2003-09-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
644 # to frame_align and the requirement that methods such as
645 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
646 # alignment.
647 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
648 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
649 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
650 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
651 v:2:PARM_BOUNDARY:int:parm_boundary
652 #
653 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
654 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
655 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
656 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
657 # On some machines there are bits in addresses which are not really
658 # part of the address, but are used by the kernel, the hardware, etc.
659 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
660 # we get a "real" address such as one would find in a symbol table.
661 # This is used only for addresses of instructions, and even then I'm
662 # not sure it's used in all contexts. It exists to deal with there
663 # being a few stray bits in the PC which would mislead us, not as some
664 # sort of generic thing to handle alignment or segmentation (it's
665 # possible it should be in TARGET_READ_PC instead).
666 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
667 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
668 # ADDR_BITS_REMOVE.
669 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
670 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
671 # the target needs software single step. An ISA method to implement it.
672 #
673 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
674 # using the breakpoint system instead of blatting memory directly (as with rs6000).
675 #
676 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
677 # single step. If not, then implement single step using breakpoints.
678 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
679 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
680 # disassembler. Perhaphs objdump can handle it?
681 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
682 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
683
684
685 # For SVR4 shared libraries, each call goes through a small piece of
686 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
687 # to nonzero if we are currently stopped in one of these.
688 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
689
690 # Some systems also have trampoline code for returning from shared libs.
691 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
692
693 # Sigtramp is a routine that the kernel calls (which then calls the
694 # signal handler). On most machines it is a library routine that is
695 # linked into the executable.
696 #
697 # This macro, given a program counter value and the name of the
698 # function in which that PC resides (which can be null if the name is
699 # not known), returns nonzero if the PC and name show that we are in
700 # sigtramp.
701 #
702 # On most machines just see if the name is sigtramp (and if we have
703 # no name, assume we are not in sigtramp).
704 #
705 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
706 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
707 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
708 # own local NAME lookup.
709 #
710 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
711 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
712 # does not.
713 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
714 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
715 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
716 # A target might have problems with watchpoints as soon as the stack
717 # frame of the current function has been destroyed. This mostly happens
718 # as the first action in a funtion's epilogue. in_function_epilogue_p()
719 # is defined to return a non-zero value if either the given addr is one
720 # instruction after the stack destroying instruction up to the trailing
721 # return instruction or if we can figure out that the stack frame has
722 # already been invalidated regardless of the value of addr. Targets
723 # which don't suffer from that problem could just let this functionality
724 # untouched.
725 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
726 # Given a vector of command-line arguments, return a newly allocated
727 # string which, when passed to the create_inferior function, will be
728 # parsed (on Unix systems, by the shell) to yield the same vector.
729 # This function should call error() if the argument vector is not
730 # representable for this target or if this target does not support
731 # command-line arguments.
732 # ARGC is the number of elements in the vector.
733 # ARGV is an array of strings, one per argument.
734 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
735 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
736 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
737 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
738 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
739 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
740 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
741 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
742 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
743 # Is a register in a group
744 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
745 # Fetch the pointer to the ith function argument.
746 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
747 EOF
748 }
749
750 #
751 # The .log file
752 #
753 exec > new-gdbarch.log
754 function_list | while do_read
755 do
756 cat <<EOF
757 ${class} ${macro}(${actual})
758 ${returntype} ${function} ($formal)${attrib}
759 EOF
760 for r in ${read}
761 do
762 eval echo \"\ \ \ \ ${r}=\${${r}}\"
763 done
764 if class_is_predicate_p && fallback_default_p
765 then
766 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
767 kill $$
768 exit 1
769 fi
770 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
771 then
772 echo "Error: postdefault is useless when invalid_p=0" 1>&2
773 kill $$
774 exit 1
775 fi
776 if class_is_multiarch_p
777 then
778 if class_is_predicate_p ; then :
779 elif test "x${predefault}" = "x"
780 then
781 echo "Error: pure multi-arch function must have a predefault" 1>&2
782 kill $$
783 exit 1
784 fi
785 fi
786 echo ""
787 done
788
789 exec 1>&2
790 compare_new gdbarch.log
791
792
793 copyright ()
794 {
795 cat <<EOF
796 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
797
798 /* Dynamic architecture support for GDB, the GNU debugger.
799 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
800
801 This file is part of GDB.
802
803 This program is free software; you can redistribute it and/or modify
804 it under the terms of the GNU General Public License as published by
805 the Free Software Foundation; either version 2 of the License, or
806 (at your option) any later version.
807
808 This program is distributed in the hope that it will be useful,
809 but WITHOUT ANY WARRANTY; without even the implied warranty of
810 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
811 GNU General Public License for more details.
812
813 You should have received a copy of the GNU General Public License
814 along with this program; if not, write to the Free Software
815 Foundation, Inc., 59 Temple Place - Suite 330,
816 Boston, MA 02111-1307, USA. */
817
818 /* This file was created with the aid of \`\`gdbarch.sh''.
819
820 The Bourne shell script \`\`gdbarch.sh'' creates the files
821 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
822 against the existing \`\`gdbarch.[hc]''. Any differences found
823 being reported.
824
825 If editing this file, please also run gdbarch.sh and merge any
826 changes into that script. Conversely, when making sweeping changes
827 to this file, modifying gdbarch.sh and using its output may prove
828 easier. */
829
830 EOF
831 }
832
833 #
834 # The .h file
835 #
836
837 exec > new-gdbarch.h
838 copyright
839 cat <<EOF
840 #ifndef GDBARCH_H
841 #define GDBARCH_H
842
843 struct floatformat;
844 struct ui_file;
845 struct frame_info;
846 struct value;
847 struct objfile;
848 struct minimal_symbol;
849 struct regcache;
850 struct reggroup;
851 struct disassemble_info;
852
853 extern struct gdbarch *current_gdbarch;
854
855
856 /* If any of the following are defined, the target wasn't correctly
857 converted. */
858
859 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
860 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
861 #endif
862 EOF
863
864 # function typedef's
865 printf "\n"
866 printf "\n"
867 printf "/* The following are pre-initialized by GDBARCH. */\n"
868 function_list | while do_read
869 do
870 if class_is_info_p
871 then
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 printf "#if !defined (${macro})\n"
879 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
880 printf "#endif\n"
881 fi
882 done
883
884 # function typedef's
885 printf "\n"
886 printf "\n"
887 printf "/* The following are initialized by the target dependent code. */\n"
888 function_list | while do_read
889 do
890 if [ -n "${comment}" ]
891 then
892 echo "${comment}" | sed \
893 -e '2 s,#,/*,' \
894 -e '3,$ s,#, ,' \
895 -e '$ s,$, */,'
896 fi
897 if class_is_multiarch_p
898 then
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
903 fi
904 else
905 if class_is_predicate_p
906 then
907 printf "\n"
908 printf "#if defined (${macro})\n"
909 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
910 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
911 printf "#if !defined (${macro}_P)\n"
912 printf "#define ${macro}_P() (1)\n"
913 printf "#endif\n"
914 printf "#endif\n"
915 printf "\n"
916 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
921 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
922 printf "#endif\n"
923 fi
924 fi
925 if class_is_variable_p
926 then
927 printf "\n"
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
929 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
930 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
931 printf "#error \"Non multi-arch definition of ${macro}\"\n"
932 printf "#endif\n"
933 printf "#if !defined (${macro})\n"
934 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
935 printf "#endif\n"
936 fi
937 if class_is_function_p
938 then
939 printf "\n"
940 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
941 then
942 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
943 elif class_is_multiarch_p
944 then
945 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
946 else
947 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
948 fi
949 if [ "x${formal}" = "xvoid" ]
950 then
951 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
952 else
953 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
954 fi
955 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
956 if class_is_multiarch_p ; then :
957 else
958 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
959 printf "#error \"Non multi-arch definition of ${macro}\"\n"
960 printf "#endif\n"
961 if [ "x${actual}" = "x" ]
962 then
963 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
964 elif [ "x${actual}" = "x-" ]
965 then
966 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
967 else
968 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
969 fi
970 printf "#if !defined (${macro})\n"
971 if [ "x${actual}" = "x" ]
972 then
973 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
974 elif [ "x${actual}" = "x-" ]
975 then
976 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
977 else
978 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
979 fi
980 printf "#endif\n"
981 fi
982 fi
983 done
984
985 # close it off
986 cat <<EOF
987
988 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
989
990
991 /* Mechanism for co-ordinating the selection of a specific
992 architecture.
993
994 GDB targets (*-tdep.c) can register an interest in a specific
995 architecture. Other GDB components can register a need to maintain
996 per-architecture data.
997
998 The mechanisms below ensures that there is only a loose connection
999 between the set-architecture command and the various GDB
1000 components. Each component can independently register their need
1001 to maintain architecture specific data with gdbarch.
1002
1003 Pragmatics:
1004
1005 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1006 didn't scale.
1007
1008 The more traditional mega-struct containing architecture specific
1009 data for all the various GDB components was also considered. Since
1010 GDB is built from a variable number of (fairly independent)
1011 components it was determined that the global aproach was not
1012 applicable. */
1013
1014
1015 /* Register a new architectural family with GDB.
1016
1017 Register support for the specified ARCHITECTURE with GDB. When
1018 gdbarch determines that the specified architecture has been
1019 selected, the corresponding INIT function is called.
1020
1021 --
1022
1023 The INIT function takes two parameters: INFO which contains the
1024 information available to gdbarch about the (possibly new)
1025 architecture; ARCHES which is a list of the previously created
1026 \`\`struct gdbarch'' for this architecture.
1027
1028 The INFO parameter is, as far as possible, be pre-initialized with
1029 information obtained from INFO.ABFD or the previously selected
1030 architecture.
1031
1032 The ARCHES parameter is a linked list (sorted most recently used)
1033 of all the previously created architures for this architecture
1034 family. The (possibly NULL) ARCHES->gdbarch can used to access
1035 values from the previously selected architecture for this
1036 architecture family. The global \`\`current_gdbarch'' shall not be
1037 used.
1038
1039 The INIT function shall return any of: NULL - indicating that it
1040 doesn't recognize the selected architecture; an existing \`\`struct
1041 gdbarch'' from the ARCHES list - indicating that the new
1042 architecture is just a synonym for an earlier architecture (see
1043 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1044 - that describes the selected architecture (see gdbarch_alloc()).
1045
1046 The DUMP_TDEP function shall print out all target specific values.
1047 Care should be taken to ensure that the function works in both the
1048 multi-arch and non- multi-arch cases. */
1049
1050 struct gdbarch_list
1051 {
1052 struct gdbarch *gdbarch;
1053 struct gdbarch_list *next;
1054 };
1055
1056 struct gdbarch_info
1057 {
1058 /* Use default: NULL (ZERO). */
1059 const struct bfd_arch_info *bfd_arch_info;
1060
1061 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1062 int byte_order;
1063
1064 /* Use default: NULL (ZERO). */
1065 bfd *abfd;
1066
1067 /* Use default: NULL (ZERO). */
1068 struct gdbarch_tdep_info *tdep_info;
1069
1070 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1071 enum gdb_osabi osabi;
1072 };
1073
1074 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1075 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1076
1077 /* DEPRECATED - use gdbarch_register() */
1078 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1079
1080 extern void gdbarch_register (enum bfd_architecture architecture,
1081 gdbarch_init_ftype *,
1082 gdbarch_dump_tdep_ftype *);
1083
1084
1085 /* Return a freshly allocated, NULL terminated, array of the valid
1086 architecture names. Since architectures are registered during the
1087 _initialize phase this function only returns useful information
1088 once initialization has been completed. */
1089
1090 extern const char **gdbarch_printable_names (void);
1091
1092
1093 /* Helper function. Search the list of ARCHES for a GDBARCH that
1094 matches the information provided by INFO. */
1095
1096 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1097
1098
1099 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1100 basic initialization using values obtained from the INFO andTDEP
1101 parameters. set_gdbarch_*() functions are called to complete the
1102 initialization of the object. */
1103
1104 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1105
1106
1107 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1108 It is assumed that the caller freeds the \`\`struct
1109 gdbarch_tdep''. */
1110
1111 extern void gdbarch_free (struct gdbarch *);
1112
1113
1114 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1115 obstack. The memory is freed when the corresponding architecture
1116 is also freed. */
1117
1118 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1119 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1120 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1121
1122
1123 /* Helper function. Force an update of the current architecture.
1124
1125 The actual architecture selected is determined by INFO, \`\`(gdb) set
1126 architecture'' et.al., the existing architecture and BFD's default
1127 architecture. INFO should be initialized to zero and then selected
1128 fields should be updated.
1129
1130 Returns non-zero if the update succeeds */
1131
1132 extern int gdbarch_update_p (struct gdbarch_info info);
1133
1134
1135
1136 /* Register per-architecture data-pointer.
1137
1138 Reserve space for a per-architecture data-pointer. An identifier
1139 for the reserved data-pointer is returned. That identifer should
1140 be saved in a local static variable.
1141
1142 The per-architecture data-pointer is either initialized explicitly
1143 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1144 gdbarch_data()).
1145
1146 Memory for the per-architecture data shall be allocated using
1147 gdbarch_obstack_zalloc. That memory will be deleted when the
1148 corresponding architecture object is deleted.
1149
1150 When a previously created architecture is re-selected, the
1151 per-architecture data-pointer for that previous architecture is
1152 restored. INIT() is not re-called.
1153
1154 Multiple registrarants for any architecture are allowed (and
1155 strongly encouraged). */
1156
1157 struct gdbarch_data;
1158
1159 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1160 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1161 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1163 void *pointer);
1164
1165 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166
1167
1168 /* Register per-architecture memory region.
1169
1170 Provide a memory-region swap mechanism. Per-architecture memory
1171 region are created. These memory regions are swapped whenever the
1172 architecture is changed. For a new architecture, the memory region
1173 is initialized with zero (0) and the INIT function is called.
1174
1175 Memory regions are swapped / initialized in the order that they are
1176 registered. NULL DATA and/or INIT values can be specified.
1177
1178 New code should use register_gdbarch_data(). */
1179
1180 typedef void (gdbarch_swap_ftype) (void);
1181 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1182 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1183
1184
1185
1186 /* The target-system-dependent byte order is dynamic */
1187
1188 extern int target_byte_order;
1189 #ifndef TARGET_BYTE_ORDER
1190 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1191 #endif
1192
1193 extern int target_byte_order_auto;
1194 #ifndef TARGET_BYTE_ORDER_AUTO
1195 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1196 #endif
1197
1198
1199
1200 /* The target-system-dependent BFD architecture is dynamic */
1201
1202 extern int target_architecture_auto;
1203 #ifndef TARGET_ARCHITECTURE_AUTO
1204 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1205 #endif
1206
1207 extern const struct bfd_arch_info *target_architecture;
1208 #ifndef TARGET_ARCHITECTURE
1209 #define TARGET_ARCHITECTURE (target_architecture + 0)
1210 #endif
1211
1212
1213 /* Set the dynamic target-system-dependent parameters (architecture,
1214 byte-order, ...) using information found in the BFD */
1215
1216 extern void set_gdbarch_from_file (bfd *);
1217
1218
1219 /* Initialize the current architecture to the "first" one we find on
1220 our list. */
1221
1222 extern void initialize_current_architecture (void);
1223
1224 /* For non-multiarched targets, do any initialization of the default
1225 gdbarch object necessary after the _initialize_MODULE functions
1226 have run. */
1227 extern void initialize_non_multiarch (void);
1228
1229 /* gdbarch trace variable */
1230 extern int gdbarch_debug;
1231
1232 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1233
1234 #endif
1235 EOF
1236 exec 1>&2
1237 #../move-if-change new-gdbarch.h gdbarch.h
1238 compare_new gdbarch.h
1239
1240
1241 #
1242 # C file
1243 #
1244
1245 exec > new-gdbarch.c
1246 copyright
1247 cat <<EOF
1248
1249 #include "defs.h"
1250 #include "arch-utils.h"
1251
1252 #include "gdbcmd.h"
1253 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1254 #include "symcat.h"
1255
1256 #include "floatformat.h"
1257
1258 #include "gdb_assert.h"
1259 #include "gdb_string.h"
1260 #include "gdb-events.h"
1261 #include "reggroups.h"
1262 #include "osabi.h"
1263 #include "symfile.h" /* For entry_point_address. */
1264 #include "gdb_obstack.h"
1265
1266 /* Static function declarations */
1267
1268 static void verify_gdbarch (struct gdbarch *gdbarch);
1269 static void alloc_gdbarch_data (struct gdbarch *);
1270 static void init_gdbarch_swap (struct gdbarch *);
1271 static void clear_gdbarch_swap (struct gdbarch *);
1272 static void swapout_gdbarch_swap (struct gdbarch *);
1273 static void swapin_gdbarch_swap (struct gdbarch *);
1274
1275 /* Non-zero if we want to trace architecture code. */
1276
1277 #ifndef GDBARCH_DEBUG
1278 #define GDBARCH_DEBUG 0
1279 #endif
1280 int gdbarch_debug = GDBARCH_DEBUG;
1281
1282 EOF
1283
1284 # gdbarch open the gdbarch object
1285 printf "\n"
1286 printf "/* Maintain the struct gdbarch object */\n"
1287 printf "\n"
1288 printf "struct gdbarch\n"
1289 printf "{\n"
1290 printf " /* Has this architecture been fully initialized? */\n"
1291 printf " int initialized_p;\n"
1292 printf "\n"
1293 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1294 printf " struct obstack *obstack;\n"
1295 printf "\n"
1296 printf " /* basic architectural information */\n"
1297 function_list | while do_read
1298 do
1299 if class_is_info_p
1300 then
1301 printf " ${returntype} ${function};\n"
1302 fi
1303 done
1304 printf "\n"
1305 printf " /* target specific vector. */\n"
1306 printf " struct gdbarch_tdep *tdep;\n"
1307 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1308 printf "\n"
1309 printf " /* per-architecture data-pointers */\n"
1310 printf " unsigned nr_data;\n"
1311 printf " void **data;\n"
1312 printf "\n"
1313 printf " /* per-architecture swap-regions */\n"
1314 printf " struct gdbarch_swap *swap;\n"
1315 printf "\n"
1316 cat <<EOF
1317 /* Multi-arch values.
1318
1319 When extending this structure you must:
1320
1321 Add the field below.
1322
1323 Declare set/get functions and define the corresponding
1324 macro in gdbarch.h.
1325
1326 gdbarch_alloc(): If zero/NULL is not a suitable default,
1327 initialize the new field.
1328
1329 verify_gdbarch(): Confirm that the target updated the field
1330 correctly.
1331
1332 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1333 field is dumped out
1334
1335 \`\`startup_gdbarch()'': Append an initial value to the static
1336 variable (base values on the host's c-type system).
1337
1338 get_gdbarch(): Implement the set/get functions (probably using
1339 the macro's as shortcuts).
1340
1341 */
1342
1343 EOF
1344 function_list | while do_read
1345 do
1346 if class_is_variable_p
1347 then
1348 printf " ${returntype} ${function};\n"
1349 elif class_is_function_p
1350 then
1351 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1352 fi
1353 done
1354 printf "};\n"
1355
1356 # A pre-initialized vector
1357 printf "\n"
1358 printf "\n"
1359 cat <<EOF
1360 /* The default architecture uses host values (for want of a better
1361 choice). */
1362 EOF
1363 printf "\n"
1364 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1365 printf "\n"
1366 printf "struct gdbarch startup_gdbarch =\n"
1367 printf "{\n"
1368 printf " 1, /* Always initialized. */\n"
1369 printf " NULL, /* The obstack. */\n"
1370 printf " /* basic architecture information */\n"
1371 function_list | while do_read
1372 do
1373 if class_is_info_p
1374 then
1375 printf " ${staticdefault}, /* ${function} */\n"
1376 fi
1377 done
1378 cat <<EOF
1379 /* target specific vector and its dump routine */
1380 NULL, NULL,
1381 /*per-architecture data-pointers and swap regions */
1382 0, NULL, NULL,
1383 /* Multi-arch values */
1384 EOF
1385 function_list | while do_read
1386 do
1387 if class_is_function_p || class_is_variable_p
1388 then
1389 printf " ${staticdefault}, /* ${function} */\n"
1390 fi
1391 done
1392 cat <<EOF
1393 /* startup_gdbarch() */
1394 };
1395
1396 struct gdbarch *current_gdbarch = &startup_gdbarch;
1397
1398 /* Do any initialization needed for a non-multiarch configuration
1399 after the _initialize_MODULE functions have been run. */
1400 void
1401 initialize_non_multiarch (void)
1402 {
1403 alloc_gdbarch_data (&startup_gdbarch);
1404 /* Ensure that all swap areas are zeroed so that they again think
1405 they are starting from scratch. */
1406 clear_gdbarch_swap (&startup_gdbarch);
1407 init_gdbarch_swap (&startup_gdbarch);
1408 }
1409 EOF
1410
1411 # Create a new gdbarch struct
1412 printf "\n"
1413 printf "\n"
1414 cat <<EOF
1415 /* Create a new \`\`struct gdbarch'' based on information provided by
1416 \`\`struct gdbarch_info''. */
1417 EOF
1418 printf "\n"
1419 cat <<EOF
1420 struct gdbarch *
1421 gdbarch_alloc (const struct gdbarch_info *info,
1422 struct gdbarch_tdep *tdep)
1423 {
1424 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1425 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1426 the current local architecture and not the previous global
1427 architecture. This ensures that the new architectures initial
1428 values are not influenced by the previous architecture. Once
1429 everything is parameterised with gdbarch, this will go away. */
1430 struct gdbarch *current_gdbarch;
1431
1432 /* Create an obstack for allocating all the per-architecture memory,
1433 then use that to allocate the architecture vector. */
1434 struct obstack *obstack = XMALLOC (struct obstack);
1435 obstack_init (obstack);
1436 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1437 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1438 current_gdbarch->obstack = obstack;
1439
1440 alloc_gdbarch_data (current_gdbarch);
1441
1442 current_gdbarch->tdep = tdep;
1443 EOF
1444 printf "\n"
1445 function_list | while do_read
1446 do
1447 if class_is_info_p
1448 then
1449 printf " current_gdbarch->${function} = info->${function};\n"
1450 fi
1451 done
1452 printf "\n"
1453 printf " /* Force the explicit initialization of these. */\n"
1454 function_list | while do_read
1455 do
1456 if class_is_function_p || class_is_variable_p
1457 then
1458 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1459 then
1460 printf " current_gdbarch->${function} = ${predefault};\n"
1461 fi
1462 fi
1463 done
1464 cat <<EOF
1465 /* gdbarch_alloc() */
1466
1467 return current_gdbarch;
1468 }
1469 EOF
1470
1471 # Free a gdbarch struct.
1472 printf "\n"
1473 printf "\n"
1474 cat <<EOF
1475 /* Allocate extra space using the per-architecture obstack. */
1476
1477 void *
1478 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1479 {
1480 void *data = obstack_alloc (arch->obstack, size);
1481 memset (data, 0, size);
1482 return data;
1483 }
1484
1485
1486 /* Free a gdbarch struct. This should never happen in normal
1487 operation --- once you've created a gdbarch, you keep it around.
1488 However, if an architecture's init function encounters an error
1489 building the structure, it may need to clean up a partially
1490 constructed gdbarch. */
1491
1492 void
1493 gdbarch_free (struct gdbarch *arch)
1494 {
1495 struct obstack *obstack;
1496 gdb_assert (arch != NULL);
1497 gdb_assert (!arch->initialized_p);
1498 obstack = arch->obstack;
1499 obstack_free (obstack, 0); /* Includes the ARCH. */
1500 xfree (obstack);
1501 }
1502 EOF
1503
1504 # verify a new architecture
1505 printf "\n"
1506 printf "\n"
1507 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1508 printf "\n"
1509 cat <<EOF
1510 static void
1511 verify_gdbarch (struct gdbarch *gdbarch)
1512 {
1513 struct ui_file *log;
1514 struct cleanup *cleanups;
1515 long dummy;
1516 char *buf;
1517 log = mem_fileopen ();
1518 cleanups = make_cleanup_ui_file_delete (log);
1519 /* fundamental */
1520 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1521 fprintf_unfiltered (log, "\n\tbyte-order");
1522 if (gdbarch->bfd_arch_info == NULL)
1523 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1524 /* Check those that need to be defined for the given multi-arch level. */
1525 EOF
1526 function_list | while do_read
1527 do
1528 if class_is_function_p || class_is_variable_p
1529 then
1530 if [ "x${invalid_p}" = "x0" ]
1531 then
1532 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1533 elif class_is_predicate_p
1534 then
1535 printf " /* Skip verify of ${function}, has predicate */\n"
1536 # FIXME: See do_read for potential simplification
1537 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1538 then
1539 printf " if (${invalid_p})\n"
1540 printf " gdbarch->${function} = ${postdefault};\n"
1541 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1542 then
1543 printf " if (gdbarch->${function} == ${predefault})\n"
1544 printf " gdbarch->${function} = ${postdefault};\n"
1545 elif [ -n "${postdefault}" ]
1546 then
1547 printf " if (gdbarch->${function} == 0)\n"
1548 printf " gdbarch->${function} = ${postdefault};\n"
1549 elif [ -n "${invalid_p}" ]
1550 then
1551 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1552 printf " && (${invalid_p}))\n"
1553 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1554 elif [ -n "${predefault}" ]
1555 then
1556 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1557 printf " && (gdbarch->${function} == ${predefault}))\n"
1558 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1559 fi
1560 fi
1561 done
1562 cat <<EOF
1563 buf = ui_file_xstrdup (log, &dummy);
1564 make_cleanup (xfree, buf);
1565 if (strlen (buf) > 0)
1566 internal_error (__FILE__, __LINE__,
1567 "verify_gdbarch: the following are invalid ...%s",
1568 buf);
1569 do_cleanups (cleanups);
1570 }
1571 EOF
1572
1573 # dump the structure
1574 printf "\n"
1575 printf "\n"
1576 cat <<EOF
1577 /* Print out the details of the current architecture. */
1578
1579 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1580 just happens to match the global variable \`\`current_gdbarch''. That
1581 way macros refering to that variable get the local and not the global
1582 version - ulgh. Once everything is parameterised with gdbarch, this
1583 will go away. */
1584
1585 void
1586 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1587 {
1588 fprintf_unfiltered (file,
1589 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1590 GDB_MULTI_ARCH);
1591 EOF
1592 function_list | sort -t: -k 3 | while do_read
1593 do
1594 # First the predicate
1595 if class_is_predicate_p
1596 then
1597 if class_is_multiarch_p
1598 then
1599 printf " fprintf_unfiltered (file,\n"
1600 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1601 printf " gdbarch_${function}_p (current_gdbarch));\n"
1602 else
1603 printf "#ifdef ${macro}_P\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1606 printf " \"${macro}_P()\",\n"
1607 printf " XSTRING (${macro}_P ()));\n"
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1610 printf " ${macro}_P ());\n"
1611 printf "#endif\n"
1612 fi
1613 fi
1614 # multiarch functions don't have macros.
1615 if class_is_multiarch_p
1616 then
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1619 printf " (long) current_gdbarch->${function});\n"
1620 continue
1621 fi
1622 # Print the macro definition.
1623 printf "#ifdef ${macro}\n"
1624 if class_is_function_p
1625 then
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}(${actual})\",\n"
1629 printf " XSTRING (${macro} (${actual})));\n"
1630 else
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1633 printf " XSTRING (${macro}));\n"
1634 fi
1635 if [ "x${print_p}" = "x()" ]
1636 then
1637 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1638 elif [ "x${print_p}" = "x0" ]
1639 then
1640 printf " /* skip print of ${macro}, print_p == 0. */\n"
1641 elif [ -n "${print_p}" ]
1642 then
1643 printf " if (${print_p})\n"
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1646 printf " ${print});\n"
1647 elif class_is_function_p
1648 then
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1651 printf " (long) current_gdbarch->${function}\n"
1652 printf " /*${macro} ()*/);\n"
1653 else
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1656 printf " ${print});\n"
1657 fi
1658 printf "#endif\n"
1659 done
1660 cat <<EOF
1661 if (current_gdbarch->dump_tdep != NULL)
1662 current_gdbarch->dump_tdep (current_gdbarch, file);
1663 }
1664 EOF
1665
1666
1667 # GET/SET
1668 printf "\n"
1669 cat <<EOF
1670 struct gdbarch_tdep *
1671 gdbarch_tdep (struct gdbarch *gdbarch)
1672 {
1673 if (gdbarch_debug >= 2)
1674 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1675 return gdbarch->tdep;
1676 }
1677 EOF
1678 printf "\n"
1679 function_list | while do_read
1680 do
1681 if class_is_predicate_p
1682 then
1683 printf "\n"
1684 printf "int\n"
1685 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1686 printf "{\n"
1687 printf " gdb_assert (gdbarch != NULL);\n"
1688 printf " return ${predicate};\n"
1689 printf "}\n"
1690 fi
1691 if class_is_function_p
1692 then
1693 printf "\n"
1694 printf "${returntype}\n"
1695 if [ "x${formal}" = "xvoid" ]
1696 then
1697 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1698 else
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1700 fi
1701 printf "{\n"
1702 printf " gdb_assert (gdbarch != NULL);\n"
1703 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1704 if class_is_predicate_p && test -n "${predefault}"
1705 then
1706 # Allow a call to a function with a predicate.
1707 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1708 fi
1709 printf " if (gdbarch_debug >= 2)\n"
1710 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1711 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1712 then
1713 if class_is_multiarch_p
1714 then
1715 params="gdbarch"
1716 else
1717 params=""
1718 fi
1719 else
1720 if class_is_multiarch_p
1721 then
1722 params="gdbarch, ${actual}"
1723 else
1724 params="${actual}"
1725 fi
1726 fi
1727 if [ "x${returntype}" = "xvoid" ]
1728 then
1729 printf " gdbarch->${function} (${params});\n"
1730 else
1731 printf " return gdbarch->${function} (${params});\n"
1732 fi
1733 printf "}\n"
1734 printf "\n"
1735 printf "void\n"
1736 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1737 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1738 printf "{\n"
1739 printf " gdbarch->${function} = ${function};\n"
1740 printf "}\n"
1741 elif class_is_variable_p
1742 then
1743 printf "\n"
1744 printf "${returntype}\n"
1745 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1746 printf "{\n"
1747 printf " gdb_assert (gdbarch != NULL);\n"
1748 if [ "x${invalid_p}" = "x0" ]
1749 then
1750 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1751 elif [ -n "${invalid_p}" ]
1752 then
1753 printf " /* Check variable is valid. */\n"
1754 printf " gdb_assert (!(${invalid_p}));\n"
1755 elif [ -n "${predefault}" ]
1756 then
1757 printf " /* Check variable changed from pre-default. */\n"
1758 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1759 fi
1760 printf " if (gdbarch_debug >= 2)\n"
1761 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1762 printf " return gdbarch->${function};\n"
1763 printf "}\n"
1764 printf "\n"
1765 printf "void\n"
1766 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1767 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1768 printf "{\n"
1769 printf " gdbarch->${function} = ${function};\n"
1770 printf "}\n"
1771 elif class_is_info_p
1772 then
1773 printf "\n"
1774 printf "${returntype}\n"
1775 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1776 printf "{\n"
1777 printf " gdb_assert (gdbarch != NULL);\n"
1778 printf " if (gdbarch_debug >= 2)\n"
1779 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1780 printf " return gdbarch->${function};\n"
1781 printf "}\n"
1782 fi
1783 done
1784
1785 # All the trailing guff
1786 cat <<EOF
1787
1788
1789 /* Keep a registry of per-architecture data-pointers required by GDB
1790 modules. */
1791
1792 struct gdbarch_data
1793 {
1794 unsigned index;
1795 int init_p;
1796 gdbarch_data_init_ftype *init;
1797 };
1798
1799 struct gdbarch_data_registration
1800 {
1801 struct gdbarch_data *data;
1802 struct gdbarch_data_registration *next;
1803 };
1804
1805 struct gdbarch_data_registry
1806 {
1807 unsigned nr;
1808 struct gdbarch_data_registration *registrations;
1809 };
1810
1811 struct gdbarch_data_registry gdbarch_data_registry =
1812 {
1813 0, NULL,
1814 };
1815
1816 struct gdbarch_data *
1817 register_gdbarch_data (gdbarch_data_init_ftype *init)
1818 {
1819 struct gdbarch_data_registration **curr;
1820 /* Append the new registraration. */
1821 for (curr = &gdbarch_data_registry.registrations;
1822 (*curr) != NULL;
1823 curr = &(*curr)->next);
1824 (*curr) = XMALLOC (struct gdbarch_data_registration);
1825 (*curr)->next = NULL;
1826 (*curr)->data = XMALLOC (struct gdbarch_data);
1827 (*curr)->data->index = gdbarch_data_registry.nr++;
1828 (*curr)->data->init = init;
1829 (*curr)->data->init_p = 1;
1830 return (*curr)->data;
1831 }
1832
1833
1834 /* Create/delete the gdbarch data vector. */
1835
1836 static void
1837 alloc_gdbarch_data (struct gdbarch *gdbarch)
1838 {
1839 gdb_assert (gdbarch->data == NULL);
1840 gdbarch->nr_data = gdbarch_data_registry.nr;
1841 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1842 }
1843
1844 /* Initialize the current value of the specified per-architecture
1845 data-pointer. */
1846
1847 void
1848 set_gdbarch_data (struct gdbarch *gdbarch,
1849 struct gdbarch_data *data,
1850 void *pointer)
1851 {
1852 gdb_assert (data->index < gdbarch->nr_data);
1853 gdb_assert (gdbarch->data[data->index] == NULL);
1854 gdbarch->data[data->index] = pointer;
1855 }
1856
1857 /* Return the current value of the specified per-architecture
1858 data-pointer. */
1859
1860 void *
1861 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1862 {
1863 gdb_assert (data->index < gdbarch->nr_data);
1864 /* The data-pointer isn't initialized, call init() to get a value but
1865 only if the architecture initializaiton has completed. Otherwise
1866 punt - hope that the caller knows what they are doing. */
1867 if (gdbarch->data[data->index] == NULL
1868 && gdbarch->initialized_p)
1869 {
1870 /* Be careful to detect an initialization cycle. */
1871 gdb_assert (data->init_p);
1872 data->init_p = 0;
1873 gdb_assert (data->init != NULL);
1874 gdbarch->data[data->index] = data->init (gdbarch);
1875 data->init_p = 1;
1876 gdb_assert (gdbarch->data[data->index] != NULL);
1877 }
1878 return gdbarch->data[data->index];
1879 }
1880
1881
1882
1883 /* Keep a registry of swapped data required by GDB modules. */
1884
1885 struct gdbarch_swap
1886 {
1887 void *swap;
1888 struct gdbarch_swap_registration *source;
1889 struct gdbarch_swap *next;
1890 };
1891
1892 struct gdbarch_swap_registration
1893 {
1894 void *data;
1895 unsigned long sizeof_data;
1896 gdbarch_swap_ftype *init;
1897 struct gdbarch_swap_registration *next;
1898 };
1899
1900 struct gdbarch_swap_registry
1901 {
1902 int nr;
1903 struct gdbarch_swap_registration *registrations;
1904 };
1905
1906 struct gdbarch_swap_registry gdbarch_swap_registry =
1907 {
1908 0, NULL,
1909 };
1910
1911 void
1912 register_gdbarch_swap (void *data,
1913 unsigned long sizeof_data,
1914 gdbarch_swap_ftype *init)
1915 {
1916 struct gdbarch_swap_registration **rego;
1917 for (rego = &gdbarch_swap_registry.registrations;
1918 (*rego) != NULL;
1919 rego = &(*rego)->next);
1920 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1921 (*rego)->next = NULL;
1922 (*rego)->init = init;
1923 (*rego)->data = data;
1924 (*rego)->sizeof_data = sizeof_data;
1925 }
1926
1927 static void
1928 clear_gdbarch_swap (struct gdbarch *gdbarch)
1929 {
1930 struct gdbarch_swap *curr;
1931 for (curr = gdbarch->swap;
1932 curr != NULL;
1933 curr = curr->next)
1934 {
1935 memset (curr->source->data, 0, curr->source->sizeof_data);
1936 }
1937 }
1938
1939 static void
1940 init_gdbarch_swap (struct gdbarch *gdbarch)
1941 {
1942 struct gdbarch_swap_registration *rego;
1943 struct gdbarch_swap **curr = &gdbarch->swap;
1944 for (rego = gdbarch_swap_registry.registrations;
1945 rego != NULL;
1946 rego = rego->next)
1947 {
1948 if (rego->data != NULL)
1949 {
1950 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1951 (*curr)->source = rego;
1952 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1953 (*curr)->next = NULL;
1954 curr = &(*curr)->next;
1955 }
1956 if (rego->init != NULL)
1957 rego->init ();
1958 }
1959 }
1960
1961 static void
1962 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1963 {
1964 struct gdbarch_swap *curr;
1965 for (curr = gdbarch->swap;
1966 curr != NULL;
1967 curr = curr->next)
1968 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1969 }
1970
1971 static void
1972 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1973 {
1974 struct gdbarch_swap *curr;
1975 for (curr = gdbarch->swap;
1976 curr != NULL;
1977 curr = curr->next)
1978 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1979 }
1980
1981
1982 /* Keep a registry of the architectures known by GDB. */
1983
1984 struct gdbarch_registration
1985 {
1986 enum bfd_architecture bfd_architecture;
1987 gdbarch_init_ftype *init;
1988 gdbarch_dump_tdep_ftype *dump_tdep;
1989 struct gdbarch_list *arches;
1990 struct gdbarch_registration *next;
1991 };
1992
1993 static struct gdbarch_registration *gdbarch_registry = NULL;
1994
1995 static void
1996 append_name (const char ***buf, int *nr, const char *name)
1997 {
1998 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1999 (*buf)[*nr] = name;
2000 *nr += 1;
2001 }
2002
2003 const char **
2004 gdbarch_printable_names (void)
2005 {
2006 /* Accumulate a list of names based on the registed list of
2007 architectures. */
2008 enum bfd_architecture a;
2009 int nr_arches = 0;
2010 const char **arches = NULL;
2011 struct gdbarch_registration *rego;
2012 for (rego = gdbarch_registry;
2013 rego != NULL;
2014 rego = rego->next)
2015 {
2016 const struct bfd_arch_info *ap;
2017 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2018 if (ap == NULL)
2019 internal_error (__FILE__, __LINE__,
2020 "gdbarch_architecture_names: multi-arch unknown");
2021 do
2022 {
2023 append_name (&arches, &nr_arches, ap->printable_name);
2024 ap = ap->next;
2025 }
2026 while (ap != NULL);
2027 }
2028 append_name (&arches, &nr_arches, NULL);
2029 return arches;
2030 }
2031
2032
2033 void
2034 gdbarch_register (enum bfd_architecture bfd_architecture,
2035 gdbarch_init_ftype *init,
2036 gdbarch_dump_tdep_ftype *dump_tdep)
2037 {
2038 struct gdbarch_registration **curr;
2039 const struct bfd_arch_info *bfd_arch_info;
2040 /* Check that BFD recognizes this architecture */
2041 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2042 if (bfd_arch_info == NULL)
2043 {
2044 internal_error (__FILE__, __LINE__,
2045 "gdbarch: Attempt to register unknown architecture (%d)",
2046 bfd_architecture);
2047 }
2048 /* Check that we haven't seen this architecture before */
2049 for (curr = &gdbarch_registry;
2050 (*curr) != NULL;
2051 curr = &(*curr)->next)
2052 {
2053 if (bfd_architecture == (*curr)->bfd_architecture)
2054 internal_error (__FILE__, __LINE__,
2055 "gdbarch: Duplicate registraration of architecture (%s)",
2056 bfd_arch_info->printable_name);
2057 }
2058 /* log it */
2059 if (gdbarch_debug)
2060 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2061 bfd_arch_info->printable_name,
2062 (long) init);
2063 /* Append it */
2064 (*curr) = XMALLOC (struct gdbarch_registration);
2065 (*curr)->bfd_architecture = bfd_architecture;
2066 (*curr)->init = init;
2067 (*curr)->dump_tdep = dump_tdep;
2068 (*curr)->arches = NULL;
2069 (*curr)->next = NULL;
2070 }
2071
2072 void
2073 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2074 gdbarch_init_ftype *init)
2075 {
2076 gdbarch_register (bfd_architecture, init, NULL);
2077 }
2078
2079
2080 /* Look for an architecture using gdbarch_info. Base search on only
2081 BFD_ARCH_INFO and BYTE_ORDER. */
2082
2083 struct gdbarch_list *
2084 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2085 const struct gdbarch_info *info)
2086 {
2087 for (; arches != NULL; arches = arches->next)
2088 {
2089 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2090 continue;
2091 if (info->byte_order != arches->gdbarch->byte_order)
2092 continue;
2093 if (info->osabi != arches->gdbarch->osabi)
2094 continue;
2095 return arches;
2096 }
2097 return NULL;
2098 }
2099
2100
2101 /* Update the current architecture. Return ZERO if the update request
2102 failed. */
2103
2104 int
2105 gdbarch_update_p (struct gdbarch_info info)
2106 {
2107 struct gdbarch *new_gdbarch;
2108 struct gdbarch *old_gdbarch;
2109 struct gdbarch_registration *rego;
2110
2111 /* Fill in missing parts of the INFO struct using a number of
2112 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2113
2114 /* \`\`(gdb) set architecture ...'' */
2115 if (info.bfd_arch_info == NULL
2116 && !TARGET_ARCHITECTURE_AUTO)
2117 info.bfd_arch_info = TARGET_ARCHITECTURE;
2118 if (info.bfd_arch_info == NULL
2119 && info.abfd != NULL
2120 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2121 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2122 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2123 if (info.bfd_arch_info == NULL)
2124 info.bfd_arch_info = TARGET_ARCHITECTURE;
2125
2126 /* \`\`(gdb) set byte-order ...'' */
2127 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2128 && !TARGET_BYTE_ORDER_AUTO)
2129 info.byte_order = TARGET_BYTE_ORDER;
2130 /* From the INFO struct. */
2131 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2132 && info.abfd != NULL)
2133 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2134 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2135 : BFD_ENDIAN_UNKNOWN);
2136 /* From the current target. */
2137 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2138 info.byte_order = TARGET_BYTE_ORDER;
2139
2140 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2141 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2142 info.osabi = gdbarch_lookup_osabi (info.abfd);
2143 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2144 info.osabi = current_gdbarch->osabi;
2145
2146 /* Must have found some sort of architecture. */
2147 gdb_assert (info.bfd_arch_info != NULL);
2148
2149 if (gdbarch_debug)
2150 {
2151 fprintf_unfiltered (gdb_stdlog,
2152 "gdbarch_update: info.bfd_arch_info %s\n",
2153 (info.bfd_arch_info != NULL
2154 ? info.bfd_arch_info->printable_name
2155 : "(null)"));
2156 fprintf_unfiltered (gdb_stdlog,
2157 "gdbarch_update: info.byte_order %d (%s)\n",
2158 info.byte_order,
2159 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2160 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2161 : "default"));
2162 fprintf_unfiltered (gdb_stdlog,
2163 "gdbarch_update: info.osabi %d (%s)\n",
2164 info.osabi, gdbarch_osabi_name (info.osabi));
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.abfd 0x%lx\n",
2167 (long) info.abfd);
2168 fprintf_unfiltered (gdb_stdlog,
2169 "gdbarch_update: info.tdep_info 0x%lx\n",
2170 (long) info.tdep_info);
2171 }
2172
2173 /* Find the target that knows about this architecture. */
2174 for (rego = gdbarch_registry;
2175 rego != NULL;
2176 rego = rego->next)
2177 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2178 break;
2179 if (rego == NULL)
2180 {
2181 if (gdbarch_debug)
2182 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2183 return 0;
2184 }
2185
2186 /* Swap the data belonging to the old target out setting the
2187 installed data to zero. This stops the ->init() function trying
2188 to refer to the previous architecture's global data structures. */
2189 swapout_gdbarch_swap (current_gdbarch);
2190 clear_gdbarch_swap (current_gdbarch);
2191
2192 /* Save the previously selected architecture, setting the global to
2193 NULL. This stops ->init() trying to use the previous
2194 architecture's configuration. The previous architecture may not
2195 even be of the same architecture family. The most recent
2196 architecture of the same family is found at the head of the
2197 rego->arches list. */
2198 old_gdbarch = current_gdbarch;
2199 current_gdbarch = NULL;
2200
2201 /* Ask the target for a replacement architecture. */
2202 new_gdbarch = rego->init (info, rego->arches);
2203
2204 /* Did the target like it? No. Reject the change and revert to the
2205 old architecture. */
2206 if (new_gdbarch == NULL)
2207 {
2208 if (gdbarch_debug)
2209 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2210 swapin_gdbarch_swap (old_gdbarch);
2211 current_gdbarch = old_gdbarch;
2212 return 0;
2213 }
2214
2215 /* Did the architecture change? No. Oops, put the old architecture
2216 back. */
2217 if (old_gdbarch == new_gdbarch)
2218 {
2219 if (gdbarch_debug)
2220 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2221 (long) new_gdbarch,
2222 new_gdbarch->bfd_arch_info->printable_name);
2223 swapin_gdbarch_swap (old_gdbarch);
2224 current_gdbarch = old_gdbarch;
2225 return 1;
2226 }
2227
2228 /* Is this a pre-existing architecture? Yes. Move it to the front
2229 of the list of architectures (keeping the list sorted Most
2230 Recently Used) and then copy it in. */
2231 {
2232 struct gdbarch_list **list;
2233 for (list = &rego->arches;
2234 (*list) != NULL;
2235 list = &(*list)->next)
2236 {
2237 if ((*list)->gdbarch == new_gdbarch)
2238 {
2239 struct gdbarch_list *this;
2240 if (gdbarch_debug)
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2243 (long) new_gdbarch,
2244 new_gdbarch->bfd_arch_info->printable_name);
2245 /* Unlink this. */
2246 this = (*list);
2247 (*list) = this->next;
2248 /* Insert in the front. */
2249 this->next = rego->arches;
2250 rego->arches = this;
2251 /* Copy the new architecture in. */
2252 current_gdbarch = new_gdbarch;
2253 swapin_gdbarch_swap (new_gdbarch);
2254 architecture_changed_event ();
2255 return 1;
2256 }
2257 }
2258 }
2259
2260 /* Prepend this new architecture to the architecture list (keep the
2261 list sorted Most Recently Used). */
2262 {
2263 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2264 this->next = rego->arches;
2265 this->gdbarch = new_gdbarch;
2266 rego->arches = this;
2267 }
2268
2269 /* Switch to this new architecture marking it initialized. */
2270 current_gdbarch = new_gdbarch;
2271 current_gdbarch->initialized_p = 1;
2272 if (gdbarch_debug)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
2275 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2276 (long) new_gdbarch,
2277 new_gdbarch->bfd_arch_info->printable_name);
2278 }
2279
2280 /* Check that the newly installed architecture is valid. Plug in
2281 any post init values. */
2282 new_gdbarch->dump_tdep = rego->dump_tdep;
2283 verify_gdbarch (new_gdbarch);
2284
2285 /* Initialize the per-architecture memory (swap) areas.
2286 CURRENT_GDBARCH must be update before these modules are
2287 called. */
2288 init_gdbarch_swap (new_gdbarch);
2289
2290 /* Initialize the per-architecture data. CURRENT_GDBARCH
2291 must be updated before these modules are called. */
2292 architecture_changed_event ();
2293
2294 if (gdbarch_debug)
2295 gdbarch_dump (current_gdbarch, gdb_stdlog);
2296
2297 return 1;
2298 }
2299
2300
2301 extern void _initialize_gdbarch (void);
2302
2303 void
2304 _initialize_gdbarch (void)
2305 {
2306 struct cmd_list_element *c;
2307
2308 add_show_from_set (add_set_cmd ("arch",
2309 class_maintenance,
2310 var_zinteger,
2311 (char *)&gdbarch_debug,
2312 "Set architecture debugging.\\n\\
2313 When non-zero, architecture debugging is enabled.", &setdebuglist),
2314 &showdebuglist);
2315 c = add_set_cmd ("archdebug",
2316 class_maintenance,
2317 var_zinteger,
2318 (char *)&gdbarch_debug,
2319 "Set architecture debugging.\\n\\
2320 When non-zero, architecture debugging is enabled.", &setlist);
2321
2322 deprecate_cmd (c, "set debug arch");
2323 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2324 }
2325 EOF
2326
2327 # close things off
2328 exec 1>&2
2329 #../move-if-change new-gdbarch.c gdbarch.c
2330 compare_new gdbarch.c
This page took 0.08834 seconds and 4 git commands to generate.