4;
720
721 /* Is it really a callee-saves register? */
722 if (is_callee_saves_reg (gr_k))
723 {
724 for (i = 0; i < count; i++)
725 {
726 gr_saved[gr_k + i] = 1;
727 gr_sp_offset[gr_k + i] = 4 * i;
728 }
729 last_prologue_pc = next_pc;
730 }
731 }
732
733 /* Adjusting the stack pointer. (The stack pointer is GR1.)
734 addi sp, S, sp
735 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736 0 111111 1111111 111111 000000000000 = 0x7ffff000
737 . . . . . . . .
738 We treat this as part of the prologue. */
739 else if ((op & 0x7ffff000) == 0x02401000)
740 {
741 if (framesize == 0)
742 {
743 /* Sign-extend the twelve-bit field.
744 (Isn't there a better way to do this?) */
745 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
746
747 framesize -= s;
748 last_prologue_pc = pc;
749 }
750 else
751 {
752 /* If the prologue is being adjusted again, we've
753 likely gone too far; i.e. we're probably in the
754 epilogue. */
755 break;
756 }
757 }
758
759 /* Setting the FP to a constant distance from the SP:
760 addi sp, S, fp
761 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762 0 111111 1111111 111111 000000000000 = 0x7ffff000
763 . . . . . . . .
764 We treat this as part of the prologue. */
765 else if ((op & 0x7ffff000) == 0x04401000)
766 {
767 /* Sign-extend the twelve-bit field.
768 (Isn't there a better way to do this?) */
769 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
770 fp_set = 1;
771 fp_offset = s;
772 last_prologue_pc = pc;
773 }
774
775 /* To spill an argument register to a scratch register:
776 ori GRi, 0, GRk
777 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778 0 000000 1111111 000000 111111111111 = 0x01fc0fff
779 . . . . . . . .
780 For the time being, we treat this as a prologue instruction,
781 assuming that GRi is an argument register. This one's kind
782 of suspicious, because it seems like it could be part of a
783 legitimate body instruction. But we only come here when the
784 source info wasn't helpful, so we have to do the best we can.
785 Hopefully once GCC and GDB agree on how to emit line number
786 info for prologues, then this code will never come into play. */
787 else if ((op & 0x01fc0fff) == 0x00880000)
788 {
789 int gr_i = ((op >> 12) & 0x3f);
790
791 /* Make sure that the source is an arg register; if it is, we'll
792 treat it as a prologue instruction. */
793 if (is_argument_reg (gr_i))
794 last_prologue_pc = next_pc;
795 }
796
797 /* To spill 16-bit values to the stack:
798 sthi GRk, @(fp, s)
799 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 And for 8-bit values, we use STB instructions.
803 stbi GRk, @(fp, s)
804 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
806 . . . . . . . .
807 We check that GRk is really an argument register, and treat
808 all such as part of the prologue. */
809 else if ( (op & 0x01fff000) == 0x01442000
810 || (op & 0x01fff000) == 0x01402000)
811 {
812 int gr_k = ((op >> 25) & 0x3f);
813
814 /* Make sure that GRk is really an argument register; treat
815 it as a prologue instruction if so. */
816 if (is_argument_reg (gr_k))
817 last_prologue_pc = next_pc;
818 }
819
820 /* To save multiple callee-saves register on the stack, at a
821 non-zero offset:
822
823 stdi GRk, @(sp, s)
824 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
827 stqi GRk, @(sp, s)
828 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
830 . . . . . . . .
831 We treat this as part of the prologue, and record the register's
832 saved address in the frame structure. */
833 else if ((op & 0x01fff000) == 0x014c1000
834 || (op & 0x01fff000) == 0x01501000)
835 {
836 int gr_k = ((op >> 25) & 0x3f);
837 int count;
838 int i;
839
840 /* Is it a stdi or a stqi? */
841 if ((op & 0x01fff000) == 0x014c1000)
842 count = 2;
843 else
844 count = 4;
845
846 /* Is it really a callee-saves register? */
847 if (is_callee_saves_reg (gr_k))
848 {
849 /* Sign-extend the twelve-bit field.
850 (Isn't there a better way to do this?) */
851 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
852
853 for (i = 0; i < count; i++)
854 {
855 gr_saved[gr_k + i] = 1;
856 gr_sp_offset[gr_k + i] = s + (4 * i);
857 }
858 last_prologue_pc = next_pc;
859 }
860 }
861
862 /* Storing any kind of integer register at any constant offset
863 from any other register.
864
865 st GRk, @(GRi, gr0)
866 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
868 . . . . . . . .
869 sti GRk, @(GRi, d12)
870 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871 0 000000 1111111 000000 000000000000 = 0x01fc0000
872 . . . . . . . .
873 These could be almost anything, but a lot of prologue
874 instructions fall into this pattern, so let's decode the
875 instruction once, and then work at a higher level. */
876 else if (((op & 0x01fc0fff) == 0x000c0080)
877 || ((op & 0x01fc0000) == 0x01480000))
878 {
879 int gr_k = ((op >> 25) & 0x3f);
880 int gr_i = ((op >> 12) & 0x3f);
881 int offset;
882
883 /* Are we storing with gr0 as an offset, or using an
884 immediate value? */
885 if ((op & 0x01fc0fff) == 0x000c0080)
886 offset = 0;
887 else
888 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
889
890 /* If the address isn't relative to the SP or FP, it's not a
891 prologue instruction. */
892 if (gr_i != sp_regnum && gr_i != fp_regnum)
893 {
894 /* Do nothing; not a prologue instruction. */
895 }
896
897 /* Saving the old FP in the new frame (relative to the SP). */
898 else if (gr_k == fp_regnum && gr_i == sp_regnum)
899 {
900 gr_saved[fp_regnum] = 1;
901 gr_sp_offset[fp_regnum] = offset;
902 last_prologue_pc = next_pc;
903 }
904
905 /* Saving callee-saves register(s) on the stack, relative to
906 the SP. */
907 else if (gr_i == sp_regnum
908 && is_callee_saves_reg (gr_k))
909 {
910 gr_saved[gr_k] = 1;
911 if (gr_i == sp_regnum)
912 gr_sp_offset[gr_k] = offset;
913 else
914 gr_sp_offset[gr_k] = offset + fp_offset;
915 last_prologue_pc = next_pc;
916 }
917
918 /* Saving the scratch register holding the return address. */
919 else if (lr_save_reg != -1
920 && gr_k == lr_save_reg)
921 {
922 lr_saved_on_stack = 1;
923 if (gr_i == sp_regnum)
924 lr_sp_offset = offset;
925 else
926 lr_sp_offset = offset + fp_offset;
927 last_prologue_pc = next_pc;
928 }
929
930 /* Spilling int-sized arguments to the stack. */
931 else if (is_argument_reg (gr_k))
932 last_prologue_pc = next_pc;
933 }
934 pc = next_pc;
935 }
936
937 if (this_frame && info)
938 {
939 int i;
940 ULONGEST this_base;
941
942 /* If we know the relationship between the stack and frame
943 pointers, record the addresses of the registers we noticed.
944 Note that we have to do this as a separate step at the end,
945 because instructions may save relative to the SP, but we need
946 their addresses relative to the FP. */
947 if (fp_set)
948 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
949 else
950 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
951
952 for (i = 0; i < 64; i++)
953 if (gr_saved[i])
954 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
955
956 info->prev_sp = this_base - fp_offset + framesize;
957 info->base = this_base;
958
959 /* If LR was saved on the stack, record its location. */
960 if (lr_saved_on_stack)
961 info->saved_regs[lr_regnum].addr
962 = this_base - fp_offset + lr_sp_offset;
963
964 /* The call instruction moves the caller's PC in the callee's LR.
965 Since this is an unwind, do the reverse. Copy the location of LR
966 into PC (the address / regnum) so that a request for PC will be
967 converted into a request for the LR. */
968 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
969
970 /* Save the previous frame's computed SP value. */
971 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
972 }
973
974 return last_prologue_pc;
975 }
976
977
978 static CORE_ADDR
979 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
980 {
981 CORE_ADDR func_addr, func_end, new_pc;
982
983 new_pc = pc;
984
985 /* If the line table has entry for a line *within* the function
986 (i.e., not in the prologue, and not past the end), then that's
987 our location. */
988 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
989 {
990 struct symtab_and_line sal;
991
992 sal = find_pc_line (func_addr, 0);
993
994 if (sal.line != 0 && sal.end < func_end)
995 {
996 new_pc = sal.end;
997 }
998 }
999
1000 /* The FR-V prologue is at least five instructions long (twenty bytes).
1001 If we didn't find a real source location past that, then
1002 do a full analysis of the prologue. */
1003 if (new_pc < pc + 20)
1004 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1005
1006 return new_pc;
1007 }
1008
1009
1010 /* Examine the instruction pointed to by PC. If it corresponds to
1011 a call to __main, return the address of the next instruction.
1012 Otherwise, return PC. */
1013
1014 static CORE_ADDR
1015 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1016 {
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018 gdb_byte buf[4];
1019 unsigned long op;
1020 CORE_ADDR orig_pc = pc;
1021
1022 if (target_read_memory (pc, buf, 4))
1023 return pc;
1024 op = extract_unsigned_integer (buf, 4, byte_order);
1025
1026 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1027 to the call instruction.
1028
1029 Skip over this instruction if present. It won't be present in
1030 non-PIC code, and even in PIC code, it might not be present.
1031 (This is due to the fact that GR15, the FDPIC register, already
1032 contains the correct value.)
1033
1034 The general form of the LDI is given first, followed by the
1035 specific instruction with the GRi and GRk filled in as FP and
1036 GR15.
1037
1038 ldi @(GRi, d12), GRk
1039 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1040 0 000000 1111111 000000 000000000000 = 0x01fc0000
1041 . . . . . . . .
1042 ldi @(FP, d12), GR15
1043 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1044 0 001111 1111111 000010 000000000000 = 0x7ffff000
1045 . . . . . . . . */
1046
1047 if ((op & 0x7ffff000) == 0x1ec82000)
1048 {
1049 pc += 4;
1050 if (target_read_memory (pc, buf, 4))
1051 return orig_pc;
1052 op = extract_unsigned_integer (buf, 4, byte_order);
1053 }
1054
1055 /* The format of an FRV CALL instruction is as follows:
1056
1057 call label24
1058 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1059 0 000000 1111111 000000000000000000 = 0x01fc0000
1060 . . . . . . . .
1061
1062 where label24 is constructed by concatenating the H bits with the
1063 L bits. The call target is PC + (4 * sign_ext(label24)). */
1064
1065 if ((op & 0x01fc0000) == 0x003c0000)
1066 {
1067 LONGEST displ;
1068 CORE_ADDR call_dest;
1069 struct bound_minimal_symbol s;
1070
1071 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1072 if ((displ & 0x00800000) != 0)
1073 displ |= ~((LONGEST) 0x00ffffff);
1074
1075 call_dest = pc + 4 * displ;
1076 s = lookup_minimal_symbol_by_pc (call_dest);
1077
1078 if (s.minsym != NULL
1079 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1080 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1081 {
1082 pc += 4;
1083 return pc;
1084 }
1085 }
1086 return orig_pc;
1087 }
1088
1089
1090 static struct frv_unwind_cache *
1091 frv_frame_unwind_cache (struct frame_info *this_frame,
1092 void **this_prologue_cache)
1093 {
1094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1095 struct frv_unwind_cache *info;
1096
1097 if ((*this_prologue_cache))
1098 return (struct frv_unwind_cache *) (*this_prologue_cache);
1099
1100 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1101 (*this_prologue_cache) = info;
1102 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1103
1104 /* Prologue analysis does the rest... */
1105 frv_analyze_prologue (gdbarch,
1106 get_frame_func (this_frame), this_frame, info);
1107
1108 return info;
1109 }
1110
1111 static void
1112 frv_extract_return_value (struct type *type, struct regcache *regcache,
1113 gdb_byte *valbuf)
1114 {
1115 struct gdbarch *gdbarch = regcache->arch ();
1116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1117 int len = TYPE_LENGTH (type);
1118
1119 if (len <= 4)
1120 {
1121 ULONGEST gpr8_val;
1122 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1123 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1124 }
1125 else if (len == 8)
1126 {
1127 ULONGEST regval;
1128
1129 regcache_cooked_read_unsigned (regcache, 8, &regval);
1130 store_unsigned_integer (valbuf, 4, byte_order, regval);
1131 regcache_cooked_read_unsigned (regcache, 9, &regval);
1132 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1133 }
1134 else
1135 internal_error (__FILE__, __LINE__,
1136 _("Illegal return value length: %d"), len);
1137 }
1138
1139 static CORE_ADDR
1140 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1141 {
1142 /* Require dword alignment. */
1143 return align_down (sp, 8);
1144 }
1145
1146 static CORE_ADDR
1147 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1148 {
1149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1150 CORE_ADDR descr;
1151 gdb_byte valbuf[4];
1152 CORE_ADDR start_addr;
1153
1154 /* If we can't find the function in the symbol table, then we assume
1155 that the function address is already in descriptor form. */
1156 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1157 || entry_point != start_addr)
1158 return entry_point;
1159
1160 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1161
1162 if (descr != 0)
1163 return descr;
1164
1165 /* Construct a non-canonical descriptor from space allocated on
1166 the stack. */
1167
1168 descr = value_as_long (value_allocate_space_in_inferior (8));
1169 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1170 write_memory (descr, valbuf, 4);
1171 store_unsigned_integer (valbuf, 4, byte_order,
1172 frv_fdpic_find_global_pointer (entry_point));
1173 write_memory (descr + 4, valbuf, 4);
1174 return descr;
1175 }
1176
1177 static CORE_ADDR
1178 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1179 struct target_ops *targ)
1180 {
1181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1182 CORE_ADDR entry_point;
1183 CORE_ADDR got_address;
1184
1185 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1186 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1187
1188 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1189 return entry_point;
1190 else
1191 return addr;
1192 }
1193
1194 static CORE_ADDR
1195 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1196 struct regcache *regcache, CORE_ADDR bp_addr,
1197 int nargs, struct value **args, CORE_ADDR sp,
1198 function_call_return_method return_method,
1199 CORE_ADDR struct_addr)
1200 {
1201 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1202 int argreg;
1203 int argnum;
1204 const gdb_byte *val;
1205 gdb_byte valbuf[4];
1206 struct value *arg;
1207 struct type *arg_type;
1208 int len;
1209 enum type_code typecode;
1210 CORE_ADDR regval;
1211 int stack_space;
1212 int stack_offset;
1213 enum frv_abi abi = frv_abi (gdbarch);
1214 CORE_ADDR func_addr = find_function_addr (function, NULL);
1215
1216 #if 0
1217 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1218 nargs, (int) sp, struct_return, struct_addr);
1219 #endif
1220
1221 stack_space = 0;
1222 for (argnum = 0; argnum < nargs; ++argnum)
1223 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1224
1225 stack_space -= (6 * 4);
1226 if (stack_space > 0)
1227 sp -= stack_space;
1228
1229 /* Make sure stack is dword aligned. */
1230 sp = align_down (sp, 8);
1231
1232 stack_offset = 0;
1233
1234 argreg = 8;
1235
1236 if (return_method == return_method_struct)
1237 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1238 struct_addr);
1239
1240 for (argnum = 0; argnum < nargs; ++argnum)
1241 {
1242 arg = args[argnum];
1243 arg_type = check_typedef (value_type (arg));
1244 len = TYPE_LENGTH (arg_type);
1245 typecode = TYPE_CODE (arg_type);
1246
1247 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1248 {
1249 store_unsigned_integer (valbuf, 4, byte_order,
1250 value_address (arg));
1251 typecode = TYPE_CODE_PTR;
1252 len = 4;
1253 val = valbuf;
1254 }
1255 else if (abi == FRV_ABI_FDPIC
1256 && len == 4
1257 && typecode == TYPE_CODE_PTR
1258 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1259 {
1260 /* The FDPIC ABI requires function descriptors to be passed instead
1261 of entry points. */
1262 CORE_ADDR addr = extract_unsigned_integer
1263 (value_contents (arg), 4, byte_order);
1264 addr = find_func_descr (gdbarch, addr);
1265 store_unsigned_integer (valbuf, 4, byte_order, addr);
1266 typecode = TYPE_CODE_PTR;
1267 len = 4;
1268 val = valbuf;
1269 }
1270 else
1271 {
1272 val = value_contents (arg);
1273 }
1274
1275 while (len > 0)
1276 {
1277 int partial_len = (len < 4 ? len : 4);
1278
1279 if (argreg < 14)
1280 {
1281 regval = extract_unsigned_integer (val, partial_len, byte_order);
1282 #if 0
1283 printf(" Argnum %d data %x -> reg %d\n",
1284 argnum, (int) regval, argreg);
1285 #endif
1286 regcache_cooked_write_unsigned (regcache, argreg, regval);
1287 ++argreg;
1288 }
1289 else
1290 {
1291 #if 0
1292 printf(" Argnum %d data %x -> offset %d (%x)\n",
1293 argnum, *((int *)val), stack_offset,
1294 (int) (sp + stack_offset));
1295 #endif
1296 write_memory (sp + stack_offset, val, partial_len);
1297 stack_offset += align_up (partial_len, 4);
1298 }
1299 len -= partial_len;
1300 val += partial_len;
1301 }
1302 }
1303
1304 /* Set the return address. For the frv, the return breakpoint is
1305 always at BP_ADDR. */
1306 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1307
1308 if (abi == FRV_ABI_FDPIC)
1309 {
1310 /* Set the GOT register for the FDPIC ABI. */
1311 regcache_cooked_write_unsigned
1312 (regcache, first_gpr_regnum + 15,
1313 frv_fdpic_find_global_pointer (func_addr));
1314 }
1315
1316 /* Finally, update the SP register. */
1317 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1318
1319 return sp;
1320 }
1321
1322 static void
1323 frv_store_return_value (struct type *type, struct regcache *regcache,
1324 const gdb_byte *valbuf)
1325 {
1326 int len = TYPE_LENGTH (type);
1327
1328 if (len <= 4)
1329 {
1330 bfd_byte val[4];
1331 memset (val, 0, sizeof (val));
1332 memcpy (val + (4 - len), valbuf, len);
1333 regcache->cooked_write (8, val);
1334 }
1335 else if (len == 8)
1336 {
1337 regcache->cooked_write (8, valbuf);
1338 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
1339 }
1340 else
1341 internal_error (__FILE__, __LINE__,
1342 _("Don't know how to return a %d-byte value."), len);
1343 }
1344
1345 static enum return_value_convention
1346 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1347 struct type *valtype, struct regcache *regcache,
1348 gdb_byte *readbuf, const gdb_byte *writebuf)
1349 {
1350 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1351 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1352 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1353
1354 if (writebuf != NULL)
1355 {
1356 gdb_assert (!struct_return);
1357 frv_store_return_value (valtype, regcache, writebuf);
1358 }
1359
1360 if (readbuf != NULL)
1361 {
1362 gdb_assert (!struct_return);
1363 frv_extract_return_value (valtype, regcache, readbuf);
1364 }
1365
1366 if (struct_return)
1367 return RETURN_VALUE_STRUCT_CONVENTION;
1368 else
1369 return RETURN_VALUE_REGISTER_CONVENTION;
1370 }
1371
1372 /* Given a GDB frame, determine the address of the calling function's
1373 frame. This will be used to create a new GDB frame struct. */
1374
1375 static void
1376 frv_frame_this_id (struct frame_info *this_frame,
1377 void **this_prologue_cache, struct frame_id *this_id)
1378 {
1379 struct frv_unwind_cache *info
1380 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1381 CORE_ADDR base;
1382 CORE_ADDR func;
1383 struct bound_minimal_symbol msym_stack;
1384 struct frame_id id;
1385
1386 /* The FUNC is easy. */
1387 func = get_frame_func (this_frame);
1388
1389 /* Check if the stack is empty. */
1390 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1391 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1392 return;
1393
1394 /* Hopefully the prologue analysis either correctly determined the
1395 frame's base (which is the SP from the previous frame), or set
1396 that base to "NULL". */
1397 base = info->prev_sp;
1398 if (base == 0)
1399 return;
1400
1401 id = frame_id_build (base, func);
1402 (*this_id) = id;
1403 }
1404
1405 static struct value *
1406 frv_frame_prev_register (struct frame_info *this_frame,
1407 void **this_prologue_cache, int regnum)
1408 {
1409 struct frv_unwind_cache *info
1410 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1411 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1412 }
1413
1414 static const struct frame_unwind frv_frame_unwind = {
1415 NORMAL_FRAME,
1416 default_frame_unwind_stop_reason,
1417 frv_frame_this_id,
1418 frv_frame_prev_register,
1419 NULL,
1420 default_frame_sniffer
1421 };
1422
1423 static CORE_ADDR
1424 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1425 {
1426 struct frv_unwind_cache *info
1427 = frv_frame_unwind_cache (this_frame, this_cache);
1428 return info->base;
1429 }
1430
1431 static const struct frame_base frv_frame_base = {
1432 &frv_frame_unwind,
1433 frv_frame_base_address,
1434 frv_frame_base_address,
1435 frv_frame_base_address
1436 };
1437
1438 static struct gdbarch *
1439 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1440 {
1441 struct gdbarch *gdbarch;
1442 struct gdbarch_tdep *var;
1443 int elf_flags = 0;
1444
1445 /* Check to see if we've already built an appropriate architecture
1446 object for this executable. */
1447 arches = gdbarch_list_lookup_by_info (arches, &info);
1448 if (arches)
1449 return arches->gdbarch;
1450
1451 /* Select the right tdep structure for this variant. */
1452 var = new_variant ();
1453 switch (info.bfd_arch_info->mach)
1454 {
1455 case bfd_mach_frv:
1456 case bfd_mach_frvsimple:
1457 case bfd_mach_fr300:
1458 case bfd_mach_fr500:
1459 case bfd_mach_frvtomcat:
1460 case bfd_mach_fr550:
1461 set_variant_num_gprs (var, 64);
1462 set_variant_num_fprs (var, 64);
1463 break;
1464
1465 case bfd_mach_fr400:
1466 case bfd_mach_fr450:
1467 set_variant_num_gprs (var, 32);
1468 set_variant_num_fprs (var, 32);
1469 break;
1470
1471 default:
1472 /* Never heard of this variant. */
1473 return 0;
1474 }
1475
1476 /* Extract the ELF flags, if available. */
1477 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1478 elf_flags = elf_elfheader (info.abfd)->e_flags;
1479
1480 if (elf_flags & EF_FRV_FDPIC)
1481 set_variant_abi_fdpic (var);
1482
1483 if (elf_flags & EF_FRV_CPU_FR450)
1484 set_variant_scratch_registers (var);
1485
1486 gdbarch = gdbarch_alloc (&info, var);
1487
1488 set_gdbarch_short_bit (gdbarch, 16);
1489 set_gdbarch_int_bit (gdbarch, 32);
1490 set_gdbarch_long_bit (gdbarch, 32);
1491 set_gdbarch_long_long_bit (gdbarch, 64);
1492 set_gdbarch_float_bit (gdbarch, 32);
1493 set_gdbarch_double_bit (gdbarch, 64);
1494 set_gdbarch_long_double_bit (gdbarch, 64);
1495 set_gdbarch_ptr_bit (gdbarch, 32);
1496
1497 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1498 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1499
1500 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1501 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1502 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1503
1504 set_gdbarch_register_name (gdbarch, frv_register_name);
1505 set_gdbarch_register_type (gdbarch, frv_register_type);
1506 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1507
1508 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1509 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1510
1511 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1512 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1513 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1514 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1515 set_gdbarch_adjust_breakpoint_address
1516 (gdbarch, frv_adjust_breakpoint_address);
1517
1518 set_gdbarch_return_value (gdbarch, frv_return_value);
1519
1520 /* Frame stuff. */
1521 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1522 frame_base_set_default (gdbarch, &frv_frame_base);
1523 /* We set the sniffer lower down after the OSABI hooks have been
1524 established. */
1525
1526 /* Settings for calling functions in the inferior. */
1527 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1528
1529 /* Settings that should be unnecessary. */
1530 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1531
1532 /* Hardware watchpoint / breakpoint support. */
1533 switch (info.bfd_arch_info->mach)
1534 {
1535 case bfd_mach_frv:
1536 case bfd_mach_frvsimple:
1537 case bfd_mach_fr300:
1538 case bfd_mach_fr500:
1539 case bfd_mach_frvtomcat:
1540 /* fr500-style hardware debugging support. */
1541 var->num_hw_watchpoints = 4;
1542 var->num_hw_breakpoints = 4;
1543 break;
1544
1545 case bfd_mach_fr400:
1546 case bfd_mach_fr450:
1547 /* fr400-style hardware debugging support. */
1548 var->num_hw_watchpoints = 2;
1549 var->num_hw_breakpoints = 4;
1550 break;
1551
1552 default:
1553 /* Otherwise, assume we don't have hardware debugging support. */
1554 var->num_hw_watchpoints = 0;
1555 var->num_hw_breakpoints = 0;
1556 break;
1557 }
1558
1559 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1560 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1561 frv_convert_from_func_ptr_addr);
1562
1563 set_solib_ops (gdbarch, &frv_so_ops);
1564
1565 /* Hook in ABI-specific overrides, if they have been registered. */
1566 gdbarch_init_osabi (info, gdbarch);
1567
1568 /* Set the fallback (prologue based) frame sniffer. */
1569 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1570
1571 /* Enable TLS support. */
1572 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1573 frv_fetch_objfile_link_map);
1574
1575 return gdbarch;
1576 }
1577
1578 void
1579 _initialize_frv_tdep (void)
1580 {
1581 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1582 }
This page took 0.092546 seconds and 5 git commands to generate.