2013-09-02 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
482
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
493 #
494 v:int:believe_pcc_promotion:::::::
495 #
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
512 #
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
514 #
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
518 # for instance).
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
520
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
540
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
548
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
550
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
554
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
557 #
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
564 #
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
568 #
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # The elfcore writer hook to use to write Linux prpsinfo notes to core
645 # files. Most Linux architectures use the same prpsinfo32 or
646 # prpsinfo64 layouts, and so won't need to provide this hook, as we
647 # call the Linux generic routines in bfd to write prpsinfo notes by
648 # default.
649 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
650
651 # Find core file memory regions
652 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
653
654 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
655 # core file into buffer READBUF with length LEN.
656 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
657
658 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
659 # libraries list from core file into buffer READBUF with length LEN.
660 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
661
662 # How the core target converts a PTID from a core file to a string.
663 M:char *:core_pid_to_str:ptid_t ptid:ptid
664
665 # BFD target to use when generating a core file.
666 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
667
668 # If the elements of C++ vtables are in-place function descriptors rather
669 # than normal function pointers (which may point to code or a descriptor),
670 # set this to one.
671 v:int:vtable_function_descriptors:::0:0::0
672
673 # Set if the least significant bit of the delta is used instead of the least
674 # significant bit of the pfn for pointers to virtual member functions.
675 v:int:vbit_in_delta:::0:0::0
676
677 # Advance PC to next instruction in order to skip a permanent breakpoint.
678 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
679
680 # The maximum length of an instruction on this architecture in bytes.
681 V:ULONGEST:max_insn_length:::0:0
682
683 # Copy the instruction at FROM to TO, and make any adjustments
684 # necessary to single-step it at that address.
685 #
686 # REGS holds the state the thread's registers will have before
687 # executing the copied instruction; the PC in REGS will refer to FROM,
688 # not the copy at TO. The caller should update it to point at TO later.
689 #
690 # Return a pointer to data of the architecture's choice to be passed
691 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
692 # the instruction's effects have been completely simulated, with the
693 # resulting state written back to REGS.
694 #
695 # For a general explanation of displaced stepping and how GDB uses it,
696 # see the comments in infrun.c.
697 #
698 # The TO area is only guaranteed to have space for
699 # gdbarch_max_insn_length (arch) bytes, so this function must not
700 # write more bytes than that to that area.
701 #
702 # If you do not provide this function, GDB assumes that the
703 # architecture does not support displaced stepping.
704 #
705 # If your architecture doesn't need to adjust instructions before
706 # single-stepping them, consider using simple_displaced_step_copy_insn
707 # here.
708 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
709
710 # Return true if GDB should use hardware single-stepping to execute
711 # the displaced instruction identified by CLOSURE. If false,
712 # GDB will simply restart execution at the displaced instruction
713 # location, and it is up to the target to ensure GDB will receive
714 # control again (e.g. by placing a software breakpoint instruction
715 # into the displaced instruction buffer).
716 #
717 # The default implementation returns false on all targets that
718 # provide a gdbarch_software_single_step routine, and true otherwise.
719 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
720
721 # Fix up the state resulting from successfully single-stepping a
722 # displaced instruction, to give the result we would have gotten from
723 # stepping the instruction in its original location.
724 #
725 # REGS is the register state resulting from single-stepping the
726 # displaced instruction.
727 #
728 # CLOSURE is the result from the matching call to
729 # gdbarch_displaced_step_copy_insn.
730 #
731 # If you provide gdbarch_displaced_step_copy_insn.but not this
732 # function, then GDB assumes that no fixup is needed after
733 # single-stepping the instruction.
734 #
735 # For a general explanation of displaced stepping and how GDB uses it,
736 # see the comments in infrun.c.
737 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
738
739 # Free a closure returned by gdbarch_displaced_step_copy_insn.
740 #
741 # If you provide gdbarch_displaced_step_copy_insn, you must provide
742 # this function as well.
743 #
744 # If your architecture uses closures that don't need to be freed, then
745 # you can use simple_displaced_step_free_closure here.
746 #
747 # For a general explanation of displaced stepping and how GDB uses it,
748 # see the comments in infrun.c.
749 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
750
751 # Return the address of an appropriate place to put displaced
752 # instructions while we step over them. There need only be one such
753 # place, since we're only stepping one thread over a breakpoint at a
754 # time.
755 #
756 # For a general explanation of displaced stepping and how GDB uses it,
757 # see the comments in infrun.c.
758 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
759
760 # Relocate an instruction to execute at a different address. OLDLOC
761 # is the address in the inferior memory where the instruction to
762 # relocate is currently at. On input, TO points to the destination
763 # where we want the instruction to be copied (and possibly adjusted)
764 # to. On output, it points to one past the end of the resulting
765 # instruction(s). The effect of executing the instruction at TO shall
766 # be the same as if executing it at FROM. For example, call
767 # instructions that implicitly push the return address on the stack
768 # should be adjusted to return to the instruction after OLDLOC;
769 # relative branches, and other PC-relative instructions need the
770 # offset adjusted; etc.
771 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
772
773 # Refresh overlay mapped state for section OSECT.
774 F:void:overlay_update:struct obj_section *osect:osect
775
776 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
777
778 # Handle special encoding of static variables in stabs debug info.
779 F:const char *:static_transform_name:const char *name:name
780 # Set if the address in N_SO or N_FUN stabs may be zero.
781 v:int:sofun_address_maybe_missing:::0:0::0
782
783 # Parse the instruction at ADDR storing in the record execution log
784 # the registers REGCACHE and memory ranges that will be affected when
785 # the instruction executes, along with their current values.
786 # Return -1 if something goes wrong, 0 otherwise.
787 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
788
789 # Save process state after a signal.
790 # Return -1 if something goes wrong, 0 otherwise.
791 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
792
793 # Signal translation: translate inferior's signal (target's) number
794 # into GDB's representation. The implementation of this method must
795 # be host independent. IOW, don't rely on symbols of the NAT_FILE
796 # header (the nm-*.h files), the host <signal.h> header, or similar
797 # headers. This is mainly used when cross-debugging core files ---
798 # "Live" targets hide the translation behind the target interface
799 # (target_wait, target_resume, etc.).
800 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
801
802 # Signal translation: translate the GDB's internal signal number into
803 # the inferior's signal (target's) representation. The implementation
804 # of this method must be host independent. IOW, don't rely on symbols
805 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
806 # header, or similar headers.
807 # Return the target signal number if found, or -1 if the GDB internal
808 # signal number is invalid.
809 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
810
811 # Extra signal info inspection.
812 #
813 # Return a type suitable to inspect extra signal information.
814 M:struct type *:get_siginfo_type:void:
815
816 # Record architecture-specific information from the symbol table.
817 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
818
819 # Function for the 'catch syscall' feature.
820
821 # Get architecture-specific system calls information from registers.
822 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
823
824 # SystemTap related fields and functions.
825
826 # Prefix used to mark an integer constant on the architecture's assembly
827 # For example, on x86 integer constants are written as:
828 #
829 # \$10 ;; integer constant 10
830 #
831 # in this case, this prefix would be the character \`\$\'.
832 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
833
834 # Suffix used to mark an integer constant on the architecture's assembly.
835 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
836
837 # Prefix used to mark a register name on the architecture's assembly.
838 # For example, on x86 the register name is written as:
839 #
840 # \%eax ;; register eax
841 #
842 # in this case, this prefix would be the character \`\%\'.
843 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
844
845 # Suffix used to mark a register name on the architecture's assembly
846 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
847
848 # Prefix used to mark a register indirection on the architecture's assembly.
849 # For example, on x86 the register indirection is written as:
850 #
851 # \(\%eax\) ;; indirecting eax
852 #
853 # in this case, this prefix would be the charater \`\(\'.
854 #
855 # Please note that we use the indirection prefix also for register
856 # displacement, e.g., \`4\(\%eax\)\' on x86.
857 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
858
859 # Suffix used to mark a register indirection on the architecture's assembly.
860 # For example, on x86 the register indirection is written as:
861 #
862 # \(\%eax\) ;; indirecting eax
863 #
864 # in this case, this prefix would be the charater \`\)\'.
865 #
866 # Please note that we use the indirection suffix also for register
867 # displacement, e.g., \`4\(\%eax\)\' on x86.
868 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
869
870 # Prefix used to name a register using GDB's nomenclature.
871 #
872 # For example, on PPC a register is represented by a number in the assembly
873 # language (e.g., \`10\' is the 10th general-purpose register). However,
874 # inside GDB this same register has an \`r\' appended to its name, so the 10th
875 # register would be represented as \`r10\' internally.
876 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
877
878 # Suffix used to name a register using GDB's nomenclature.
879 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
880
881 # Check if S is a single operand.
882 #
883 # Single operands can be:
884 # \- Literal integers, e.g. \`\$10\' on x86
885 # \- Register access, e.g. \`\%eax\' on x86
886 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
887 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
888 #
889 # This function should check for these patterns on the string
890 # and return 1 if some were found, or zero otherwise. Please try to match
891 # as much info as you can from the string, i.e., if you have to match
892 # something like \`\(\%\', do not match just the \`\(\'.
893 M:int:stap_is_single_operand:const char *s:s
894
895 # Function used to handle a "special case" in the parser.
896 #
897 # A "special case" is considered to be an unknown token, i.e., a token
898 # that the parser does not know how to parse. A good example of special
899 # case would be ARM's register displacement syntax:
900 #
901 # [R0, #4] ;; displacing R0 by 4
902 #
903 # Since the parser assumes that a register displacement is of the form:
904 #
905 # <number> <indirection_prefix> <register_name> <indirection_suffix>
906 #
907 # it means that it will not be able to recognize and parse this odd syntax.
908 # Therefore, we should add a special case function that will handle this token.
909 #
910 # This function should generate the proper expression form of the expression
911 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
912 # and so on). It should also return 1 if the parsing was successful, or zero
913 # if the token was not recognized as a special token (in this case, returning
914 # zero means that the special parser is deferring the parsing to the generic
915 # parser), and should advance the buffer pointer (p->arg).
916 M:int:stap_parse_special_token:struct stap_parse_info *p:p
917
918
919 # True if the list of shared libraries is one and only for all
920 # processes, as opposed to a list of shared libraries per inferior.
921 # This usually means that all processes, although may or may not share
922 # an address space, will see the same set of symbols at the same
923 # addresses.
924 v:int:has_global_solist:::0:0::0
925
926 # On some targets, even though each inferior has its own private
927 # address space, the debug interface takes care of making breakpoints
928 # visible to all address spaces automatically. For such cases,
929 # this property should be set to true.
930 v:int:has_global_breakpoints:::0:0::0
931
932 # True if inferiors share an address space (e.g., uClinux).
933 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
934
935 # True if a fast tracepoint can be set at an address.
936 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
937
938 # Return the "auto" target charset.
939 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
940 # Return the "auto" target wide charset.
941 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
942
943 # If non-empty, this is a file extension that will be opened in place
944 # of the file extension reported by the shared library list.
945 #
946 # This is most useful for toolchains that use a post-linker tool,
947 # where the names of the files run on the target differ in extension
948 # compared to the names of the files GDB should load for debug info.
949 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
950
951 # If true, the target OS has DOS-based file system semantics. That
952 # is, absolute paths include a drive name, and the backslash is
953 # considered a directory separator.
954 v:int:has_dos_based_file_system:::0:0::0
955
956 # Generate bytecodes to collect the return address in a frame.
957 # Since the bytecodes run on the target, possibly with GDB not even
958 # connected, the full unwinding machinery is not available, and
959 # typically this function will issue bytecodes for one or more likely
960 # places that the return address may be found.
961 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
962
963 # Implement the "info proc" command.
964 M:void:info_proc:char *args, enum info_proc_what what:args, what
965
966 # Implement the "info proc" command for core files. Noe that there
967 # are two "info_proc"-like methods on gdbarch -- one for core files,
968 # one for live targets.
969 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
970
971 # Iterate over all objfiles in the order that makes the most sense
972 # for the architecture to make global symbol searches.
973 #
974 # CB is a callback function where OBJFILE is the objfile to be searched,
975 # and CB_DATA a pointer to user-defined data (the same data that is passed
976 # when calling this gdbarch method). The iteration stops if this function
977 # returns nonzero.
978 #
979 # CB_DATA is a pointer to some user-defined data to be passed to
980 # the callback.
981 #
982 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
983 # inspected when the symbol search was requested.
984 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
985
986 # Ravenscar arch-dependent ops.
987 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
988 EOF
989 }
990
991 #
992 # The .log file
993 #
994 exec > new-gdbarch.log
995 function_list | while do_read
996 do
997 cat <<EOF
998 ${class} ${returntype} ${function} ($formal)
999 EOF
1000 for r in ${read}
1001 do
1002 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1003 done
1004 if class_is_predicate_p && fallback_default_p
1005 then
1006 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1007 kill $$
1008 exit 1
1009 fi
1010 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1011 then
1012 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1013 kill $$
1014 exit 1
1015 fi
1016 if class_is_multiarch_p
1017 then
1018 if class_is_predicate_p ; then :
1019 elif test "x${predefault}" = "x"
1020 then
1021 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1022 kill $$
1023 exit 1
1024 fi
1025 fi
1026 echo ""
1027 done
1028
1029 exec 1>&2
1030 compare_new gdbarch.log
1031
1032
1033 copyright ()
1034 {
1035 cat <<EOF
1036 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1037 /* vi:set ro: */
1038
1039 /* Dynamic architecture support for GDB, the GNU debugger.
1040
1041 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1042
1043 This file is part of GDB.
1044
1045 This program is free software; you can redistribute it and/or modify
1046 it under the terms of the GNU General Public License as published by
1047 the Free Software Foundation; either version 3 of the License, or
1048 (at your option) any later version.
1049
1050 This program is distributed in the hope that it will be useful,
1051 but WITHOUT ANY WARRANTY; without even the implied warranty of
1052 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1053 GNU General Public License for more details.
1054
1055 You should have received a copy of the GNU General Public License
1056 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1057
1058 /* This file was created with the aid of \`\`gdbarch.sh''.
1059
1060 The Bourne shell script \`\`gdbarch.sh'' creates the files
1061 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1062 against the existing \`\`gdbarch.[hc]''. Any differences found
1063 being reported.
1064
1065 If editing this file, please also run gdbarch.sh and merge any
1066 changes into that script. Conversely, when making sweeping changes
1067 to this file, modifying gdbarch.sh and using its output may prove
1068 easier. */
1069
1070 EOF
1071 }
1072
1073 #
1074 # The .h file
1075 #
1076
1077 exec > new-gdbarch.h
1078 copyright
1079 cat <<EOF
1080 #ifndef GDBARCH_H
1081 #define GDBARCH_H
1082
1083 struct floatformat;
1084 struct ui_file;
1085 struct frame_info;
1086 struct value;
1087 struct objfile;
1088 struct obj_section;
1089 struct minimal_symbol;
1090 struct regcache;
1091 struct reggroup;
1092 struct regset;
1093 struct disassemble_info;
1094 struct target_ops;
1095 struct obstack;
1096 struct bp_target_info;
1097 struct target_desc;
1098 struct displaced_step_closure;
1099 struct core_regset_section;
1100 struct syscall;
1101 struct agent_expr;
1102 struct axs_value;
1103 struct stap_parse_info;
1104 struct ravenscar_arch_ops;
1105 struct elf_internal_linux_prpsinfo;
1106
1107 /* The architecture associated with the inferior through the
1108 connection to the target.
1109
1110 The architecture vector provides some information that is really a
1111 property of the inferior, accessed through a particular target:
1112 ptrace operations; the layout of certain RSP packets; the solib_ops
1113 vector; etc. To differentiate architecture accesses to
1114 per-inferior/target properties from
1115 per-thread/per-frame/per-objfile properties, accesses to
1116 per-inferior/target properties should be made through this
1117 gdbarch. */
1118
1119 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1120 extern struct gdbarch *target_gdbarch (void);
1121
1122 /* The initial, default architecture. It uses host values (for want of a better
1123 choice). */
1124 extern struct gdbarch startup_gdbarch;
1125
1126
1127 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1128 gdbarch method. */
1129
1130 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1131 (struct objfile *objfile, void *cb_data);
1132 EOF
1133
1134 # function typedef's
1135 printf "\n"
1136 printf "\n"
1137 printf "/* The following are pre-initialized by GDBARCH. */\n"
1138 function_list | while do_read
1139 do
1140 if class_is_info_p
1141 then
1142 printf "\n"
1143 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1144 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1145 fi
1146 done
1147
1148 # function typedef's
1149 printf "\n"
1150 printf "\n"
1151 printf "/* The following are initialized by the target dependent code. */\n"
1152 function_list | while do_read
1153 do
1154 if [ -n "${comment}" ]
1155 then
1156 echo "${comment}" | sed \
1157 -e '2 s,#,/*,' \
1158 -e '3,$ s,#, ,' \
1159 -e '$ s,$, */,'
1160 fi
1161
1162 if class_is_predicate_p
1163 then
1164 printf "\n"
1165 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1166 fi
1167 if class_is_variable_p
1168 then
1169 printf "\n"
1170 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1171 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1172 fi
1173 if class_is_function_p
1174 then
1175 printf "\n"
1176 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1177 then
1178 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1179 elif class_is_multiarch_p
1180 then
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1182 else
1183 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1184 fi
1185 if [ "x${formal}" = "xvoid" ]
1186 then
1187 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1188 else
1189 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1190 fi
1191 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1192 fi
1193 done
1194
1195 # close it off
1196 cat <<EOF
1197
1198 /* Definition for an unknown syscall, used basically in error-cases. */
1199 #define UNKNOWN_SYSCALL (-1)
1200
1201 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1202
1203
1204 /* Mechanism for co-ordinating the selection of a specific
1205 architecture.
1206
1207 GDB targets (*-tdep.c) can register an interest in a specific
1208 architecture. Other GDB components can register a need to maintain
1209 per-architecture data.
1210
1211 The mechanisms below ensures that there is only a loose connection
1212 between the set-architecture command and the various GDB
1213 components. Each component can independently register their need
1214 to maintain architecture specific data with gdbarch.
1215
1216 Pragmatics:
1217
1218 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1219 didn't scale.
1220
1221 The more traditional mega-struct containing architecture specific
1222 data for all the various GDB components was also considered. Since
1223 GDB is built from a variable number of (fairly independent)
1224 components it was determined that the global aproach was not
1225 applicable. */
1226
1227
1228 /* Register a new architectural family with GDB.
1229
1230 Register support for the specified ARCHITECTURE with GDB. When
1231 gdbarch determines that the specified architecture has been
1232 selected, the corresponding INIT function is called.
1233
1234 --
1235
1236 The INIT function takes two parameters: INFO which contains the
1237 information available to gdbarch about the (possibly new)
1238 architecture; ARCHES which is a list of the previously created
1239 \`\`struct gdbarch'' for this architecture.
1240
1241 The INFO parameter is, as far as possible, be pre-initialized with
1242 information obtained from INFO.ABFD or the global defaults.
1243
1244 The ARCHES parameter is a linked list (sorted most recently used)
1245 of all the previously created architures for this architecture
1246 family. The (possibly NULL) ARCHES->gdbarch can used to access
1247 values from the previously selected architecture for this
1248 architecture family.
1249
1250 The INIT function shall return any of: NULL - indicating that it
1251 doesn't recognize the selected architecture; an existing \`\`struct
1252 gdbarch'' from the ARCHES list - indicating that the new
1253 architecture is just a synonym for an earlier architecture (see
1254 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1255 - that describes the selected architecture (see gdbarch_alloc()).
1256
1257 The DUMP_TDEP function shall print out all target specific values.
1258 Care should be taken to ensure that the function works in both the
1259 multi-arch and non- multi-arch cases. */
1260
1261 struct gdbarch_list
1262 {
1263 struct gdbarch *gdbarch;
1264 struct gdbarch_list *next;
1265 };
1266
1267 struct gdbarch_info
1268 {
1269 /* Use default: NULL (ZERO). */
1270 const struct bfd_arch_info *bfd_arch_info;
1271
1272 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1273 int byte_order;
1274
1275 int byte_order_for_code;
1276
1277 /* Use default: NULL (ZERO). */
1278 bfd *abfd;
1279
1280 /* Use default: NULL (ZERO). */
1281 struct gdbarch_tdep_info *tdep_info;
1282
1283 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1284 enum gdb_osabi osabi;
1285
1286 /* Use default: NULL (ZERO). */
1287 const struct target_desc *target_desc;
1288 };
1289
1290 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1291 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1292
1293 /* DEPRECATED - use gdbarch_register() */
1294 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1295
1296 extern void gdbarch_register (enum bfd_architecture architecture,
1297 gdbarch_init_ftype *,
1298 gdbarch_dump_tdep_ftype *);
1299
1300
1301 /* Return a freshly allocated, NULL terminated, array of the valid
1302 architecture names. Since architectures are registered during the
1303 _initialize phase this function only returns useful information
1304 once initialization has been completed. */
1305
1306 extern const char **gdbarch_printable_names (void);
1307
1308
1309 /* Helper function. Search the list of ARCHES for a GDBARCH that
1310 matches the information provided by INFO. */
1311
1312 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1313
1314
1315 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1316 basic initialization using values obtained from the INFO and TDEP
1317 parameters. set_gdbarch_*() functions are called to complete the
1318 initialization of the object. */
1319
1320 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1321
1322
1323 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1324 It is assumed that the caller freeds the \`\`struct
1325 gdbarch_tdep''. */
1326
1327 extern void gdbarch_free (struct gdbarch *);
1328
1329
1330 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1331 obstack. The memory is freed when the corresponding architecture
1332 is also freed. */
1333
1334 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1335 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1336 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1337
1338
1339 /* Helper function. Force an update of the current architecture.
1340
1341 The actual architecture selected is determined by INFO, \`\`(gdb) set
1342 architecture'' et.al., the existing architecture and BFD's default
1343 architecture. INFO should be initialized to zero and then selected
1344 fields should be updated.
1345
1346 Returns non-zero if the update succeeds. */
1347
1348 extern int gdbarch_update_p (struct gdbarch_info info);
1349
1350
1351 /* Helper function. Find an architecture matching info.
1352
1353 INFO should be initialized using gdbarch_info_init, relevant fields
1354 set, and then finished using gdbarch_info_fill.
1355
1356 Returns the corresponding architecture, or NULL if no matching
1357 architecture was found. */
1358
1359 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1360
1361
1362 /* Helper function. Set the target gdbarch to "gdbarch". */
1363
1364 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1365
1366
1367 /* Register per-architecture data-pointer.
1368
1369 Reserve space for a per-architecture data-pointer. An identifier
1370 for the reserved data-pointer is returned. That identifer should
1371 be saved in a local static variable.
1372
1373 Memory for the per-architecture data shall be allocated using
1374 gdbarch_obstack_zalloc. That memory will be deleted when the
1375 corresponding architecture object is deleted.
1376
1377 When a previously created architecture is re-selected, the
1378 per-architecture data-pointer for that previous architecture is
1379 restored. INIT() is not re-called.
1380
1381 Multiple registrarants for any architecture are allowed (and
1382 strongly encouraged). */
1383
1384 struct gdbarch_data;
1385
1386 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1387 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1388 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1389 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1390 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1391 struct gdbarch_data *data,
1392 void *pointer);
1393
1394 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1395
1396
1397 /* Set the dynamic target-system-dependent parameters (architecture,
1398 byte-order, ...) using information found in the BFD. */
1399
1400 extern void set_gdbarch_from_file (bfd *);
1401
1402
1403 /* Initialize the current architecture to the "first" one we find on
1404 our list. */
1405
1406 extern void initialize_current_architecture (void);
1407
1408 /* gdbarch trace variable */
1409 extern unsigned int gdbarch_debug;
1410
1411 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1412
1413 #endif
1414 EOF
1415 exec 1>&2
1416 #../move-if-change new-gdbarch.h gdbarch.h
1417 compare_new gdbarch.h
1418
1419
1420 #
1421 # C file
1422 #
1423
1424 exec > new-gdbarch.c
1425 copyright
1426 cat <<EOF
1427
1428 #include "defs.h"
1429 #include "arch-utils.h"
1430
1431 #include "gdbcmd.h"
1432 #include "inferior.h"
1433 #include "symcat.h"
1434
1435 #include "floatformat.h"
1436
1437 #include "gdb_assert.h"
1438 #include "gdb_string.h"
1439 #include "reggroups.h"
1440 #include "osabi.h"
1441 #include "gdb_obstack.h"
1442 #include "observer.h"
1443 #include "regcache.h"
1444 #include "objfiles.h"
1445
1446 /* Static function declarations */
1447
1448 static void alloc_gdbarch_data (struct gdbarch *);
1449
1450 /* Non-zero if we want to trace architecture code. */
1451
1452 #ifndef GDBARCH_DEBUG
1453 #define GDBARCH_DEBUG 0
1454 #endif
1455 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1456 static void
1457 show_gdbarch_debug (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1459 {
1460 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1461 }
1462
1463 static const char *
1464 pformat (const struct floatformat **format)
1465 {
1466 if (format == NULL)
1467 return "(null)";
1468 else
1469 /* Just print out one of them - this is only for diagnostics. */
1470 return format[0]->name;
1471 }
1472
1473 static const char *
1474 pstring (const char *string)
1475 {
1476 if (string == NULL)
1477 return "(null)";
1478 return string;
1479 }
1480
1481 EOF
1482
1483 # gdbarch open the gdbarch object
1484 printf "\n"
1485 printf "/* Maintain the struct gdbarch object. */\n"
1486 printf "\n"
1487 printf "struct gdbarch\n"
1488 printf "{\n"
1489 printf " /* Has this architecture been fully initialized? */\n"
1490 printf " int initialized_p;\n"
1491 printf "\n"
1492 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1493 printf " struct obstack *obstack;\n"
1494 printf "\n"
1495 printf " /* basic architectural information. */\n"
1496 function_list | while do_read
1497 do
1498 if class_is_info_p
1499 then
1500 printf " ${returntype} ${function};\n"
1501 fi
1502 done
1503 printf "\n"
1504 printf " /* target specific vector. */\n"
1505 printf " struct gdbarch_tdep *tdep;\n"
1506 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1507 printf "\n"
1508 printf " /* per-architecture data-pointers. */\n"
1509 printf " unsigned nr_data;\n"
1510 printf " void **data;\n"
1511 printf "\n"
1512 cat <<EOF
1513 /* Multi-arch values.
1514
1515 When extending this structure you must:
1516
1517 Add the field below.
1518
1519 Declare set/get functions and define the corresponding
1520 macro in gdbarch.h.
1521
1522 gdbarch_alloc(): If zero/NULL is not a suitable default,
1523 initialize the new field.
1524
1525 verify_gdbarch(): Confirm that the target updated the field
1526 correctly.
1527
1528 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1529 field is dumped out
1530
1531 \`\`startup_gdbarch()'': Append an initial value to the static
1532 variable (base values on the host's c-type system).
1533
1534 get_gdbarch(): Implement the set/get functions (probably using
1535 the macro's as shortcuts).
1536
1537 */
1538
1539 EOF
1540 function_list | while do_read
1541 do
1542 if class_is_variable_p
1543 then
1544 printf " ${returntype} ${function};\n"
1545 elif class_is_function_p
1546 then
1547 printf " gdbarch_${function}_ftype *${function};\n"
1548 fi
1549 done
1550 printf "};\n"
1551
1552 # A pre-initialized vector
1553 printf "\n"
1554 printf "\n"
1555 cat <<EOF
1556 /* The default architecture uses host values (for want of a better
1557 choice). */
1558 EOF
1559 printf "\n"
1560 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1561 printf "\n"
1562 printf "struct gdbarch startup_gdbarch =\n"
1563 printf "{\n"
1564 printf " 1, /* Always initialized. */\n"
1565 printf " NULL, /* The obstack. */\n"
1566 printf " /* basic architecture information. */\n"
1567 function_list | while do_read
1568 do
1569 if class_is_info_p
1570 then
1571 printf " ${staticdefault}, /* ${function} */\n"
1572 fi
1573 done
1574 cat <<EOF
1575 /* target specific vector and its dump routine. */
1576 NULL, NULL,
1577 /*per-architecture data-pointers. */
1578 0, NULL,
1579 /* Multi-arch values */
1580 EOF
1581 function_list | while do_read
1582 do
1583 if class_is_function_p || class_is_variable_p
1584 then
1585 printf " ${staticdefault}, /* ${function} */\n"
1586 fi
1587 done
1588 cat <<EOF
1589 /* startup_gdbarch() */
1590 };
1591
1592 EOF
1593
1594 # Create a new gdbarch struct
1595 cat <<EOF
1596
1597 /* Create a new \`\`struct gdbarch'' based on information provided by
1598 \`\`struct gdbarch_info''. */
1599 EOF
1600 printf "\n"
1601 cat <<EOF
1602 struct gdbarch *
1603 gdbarch_alloc (const struct gdbarch_info *info,
1604 struct gdbarch_tdep *tdep)
1605 {
1606 struct gdbarch *gdbarch;
1607
1608 /* Create an obstack for allocating all the per-architecture memory,
1609 then use that to allocate the architecture vector. */
1610 struct obstack *obstack = XMALLOC (struct obstack);
1611 obstack_init (obstack);
1612 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1613 memset (gdbarch, 0, sizeof (*gdbarch));
1614 gdbarch->obstack = obstack;
1615
1616 alloc_gdbarch_data (gdbarch);
1617
1618 gdbarch->tdep = tdep;
1619 EOF
1620 printf "\n"
1621 function_list | while do_read
1622 do
1623 if class_is_info_p
1624 then
1625 printf " gdbarch->${function} = info->${function};\n"
1626 fi
1627 done
1628 printf "\n"
1629 printf " /* Force the explicit initialization of these. */\n"
1630 function_list | while do_read
1631 do
1632 if class_is_function_p || class_is_variable_p
1633 then
1634 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1635 then
1636 printf " gdbarch->${function} = ${predefault};\n"
1637 fi
1638 fi
1639 done
1640 cat <<EOF
1641 /* gdbarch_alloc() */
1642
1643 return gdbarch;
1644 }
1645 EOF
1646
1647 # Free a gdbarch struct.
1648 printf "\n"
1649 printf "\n"
1650 cat <<EOF
1651 /* Allocate extra space using the per-architecture obstack. */
1652
1653 void *
1654 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1655 {
1656 void *data = obstack_alloc (arch->obstack, size);
1657
1658 memset (data, 0, size);
1659 return data;
1660 }
1661
1662
1663 /* Free a gdbarch struct. This should never happen in normal
1664 operation --- once you've created a gdbarch, you keep it around.
1665 However, if an architecture's init function encounters an error
1666 building the structure, it may need to clean up a partially
1667 constructed gdbarch. */
1668
1669 void
1670 gdbarch_free (struct gdbarch *arch)
1671 {
1672 struct obstack *obstack;
1673
1674 gdb_assert (arch != NULL);
1675 gdb_assert (!arch->initialized_p);
1676 obstack = arch->obstack;
1677 obstack_free (obstack, 0); /* Includes the ARCH. */
1678 xfree (obstack);
1679 }
1680 EOF
1681
1682 # verify a new architecture
1683 cat <<EOF
1684
1685
1686 /* Ensure that all values in a GDBARCH are reasonable. */
1687
1688 static void
1689 verify_gdbarch (struct gdbarch *gdbarch)
1690 {
1691 struct ui_file *log;
1692 struct cleanup *cleanups;
1693 long length;
1694 char *buf;
1695
1696 log = mem_fileopen ();
1697 cleanups = make_cleanup_ui_file_delete (log);
1698 /* fundamental */
1699 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1700 fprintf_unfiltered (log, "\n\tbyte-order");
1701 if (gdbarch->bfd_arch_info == NULL)
1702 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1703 /* Check those that need to be defined for the given multi-arch level. */
1704 EOF
1705 function_list | while do_read
1706 do
1707 if class_is_function_p || class_is_variable_p
1708 then
1709 if [ "x${invalid_p}" = "x0" ]
1710 then
1711 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1712 elif class_is_predicate_p
1713 then
1714 printf " /* Skip verify of ${function}, has predicate. */\n"
1715 # FIXME: See do_read for potential simplification
1716 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1717 then
1718 printf " if (${invalid_p})\n"
1719 printf " gdbarch->${function} = ${postdefault};\n"
1720 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1721 then
1722 printf " if (gdbarch->${function} == ${predefault})\n"
1723 printf " gdbarch->${function} = ${postdefault};\n"
1724 elif [ -n "${postdefault}" ]
1725 then
1726 printf " if (gdbarch->${function} == 0)\n"
1727 printf " gdbarch->${function} = ${postdefault};\n"
1728 elif [ -n "${invalid_p}" ]
1729 then
1730 printf " if (${invalid_p})\n"
1731 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1732 elif [ -n "${predefault}" ]
1733 then
1734 printf " if (gdbarch->${function} == ${predefault})\n"
1735 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1736 fi
1737 fi
1738 done
1739 cat <<EOF
1740 buf = ui_file_xstrdup (log, &length);
1741 make_cleanup (xfree, buf);
1742 if (length > 0)
1743 internal_error (__FILE__, __LINE__,
1744 _("verify_gdbarch: the following are invalid ...%s"),
1745 buf);
1746 do_cleanups (cleanups);
1747 }
1748 EOF
1749
1750 # dump the structure
1751 printf "\n"
1752 printf "\n"
1753 cat <<EOF
1754 /* Print out the details of the current architecture. */
1755
1756 void
1757 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1758 {
1759 const char *gdb_nm_file = "<not-defined>";
1760
1761 #if defined (GDB_NM_FILE)
1762 gdb_nm_file = GDB_NM_FILE;
1763 #endif
1764 fprintf_unfiltered (file,
1765 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1766 gdb_nm_file);
1767 EOF
1768 function_list | sort -t: -k 3 | while do_read
1769 do
1770 # First the predicate
1771 if class_is_predicate_p
1772 then
1773 printf " fprintf_unfiltered (file,\n"
1774 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1775 printf " gdbarch_${function}_p (gdbarch));\n"
1776 fi
1777 # Print the corresponding value.
1778 if class_is_function_p
1779 then
1780 printf " fprintf_unfiltered (file,\n"
1781 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1782 printf " host_address_to_string (gdbarch->${function}));\n"
1783 else
1784 # It is a variable
1785 case "${print}:${returntype}" in
1786 :CORE_ADDR )
1787 fmt="%s"
1788 print="core_addr_to_string_nz (gdbarch->${function})"
1789 ;;
1790 :* )
1791 fmt="%s"
1792 print="plongest (gdbarch->${function})"
1793 ;;
1794 * )
1795 fmt="%s"
1796 ;;
1797 esac
1798 printf " fprintf_unfiltered (file,\n"
1799 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1800 printf " ${print});\n"
1801 fi
1802 done
1803 cat <<EOF
1804 if (gdbarch->dump_tdep != NULL)
1805 gdbarch->dump_tdep (gdbarch, file);
1806 }
1807 EOF
1808
1809
1810 # GET/SET
1811 printf "\n"
1812 cat <<EOF
1813 struct gdbarch_tdep *
1814 gdbarch_tdep (struct gdbarch *gdbarch)
1815 {
1816 if (gdbarch_debug >= 2)
1817 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1818 return gdbarch->tdep;
1819 }
1820 EOF
1821 printf "\n"
1822 function_list | while do_read
1823 do
1824 if class_is_predicate_p
1825 then
1826 printf "\n"
1827 printf "int\n"
1828 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1829 printf "{\n"
1830 printf " gdb_assert (gdbarch != NULL);\n"
1831 printf " return ${predicate};\n"
1832 printf "}\n"
1833 fi
1834 if class_is_function_p
1835 then
1836 printf "\n"
1837 printf "${returntype}\n"
1838 if [ "x${formal}" = "xvoid" ]
1839 then
1840 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1841 else
1842 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1843 fi
1844 printf "{\n"
1845 printf " gdb_assert (gdbarch != NULL);\n"
1846 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1847 if class_is_predicate_p && test -n "${predefault}"
1848 then
1849 # Allow a call to a function with a predicate.
1850 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1851 fi
1852 printf " if (gdbarch_debug >= 2)\n"
1853 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1854 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1855 then
1856 if class_is_multiarch_p
1857 then
1858 params="gdbarch"
1859 else
1860 params=""
1861 fi
1862 else
1863 if class_is_multiarch_p
1864 then
1865 params="gdbarch, ${actual}"
1866 else
1867 params="${actual}"
1868 fi
1869 fi
1870 if [ "x${returntype}" = "xvoid" ]
1871 then
1872 printf " gdbarch->${function} (${params});\n"
1873 else
1874 printf " return gdbarch->${function} (${params});\n"
1875 fi
1876 printf "}\n"
1877 printf "\n"
1878 printf "void\n"
1879 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1880 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1881 printf "{\n"
1882 printf " gdbarch->${function} = ${function};\n"
1883 printf "}\n"
1884 elif class_is_variable_p
1885 then
1886 printf "\n"
1887 printf "${returntype}\n"
1888 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1889 printf "{\n"
1890 printf " gdb_assert (gdbarch != NULL);\n"
1891 if [ "x${invalid_p}" = "x0" ]
1892 then
1893 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1894 elif [ -n "${invalid_p}" ]
1895 then
1896 printf " /* Check variable is valid. */\n"
1897 printf " gdb_assert (!(${invalid_p}));\n"
1898 elif [ -n "${predefault}" ]
1899 then
1900 printf " /* Check variable changed from pre-default. */\n"
1901 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1902 fi
1903 printf " if (gdbarch_debug >= 2)\n"
1904 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1905 printf " return gdbarch->${function};\n"
1906 printf "}\n"
1907 printf "\n"
1908 printf "void\n"
1909 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1910 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1911 printf "{\n"
1912 printf " gdbarch->${function} = ${function};\n"
1913 printf "}\n"
1914 elif class_is_info_p
1915 then
1916 printf "\n"
1917 printf "${returntype}\n"
1918 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1919 printf "{\n"
1920 printf " gdb_assert (gdbarch != NULL);\n"
1921 printf " if (gdbarch_debug >= 2)\n"
1922 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1923 printf " return gdbarch->${function};\n"
1924 printf "}\n"
1925 fi
1926 done
1927
1928 # All the trailing guff
1929 cat <<EOF
1930
1931
1932 /* Keep a registry of per-architecture data-pointers required by GDB
1933 modules. */
1934
1935 struct gdbarch_data
1936 {
1937 unsigned index;
1938 int init_p;
1939 gdbarch_data_pre_init_ftype *pre_init;
1940 gdbarch_data_post_init_ftype *post_init;
1941 };
1942
1943 struct gdbarch_data_registration
1944 {
1945 struct gdbarch_data *data;
1946 struct gdbarch_data_registration *next;
1947 };
1948
1949 struct gdbarch_data_registry
1950 {
1951 unsigned nr;
1952 struct gdbarch_data_registration *registrations;
1953 };
1954
1955 struct gdbarch_data_registry gdbarch_data_registry =
1956 {
1957 0, NULL,
1958 };
1959
1960 static struct gdbarch_data *
1961 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1962 gdbarch_data_post_init_ftype *post_init)
1963 {
1964 struct gdbarch_data_registration **curr;
1965
1966 /* Append the new registration. */
1967 for (curr = &gdbarch_data_registry.registrations;
1968 (*curr) != NULL;
1969 curr = &(*curr)->next);
1970 (*curr) = XMALLOC (struct gdbarch_data_registration);
1971 (*curr)->next = NULL;
1972 (*curr)->data = XMALLOC (struct gdbarch_data);
1973 (*curr)->data->index = gdbarch_data_registry.nr++;
1974 (*curr)->data->pre_init = pre_init;
1975 (*curr)->data->post_init = post_init;
1976 (*curr)->data->init_p = 1;
1977 return (*curr)->data;
1978 }
1979
1980 struct gdbarch_data *
1981 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1982 {
1983 return gdbarch_data_register (pre_init, NULL);
1984 }
1985
1986 struct gdbarch_data *
1987 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1988 {
1989 return gdbarch_data_register (NULL, post_init);
1990 }
1991
1992 /* Create/delete the gdbarch data vector. */
1993
1994 static void
1995 alloc_gdbarch_data (struct gdbarch *gdbarch)
1996 {
1997 gdb_assert (gdbarch->data == NULL);
1998 gdbarch->nr_data = gdbarch_data_registry.nr;
1999 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2000 }
2001
2002 /* Initialize the current value of the specified per-architecture
2003 data-pointer. */
2004
2005 void
2006 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2007 struct gdbarch_data *data,
2008 void *pointer)
2009 {
2010 gdb_assert (data->index < gdbarch->nr_data);
2011 gdb_assert (gdbarch->data[data->index] == NULL);
2012 gdb_assert (data->pre_init == NULL);
2013 gdbarch->data[data->index] = pointer;
2014 }
2015
2016 /* Return the current value of the specified per-architecture
2017 data-pointer. */
2018
2019 void *
2020 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2021 {
2022 gdb_assert (data->index < gdbarch->nr_data);
2023 if (gdbarch->data[data->index] == NULL)
2024 {
2025 /* The data-pointer isn't initialized, call init() to get a
2026 value. */
2027 if (data->pre_init != NULL)
2028 /* Mid architecture creation: pass just the obstack, and not
2029 the entire architecture, as that way it isn't possible for
2030 pre-init code to refer to undefined architecture
2031 fields. */
2032 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2033 else if (gdbarch->initialized_p
2034 && data->post_init != NULL)
2035 /* Post architecture creation: pass the entire architecture
2036 (as all fields are valid), but be careful to also detect
2037 recursive references. */
2038 {
2039 gdb_assert (data->init_p);
2040 data->init_p = 0;
2041 gdbarch->data[data->index] = data->post_init (gdbarch);
2042 data->init_p = 1;
2043 }
2044 else
2045 /* The architecture initialization hasn't completed - punt -
2046 hope that the caller knows what they are doing. Once
2047 deprecated_set_gdbarch_data has been initialized, this can be
2048 changed to an internal error. */
2049 return NULL;
2050 gdb_assert (gdbarch->data[data->index] != NULL);
2051 }
2052 return gdbarch->data[data->index];
2053 }
2054
2055
2056 /* Keep a registry of the architectures known by GDB. */
2057
2058 struct gdbarch_registration
2059 {
2060 enum bfd_architecture bfd_architecture;
2061 gdbarch_init_ftype *init;
2062 gdbarch_dump_tdep_ftype *dump_tdep;
2063 struct gdbarch_list *arches;
2064 struct gdbarch_registration *next;
2065 };
2066
2067 static struct gdbarch_registration *gdbarch_registry = NULL;
2068
2069 static void
2070 append_name (const char ***buf, int *nr, const char *name)
2071 {
2072 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2073 (*buf)[*nr] = name;
2074 *nr += 1;
2075 }
2076
2077 const char **
2078 gdbarch_printable_names (void)
2079 {
2080 /* Accumulate a list of names based on the registed list of
2081 architectures. */
2082 int nr_arches = 0;
2083 const char **arches = NULL;
2084 struct gdbarch_registration *rego;
2085
2086 for (rego = gdbarch_registry;
2087 rego != NULL;
2088 rego = rego->next)
2089 {
2090 const struct bfd_arch_info *ap;
2091 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2092 if (ap == NULL)
2093 internal_error (__FILE__, __LINE__,
2094 _("gdbarch_architecture_names: multi-arch unknown"));
2095 do
2096 {
2097 append_name (&arches, &nr_arches, ap->printable_name);
2098 ap = ap->next;
2099 }
2100 while (ap != NULL);
2101 }
2102 append_name (&arches, &nr_arches, NULL);
2103 return arches;
2104 }
2105
2106
2107 void
2108 gdbarch_register (enum bfd_architecture bfd_architecture,
2109 gdbarch_init_ftype *init,
2110 gdbarch_dump_tdep_ftype *dump_tdep)
2111 {
2112 struct gdbarch_registration **curr;
2113 const struct bfd_arch_info *bfd_arch_info;
2114
2115 /* Check that BFD recognizes this architecture */
2116 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2117 if (bfd_arch_info == NULL)
2118 {
2119 internal_error (__FILE__, __LINE__,
2120 _("gdbarch: Attempt to register "
2121 "unknown architecture (%d)"),
2122 bfd_architecture);
2123 }
2124 /* Check that we haven't seen this architecture before. */
2125 for (curr = &gdbarch_registry;
2126 (*curr) != NULL;
2127 curr = &(*curr)->next)
2128 {
2129 if (bfd_architecture == (*curr)->bfd_architecture)
2130 internal_error (__FILE__, __LINE__,
2131 _("gdbarch: Duplicate registration "
2132 "of architecture (%s)"),
2133 bfd_arch_info->printable_name);
2134 }
2135 /* log it */
2136 if (gdbarch_debug)
2137 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2138 bfd_arch_info->printable_name,
2139 host_address_to_string (init));
2140 /* Append it */
2141 (*curr) = XMALLOC (struct gdbarch_registration);
2142 (*curr)->bfd_architecture = bfd_architecture;
2143 (*curr)->init = init;
2144 (*curr)->dump_tdep = dump_tdep;
2145 (*curr)->arches = NULL;
2146 (*curr)->next = NULL;
2147 }
2148
2149 void
2150 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2151 gdbarch_init_ftype *init)
2152 {
2153 gdbarch_register (bfd_architecture, init, NULL);
2154 }
2155
2156
2157 /* Look for an architecture using gdbarch_info. */
2158
2159 struct gdbarch_list *
2160 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2161 const struct gdbarch_info *info)
2162 {
2163 for (; arches != NULL; arches = arches->next)
2164 {
2165 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2166 continue;
2167 if (info->byte_order != arches->gdbarch->byte_order)
2168 continue;
2169 if (info->osabi != arches->gdbarch->osabi)
2170 continue;
2171 if (info->target_desc != arches->gdbarch->target_desc)
2172 continue;
2173 return arches;
2174 }
2175 return NULL;
2176 }
2177
2178
2179 /* Find an architecture that matches the specified INFO. Create a new
2180 architecture if needed. Return that new architecture. */
2181
2182 struct gdbarch *
2183 gdbarch_find_by_info (struct gdbarch_info info)
2184 {
2185 struct gdbarch *new_gdbarch;
2186 struct gdbarch_registration *rego;
2187
2188 /* Fill in missing parts of the INFO struct using a number of
2189 sources: "set ..."; INFOabfd supplied; and the global
2190 defaults. */
2191 gdbarch_info_fill (&info);
2192
2193 /* Must have found some sort of architecture. */
2194 gdb_assert (info.bfd_arch_info != NULL);
2195
2196 if (gdbarch_debug)
2197 {
2198 fprintf_unfiltered (gdb_stdlog,
2199 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2200 (info.bfd_arch_info != NULL
2201 ? info.bfd_arch_info->printable_name
2202 : "(null)"));
2203 fprintf_unfiltered (gdb_stdlog,
2204 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2205 info.byte_order,
2206 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2207 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2208 : "default"));
2209 fprintf_unfiltered (gdb_stdlog,
2210 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2211 info.osabi, gdbarch_osabi_name (info.osabi));
2212 fprintf_unfiltered (gdb_stdlog,
2213 "gdbarch_find_by_info: info.abfd %s\n",
2214 host_address_to_string (info.abfd));
2215 fprintf_unfiltered (gdb_stdlog,
2216 "gdbarch_find_by_info: info.tdep_info %s\n",
2217 host_address_to_string (info.tdep_info));
2218 }
2219
2220 /* Find the tdep code that knows about this architecture. */
2221 for (rego = gdbarch_registry;
2222 rego != NULL;
2223 rego = rego->next)
2224 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2225 break;
2226 if (rego == NULL)
2227 {
2228 if (gdbarch_debug)
2229 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2230 "No matching architecture\n");
2231 return 0;
2232 }
2233
2234 /* Ask the tdep code for an architecture that matches "info". */
2235 new_gdbarch = rego->init (info, rego->arches);
2236
2237 /* Did the tdep code like it? No. Reject the change and revert to
2238 the old architecture. */
2239 if (new_gdbarch == NULL)
2240 {
2241 if (gdbarch_debug)
2242 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2243 "Target rejected architecture\n");
2244 return NULL;
2245 }
2246
2247 /* Is this a pre-existing architecture (as determined by already
2248 being initialized)? Move it to the front of the architecture
2249 list (keeping the list sorted Most Recently Used). */
2250 if (new_gdbarch->initialized_p)
2251 {
2252 struct gdbarch_list **list;
2253 struct gdbarch_list *this;
2254 if (gdbarch_debug)
2255 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2256 "Previous architecture %s (%s) selected\n",
2257 host_address_to_string (new_gdbarch),
2258 new_gdbarch->bfd_arch_info->printable_name);
2259 /* Find the existing arch in the list. */
2260 for (list = &rego->arches;
2261 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2262 list = &(*list)->next);
2263 /* It had better be in the list of architectures. */
2264 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2265 /* Unlink THIS. */
2266 this = (*list);
2267 (*list) = this->next;
2268 /* Insert THIS at the front. */
2269 this->next = rego->arches;
2270 rego->arches = this;
2271 /* Return it. */
2272 return new_gdbarch;
2273 }
2274
2275 /* It's a new architecture. */
2276 if (gdbarch_debug)
2277 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2278 "New architecture %s (%s) selected\n",
2279 host_address_to_string (new_gdbarch),
2280 new_gdbarch->bfd_arch_info->printable_name);
2281
2282 /* Insert the new architecture into the front of the architecture
2283 list (keep the list sorted Most Recently Used). */
2284 {
2285 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2286 this->next = rego->arches;
2287 this->gdbarch = new_gdbarch;
2288 rego->arches = this;
2289 }
2290
2291 /* Check that the newly installed architecture is valid. Plug in
2292 any post init values. */
2293 new_gdbarch->dump_tdep = rego->dump_tdep;
2294 verify_gdbarch (new_gdbarch);
2295 new_gdbarch->initialized_p = 1;
2296
2297 if (gdbarch_debug)
2298 gdbarch_dump (new_gdbarch, gdb_stdlog);
2299
2300 return new_gdbarch;
2301 }
2302
2303 /* Make the specified architecture current. */
2304
2305 void
2306 set_target_gdbarch (struct gdbarch *new_gdbarch)
2307 {
2308 gdb_assert (new_gdbarch != NULL);
2309 gdb_assert (new_gdbarch->initialized_p);
2310 current_inferior ()->gdbarch = new_gdbarch;
2311 observer_notify_architecture_changed (new_gdbarch);
2312 registers_changed ();
2313 }
2314
2315 /* Return the current inferior's arch. */
2316
2317 struct gdbarch *
2318 target_gdbarch (void)
2319 {
2320 return current_inferior ()->gdbarch;
2321 }
2322
2323 extern void _initialize_gdbarch (void);
2324
2325 void
2326 _initialize_gdbarch (void)
2327 {
2328 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2329 Set architecture debugging."), _("\\
2330 Show architecture debugging."), _("\\
2331 When non-zero, architecture debugging is enabled."),
2332 NULL,
2333 show_gdbarch_debug,
2334 &setdebuglist, &showdebuglist);
2335 }
2336 EOF
2337
2338 # close things off
2339 exec 1>&2
2340 #../move-if-change new-gdbarch.c gdbarch.c
2341 compare_new gdbarch.c
This page took 0.10888 seconds and 4 git commands to generate.