ld-elf/ehdr_start.d (target): Add *-*-nacl*.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
537
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
545
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
547
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
551
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
554 #
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
561 #
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
565 #
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577 # It is not at all clear why gdbarch_smash_text_address is not folded into
578 # gdbarch_addr_bits_remove.
579 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Iterate over all objfiles in the order that makes the most sense
947 # for the architecture to make global symbol searches.
948 #
949 # CB is a callback function where OBJFILE is the objfile to be searched,
950 # and CB_DATA a pointer to user-defined data (the same data that is passed
951 # when calling this gdbarch method). The iteration stops if this function
952 # returns nonzero.
953 #
954 # CB_DATA is a pointer to some user-defined data to be passed to
955 # the callback.
956 #
957 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958 # inspected when the symbol search was requested.
959 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
960
961 EOF
962 }
963
964 #
965 # The .log file
966 #
967 exec > new-gdbarch.log
968 function_list | while do_read
969 do
970 cat <<EOF
971 ${class} ${returntype} ${function} ($formal)
972 EOF
973 for r in ${read}
974 do
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
976 done
977 if class_is_predicate_p && fallback_default_p
978 then
979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
980 kill $$
981 exit 1
982 fi
983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
984 then
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 kill $$
987 exit 1
988 fi
989 if class_is_multiarch_p
990 then
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
993 then
994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
995 kill $$
996 exit 1
997 fi
998 fi
999 echo ""
1000 done
1001
1002 exec 1>&2
1003 compare_new gdbarch.log
1004
1005
1006 copyright ()
1007 {
1008 cat <<EOF
1009 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1010
1011 /* Dynamic architecture support for GDB, the GNU debugger.
1012
1013 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1014 2007, 2008, 2009 Free Software Foundation, Inc.
1015
1016 This file is part of GDB.
1017
1018 This program is free software; you can redistribute it and/or modify
1019 it under the terms of the GNU General Public License as published by
1020 the Free Software Foundation; either version 3 of the License, or
1021 (at your option) any later version.
1022
1023 This program is distributed in the hope that it will be useful,
1024 but WITHOUT ANY WARRANTY; without even the implied warranty of
1025 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1026 GNU General Public License for more details.
1027
1028 You should have received a copy of the GNU General Public License
1029 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1030
1031 /* This file was created with the aid of \`\`gdbarch.sh''.
1032
1033 The Bourne shell script \`\`gdbarch.sh'' creates the files
1034 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1035 against the existing \`\`gdbarch.[hc]''. Any differences found
1036 being reported.
1037
1038 If editing this file, please also run gdbarch.sh and merge any
1039 changes into that script. Conversely, when making sweeping changes
1040 to this file, modifying gdbarch.sh and using its output may prove
1041 easier. */
1042
1043 EOF
1044 }
1045
1046 #
1047 # The .h file
1048 #
1049
1050 exec > new-gdbarch.h
1051 copyright
1052 cat <<EOF
1053 #ifndef GDBARCH_H
1054 #define GDBARCH_H
1055
1056 struct floatformat;
1057 struct ui_file;
1058 struct frame_info;
1059 struct value;
1060 struct objfile;
1061 struct obj_section;
1062 struct minimal_symbol;
1063 struct regcache;
1064 struct reggroup;
1065 struct regset;
1066 struct disassemble_info;
1067 struct target_ops;
1068 struct obstack;
1069 struct bp_target_info;
1070 struct target_desc;
1071 struct displaced_step_closure;
1072 struct core_regset_section;
1073 struct syscall;
1074 struct agent_expr;
1075 struct axs_value;
1076 struct stap_parse_info;
1077
1078 /* The architecture associated with the connection to the target.
1079
1080 The architecture vector provides some information that is really
1081 a property of the target: The layout of certain packets, for instance;
1082 or the solib_ops vector. Etc. To differentiate architecture accesses
1083 to per-target properties from per-thread/per-frame/per-objfile properties,
1084 accesses to per-target properties should be made through target_gdbarch.
1085
1086 Eventually, when support for multiple targets is implemented in
1087 GDB, this global should be made target-specific. */
1088 extern struct gdbarch *target_gdbarch;
1089
1090 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1091 gdbarch method. */
1092
1093 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1094 (struct objfile *objfile, void *cb_data);
1095 EOF
1096
1097 # function typedef's
1098 printf "\n"
1099 printf "\n"
1100 printf "/* The following are pre-initialized by GDBARCH. */\n"
1101 function_list | while do_read
1102 do
1103 if class_is_info_p
1104 then
1105 printf "\n"
1106 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1107 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1108 fi
1109 done
1110
1111 # function typedef's
1112 printf "\n"
1113 printf "\n"
1114 printf "/* The following are initialized by the target dependent code. */\n"
1115 function_list | while do_read
1116 do
1117 if [ -n "${comment}" ]
1118 then
1119 echo "${comment}" | sed \
1120 -e '2 s,#,/*,' \
1121 -e '3,$ s,#, ,' \
1122 -e '$ s,$, */,'
1123 fi
1124
1125 if class_is_predicate_p
1126 then
1127 printf "\n"
1128 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1129 fi
1130 if class_is_variable_p
1131 then
1132 printf "\n"
1133 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1134 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1135 fi
1136 if class_is_function_p
1137 then
1138 printf "\n"
1139 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1140 then
1141 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1142 elif class_is_multiarch_p
1143 then
1144 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1145 else
1146 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1147 fi
1148 if [ "x${formal}" = "xvoid" ]
1149 then
1150 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1151 else
1152 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1153 fi
1154 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1155 fi
1156 done
1157
1158 # close it off
1159 cat <<EOF
1160
1161 /* Definition for an unknown syscall, used basically in error-cases. */
1162 #define UNKNOWN_SYSCALL (-1)
1163
1164 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1165
1166
1167 /* Mechanism for co-ordinating the selection of a specific
1168 architecture.
1169
1170 GDB targets (*-tdep.c) can register an interest in a specific
1171 architecture. Other GDB components can register a need to maintain
1172 per-architecture data.
1173
1174 The mechanisms below ensures that there is only a loose connection
1175 between the set-architecture command and the various GDB
1176 components. Each component can independently register their need
1177 to maintain architecture specific data with gdbarch.
1178
1179 Pragmatics:
1180
1181 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1182 didn't scale.
1183
1184 The more traditional mega-struct containing architecture specific
1185 data for all the various GDB components was also considered. Since
1186 GDB is built from a variable number of (fairly independent)
1187 components it was determined that the global aproach was not
1188 applicable. */
1189
1190
1191 /* Register a new architectural family with GDB.
1192
1193 Register support for the specified ARCHITECTURE with GDB. When
1194 gdbarch determines that the specified architecture has been
1195 selected, the corresponding INIT function is called.
1196
1197 --
1198
1199 The INIT function takes two parameters: INFO which contains the
1200 information available to gdbarch about the (possibly new)
1201 architecture; ARCHES which is a list of the previously created
1202 \`\`struct gdbarch'' for this architecture.
1203
1204 The INFO parameter is, as far as possible, be pre-initialized with
1205 information obtained from INFO.ABFD or the global defaults.
1206
1207 The ARCHES parameter is a linked list (sorted most recently used)
1208 of all the previously created architures for this architecture
1209 family. The (possibly NULL) ARCHES->gdbarch can used to access
1210 values from the previously selected architecture for this
1211 architecture family.
1212
1213 The INIT function shall return any of: NULL - indicating that it
1214 doesn't recognize the selected architecture; an existing \`\`struct
1215 gdbarch'' from the ARCHES list - indicating that the new
1216 architecture is just a synonym for an earlier architecture (see
1217 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1218 - that describes the selected architecture (see gdbarch_alloc()).
1219
1220 The DUMP_TDEP function shall print out all target specific values.
1221 Care should be taken to ensure that the function works in both the
1222 multi-arch and non- multi-arch cases. */
1223
1224 struct gdbarch_list
1225 {
1226 struct gdbarch *gdbarch;
1227 struct gdbarch_list *next;
1228 };
1229
1230 struct gdbarch_info
1231 {
1232 /* Use default: NULL (ZERO). */
1233 const struct bfd_arch_info *bfd_arch_info;
1234
1235 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1236 int byte_order;
1237
1238 int byte_order_for_code;
1239
1240 /* Use default: NULL (ZERO). */
1241 bfd *abfd;
1242
1243 /* Use default: NULL (ZERO). */
1244 struct gdbarch_tdep_info *tdep_info;
1245
1246 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1247 enum gdb_osabi osabi;
1248
1249 /* Use default: NULL (ZERO). */
1250 const struct target_desc *target_desc;
1251 };
1252
1253 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1254 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1255
1256 /* DEPRECATED - use gdbarch_register() */
1257 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1258
1259 extern void gdbarch_register (enum bfd_architecture architecture,
1260 gdbarch_init_ftype *,
1261 gdbarch_dump_tdep_ftype *);
1262
1263
1264 /* Return a freshly allocated, NULL terminated, array of the valid
1265 architecture names. Since architectures are registered during the
1266 _initialize phase this function only returns useful information
1267 once initialization has been completed. */
1268
1269 extern const char **gdbarch_printable_names (void);
1270
1271
1272 /* Helper function. Search the list of ARCHES for a GDBARCH that
1273 matches the information provided by INFO. */
1274
1275 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1276
1277
1278 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1279 basic initialization using values obtained from the INFO and TDEP
1280 parameters. set_gdbarch_*() functions are called to complete the
1281 initialization of the object. */
1282
1283 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1284
1285
1286 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1287 It is assumed that the caller freeds the \`\`struct
1288 gdbarch_tdep''. */
1289
1290 extern void gdbarch_free (struct gdbarch *);
1291
1292
1293 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1294 obstack. The memory is freed when the corresponding architecture
1295 is also freed. */
1296
1297 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1298 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1299 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1300
1301
1302 /* Helper function. Force an update of the current architecture.
1303
1304 The actual architecture selected is determined by INFO, \`\`(gdb) set
1305 architecture'' et.al., the existing architecture and BFD's default
1306 architecture. INFO should be initialized to zero and then selected
1307 fields should be updated.
1308
1309 Returns non-zero if the update succeeds. */
1310
1311 extern int gdbarch_update_p (struct gdbarch_info info);
1312
1313
1314 /* Helper function. Find an architecture matching info.
1315
1316 INFO should be initialized using gdbarch_info_init, relevant fields
1317 set, and then finished using gdbarch_info_fill.
1318
1319 Returns the corresponding architecture, or NULL if no matching
1320 architecture was found. */
1321
1322 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1323
1324
1325 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1326
1327 FIXME: kettenis/20031124: Of the functions that follow, only
1328 gdbarch_from_bfd is supposed to survive. The others will
1329 dissappear since in the future GDB will (hopefully) be truly
1330 multi-arch. However, for now we're still stuck with the concept of
1331 a single active architecture. */
1332
1333 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1334
1335
1336 /* Register per-architecture data-pointer.
1337
1338 Reserve space for a per-architecture data-pointer. An identifier
1339 for the reserved data-pointer is returned. That identifer should
1340 be saved in a local static variable.
1341
1342 Memory for the per-architecture data shall be allocated using
1343 gdbarch_obstack_zalloc. That memory will be deleted when the
1344 corresponding architecture object is deleted.
1345
1346 When a previously created architecture is re-selected, the
1347 per-architecture data-pointer for that previous architecture is
1348 restored. INIT() is not re-called.
1349
1350 Multiple registrarants for any architecture are allowed (and
1351 strongly encouraged). */
1352
1353 struct gdbarch_data;
1354
1355 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1356 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1357 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1358 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1359 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1360 struct gdbarch_data *data,
1361 void *pointer);
1362
1363 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1364
1365
1366 /* Set the dynamic target-system-dependent parameters (architecture,
1367 byte-order, ...) using information found in the BFD. */
1368
1369 extern void set_gdbarch_from_file (bfd *);
1370
1371
1372 /* Initialize the current architecture to the "first" one we find on
1373 our list. */
1374
1375 extern void initialize_current_architecture (void);
1376
1377 /* gdbarch trace variable */
1378 extern int gdbarch_debug;
1379
1380 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1381
1382 #endif
1383 EOF
1384 exec 1>&2
1385 #../move-if-change new-gdbarch.h gdbarch.h
1386 compare_new gdbarch.h
1387
1388
1389 #
1390 # C file
1391 #
1392
1393 exec > new-gdbarch.c
1394 copyright
1395 cat <<EOF
1396
1397 #include "defs.h"
1398 #include "arch-utils.h"
1399
1400 #include "gdbcmd.h"
1401 #include "inferior.h"
1402 #include "symcat.h"
1403
1404 #include "floatformat.h"
1405
1406 #include "gdb_assert.h"
1407 #include "gdb_string.h"
1408 #include "reggroups.h"
1409 #include "osabi.h"
1410 #include "gdb_obstack.h"
1411 #include "observer.h"
1412 #include "regcache.h"
1413 #include "objfiles.h"
1414
1415 /* Static function declarations */
1416
1417 static void alloc_gdbarch_data (struct gdbarch *);
1418
1419 /* Non-zero if we want to trace architecture code. */
1420
1421 #ifndef GDBARCH_DEBUG
1422 #define GDBARCH_DEBUG 0
1423 #endif
1424 int gdbarch_debug = GDBARCH_DEBUG;
1425 static void
1426 show_gdbarch_debug (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1428 {
1429 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1430 }
1431
1432 static const char *
1433 pformat (const struct floatformat **format)
1434 {
1435 if (format == NULL)
1436 return "(null)";
1437 else
1438 /* Just print out one of them - this is only for diagnostics. */
1439 return format[0]->name;
1440 }
1441
1442 static const char *
1443 pstring (const char *string)
1444 {
1445 if (string == NULL)
1446 return "(null)";
1447 return string;
1448 }
1449
1450 EOF
1451
1452 # gdbarch open the gdbarch object
1453 printf "\n"
1454 printf "/* Maintain the struct gdbarch object. */\n"
1455 printf "\n"
1456 printf "struct gdbarch\n"
1457 printf "{\n"
1458 printf " /* Has this architecture been fully initialized? */\n"
1459 printf " int initialized_p;\n"
1460 printf "\n"
1461 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1462 printf " struct obstack *obstack;\n"
1463 printf "\n"
1464 printf " /* basic architectural information. */\n"
1465 function_list | while do_read
1466 do
1467 if class_is_info_p
1468 then
1469 printf " ${returntype} ${function};\n"
1470 fi
1471 done
1472 printf "\n"
1473 printf " /* target specific vector. */\n"
1474 printf " struct gdbarch_tdep *tdep;\n"
1475 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1476 printf "\n"
1477 printf " /* per-architecture data-pointers. */\n"
1478 printf " unsigned nr_data;\n"
1479 printf " void **data;\n"
1480 printf "\n"
1481 printf " /* per-architecture swap-regions. */\n"
1482 printf " struct gdbarch_swap *swap;\n"
1483 printf "\n"
1484 cat <<EOF
1485 /* Multi-arch values.
1486
1487 When extending this structure you must:
1488
1489 Add the field below.
1490
1491 Declare set/get functions and define the corresponding
1492 macro in gdbarch.h.
1493
1494 gdbarch_alloc(): If zero/NULL is not a suitable default,
1495 initialize the new field.
1496
1497 verify_gdbarch(): Confirm that the target updated the field
1498 correctly.
1499
1500 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1501 field is dumped out
1502
1503 \`\`startup_gdbarch()'': Append an initial value to the static
1504 variable (base values on the host's c-type system).
1505
1506 get_gdbarch(): Implement the set/get functions (probably using
1507 the macro's as shortcuts).
1508
1509 */
1510
1511 EOF
1512 function_list | while do_read
1513 do
1514 if class_is_variable_p
1515 then
1516 printf " ${returntype} ${function};\n"
1517 elif class_is_function_p
1518 then
1519 printf " gdbarch_${function}_ftype *${function};\n"
1520 fi
1521 done
1522 printf "};\n"
1523
1524 # A pre-initialized vector
1525 printf "\n"
1526 printf "\n"
1527 cat <<EOF
1528 /* The default architecture uses host values (for want of a better
1529 choice). */
1530 EOF
1531 printf "\n"
1532 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1533 printf "\n"
1534 printf "struct gdbarch startup_gdbarch =\n"
1535 printf "{\n"
1536 printf " 1, /* Always initialized. */\n"
1537 printf " NULL, /* The obstack. */\n"
1538 printf " /* basic architecture information. */\n"
1539 function_list | while do_read
1540 do
1541 if class_is_info_p
1542 then
1543 printf " ${staticdefault}, /* ${function} */\n"
1544 fi
1545 done
1546 cat <<EOF
1547 /* target specific vector and its dump routine. */
1548 NULL, NULL,
1549 /*per-architecture data-pointers and swap regions. */
1550 0, NULL, NULL,
1551 /* Multi-arch values */
1552 EOF
1553 function_list | while do_read
1554 do
1555 if class_is_function_p || class_is_variable_p
1556 then
1557 printf " ${staticdefault}, /* ${function} */\n"
1558 fi
1559 done
1560 cat <<EOF
1561 /* startup_gdbarch() */
1562 };
1563
1564 struct gdbarch *target_gdbarch = &startup_gdbarch;
1565 EOF
1566
1567 # Create a new gdbarch struct
1568 cat <<EOF
1569
1570 /* Create a new \`\`struct gdbarch'' based on information provided by
1571 \`\`struct gdbarch_info''. */
1572 EOF
1573 printf "\n"
1574 cat <<EOF
1575 struct gdbarch *
1576 gdbarch_alloc (const struct gdbarch_info *info,
1577 struct gdbarch_tdep *tdep)
1578 {
1579 struct gdbarch *gdbarch;
1580
1581 /* Create an obstack for allocating all the per-architecture memory,
1582 then use that to allocate the architecture vector. */
1583 struct obstack *obstack = XMALLOC (struct obstack);
1584 obstack_init (obstack);
1585 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1586 memset (gdbarch, 0, sizeof (*gdbarch));
1587 gdbarch->obstack = obstack;
1588
1589 alloc_gdbarch_data (gdbarch);
1590
1591 gdbarch->tdep = tdep;
1592 EOF
1593 printf "\n"
1594 function_list | while do_read
1595 do
1596 if class_is_info_p
1597 then
1598 printf " gdbarch->${function} = info->${function};\n"
1599 fi
1600 done
1601 printf "\n"
1602 printf " /* Force the explicit initialization of these. */\n"
1603 function_list | while do_read
1604 do
1605 if class_is_function_p || class_is_variable_p
1606 then
1607 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1608 then
1609 printf " gdbarch->${function} = ${predefault};\n"
1610 fi
1611 fi
1612 done
1613 cat <<EOF
1614 /* gdbarch_alloc() */
1615
1616 return gdbarch;
1617 }
1618 EOF
1619
1620 # Free a gdbarch struct.
1621 printf "\n"
1622 printf "\n"
1623 cat <<EOF
1624 /* Allocate extra space using the per-architecture obstack. */
1625
1626 void *
1627 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1628 {
1629 void *data = obstack_alloc (arch->obstack, size);
1630
1631 memset (data, 0, size);
1632 return data;
1633 }
1634
1635
1636 /* Free a gdbarch struct. This should never happen in normal
1637 operation --- once you've created a gdbarch, you keep it around.
1638 However, if an architecture's init function encounters an error
1639 building the structure, it may need to clean up a partially
1640 constructed gdbarch. */
1641
1642 void
1643 gdbarch_free (struct gdbarch *arch)
1644 {
1645 struct obstack *obstack;
1646
1647 gdb_assert (arch != NULL);
1648 gdb_assert (!arch->initialized_p);
1649 obstack = arch->obstack;
1650 obstack_free (obstack, 0); /* Includes the ARCH. */
1651 xfree (obstack);
1652 }
1653 EOF
1654
1655 # verify a new architecture
1656 cat <<EOF
1657
1658
1659 /* Ensure that all values in a GDBARCH are reasonable. */
1660
1661 static void
1662 verify_gdbarch (struct gdbarch *gdbarch)
1663 {
1664 struct ui_file *log;
1665 struct cleanup *cleanups;
1666 long length;
1667 char *buf;
1668
1669 log = mem_fileopen ();
1670 cleanups = make_cleanup_ui_file_delete (log);
1671 /* fundamental */
1672 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1673 fprintf_unfiltered (log, "\n\tbyte-order");
1674 if (gdbarch->bfd_arch_info == NULL)
1675 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1676 /* Check those that need to be defined for the given multi-arch level. */
1677 EOF
1678 function_list | while do_read
1679 do
1680 if class_is_function_p || class_is_variable_p
1681 then
1682 if [ "x${invalid_p}" = "x0" ]
1683 then
1684 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1685 elif class_is_predicate_p
1686 then
1687 printf " /* Skip verify of ${function}, has predicate. */\n"
1688 # FIXME: See do_read for potential simplification
1689 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1690 then
1691 printf " if (${invalid_p})\n"
1692 printf " gdbarch->${function} = ${postdefault};\n"
1693 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1694 then
1695 printf " if (gdbarch->${function} == ${predefault})\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
1697 elif [ -n "${postdefault}" ]
1698 then
1699 printf " if (gdbarch->${function} == 0)\n"
1700 printf " gdbarch->${function} = ${postdefault};\n"
1701 elif [ -n "${invalid_p}" ]
1702 then
1703 printf " if (${invalid_p})\n"
1704 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1705 elif [ -n "${predefault}" ]
1706 then
1707 printf " if (gdbarch->${function} == ${predefault})\n"
1708 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1709 fi
1710 fi
1711 done
1712 cat <<EOF
1713 buf = ui_file_xstrdup (log, &length);
1714 make_cleanup (xfree, buf);
1715 if (length > 0)
1716 internal_error (__FILE__, __LINE__,
1717 _("verify_gdbarch: the following are invalid ...%s"),
1718 buf);
1719 do_cleanups (cleanups);
1720 }
1721 EOF
1722
1723 # dump the structure
1724 printf "\n"
1725 printf "\n"
1726 cat <<EOF
1727 /* Print out the details of the current architecture. */
1728
1729 void
1730 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1731 {
1732 const char *gdb_nm_file = "<not-defined>";
1733
1734 #if defined (GDB_NM_FILE)
1735 gdb_nm_file = GDB_NM_FILE;
1736 #endif
1737 fprintf_unfiltered (file,
1738 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1739 gdb_nm_file);
1740 EOF
1741 function_list | sort -t: -k 3 | while do_read
1742 do
1743 # First the predicate
1744 if class_is_predicate_p
1745 then
1746 printf " fprintf_unfiltered (file,\n"
1747 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1748 printf " gdbarch_${function}_p (gdbarch));\n"
1749 fi
1750 # Print the corresponding value.
1751 if class_is_function_p
1752 then
1753 printf " fprintf_unfiltered (file,\n"
1754 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1755 printf " host_address_to_string (gdbarch->${function}));\n"
1756 else
1757 # It is a variable
1758 case "${print}:${returntype}" in
1759 :CORE_ADDR )
1760 fmt="%s"
1761 print="core_addr_to_string_nz (gdbarch->${function})"
1762 ;;
1763 :* )
1764 fmt="%s"
1765 print="plongest (gdbarch->${function})"
1766 ;;
1767 * )
1768 fmt="%s"
1769 ;;
1770 esac
1771 printf " fprintf_unfiltered (file,\n"
1772 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1773 printf " ${print});\n"
1774 fi
1775 done
1776 cat <<EOF
1777 if (gdbarch->dump_tdep != NULL)
1778 gdbarch->dump_tdep (gdbarch, file);
1779 }
1780 EOF
1781
1782
1783 # GET/SET
1784 printf "\n"
1785 cat <<EOF
1786 struct gdbarch_tdep *
1787 gdbarch_tdep (struct gdbarch *gdbarch)
1788 {
1789 if (gdbarch_debug >= 2)
1790 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1791 return gdbarch->tdep;
1792 }
1793 EOF
1794 printf "\n"
1795 function_list | while do_read
1796 do
1797 if class_is_predicate_p
1798 then
1799 printf "\n"
1800 printf "int\n"
1801 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1802 printf "{\n"
1803 printf " gdb_assert (gdbarch != NULL);\n"
1804 printf " return ${predicate};\n"
1805 printf "}\n"
1806 fi
1807 if class_is_function_p
1808 then
1809 printf "\n"
1810 printf "${returntype}\n"
1811 if [ "x${formal}" = "xvoid" ]
1812 then
1813 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1814 else
1815 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1816 fi
1817 printf "{\n"
1818 printf " gdb_assert (gdbarch != NULL);\n"
1819 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1820 if class_is_predicate_p && test -n "${predefault}"
1821 then
1822 # Allow a call to a function with a predicate.
1823 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1824 fi
1825 printf " if (gdbarch_debug >= 2)\n"
1826 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1827 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1828 then
1829 if class_is_multiarch_p
1830 then
1831 params="gdbarch"
1832 else
1833 params=""
1834 fi
1835 else
1836 if class_is_multiarch_p
1837 then
1838 params="gdbarch, ${actual}"
1839 else
1840 params="${actual}"
1841 fi
1842 fi
1843 if [ "x${returntype}" = "xvoid" ]
1844 then
1845 printf " gdbarch->${function} (${params});\n"
1846 else
1847 printf " return gdbarch->${function} (${params});\n"
1848 fi
1849 printf "}\n"
1850 printf "\n"
1851 printf "void\n"
1852 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1853 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1854 printf "{\n"
1855 printf " gdbarch->${function} = ${function};\n"
1856 printf "}\n"
1857 elif class_is_variable_p
1858 then
1859 printf "\n"
1860 printf "${returntype}\n"
1861 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1862 printf "{\n"
1863 printf " gdb_assert (gdbarch != NULL);\n"
1864 if [ "x${invalid_p}" = "x0" ]
1865 then
1866 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1867 elif [ -n "${invalid_p}" ]
1868 then
1869 printf " /* Check variable is valid. */\n"
1870 printf " gdb_assert (!(${invalid_p}));\n"
1871 elif [ -n "${predefault}" ]
1872 then
1873 printf " /* Check variable changed from pre-default. */\n"
1874 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1875 fi
1876 printf " if (gdbarch_debug >= 2)\n"
1877 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1878 printf " return gdbarch->${function};\n"
1879 printf "}\n"
1880 printf "\n"
1881 printf "void\n"
1882 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1883 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1884 printf "{\n"
1885 printf " gdbarch->${function} = ${function};\n"
1886 printf "}\n"
1887 elif class_is_info_p
1888 then
1889 printf "\n"
1890 printf "${returntype}\n"
1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 printf "{\n"
1893 printf " gdb_assert (gdbarch != NULL);\n"
1894 printf " if (gdbarch_debug >= 2)\n"
1895 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1896 printf " return gdbarch->${function};\n"
1897 printf "}\n"
1898 fi
1899 done
1900
1901 # All the trailing guff
1902 cat <<EOF
1903
1904
1905 /* Keep a registry of per-architecture data-pointers required by GDB
1906 modules. */
1907
1908 struct gdbarch_data
1909 {
1910 unsigned index;
1911 int init_p;
1912 gdbarch_data_pre_init_ftype *pre_init;
1913 gdbarch_data_post_init_ftype *post_init;
1914 };
1915
1916 struct gdbarch_data_registration
1917 {
1918 struct gdbarch_data *data;
1919 struct gdbarch_data_registration *next;
1920 };
1921
1922 struct gdbarch_data_registry
1923 {
1924 unsigned nr;
1925 struct gdbarch_data_registration *registrations;
1926 };
1927
1928 struct gdbarch_data_registry gdbarch_data_registry =
1929 {
1930 0, NULL,
1931 };
1932
1933 static struct gdbarch_data *
1934 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1935 gdbarch_data_post_init_ftype *post_init)
1936 {
1937 struct gdbarch_data_registration **curr;
1938
1939 /* Append the new registration. */
1940 for (curr = &gdbarch_data_registry.registrations;
1941 (*curr) != NULL;
1942 curr = &(*curr)->next);
1943 (*curr) = XMALLOC (struct gdbarch_data_registration);
1944 (*curr)->next = NULL;
1945 (*curr)->data = XMALLOC (struct gdbarch_data);
1946 (*curr)->data->index = gdbarch_data_registry.nr++;
1947 (*curr)->data->pre_init = pre_init;
1948 (*curr)->data->post_init = post_init;
1949 (*curr)->data->init_p = 1;
1950 return (*curr)->data;
1951 }
1952
1953 struct gdbarch_data *
1954 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1955 {
1956 return gdbarch_data_register (pre_init, NULL);
1957 }
1958
1959 struct gdbarch_data *
1960 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1961 {
1962 return gdbarch_data_register (NULL, post_init);
1963 }
1964
1965 /* Create/delete the gdbarch data vector. */
1966
1967 static void
1968 alloc_gdbarch_data (struct gdbarch *gdbarch)
1969 {
1970 gdb_assert (gdbarch->data == NULL);
1971 gdbarch->nr_data = gdbarch_data_registry.nr;
1972 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1973 }
1974
1975 /* Initialize the current value of the specified per-architecture
1976 data-pointer. */
1977
1978 void
1979 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1980 struct gdbarch_data *data,
1981 void *pointer)
1982 {
1983 gdb_assert (data->index < gdbarch->nr_data);
1984 gdb_assert (gdbarch->data[data->index] == NULL);
1985 gdb_assert (data->pre_init == NULL);
1986 gdbarch->data[data->index] = pointer;
1987 }
1988
1989 /* Return the current value of the specified per-architecture
1990 data-pointer. */
1991
1992 void *
1993 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1994 {
1995 gdb_assert (data->index < gdbarch->nr_data);
1996 if (gdbarch->data[data->index] == NULL)
1997 {
1998 /* The data-pointer isn't initialized, call init() to get a
1999 value. */
2000 if (data->pre_init != NULL)
2001 /* Mid architecture creation: pass just the obstack, and not
2002 the entire architecture, as that way it isn't possible for
2003 pre-init code to refer to undefined architecture
2004 fields. */
2005 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2006 else if (gdbarch->initialized_p
2007 && data->post_init != NULL)
2008 /* Post architecture creation: pass the entire architecture
2009 (as all fields are valid), but be careful to also detect
2010 recursive references. */
2011 {
2012 gdb_assert (data->init_p);
2013 data->init_p = 0;
2014 gdbarch->data[data->index] = data->post_init (gdbarch);
2015 data->init_p = 1;
2016 }
2017 else
2018 /* The architecture initialization hasn't completed - punt -
2019 hope that the caller knows what they are doing. Once
2020 deprecated_set_gdbarch_data has been initialized, this can be
2021 changed to an internal error. */
2022 return NULL;
2023 gdb_assert (gdbarch->data[data->index] != NULL);
2024 }
2025 return gdbarch->data[data->index];
2026 }
2027
2028
2029 /* Keep a registry of the architectures known by GDB. */
2030
2031 struct gdbarch_registration
2032 {
2033 enum bfd_architecture bfd_architecture;
2034 gdbarch_init_ftype *init;
2035 gdbarch_dump_tdep_ftype *dump_tdep;
2036 struct gdbarch_list *arches;
2037 struct gdbarch_registration *next;
2038 };
2039
2040 static struct gdbarch_registration *gdbarch_registry = NULL;
2041
2042 static void
2043 append_name (const char ***buf, int *nr, const char *name)
2044 {
2045 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2046 (*buf)[*nr] = name;
2047 *nr += 1;
2048 }
2049
2050 const char **
2051 gdbarch_printable_names (void)
2052 {
2053 /* Accumulate a list of names based on the registed list of
2054 architectures. */
2055 int nr_arches = 0;
2056 const char **arches = NULL;
2057 struct gdbarch_registration *rego;
2058
2059 for (rego = gdbarch_registry;
2060 rego != NULL;
2061 rego = rego->next)
2062 {
2063 const struct bfd_arch_info *ap;
2064 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2065 if (ap == NULL)
2066 internal_error (__FILE__, __LINE__,
2067 _("gdbarch_architecture_names: multi-arch unknown"));
2068 do
2069 {
2070 append_name (&arches, &nr_arches, ap->printable_name);
2071 ap = ap->next;
2072 }
2073 while (ap != NULL);
2074 }
2075 append_name (&arches, &nr_arches, NULL);
2076 return arches;
2077 }
2078
2079
2080 void
2081 gdbarch_register (enum bfd_architecture bfd_architecture,
2082 gdbarch_init_ftype *init,
2083 gdbarch_dump_tdep_ftype *dump_tdep)
2084 {
2085 struct gdbarch_registration **curr;
2086 const struct bfd_arch_info *bfd_arch_info;
2087
2088 /* Check that BFD recognizes this architecture */
2089 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2090 if (bfd_arch_info == NULL)
2091 {
2092 internal_error (__FILE__, __LINE__,
2093 _("gdbarch: Attempt to register "
2094 "unknown architecture (%d)"),
2095 bfd_architecture);
2096 }
2097 /* Check that we haven't seen this architecture before. */
2098 for (curr = &gdbarch_registry;
2099 (*curr) != NULL;
2100 curr = &(*curr)->next)
2101 {
2102 if (bfd_architecture == (*curr)->bfd_architecture)
2103 internal_error (__FILE__, __LINE__,
2104 _("gdbarch: Duplicate registration "
2105 "of architecture (%s)"),
2106 bfd_arch_info->printable_name);
2107 }
2108 /* log it */
2109 if (gdbarch_debug)
2110 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2111 bfd_arch_info->printable_name,
2112 host_address_to_string (init));
2113 /* Append it */
2114 (*curr) = XMALLOC (struct gdbarch_registration);
2115 (*curr)->bfd_architecture = bfd_architecture;
2116 (*curr)->init = init;
2117 (*curr)->dump_tdep = dump_tdep;
2118 (*curr)->arches = NULL;
2119 (*curr)->next = NULL;
2120 }
2121
2122 void
2123 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2124 gdbarch_init_ftype *init)
2125 {
2126 gdbarch_register (bfd_architecture, init, NULL);
2127 }
2128
2129
2130 /* Look for an architecture using gdbarch_info. */
2131
2132 struct gdbarch_list *
2133 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2134 const struct gdbarch_info *info)
2135 {
2136 for (; arches != NULL; arches = arches->next)
2137 {
2138 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2139 continue;
2140 if (info->byte_order != arches->gdbarch->byte_order)
2141 continue;
2142 if (info->osabi != arches->gdbarch->osabi)
2143 continue;
2144 if (info->target_desc != arches->gdbarch->target_desc)
2145 continue;
2146 return arches;
2147 }
2148 return NULL;
2149 }
2150
2151
2152 /* Find an architecture that matches the specified INFO. Create a new
2153 architecture if needed. Return that new architecture. */
2154
2155 struct gdbarch *
2156 gdbarch_find_by_info (struct gdbarch_info info)
2157 {
2158 struct gdbarch *new_gdbarch;
2159 struct gdbarch_registration *rego;
2160
2161 /* Fill in missing parts of the INFO struct using a number of
2162 sources: "set ..."; INFOabfd supplied; and the global
2163 defaults. */
2164 gdbarch_info_fill (&info);
2165
2166 /* Must have found some sort of architecture. */
2167 gdb_assert (info.bfd_arch_info != NULL);
2168
2169 if (gdbarch_debug)
2170 {
2171 fprintf_unfiltered (gdb_stdlog,
2172 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2173 (info.bfd_arch_info != NULL
2174 ? info.bfd_arch_info->printable_name
2175 : "(null)"));
2176 fprintf_unfiltered (gdb_stdlog,
2177 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2178 info.byte_order,
2179 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2180 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2181 : "default"));
2182 fprintf_unfiltered (gdb_stdlog,
2183 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2184 info.osabi, gdbarch_osabi_name (info.osabi));
2185 fprintf_unfiltered (gdb_stdlog,
2186 "gdbarch_find_by_info: info.abfd %s\n",
2187 host_address_to_string (info.abfd));
2188 fprintf_unfiltered (gdb_stdlog,
2189 "gdbarch_find_by_info: info.tdep_info %s\n",
2190 host_address_to_string (info.tdep_info));
2191 }
2192
2193 /* Find the tdep code that knows about this architecture. */
2194 for (rego = gdbarch_registry;
2195 rego != NULL;
2196 rego = rego->next)
2197 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2198 break;
2199 if (rego == NULL)
2200 {
2201 if (gdbarch_debug)
2202 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2203 "No matching architecture\n");
2204 return 0;
2205 }
2206
2207 /* Ask the tdep code for an architecture that matches "info". */
2208 new_gdbarch = rego->init (info, rego->arches);
2209
2210 /* Did the tdep code like it? No. Reject the change and revert to
2211 the old architecture. */
2212 if (new_gdbarch == NULL)
2213 {
2214 if (gdbarch_debug)
2215 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2216 "Target rejected architecture\n");
2217 return NULL;
2218 }
2219
2220 /* Is this a pre-existing architecture (as determined by already
2221 being initialized)? Move it to the front of the architecture
2222 list (keeping the list sorted Most Recently Used). */
2223 if (new_gdbarch->initialized_p)
2224 {
2225 struct gdbarch_list **list;
2226 struct gdbarch_list *this;
2227 if (gdbarch_debug)
2228 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2229 "Previous architecture %s (%s) selected\n",
2230 host_address_to_string (new_gdbarch),
2231 new_gdbarch->bfd_arch_info->printable_name);
2232 /* Find the existing arch in the list. */
2233 for (list = &rego->arches;
2234 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2235 list = &(*list)->next);
2236 /* It had better be in the list of architectures. */
2237 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2238 /* Unlink THIS. */
2239 this = (*list);
2240 (*list) = this->next;
2241 /* Insert THIS at the front. */
2242 this->next = rego->arches;
2243 rego->arches = this;
2244 /* Return it. */
2245 return new_gdbarch;
2246 }
2247
2248 /* It's a new architecture. */
2249 if (gdbarch_debug)
2250 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2251 "New architecture %s (%s) selected\n",
2252 host_address_to_string (new_gdbarch),
2253 new_gdbarch->bfd_arch_info->printable_name);
2254
2255 /* Insert the new architecture into the front of the architecture
2256 list (keep the list sorted Most Recently Used). */
2257 {
2258 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2259 this->next = rego->arches;
2260 this->gdbarch = new_gdbarch;
2261 rego->arches = this;
2262 }
2263
2264 /* Check that the newly installed architecture is valid. Plug in
2265 any post init values. */
2266 new_gdbarch->dump_tdep = rego->dump_tdep;
2267 verify_gdbarch (new_gdbarch);
2268 new_gdbarch->initialized_p = 1;
2269
2270 if (gdbarch_debug)
2271 gdbarch_dump (new_gdbarch, gdb_stdlog);
2272
2273 return new_gdbarch;
2274 }
2275
2276 /* Make the specified architecture current. */
2277
2278 void
2279 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2280 {
2281 gdb_assert (new_gdbarch != NULL);
2282 gdb_assert (new_gdbarch->initialized_p);
2283 target_gdbarch = new_gdbarch;
2284 observer_notify_architecture_changed (new_gdbarch);
2285 registers_changed ();
2286 }
2287
2288 extern void _initialize_gdbarch (void);
2289
2290 void
2291 _initialize_gdbarch (void)
2292 {
2293 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2294 Set architecture debugging."), _("\\
2295 Show architecture debugging."), _("\\
2296 When non-zero, architecture debugging is enabled."),
2297 NULL,
2298 show_gdbarch_debug,
2299 &setdebuglist, &showdebuglist);
2300 }
2301 EOF
2302
2303 # close things off
2304 exec 1>&2
2305 #../move-if-change new-gdbarch.c gdbarch.c
2306 compare_new gdbarch.c
This page took 0.089069 seconds and 4 git commands to generate.