2004-06-21 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 # Check that macro definition wasn't supplied for multi-arch
96 case "${class}" in
97 [mM] )
98 if test "${macro}" != ""
99 then
100 echo "${macro}: Multi-arch yet macro" 1>&2
101 kill $$
102 exit 1
103 fi
104 esac
105
106 case "${class}" in
107 m ) staticdefault="${predefault}" ;;
108 M ) staticdefault="0" ;;
109 * ) test "${staticdefault}" || staticdefault=0 ;;
110 esac
111
112 # come up with a format, use a few guesses for variables
113 case ":${class}:${fmt}:${print}:" in
114 :[vV]::: )
115 if [ "${returntype}" = int ]
116 then
117 fmt="%d"
118 print="${macro}"
119 elif [ "${returntype}" = long ]
120 then
121 fmt="%ld"
122 print="${macro}"
123 fi
124 ;;
125 esac
126 test "${fmt}" || fmt="%ld"
127 test "${print}" || print="(long) ${macro}"
128
129 case "${class}" in
130 F | V | M )
131 case "${invalid_p}" in
132 "" )
133 if test -n "${predefault}"
134 then
135 #invalid_p="gdbarch->${function} == ${predefault}"
136 predicate="gdbarch->${function} != ${predefault}"
137 elif class_is_variable_p
138 then
139 predicate="gdbarch->${function} != 0"
140 elif class_is_function_p
141 then
142 predicate="gdbarch->${function} != NULL"
143 fi
144 ;;
145 * )
146 echo "Predicate function ${function} with invalid_p." 1>&2
147 kill $$
148 exit 1
149 ;;
150 esac
151 esac
152
153 # PREDEFAULT is a valid fallback definition of MEMBER when
154 # multi-arch is not enabled. This ensures that the
155 # default value, when multi-arch is the same as the
156 # default value when not multi-arch. POSTDEFAULT is
157 # always a valid definition of MEMBER as this again
158 # ensures consistency.
159
160 if [ -n "${postdefault}" ]
161 then
162 fallbackdefault="${postdefault}"
163 elif [ -n "${predefault}" ]
164 then
165 fallbackdefault="${predefault}"
166 else
167 fallbackdefault="0"
168 fi
169
170 #NOT YET: See gdbarch.log for basic verification of
171 # database
172
173 break
174 fi
175 done
176 if [ -n "${class}" ]
177 then
178 true
179 else
180 false
181 fi
182 }
183
184
185 fallback_default_p ()
186 {
187 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
188 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
189 }
190
191 class_is_variable_p ()
192 {
193 case "${class}" in
194 *v* | *V* ) true ;;
195 * ) false ;;
196 esac
197 }
198
199 class_is_function_p ()
200 {
201 case "${class}" in
202 *f* | *F* | *m* | *M* ) true ;;
203 * ) false ;;
204 esac
205 }
206
207 class_is_multiarch_p ()
208 {
209 case "${class}" in
210 *m* | *M* ) true ;;
211 * ) false ;;
212 esac
213 }
214
215 class_is_predicate_p ()
216 {
217 case "${class}" in
218 *F* | *V* | *M* ) true ;;
219 * ) false ;;
220 esac
221 }
222
223 class_is_info_p ()
224 {
225 case "${class}" in
226 *i* ) true ;;
227 * ) false ;;
228 esac
229 }
230
231
232 # dump out/verify the doco
233 for field in ${read}
234 do
235 case ${field} in
236
237 class ) : ;;
238
239 # # -> line disable
240 # f -> function
241 # hiding a function
242 # F -> function + predicate
243 # hiding a function + predicate to test function validity
244 # v -> variable
245 # hiding a variable
246 # V -> variable + predicate
247 # hiding a variable + predicate to test variables validity
248 # i -> set from info
249 # hiding something from the ``struct info'' object
250 # m -> multi-arch function
251 # hiding a multi-arch function (parameterised with the architecture)
252 # M -> multi-arch function + predicate
253 # hiding a multi-arch function + predicate to test function validity
254
255 macro ) : ;;
256
257 # The name of the MACRO that this method is to be accessed by.
258
259 returntype ) : ;;
260
261 # For functions, the return type; for variables, the data type
262
263 function ) : ;;
264
265 # For functions, the member function name; for variables, the
266 # variable name. Member function names are always prefixed with
267 # ``gdbarch_'' for name-space purity.
268
269 formal ) : ;;
270
271 # The formal argument list. It is assumed that the formal
272 # argument list includes the actual name of each list element.
273 # A function with no arguments shall have ``void'' as the
274 # formal argument list.
275
276 actual ) : ;;
277
278 # The list of actual arguments. The arguments specified shall
279 # match the FORMAL list given above. Functions with out
280 # arguments leave this blank.
281
282 attrib ) : ;;
283
284 # Any GCC attributes that should be attached to the function
285 # declaration. At present this field is unused.
286
287 staticdefault ) : ;;
288
289 # To help with the GDB startup a static gdbarch object is
290 # created. STATICDEFAULT is the value to insert into that
291 # static gdbarch object. Since this a static object only
292 # simple expressions can be used.
293
294 # If STATICDEFAULT is empty, zero is used.
295
296 predefault ) : ;;
297
298 # An initial value to assign to MEMBER of the freshly
299 # malloc()ed gdbarch object. After initialization, the
300 # freshly malloc()ed object is passed to the target
301 # architecture code for further updates.
302
303 # If PREDEFAULT is empty, zero is used.
304
305 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
306 # INVALID_P are specified, PREDEFAULT will be used as the
307 # default for the non- multi-arch target.
308
309 # A zero PREDEFAULT function will force the fallback to call
310 # internal_error().
311
312 # Variable declarations can refer to ``gdbarch'' which will
313 # contain the current architecture. Care should be taken.
314
315 postdefault ) : ;;
316
317 # A value to assign to MEMBER of the new gdbarch object should
318 # the target architecture code fail to change the PREDEFAULT
319 # value.
320
321 # If POSTDEFAULT is empty, no post update is performed.
322
323 # If both INVALID_P and POSTDEFAULT are non-empty then
324 # INVALID_P will be used to determine if MEMBER should be
325 # changed to POSTDEFAULT.
326
327 # If a non-empty POSTDEFAULT and a zero INVALID_P are
328 # specified, POSTDEFAULT will be used as the default for the
329 # non- multi-arch target (regardless of the value of
330 # PREDEFAULT).
331
332 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
333
334 # Variable declarations can refer to ``current_gdbarch'' which
335 # will contain the current architecture. Care should be
336 # taken.
337
338 invalid_p ) : ;;
339
340 # A predicate equation that validates MEMBER. Non-zero is
341 # returned if the code creating the new architecture failed to
342 # initialize MEMBER or the initialized the member is invalid.
343 # If POSTDEFAULT is non-empty then MEMBER will be updated to
344 # that value. If POSTDEFAULT is empty then internal_error()
345 # is called.
346
347 # If INVALID_P is empty, a check that MEMBER is no longer
348 # equal to PREDEFAULT is used.
349
350 # The expression ``0'' disables the INVALID_P check making
351 # PREDEFAULT a legitimate value.
352
353 # See also PREDEFAULT and POSTDEFAULT.
354
355 fmt ) : ;;
356
357 # printf style format string that can be used to print out the
358 # MEMBER. Sometimes "%s" is useful. For functions, this is
359 # ignored and the function address is printed.
360
361 # If FMT is empty, ``%ld'' is used.
362
363 print ) : ;;
364
365 # An optional equation that casts MEMBER to a value suitable
366 # for formatting by FMT.
367
368 # If PRINT is empty, ``(long)'' is used.
369
370 garbage_at_eol ) : ;;
371
372 # Catches stray fields.
373
374 *)
375 echo "Bad field ${field}"
376 exit 1;;
377 esac
378 done
379
380
381 function_list ()
382 {
383 # See below (DOCO) for description of each field
384 cat <<EOF
385 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
386 #
387 i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
388 #
389 i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
390 # Number of bits in a char or unsigned char for the target machine.
391 # Just like CHAR_BIT in <limits.h> but describes the target machine.
392 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
393 #
394 # Number of bits in a short or unsigned short for the target machine.
395 v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
396 # Number of bits in an int or unsigned int for the target machine.
397 v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
398 # Number of bits in a long or unsigned long for the target machine.
399 v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long long or unsigned long long for the target
401 # machine.
402 v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
403 # Number of bits in a float for the target machine.
404 v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
405 # Number of bits in a double for the target machine.
406 v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
407 # Number of bits in a long double for the target machine.
408 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
409 # For most targets, a pointer on the target and its representation as an
410 # address in GDB have the same size and "look the same". For such a
411 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
412 # / addr_bit will be set from it.
413 #
414 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
415 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
416 #
417 # ptr_bit is the size of a pointer on the target
418 v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
419 # addr_bit is the size of a target address as represented in gdb
420 v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
421 # Number of bits in a BFD_VMA for the target object file format.
422 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
423 #
424 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
425 v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
426 #
427 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
428 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
429 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
430 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
431 # Function for getting target's idea of a frame pointer. FIXME: GDB's
432 # whole scheme for dealing with "frames" and "frame pointers" needs a
433 # serious shakedown.
434 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
435 #
436 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
437 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
438 #
439 v:NUM_REGS:int:num_regs::::0:-1
440 # This macro gives the number of pseudo-registers that live in the
441 # register namespace but do not get fetched or stored on the target.
442 # These pseudo-registers may be aliases for other registers,
443 # combinations of other registers, or they may be computed by GDB.
444 v:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
450 v:SP_REGNUM:int:sp_regnum::::-1:-1::0
451 v:PC_REGNUM:int:pc_regnum::::-1:-1::0
452 v:PS_REGNUM:int:ps_regnum::::-1:-1::0
453 v:FP0_REGNUM:int:fp0_regnum::::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 f:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 f:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
458 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
459 f:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
460 # Convert from an sdb register number to an internal gdb register number.
461 f:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
462 f:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
463 f:REGISTER_NAME:const char *:register_name:int regnr:regnr
464
465 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
466 M::struct type *:register_type:int reg_nr:reg_nr
467 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
468 F:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
469 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
470 # from REGISTER_TYPE.
471 v:DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
472 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
473 # register offsets computed using just REGISTER_TYPE, this can be
474 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
475 # function with predicate has a valid (callable) initial value. As a
476 # consequence, even when the predicate is false, the corresponding
477 # function works. This simplifies the migration process - old code,
478 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
479 F:DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
480 # If all registers have identical raw and virtual sizes and those
481 # sizes agree with the value computed from REGISTER_TYPE,
482 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
483 # registers.
484 F:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
488 # registers.
489 F:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490
491 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
492 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
493 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
494 # SAVE_DUMMY_FRAME_TOS.
495 F:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
496 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
497 # DEPRECATED_FP_REGNUM.
498 v:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
499 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
500 # DEPRECATED_TARGET_READ_FP.
501 F:DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
502
503 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
504 # replacement for DEPRECATED_PUSH_ARGUMENTS.
505 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
506 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
507 F:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
508 # Implement PUSH_RETURN_ADDRESS, and then merge in
509 # DEPRECATED_PUSH_RETURN_ADDRESS.
510 F:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
511 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
512 F:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
513 # DEPRECATED_REGISTER_SIZE can be deleted.
514 v:DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
515 v:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
516 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
517
518 F:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
519 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
520 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
521 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
522 # MAP a GDB RAW register number onto a simulator register number. See
523 # also include/...-sim.h.
524 f:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
525 F:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
526 f:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
527 f:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
528 # setjmp/longjmp support.
529 F:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
530 F:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
531 #
532 v:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
533 F:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
534 #
535 f:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
536 f:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
537 f:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
538 #
539 f:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
540 f:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
541 F:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
542 #
543 F:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
544 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
545 F:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
546
547 # It has been suggested that this, well actually its predecessor,
548 # should take the type/value of the function to be called and not the
549 # return type. This is left as an exercise for the reader.
550
551 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
552 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
553 # (via legacy_return_value), when a small struct is involved.
554
555 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
556
557 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
558 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
559 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
560 # RETURN_VALUE.
561
562 f:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
563 f:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
564 f:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
565 f:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
566 f:DEPRECATED_USE_STRUCT_CONVENTION:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
567
568 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
569 # ABI suitable for the implementation of a robust extract
570 # struct-convention return-value address method (the sparc saves the
571 # address in the callers frame). All the other cases so far examined,
572 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
573 # erreneous - the code was incorrectly assuming that the return-value
574 # address, stored in a register, was preserved across the entire
575 # function call.
576
577 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
578 # the ABIs that are still to be analyzed - perhaps this should simply
579 # be deleted. The commented out extract_returned_value_address method
580 # is provided as a starting point for the 32-bit SPARC. It, or
581 # something like it, along with changes to both infcmd.c and stack.c
582 # will be needed for that case to work. NB: It is passed the callers
583 # frame since it is only after the callee has returned that this
584 # function is used.
585
586 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
587 F:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
588
589 F:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
590 F:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
591 #
592 f:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
593 f:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
594 f:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
595 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
596 f:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
597 f:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
598 v:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
599
600 # A function can be addressed by either it's "pointer" (possibly a
601 # descriptor address) or "entry point" (first executable instruction).
602 # The method "convert_from_func_ptr_addr" converting the former to the
603 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
604 # a simplified subset of that functionality - the function's address
605 # corresponds to the "function pointer" and the function's start
606 # corresponds to the "function entry point" - and hence is redundant.
607
608 v:DEPRECATED_FUNCTION_START_OFFSET:CORE_ADDR:deprecated_function_start_offset::::0:::0
609
610 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
611 #
612 v:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
613 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
614 # frame code works regardless of the type of frame - frameless,
615 # stackless, or normal.
616 F:DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
617 F:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
618 F:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
619 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
620 # note, per UNWIND_PC's doco, that while the two have similar
621 # interfaces they have very different underlying implementations.
622 F:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
623 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
624 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
625 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
626 # frame-base. Enable frame-base before frame-unwind.
627 F:DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
628 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
629 # frame-base. Enable frame-base before frame-unwind.
630 F:DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
631 F:DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
632 F:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
633 #
634 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
635 # to frame_align and the requirement that methods such as
636 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
637 # alignment.
638 F:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
639 M::CORE_ADDR:frame_align:CORE_ADDR address:address
640 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
641 # stabs_argument_has_addr.
642 F:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
643 m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
644 v:FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
645 #
646 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
647 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
648 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
649 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
650 # On some machines there are bits in addresses which are not really
651 # part of the address, but are used by the kernel, the hardware, etc.
652 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
653 # we get a "real" address such as one would find in a symbol table.
654 # This is used only for addresses of instructions, and even then I'm
655 # not sure it's used in all contexts. It exists to deal with there
656 # being a few stray bits in the PC which would mislead us, not as some
657 # sort of generic thing to handle alignment or segmentation (it's
658 # possible it should be in TARGET_READ_PC instead).
659 f:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
660 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
661 # ADDR_BITS_REMOVE.
662 f:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
663 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
664 # the target needs software single step. An ISA method to implement it.
665 #
666 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
667 # using the breakpoint system instead of blatting memory directly (as with rs6000).
668 #
669 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
670 # single step. If not, then implement single step using breakpoints.
671 F:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
672 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
673 # disassembler. Perhaphs objdump can handle it?
674 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
675 f:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
676
677
678 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
679 # evaluates non-zero, this is the address where the debugger will place
680 # a step-resume breakpoint to get us past the dynamic linker.
681 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
682 # For SVR4 shared libraries, each call goes through a small piece of
683 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
684 # to nonzero if we are currently stopped in one of these.
685 f:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
686
687 # Some systems also have trampoline code for returning from shared libs.
688 f:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
689
690 # A target might have problems with watchpoints as soon as the stack
691 # frame of the current function has been destroyed. This mostly happens
692 # as the first action in a funtion's epilogue. in_function_epilogue_p()
693 # is defined to return a non-zero value if either the given addr is one
694 # instruction after the stack destroying instruction up to the trailing
695 # return instruction or if we can figure out that the stack frame has
696 # already been invalidated regardless of the value of addr. Targets
697 # which don't suffer from that problem could just let this functionality
698 # untouched.
699 m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
700 # Given a vector of command-line arguments, return a newly allocated
701 # string which, when passed to the create_inferior function, will be
702 # parsed (on Unix systems, by the shell) to yield the same vector.
703 # This function should call error() if the argument vector is not
704 # representable for this target or if this target does not support
705 # command-line arguments.
706 # ARGC is the number of elements in the vector.
707 # ARGV is an array of strings, one per argument.
708 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
709 f:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
710 f:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
711 v:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
712 v:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
713 v:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
714 F:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
715 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
716 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
717 # Is a register in a group
718 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
719 # Fetch the pointer to the ith function argument.
720 F:FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
721
722 # Return the appropriate register set for a core file section with
723 # name SECT_NAME and size SECT_SIZE.
724 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
725 EOF
726 }
727
728 #
729 # The .log file
730 #
731 exec > new-gdbarch.log
732 function_list | while do_read
733 do
734 cat <<EOF
735 ${class} ${returntype} ${function} ($formal)${attrib}
736 EOF
737 for r in ${read}
738 do
739 eval echo \"\ \ \ \ ${r}=\${${r}}\"
740 done
741 if class_is_predicate_p && fallback_default_p
742 then
743 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
744 kill $$
745 exit 1
746 fi
747 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
748 then
749 echo "Error: postdefault is useless when invalid_p=0" 1>&2
750 kill $$
751 exit 1
752 fi
753 if class_is_multiarch_p
754 then
755 if class_is_predicate_p ; then :
756 elif test "x${predefault}" = "x"
757 then
758 echo "Error: pure multi-arch function must have a predefault" 1>&2
759 kill $$
760 exit 1
761 fi
762 fi
763 echo ""
764 done
765
766 exec 1>&2
767 compare_new gdbarch.log
768
769
770 copyright ()
771 {
772 cat <<EOF
773 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
774
775 /* Dynamic architecture support for GDB, the GNU debugger.
776
777 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
778 Software Foundation, Inc.
779
780 This file is part of GDB.
781
782 This program is free software; you can redistribute it and/or modify
783 it under the terms of the GNU General Public License as published by
784 the Free Software Foundation; either version 2 of the License, or
785 (at your option) any later version.
786
787 This program is distributed in the hope that it will be useful,
788 but WITHOUT ANY WARRANTY; without even the implied warranty of
789 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
790 GNU General Public License for more details.
791
792 You should have received a copy of the GNU General Public License
793 along with this program; if not, write to the Free Software
794 Foundation, Inc., 59 Temple Place - Suite 330,
795 Boston, MA 02111-1307, USA. */
796
797 /* This file was created with the aid of \`\`gdbarch.sh''.
798
799 The Bourne shell script \`\`gdbarch.sh'' creates the files
800 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
801 against the existing \`\`gdbarch.[hc]''. Any differences found
802 being reported.
803
804 If editing this file, please also run gdbarch.sh and merge any
805 changes into that script. Conversely, when making sweeping changes
806 to this file, modifying gdbarch.sh and using its output may prove
807 easier. */
808
809 EOF
810 }
811
812 #
813 # The .h file
814 #
815
816 exec > new-gdbarch.h
817 copyright
818 cat <<EOF
819 #ifndef GDBARCH_H
820 #define GDBARCH_H
821
822 struct floatformat;
823 struct ui_file;
824 struct frame_info;
825 struct value;
826 struct objfile;
827 struct minimal_symbol;
828 struct regcache;
829 struct reggroup;
830 struct regset;
831 struct disassemble_info;
832 struct target_ops;
833 struct obstack;
834
835 extern struct gdbarch *current_gdbarch;
836
837 /* If any of the following are defined, the target wasn't correctly
838 converted. */
839
840 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
841 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
842 #endif
843 EOF
844
845 # function typedef's
846 printf "\n"
847 printf "\n"
848 printf "/* The following are pre-initialized by GDBARCH. */\n"
849 function_list | while do_read
850 do
851 if class_is_info_p
852 then
853 printf "\n"
854 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
855 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
856 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
857 printf "#error \"Non multi-arch definition of ${macro}\"\n"
858 printf "#endif\n"
859 printf "#if !defined (${macro})\n"
860 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
861 printf "#endif\n"
862 fi
863 done
864
865 # function typedef's
866 printf "\n"
867 printf "\n"
868 printf "/* The following are initialized by the target dependent code. */\n"
869 function_list | while do_read
870 do
871 if [ -n "${comment}" ]
872 then
873 echo "${comment}" | sed \
874 -e '2 s,#,/*,' \
875 -e '3,$ s,#, ,' \
876 -e '$ s,$, */,'
877 fi
878 if class_is_multiarch_p
879 then
880 if class_is_predicate_p
881 then
882 printf "\n"
883 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
884 fi
885 else
886 if class_is_predicate_p
887 then
888 printf "\n"
889 printf "#if defined (${macro})\n"
890 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
891 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
892 printf "#if !defined (${macro}_P)\n"
893 printf "#define ${macro}_P() (1)\n"
894 printf "#endif\n"
895 printf "#endif\n"
896 printf "\n"
897 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
898 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
901 printf "#if !defined (${macro}_P)\n"
902 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
903 printf "#endif\n"
904 fi
905 fi
906 if class_is_variable_p
907 then
908 printf "\n"
909 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
910 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
911 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
912 printf "#error \"Non multi-arch definition of ${macro}\"\n"
913 printf "#endif\n"
914 printf "#if !defined (${macro})\n"
915 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
916 printf "#endif\n"
917 fi
918 if class_is_function_p
919 then
920 printf "\n"
921 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
922 then
923 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
924 elif class_is_multiarch_p
925 then
926 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
927 else
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
929 fi
930 if [ "x${formal}" = "xvoid" ]
931 then
932 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
933 else
934 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
935 fi
936 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
937 if class_is_multiarch_p ; then :
938 else
939 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940 printf "#error \"Non multi-arch definition of ${macro}\"\n"
941 printf "#endif\n"
942 if [ "x${actual}" = "x" ]
943 then
944 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
945 elif [ "x${actual}" = "x-" ]
946 then
947 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
948 else
949 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
950 fi
951 printf "#if !defined (${macro})\n"
952 if [ "x${actual}" = "x" ]
953 then
954 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
955 elif [ "x${actual}" = "x-" ]
956 then
957 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
958 else
959 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
960 fi
961 printf "#endif\n"
962 fi
963 fi
964 done
965
966 # close it off
967 cat <<EOF
968
969 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
970
971
972 /* Mechanism for co-ordinating the selection of a specific
973 architecture.
974
975 GDB targets (*-tdep.c) can register an interest in a specific
976 architecture. Other GDB components can register a need to maintain
977 per-architecture data.
978
979 The mechanisms below ensures that there is only a loose connection
980 between the set-architecture command and the various GDB
981 components. Each component can independently register their need
982 to maintain architecture specific data with gdbarch.
983
984 Pragmatics:
985
986 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
987 didn't scale.
988
989 The more traditional mega-struct containing architecture specific
990 data for all the various GDB components was also considered. Since
991 GDB is built from a variable number of (fairly independent)
992 components it was determined that the global aproach was not
993 applicable. */
994
995
996 /* Register a new architectural family with GDB.
997
998 Register support for the specified ARCHITECTURE with GDB. When
999 gdbarch determines that the specified architecture has been
1000 selected, the corresponding INIT function is called.
1001
1002 --
1003
1004 The INIT function takes two parameters: INFO which contains the
1005 information available to gdbarch about the (possibly new)
1006 architecture; ARCHES which is a list of the previously created
1007 \`\`struct gdbarch'' for this architecture.
1008
1009 The INFO parameter is, as far as possible, be pre-initialized with
1010 information obtained from INFO.ABFD or the previously selected
1011 architecture.
1012
1013 The ARCHES parameter is a linked list (sorted most recently used)
1014 of all the previously created architures for this architecture
1015 family. The (possibly NULL) ARCHES->gdbarch can used to access
1016 values from the previously selected architecture for this
1017 architecture family. The global \`\`current_gdbarch'' shall not be
1018 used.
1019
1020 The INIT function shall return any of: NULL - indicating that it
1021 doesn't recognize the selected architecture; an existing \`\`struct
1022 gdbarch'' from the ARCHES list - indicating that the new
1023 architecture is just a synonym for an earlier architecture (see
1024 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1025 - that describes the selected architecture (see gdbarch_alloc()).
1026
1027 The DUMP_TDEP function shall print out all target specific values.
1028 Care should be taken to ensure that the function works in both the
1029 multi-arch and non- multi-arch cases. */
1030
1031 struct gdbarch_list
1032 {
1033 struct gdbarch *gdbarch;
1034 struct gdbarch_list *next;
1035 };
1036
1037 struct gdbarch_info
1038 {
1039 /* Use default: NULL (ZERO). */
1040 const struct bfd_arch_info *bfd_arch_info;
1041
1042 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1043 int byte_order;
1044
1045 /* Use default: NULL (ZERO). */
1046 bfd *abfd;
1047
1048 /* Use default: NULL (ZERO). */
1049 struct gdbarch_tdep_info *tdep_info;
1050
1051 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1052 enum gdb_osabi osabi;
1053 };
1054
1055 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1056 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1057
1058 /* DEPRECATED - use gdbarch_register() */
1059 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1060
1061 extern void gdbarch_register (enum bfd_architecture architecture,
1062 gdbarch_init_ftype *,
1063 gdbarch_dump_tdep_ftype *);
1064
1065
1066 /* Return a freshly allocated, NULL terminated, array of the valid
1067 architecture names. Since architectures are registered during the
1068 _initialize phase this function only returns useful information
1069 once initialization has been completed. */
1070
1071 extern const char **gdbarch_printable_names (void);
1072
1073
1074 /* Helper function. Search the list of ARCHES for a GDBARCH that
1075 matches the information provided by INFO. */
1076
1077 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1078
1079
1080 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1081 basic initialization using values obtained from the INFO andTDEP
1082 parameters. set_gdbarch_*() functions are called to complete the
1083 initialization of the object. */
1084
1085 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1086
1087
1088 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1089 It is assumed that the caller freeds the \`\`struct
1090 gdbarch_tdep''. */
1091
1092 extern void gdbarch_free (struct gdbarch *);
1093
1094
1095 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1096 obstack. The memory is freed when the corresponding architecture
1097 is also freed. */
1098
1099 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1102
1103
1104 /* Helper function. Force an update of the current architecture.
1105
1106 The actual architecture selected is determined by INFO, \`\`(gdb) set
1107 architecture'' et.al., the existing architecture and BFD's default
1108 architecture. INFO should be initialized to zero and then selected
1109 fields should be updated.
1110
1111 Returns non-zero if the update succeeds */
1112
1113 extern int gdbarch_update_p (struct gdbarch_info info);
1114
1115
1116 /* Helper function. Find an architecture matching info.
1117
1118 INFO should be initialized using gdbarch_info_init, relevant fields
1119 set, and then finished using gdbarch_info_fill.
1120
1121 Returns the corresponding architecture, or NULL if no matching
1122 architecture was found. "current_gdbarch" is not updated. */
1123
1124 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1125
1126
1127 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1128
1129 FIXME: kettenis/20031124: Of the functions that follow, only
1130 gdbarch_from_bfd is supposed to survive. The others will
1131 dissappear since in the future GDB will (hopefully) be truly
1132 multi-arch. However, for now we're still stuck with the concept of
1133 a single active architecture. */
1134
1135 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1136
1137
1138 /* Register per-architecture data-pointer.
1139
1140 Reserve space for a per-architecture data-pointer. An identifier
1141 for the reserved data-pointer is returned. That identifer should
1142 be saved in a local static variable.
1143
1144 Memory for the per-architecture data shall be allocated using
1145 gdbarch_obstack_zalloc. That memory will be deleted when the
1146 corresponding architecture object is deleted.
1147
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
1155 struct gdbarch_data;
1156
1157 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1163 void *pointer);
1164
1165 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166
1167
1168
1169 /* Register per-architecture memory region.
1170
1171 Provide a memory-region swap mechanism. Per-architecture memory
1172 region are created. These memory regions are swapped whenever the
1173 architecture is changed. For a new architecture, the memory region
1174 is initialized with zero (0) and the INIT function is called.
1175
1176 Memory regions are swapped / initialized in the order that they are
1177 registered. NULL DATA and/or INIT values can be specified.
1178
1179 New code should use gdbarch_data_register_*(). */
1180
1181 typedef void (gdbarch_swap_ftype) (void);
1182 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1183 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1184
1185
1186
1187 /* Set the dynamic target-system-dependent parameters (architecture,
1188 byte-order, ...) using information found in the BFD */
1189
1190 extern void set_gdbarch_from_file (bfd *);
1191
1192
1193 /* Initialize the current architecture to the "first" one we find on
1194 our list. */
1195
1196 extern void initialize_current_architecture (void);
1197
1198 /* gdbarch trace variable */
1199 extern int gdbarch_debug;
1200
1201 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1202
1203 #endif
1204 EOF
1205 exec 1>&2
1206 #../move-if-change new-gdbarch.h gdbarch.h
1207 compare_new gdbarch.h
1208
1209
1210 #
1211 # C file
1212 #
1213
1214 exec > new-gdbarch.c
1215 copyright
1216 cat <<EOF
1217
1218 #include "defs.h"
1219 #include "arch-utils.h"
1220
1221 #include "gdbcmd.h"
1222 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1223 #include "symcat.h"
1224
1225 #include "floatformat.h"
1226
1227 #include "gdb_assert.h"
1228 #include "gdb_string.h"
1229 #include "gdb-events.h"
1230 #include "reggroups.h"
1231 #include "osabi.h"
1232 #include "gdb_obstack.h"
1233
1234 /* Static function declarations */
1235
1236 static void alloc_gdbarch_data (struct gdbarch *);
1237
1238 /* Non-zero if we want to trace architecture code. */
1239
1240 #ifndef GDBARCH_DEBUG
1241 #define GDBARCH_DEBUG 0
1242 #endif
1243 int gdbarch_debug = GDBARCH_DEBUG;
1244
1245 EOF
1246
1247 # gdbarch open the gdbarch object
1248 printf "\n"
1249 printf "/* Maintain the struct gdbarch object */\n"
1250 printf "\n"
1251 printf "struct gdbarch\n"
1252 printf "{\n"
1253 printf " /* Has this architecture been fully initialized? */\n"
1254 printf " int initialized_p;\n"
1255 printf "\n"
1256 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1257 printf " struct obstack *obstack;\n"
1258 printf "\n"
1259 printf " /* basic architectural information */\n"
1260 function_list | while do_read
1261 do
1262 if class_is_info_p
1263 then
1264 printf " ${returntype} ${function};\n"
1265 fi
1266 done
1267 printf "\n"
1268 printf " /* target specific vector. */\n"
1269 printf " struct gdbarch_tdep *tdep;\n"
1270 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1271 printf "\n"
1272 printf " /* per-architecture data-pointers */\n"
1273 printf " unsigned nr_data;\n"
1274 printf " void **data;\n"
1275 printf "\n"
1276 printf " /* per-architecture swap-regions */\n"
1277 printf " struct gdbarch_swap *swap;\n"
1278 printf "\n"
1279 cat <<EOF
1280 /* Multi-arch values.
1281
1282 When extending this structure you must:
1283
1284 Add the field below.
1285
1286 Declare set/get functions and define the corresponding
1287 macro in gdbarch.h.
1288
1289 gdbarch_alloc(): If zero/NULL is not a suitable default,
1290 initialize the new field.
1291
1292 verify_gdbarch(): Confirm that the target updated the field
1293 correctly.
1294
1295 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1296 field is dumped out
1297
1298 \`\`startup_gdbarch()'': Append an initial value to the static
1299 variable (base values on the host's c-type system).
1300
1301 get_gdbarch(): Implement the set/get functions (probably using
1302 the macro's as shortcuts).
1303
1304 */
1305
1306 EOF
1307 function_list | while do_read
1308 do
1309 if class_is_variable_p
1310 then
1311 printf " ${returntype} ${function};\n"
1312 elif class_is_function_p
1313 then
1314 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1315 fi
1316 done
1317 printf "};\n"
1318
1319 # A pre-initialized vector
1320 printf "\n"
1321 printf "\n"
1322 cat <<EOF
1323 /* The default architecture uses host values (for want of a better
1324 choice). */
1325 EOF
1326 printf "\n"
1327 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1328 printf "\n"
1329 printf "struct gdbarch startup_gdbarch =\n"
1330 printf "{\n"
1331 printf " 1, /* Always initialized. */\n"
1332 printf " NULL, /* The obstack. */\n"
1333 printf " /* basic architecture information */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_info_p
1337 then
1338 printf " ${staticdefault}, /* ${function} */\n"
1339 fi
1340 done
1341 cat <<EOF
1342 /* target specific vector and its dump routine */
1343 NULL, NULL,
1344 /*per-architecture data-pointers and swap regions */
1345 0, NULL, NULL,
1346 /* Multi-arch values */
1347 EOF
1348 function_list | while do_read
1349 do
1350 if class_is_function_p || class_is_variable_p
1351 then
1352 printf " ${staticdefault}, /* ${function} */\n"
1353 fi
1354 done
1355 cat <<EOF
1356 /* startup_gdbarch() */
1357 };
1358
1359 struct gdbarch *current_gdbarch = &startup_gdbarch;
1360 EOF
1361
1362 # Create a new gdbarch struct
1363 cat <<EOF
1364
1365 /* Create a new \`\`struct gdbarch'' based on information provided by
1366 \`\`struct gdbarch_info''. */
1367 EOF
1368 printf "\n"
1369 cat <<EOF
1370 struct gdbarch *
1371 gdbarch_alloc (const struct gdbarch_info *info,
1372 struct gdbarch_tdep *tdep)
1373 {
1374 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1375 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1376 the current local architecture and not the previous global
1377 architecture. This ensures that the new architectures initial
1378 values are not influenced by the previous architecture. Once
1379 everything is parameterised with gdbarch, this will go away. */
1380 struct gdbarch *current_gdbarch;
1381
1382 /* Create an obstack for allocating all the per-architecture memory,
1383 then use that to allocate the architecture vector. */
1384 struct obstack *obstack = XMALLOC (struct obstack);
1385 obstack_init (obstack);
1386 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1387 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1388 current_gdbarch->obstack = obstack;
1389
1390 alloc_gdbarch_data (current_gdbarch);
1391
1392 current_gdbarch->tdep = tdep;
1393 EOF
1394 printf "\n"
1395 function_list | while do_read
1396 do
1397 if class_is_info_p
1398 then
1399 printf " current_gdbarch->${function} = info->${function};\n"
1400 fi
1401 done
1402 printf "\n"
1403 printf " /* Force the explicit initialization of these. */\n"
1404 function_list | while do_read
1405 do
1406 if class_is_function_p || class_is_variable_p
1407 then
1408 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1409 then
1410 printf " current_gdbarch->${function} = ${predefault};\n"
1411 fi
1412 fi
1413 done
1414 cat <<EOF
1415 /* gdbarch_alloc() */
1416
1417 return current_gdbarch;
1418 }
1419 EOF
1420
1421 # Free a gdbarch struct.
1422 printf "\n"
1423 printf "\n"
1424 cat <<EOF
1425 /* Allocate extra space using the per-architecture obstack. */
1426
1427 void *
1428 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1429 {
1430 void *data = obstack_alloc (arch->obstack, size);
1431 memset (data, 0, size);
1432 return data;
1433 }
1434
1435
1436 /* Free a gdbarch struct. This should never happen in normal
1437 operation --- once you've created a gdbarch, you keep it around.
1438 However, if an architecture's init function encounters an error
1439 building the structure, it may need to clean up a partially
1440 constructed gdbarch. */
1441
1442 void
1443 gdbarch_free (struct gdbarch *arch)
1444 {
1445 struct obstack *obstack;
1446 gdb_assert (arch != NULL);
1447 gdb_assert (!arch->initialized_p);
1448 obstack = arch->obstack;
1449 obstack_free (obstack, 0); /* Includes the ARCH. */
1450 xfree (obstack);
1451 }
1452 EOF
1453
1454 # verify a new architecture
1455 cat <<EOF
1456
1457
1458 /* Ensure that all values in a GDBARCH are reasonable. */
1459
1460 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1461 just happens to match the global variable \`\`current_gdbarch''. That
1462 way macros refering to that variable get the local and not the global
1463 version - ulgh. Once everything is parameterised with gdbarch, this
1464 will go away. */
1465
1466 static void
1467 verify_gdbarch (struct gdbarch *current_gdbarch)
1468 {
1469 struct ui_file *log;
1470 struct cleanup *cleanups;
1471 long dummy;
1472 char *buf;
1473 log = mem_fileopen ();
1474 cleanups = make_cleanup_ui_file_delete (log);
1475 /* fundamental */
1476 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1477 fprintf_unfiltered (log, "\n\tbyte-order");
1478 if (current_gdbarch->bfd_arch_info == NULL)
1479 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1480 /* Check those that need to be defined for the given multi-arch level. */
1481 EOF
1482 function_list | while do_read
1483 do
1484 if class_is_function_p || class_is_variable_p
1485 then
1486 if [ "x${invalid_p}" = "x0" ]
1487 then
1488 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1489 elif class_is_predicate_p
1490 then
1491 printf " /* Skip verify of ${function}, has predicate */\n"
1492 # FIXME: See do_read for potential simplification
1493 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1494 then
1495 printf " if (${invalid_p})\n"
1496 printf " current_gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1498 then
1499 printf " if (current_gdbarch->${function} == ${predefault})\n"
1500 printf " current_gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${postdefault}" ]
1502 then
1503 printf " if (current_gdbarch->${function} == 0)\n"
1504 printf " current_gdbarch->${function} = ${postdefault};\n"
1505 elif [ -n "${invalid_p}" ]
1506 then
1507 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1508 printf " && (${invalid_p}))\n"
1509 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1510 elif [ -n "${predefault}" ]
1511 then
1512 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1513 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1514 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1515 fi
1516 fi
1517 done
1518 cat <<EOF
1519 buf = ui_file_xstrdup (log, &dummy);
1520 make_cleanup (xfree, buf);
1521 if (strlen (buf) > 0)
1522 internal_error (__FILE__, __LINE__,
1523 "verify_gdbarch: the following are invalid ...%s",
1524 buf);
1525 do_cleanups (cleanups);
1526 }
1527 EOF
1528
1529 # dump the structure
1530 printf "\n"
1531 printf "\n"
1532 cat <<EOF
1533 /* Print out the details of the current architecture. */
1534
1535 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536 just happens to match the global variable \`\`current_gdbarch''. That
1537 way macros refering to that variable get the local and not the global
1538 version - ulgh. Once everything is parameterised with gdbarch, this
1539 will go away. */
1540
1541 void
1542 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1543 {
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1546 GDB_MULTI_ARCH);
1547 EOF
1548 function_list | sort -t: -k 4 | while do_read
1549 do
1550 # First the predicate
1551 if class_is_predicate_p
1552 then
1553 if class_is_multiarch_p
1554 then
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1557 printf " gdbarch_${function}_p (current_gdbarch));\n"
1558 else
1559 printf "#ifdef ${macro}_P\n"
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1562 printf " \"${macro}_P()\",\n"
1563 printf " XSTRING (${macro}_P ()));\n"
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1566 printf " ${macro}_P ());\n"
1567 printf "#endif\n"
1568 fi
1569 fi
1570 # multiarch functions don't have macros.
1571 if class_is_multiarch_p
1572 then
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1575 printf " (long) current_gdbarch->${function});\n"
1576 continue
1577 fi
1578 # Print the macro definition.
1579 printf "#ifdef ${macro}\n"
1580 if class_is_function_p
1581 then
1582 printf " fprintf_unfiltered (file,\n"
1583 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1584 printf " \"${macro}(${actual})\",\n"
1585 printf " XSTRING (${macro} (${actual})));\n"
1586 else
1587 printf " fprintf_unfiltered (file,\n"
1588 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1589 printf " XSTRING (${macro}));\n"
1590 fi
1591 if class_is_function_p
1592 then
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1595 printf " (long) current_gdbarch->${function}\n"
1596 printf " /*${macro} ()*/);\n"
1597 else
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1600 printf " ${print});\n"
1601 fi
1602 printf "#endif\n"
1603 done
1604 cat <<EOF
1605 if (current_gdbarch->dump_tdep != NULL)
1606 current_gdbarch->dump_tdep (current_gdbarch, file);
1607 }
1608 EOF
1609
1610
1611 # GET/SET
1612 printf "\n"
1613 cat <<EOF
1614 struct gdbarch_tdep *
1615 gdbarch_tdep (struct gdbarch *gdbarch)
1616 {
1617 if (gdbarch_debug >= 2)
1618 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1619 return gdbarch->tdep;
1620 }
1621 EOF
1622 printf "\n"
1623 function_list | while do_read
1624 do
1625 if class_is_predicate_p
1626 then
1627 printf "\n"
1628 printf "int\n"
1629 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1630 printf "{\n"
1631 printf " gdb_assert (gdbarch != NULL);\n"
1632 printf " return ${predicate};\n"
1633 printf "}\n"
1634 fi
1635 if class_is_function_p
1636 then
1637 printf "\n"
1638 printf "${returntype}\n"
1639 if [ "x${formal}" = "xvoid" ]
1640 then
1641 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1642 else
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1644 fi
1645 printf "{\n"
1646 printf " gdb_assert (gdbarch != NULL);\n"
1647 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1648 if class_is_predicate_p && test -n "${predefault}"
1649 then
1650 # Allow a call to a function with a predicate.
1651 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1652 fi
1653 printf " if (gdbarch_debug >= 2)\n"
1654 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1655 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1656 then
1657 if class_is_multiarch_p
1658 then
1659 params="gdbarch"
1660 else
1661 params=""
1662 fi
1663 else
1664 if class_is_multiarch_p
1665 then
1666 params="gdbarch, ${actual}"
1667 else
1668 params="${actual}"
1669 fi
1670 fi
1671 if [ "x${returntype}" = "xvoid" ]
1672 then
1673 printf " gdbarch->${function} (${params});\n"
1674 else
1675 printf " return gdbarch->${function} (${params});\n"
1676 fi
1677 printf "}\n"
1678 printf "\n"
1679 printf "void\n"
1680 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1681 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1682 printf "{\n"
1683 printf " gdbarch->${function} = ${function};\n"
1684 printf "}\n"
1685 elif class_is_variable_p
1686 then
1687 printf "\n"
1688 printf "${returntype}\n"
1689 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1690 printf "{\n"
1691 printf " gdb_assert (gdbarch != NULL);\n"
1692 if [ "x${invalid_p}" = "x0" ]
1693 then
1694 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1695 elif [ -n "${invalid_p}" ]
1696 then
1697 printf " /* Check variable is valid. */\n"
1698 printf " gdb_assert (!(${invalid_p}));\n"
1699 elif [ -n "${predefault}" ]
1700 then
1701 printf " /* Check variable changed from pre-default. */\n"
1702 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1703 fi
1704 printf " if (gdbarch_debug >= 2)\n"
1705 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1706 printf " return gdbarch->${function};\n"
1707 printf "}\n"
1708 printf "\n"
1709 printf "void\n"
1710 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1711 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1712 printf "{\n"
1713 printf " gdbarch->${function} = ${function};\n"
1714 printf "}\n"
1715 elif class_is_info_p
1716 then
1717 printf "\n"
1718 printf "${returntype}\n"
1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1720 printf "{\n"
1721 printf " gdb_assert (gdbarch != NULL);\n"
1722 printf " if (gdbarch_debug >= 2)\n"
1723 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1724 printf " return gdbarch->${function};\n"
1725 printf "}\n"
1726 fi
1727 done
1728
1729 # All the trailing guff
1730 cat <<EOF
1731
1732
1733 /* Keep a registry of per-architecture data-pointers required by GDB
1734 modules. */
1735
1736 struct gdbarch_data
1737 {
1738 unsigned index;
1739 int init_p;
1740 gdbarch_data_pre_init_ftype *pre_init;
1741 gdbarch_data_post_init_ftype *post_init;
1742 };
1743
1744 struct gdbarch_data_registration
1745 {
1746 struct gdbarch_data *data;
1747 struct gdbarch_data_registration *next;
1748 };
1749
1750 struct gdbarch_data_registry
1751 {
1752 unsigned nr;
1753 struct gdbarch_data_registration *registrations;
1754 };
1755
1756 struct gdbarch_data_registry gdbarch_data_registry =
1757 {
1758 0, NULL,
1759 };
1760
1761 static struct gdbarch_data *
1762 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1763 gdbarch_data_post_init_ftype *post_init)
1764 {
1765 struct gdbarch_data_registration **curr;
1766 /* Append the new registraration. */
1767 for (curr = &gdbarch_data_registry.registrations;
1768 (*curr) != NULL;
1769 curr = &(*curr)->next);
1770 (*curr) = XMALLOC (struct gdbarch_data_registration);
1771 (*curr)->next = NULL;
1772 (*curr)->data = XMALLOC (struct gdbarch_data);
1773 (*curr)->data->index = gdbarch_data_registry.nr++;
1774 (*curr)->data->pre_init = pre_init;
1775 (*curr)->data->post_init = post_init;
1776 (*curr)->data->init_p = 1;
1777 return (*curr)->data;
1778 }
1779
1780 struct gdbarch_data *
1781 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1782 {
1783 return gdbarch_data_register (pre_init, NULL);
1784 }
1785
1786 struct gdbarch_data *
1787 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1788 {
1789 return gdbarch_data_register (NULL, post_init);
1790 }
1791
1792 /* Create/delete the gdbarch data vector. */
1793
1794 static void
1795 alloc_gdbarch_data (struct gdbarch *gdbarch)
1796 {
1797 gdb_assert (gdbarch->data == NULL);
1798 gdbarch->nr_data = gdbarch_data_registry.nr;
1799 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1800 }
1801
1802 /* Initialize the current value of the specified per-architecture
1803 data-pointer. */
1804
1805 void
1806 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1807 struct gdbarch_data *data,
1808 void *pointer)
1809 {
1810 gdb_assert (data->index < gdbarch->nr_data);
1811 gdb_assert (gdbarch->data[data->index] == NULL);
1812 gdb_assert (data->pre_init == NULL);
1813 gdbarch->data[data->index] = pointer;
1814 }
1815
1816 /* Return the current value of the specified per-architecture
1817 data-pointer. */
1818
1819 void *
1820 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1821 {
1822 gdb_assert (data->index < gdbarch->nr_data);
1823 if (gdbarch->data[data->index] == NULL)
1824 {
1825 /* The data-pointer isn't initialized, call init() to get a
1826 value. */
1827 if (data->pre_init != NULL)
1828 /* Mid architecture creation: pass just the obstack, and not
1829 the entire architecture, as that way it isn't possible for
1830 pre-init code to refer to undefined architecture
1831 fields. */
1832 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1833 else if (gdbarch->initialized_p
1834 && data->post_init != NULL)
1835 /* Post architecture creation: pass the entire architecture
1836 (as all fields are valid), but be careful to also detect
1837 recursive references. */
1838 {
1839 gdb_assert (data->init_p);
1840 data->init_p = 0;
1841 gdbarch->data[data->index] = data->post_init (gdbarch);
1842 data->init_p = 1;
1843 }
1844 else
1845 /* The architecture initialization hasn't completed - punt -
1846 hope that the caller knows what they are doing. Once
1847 deprecated_set_gdbarch_data has been initialized, this can be
1848 changed to an internal error. */
1849 return NULL;
1850 gdb_assert (gdbarch->data[data->index] != NULL);
1851 }
1852 return gdbarch->data[data->index];
1853 }
1854
1855
1856
1857 /* Keep a registry of swapped data required by GDB modules. */
1858
1859 struct gdbarch_swap
1860 {
1861 void *swap;
1862 struct gdbarch_swap_registration *source;
1863 struct gdbarch_swap *next;
1864 };
1865
1866 struct gdbarch_swap_registration
1867 {
1868 void *data;
1869 unsigned long sizeof_data;
1870 gdbarch_swap_ftype *init;
1871 struct gdbarch_swap_registration *next;
1872 };
1873
1874 struct gdbarch_swap_registry
1875 {
1876 int nr;
1877 struct gdbarch_swap_registration *registrations;
1878 };
1879
1880 struct gdbarch_swap_registry gdbarch_swap_registry =
1881 {
1882 0, NULL,
1883 };
1884
1885 void
1886 deprecated_register_gdbarch_swap (void *data,
1887 unsigned long sizeof_data,
1888 gdbarch_swap_ftype *init)
1889 {
1890 struct gdbarch_swap_registration **rego;
1891 for (rego = &gdbarch_swap_registry.registrations;
1892 (*rego) != NULL;
1893 rego = &(*rego)->next);
1894 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1895 (*rego)->next = NULL;
1896 (*rego)->init = init;
1897 (*rego)->data = data;
1898 (*rego)->sizeof_data = sizeof_data;
1899 }
1900
1901 static void
1902 current_gdbarch_swap_init_hack (void)
1903 {
1904 struct gdbarch_swap_registration *rego;
1905 struct gdbarch_swap **curr = &current_gdbarch->swap;
1906 for (rego = gdbarch_swap_registry.registrations;
1907 rego != NULL;
1908 rego = rego->next)
1909 {
1910 if (rego->data != NULL)
1911 {
1912 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1913 struct gdbarch_swap);
1914 (*curr)->source = rego;
1915 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1916 rego->sizeof_data);
1917 (*curr)->next = NULL;
1918 curr = &(*curr)->next;
1919 }
1920 if (rego->init != NULL)
1921 rego->init ();
1922 }
1923 }
1924
1925 static struct gdbarch *
1926 current_gdbarch_swap_out_hack (void)
1927 {
1928 struct gdbarch *old_gdbarch = current_gdbarch;
1929 struct gdbarch_swap *curr;
1930
1931 gdb_assert (old_gdbarch != NULL);
1932 for (curr = old_gdbarch->swap;
1933 curr != NULL;
1934 curr = curr->next)
1935 {
1936 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1937 memset (curr->source->data, 0, curr->source->sizeof_data);
1938 }
1939 current_gdbarch = NULL;
1940 return old_gdbarch;
1941 }
1942
1943 static void
1944 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1945 {
1946 struct gdbarch_swap *curr;
1947
1948 gdb_assert (current_gdbarch == NULL);
1949 for (curr = new_gdbarch->swap;
1950 curr != NULL;
1951 curr = curr->next)
1952 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1953 current_gdbarch = new_gdbarch;
1954 }
1955
1956
1957 /* Keep a registry of the architectures known by GDB. */
1958
1959 struct gdbarch_registration
1960 {
1961 enum bfd_architecture bfd_architecture;
1962 gdbarch_init_ftype *init;
1963 gdbarch_dump_tdep_ftype *dump_tdep;
1964 struct gdbarch_list *arches;
1965 struct gdbarch_registration *next;
1966 };
1967
1968 static struct gdbarch_registration *gdbarch_registry = NULL;
1969
1970 static void
1971 append_name (const char ***buf, int *nr, const char *name)
1972 {
1973 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1974 (*buf)[*nr] = name;
1975 *nr += 1;
1976 }
1977
1978 const char **
1979 gdbarch_printable_names (void)
1980 {
1981 /* Accumulate a list of names based on the registed list of
1982 architectures. */
1983 enum bfd_architecture a;
1984 int nr_arches = 0;
1985 const char **arches = NULL;
1986 struct gdbarch_registration *rego;
1987 for (rego = gdbarch_registry;
1988 rego != NULL;
1989 rego = rego->next)
1990 {
1991 const struct bfd_arch_info *ap;
1992 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1993 if (ap == NULL)
1994 internal_error (__FILE__, __LINE__,
1995 "gdbarch_architecture_names: multi-arch unknown");
1996 do
1997 {
1998 append_name (&arches, &nr_arches, ap->printable_name);
1999 ap = ap->next;
2000 }
2001 while (ap != NULL);
2002 }
2003 append_name (&arches, &nr_arches, NULL);
2004 return arches;
2005 }
2006
2007
2008 void
2009 gdbarch_register (enum bfd_architecture bfd_architecture,
2010 gdbarch_init_ftype *init,
2011 gdbarch_dump_tdep_ftype *dump_tdep)
2012 {
2013 struct gdbarch_registration **curr;
2014 const struct bfd_arch_info *bfd_arch_info;
2015 /* Check that BFD recognizes this architecture */
2016 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2017 if (bfd_arch_info == NULL)
2018 {
2019 internal_error (__FILE__, __LINE__,
2020 "gdbarch: Attempt to register unknown architecture (%d)",
2021 bfd_architecture);
2022 }
2023 /* Check that we haven't seen this architecture before */
2024 for (curr = &gdbarch_registry;
2025 (*curr) != NULL;
2026 curr = &(*curr)->next)
2027 {
2028 if (bfd_architecture == (*curr)->bfd_architecture)
2029 internal_error (__FILE__, __LINE__,
2030 "gdbarch: Duplicate registraration of architecture (%s)",
2031 bfd_arch_info->printable_name);
2032 }
2033 /* log it */
2034 if (gdbarch_debug)
2035 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2036 bfd_arch_info->printable_name,
2037 (long) init);
2038 /* Append it */
2039 (*curr) = XMALLOC (struct gdbarch_registration);
2040 (*curr)->bfd_architecture = bfd_architecture;
2041 (*curr)->init = init;
2042 (*curr)->dump_tdep = dump_tdep;
2043 (*curr)->arches = NULL;
2044 (*curr)->next = NULL;
2045 }
2046
2047 void
2048 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2049 gdbarch_init_ftype *init)
2050 {
2051 gdbarch_register (bfd_architecture, init, NULL);
2052 }
2053
2054
2055 /* Look for an architecture using gdbarch_info. Base search on only
2056 BFD_ARCH_INFO and BYTE_ORDER. */
2057
2058 struct gdbarch_list *
2059 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2060 const struct gdbarch_info *info)
2061 {
2062 for (; arches != NULL; arches = arches->next)
2063 {
2064 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2065 continue;
2066 if (info->byte_order != arches->gdbarch->byte_order)
2067 continue;
2068 if (info->osabi != arches->gdbarch->osabi)
2069 continue;
2070 return arches;
2071 }
2072 return NULL;
2073 }
2074
2075
2076 /* Find an architecture that matches the specified INFO. Create a new
2077 architecture if needed. Return that new architecture. Assumes
2078 that there is no current architecture. */
2079
2080 static struct gdbarch *
2081 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2082 {
2083 struct gdbarch *new_gdbarch;
2084 struct gdbarch_registration *rego;
2085
2086 /* The existing architecture has been swapped out - all this code
2087 works from a clean slate. */
2088 gdb_assert (current_gdbarch == NULL);
2089
2090 /* Fill in missing parts of the INFO struct using a number of
2091 sources: "set ..."; INFOabfd supplied; and the existing
2092 architecture. */
2093 gdbarch_info_fill (old_gdbarch, &info);
2094
2095 /* Must have found some sort of architecture. */
2096 gdb_assert (info.bfd_arch_info != NULL);
2097
2098 if (gdbarch_debug)
2099 {
2100 fprintf_unfiltered (gdb_stdlog,
2101 "find_arch_by_info: info.bfd_arch_info %s\n",
2102 (info.bfd_arch_info != NULL
2103 ? info.bfd_arch_info->printable_name
2104 : "(null)"));
2105 fprintf_unfiltered (gdb_stdlog,
2106 "find_arch_by_info: info.byte_order %d (%s)\n",
2107 info.byte_order,
2108 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2109 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2110 : "default"));
2111 fprintf_unfiltered (gdb_stdlog,
2112 "find_arch_by_info: info.osabi %d (%s)\n",
2113 info.osabi, gdbarch_osabi_name (info.osabi));
2114 fprintf_unfiltered (gdb_stdlog,
2115 "find_arch_by_info: info.abfd 0x%lx\n",
2116 (long) info.abfd);
2117 fprintf_unfiltered (gdb_stdlog,
2118 "find_arch_by_info: info.tdep_info 0x%lx\n",
2119 (long) info.tdep_info);
2120 }
2121
2122 /* Find the tdep code that knows about this architecture. */
2123 for (rego = gdbarch_registry;
2124 rego != NULL;
2125 rego = rego->next)
2126 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2127 break;
2128 if (rego == NULL)
2129 {
2130 if (gdbarch_debug)
2131 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2132 "No matching architecture\n");
2133 return 0;
2134 }
2135
2136 /* Ask the tdep code for an architecture that matches "info". */
2137 new_gdbarch = rego->init (info, rego->arches);
2138
2139 /* Did the tdep code like it? No. Reject the change and revert to
2140 the old architecture. */
2141 if (new_gdbarch == NULL)
2142 {
2143 if (gdbarch_debug)
2144 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2145 "Target rejected architecture\n");
2146 return NULL;
2147 }
2148
2149 /* Is this a pre-existing architecture (as determined by already
2150 being initialized)? Move it to the front of the architecture
2151 list (keeping the list sorted Most Recently Used). */
2152 if (new_gdbarch->initialized_p)
2153 {
2154 struct gdbarch_list **list;
2155 struct gdbarch_list *this;
2156 if (gdbarch_debug)
2157 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2158 "Previous architecture 0x%08lx (%s) selected\n",
2159 (long) new_gdbarch,
2160 new_gdbarch->bfd_arch_info->printable_name);
2161 /* Find the existing arch in the list. */
2162 for (list = &rego->arches;
2163 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2164 list = &(*list)->next);
2165 /* It had better be in the list of architectures. */
2166 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2167 /* Unlink THIS. */
2168 this = (*list);
2169 (*list) = this->next;
2170 /* Insert THIS at the front. */
2171 this->next = rego->arches;
2172 rego->arches = this;
2173 /* Return it. */
2174 return new_gdbarch;
2175 }
2176
2177 /* It's a new architecture. */
2178 if (gdbarch_debug)
2179 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2180 "New architecture 0x%08lx (%s) selected\n",
2181 (long) new_gdbarch,
2182 new_gdbarch->bfd_arch_info->printable_name);
2183
2184 /* Insert the new architecture into the front of the architecture
2185 list (keep the list sorted Most Recently Used). */
2186 {
2187 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2188 this->next = rego->arches;
2189 this->gdbarch = new_gdbarch;
2190 rego->arches = this;
2191 }
2192
2193 /* Check that the newly installed architecture is valid. Plug in
2194 any post init values. */
2195 new_gdbarch->dump_tdep = rego->dump_tdep;
2196 verify_gdbarch (new_gdbarch);
2197 new_gdbarch->initialized_p = 1;
2198
2199 /* Initialize any per-architecture swap areas. This phase requires
2200 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2201 swap the entire architecture out. */
2202 current_gdbarch = new_gdbarch;
2203 current_gdbarch_swap_init_hack ();
2204 current_gdbarch_swap_out_hack ();
2205
2206 if (gdbarch_debug)
2207 gdbarch_dump (new_gdbarch, gdb_stdlog);
2208
2209 return new_gdbarch;
2210 }
2211
2212 struct gdbarch *
2213 gdbarch_find_by_info (struct gdbarch_info info)
2214 {
2215 /* Save the previously selected architecture, setting the global to
2216 NULL. This stops things like gdbarch->init() trying to use the
2217 previous architecture's configuration. The previous architecture
2218 may not even be of the same architecture family. The most recent
2219 architecture of the same family is found at the head of the
2220 rego->arches list. */
2221 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2222
2223 /* Find the specified architecture. */
2224 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2225
2226 /* Restore the existing architecture. */
2227 gdb_assert (current_gdbarch == NULL);
2228 current_gdbarch_swap_in_hack (old_gdbarch);
2229
2230 return new_gdbarch;
2231 }
2232
2233 /* Make the specified architecture current, swapping the existing one
2234 out. */
2235
2236 void
2237 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2238 {
2239 gdb_assert (new_gdbarch != NULL);
2240 gdb_assert (current_gdbarch != NULL);
2241 gdb_assert (new_gdbarch->initialized_p);
2242 current_gdbarch_swap_out_hack ();
2243 current_gdbarch_swap_in_hack (new_gdbarch);
2244 architecture_changed_event ();
2245 }
2246
2247 extern void _initialize_gdbarch (void);
2248
2249 void
2250 _initialize_gdbarch (void)
2251 {
2252 struct cmd_list_element *c;
2253
2254 add_show_from_set (add_set_cmd ("arch",
2255 class_maintenance,
2256 var_zinteger,
2257 (char *)&gdbarch_debug,
2258 "Set architecture debugging.\\n\\
2259 When non-zero, architecture debugging is enabled.", &setdebuglist),
2260 &showdebuglist);
2261 c = add_set_cmd ("archdebug",
2262 class_maintenance,
2263 var_zinteger,
2264 (char *)&gdbarch_debug,
2265 "Set architecture debugging.\\n\\
2266 When non-zero, architecture debugging is enabled.", &setlist);
2267
2268 deprecate_cmd (c, "set debug arch");
2269 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2270 }
2271 EOF
2272
2273 # close things off
2274 exec 1>&2
2275 #../move-if-change new-gdbarch.c gdbarch.c
2276 compare_new gdbarch.c
This page took 0.089236 seconds and 4 git commands to generate.