*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "half", "float", "double", and
367 # "long double". These bit/format pairs should eventually be combined
368 # into a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
374 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
376 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
378 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
380
381 # For most targets, a pointer on the target and its representation as an
382 # address in GDB have the same size and "look the same". For such a
383 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
384 # / addr_bit will be set from it.
385 #
386 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
387 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
388 # gdbarch_address_to_pointer as well.
389 #
390 # ptr_bit is the size of a pointer on the target
391 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
392 # addr_bit is the size of a target address as represented in gdb
393 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
394 #
395 # dwarf2_addr_size is the target address size as used in the Dwarf debug
396 # info. For .debug_frame FDEs, this is supposed to be the target address
397 # size from the associated CU header, and which is equivalent to the
398 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
399 # Unfortunately there is no good way to determine this value. Therefore
400 # dwarf2_addr_size simply defaults to the target pointer size.
401 #
402 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
403 # defined using the target's pointer size so far.
404 #
405 # Note that dwarf2_addr_size only needs to be redefined by a target if the
406 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
407 # and if Dwarf versions < 4 need to be supported.
408 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
409 #
410 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
411 v:int:char_signed:::1:-1:1
412 #
413 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
414 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
415 # Function for getting target's idea of a frame pointer. FIXME: GDB's
416 # whole scheme for dealing with "frames" and "frame pointers" needs a
417 # serious shakedown.
418 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
419 #
420 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
421 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
422 #
423 v:int:num_regs:::0:-1
424 # This macro gives the number of pseudo-registers that live in the
425 # register namespace but do not get fetched or stored on the target.
426 # These pseudo-registers may be aliases for other registers,
427 # combinations of other registers, or they may be computed by GDB.
428 v:int:num_pseudo_regs:::0:0::0
429
430 # GDB's standard (or well known) register numbers. These can map onto
431 # a real register or a pseudo (computed) register or not be defined at
432 # all (-1).
433 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
434 v:int:sp_regnum:::-1:-1::0
435 v:int:pc_regnum:::-1:-1::0
436 v:int:ps_regnum:::-1:-1::0
437 v:int:fp0_regnum:::0:-1::0
438 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
439 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
440 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
441 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
442 # Convert from an sdb register number to an internal gdb register number.
443 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
444 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
445 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
446 m:const char *:register_name:int regnr:regnr::0
447
448 # Return the type of a register specified by the architecture. Only
449 # the register cache should call this function directly; others should
450 # use "register_type".
451 M:struct type *:register_type:int reg_nr:reg_nr
452
453 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
454 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
455 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
456 # deprecated_fp_regnum.
457 v:int:deprecated_fp_regnum:::-1:-1::0
458
459 # See gdbint.texinfo. See infcall.c.
460 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
461 v:int:call_dummy_location::::AT_ENTRY_POINT::0
462 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
463
464 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
465 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
466 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
467 # MAP a GDB RAW register number onto a simulator register number. See
468 # also include/...-sim.h.
469 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
470 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
471 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
472 # setjmp/longjmp support.
473 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
474 #
475 v:int:believe_pcc_promotion:::::::
476 #
477 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
478 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
479 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
480 # Construct a value representing the contents of register REGNUM in
481 # frame FRAME, interpreted as type TYPE. The routine needs to
482 # allocate and return a struct value with all value attributes
483 # (but not the value contents) filled in.
484 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
485 #
486 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
487 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
488 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
489
490 # Return the return-value convention that will be used by FUNCTYPE
491 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
492 # case the return convention is computed based only on VALTYPE.
493 #
494 # If READBUF is not NULL, extract the return value and save it in this buffer.
495 #
496 # If WRITEBUF is not NULL, it contains a return value which will be
497 # stored into the appropriate register. This can be used when we want
498 # to force the value returned by a function (see the "return" command
499 # for instance).
500 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
501
502 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
503 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
504 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
505 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
506 # Return the adjusted address and kind to use for Z0/Z1 packets.
507 # KIND is usually the memory length of the breakpoint, but may have a
508 # different target-specific meaning.
509 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
510 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
511 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
512 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
513 v:CORE_ADDR:decr_pc_after_break:::0:::0
514
515 # A function can be addressed by either it's "pointer" (possibly a
516 # descriptor address) or "entry point" (first executable instruction).
517 # The method "convert_from_func_ptr_addr" converting the former to the
518 # latter. gdbarch_deprecated_function_start_offset is being used to implement
519 # a simplified subset of that functionality - the function's address
520 # corresponds to the "function pointer" and the function's start
521 # corresponds to the "function entry point" - and hence is redundant.
522
523 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
524
525 # Return the remote protocol register number associated with this
526 # register. Normally the identity mapping.
527 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
528
529 # Fetch the target specific address used to represent a load module.
530 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
531 #
532 v:CORE_ADDR:frame_args_skip:::0:::0
533 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
534 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
535 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
536 # frame-base. Enable frame-base before frame-unwind.
537 F:int:frame_num_args:struct frame_info *frame:frame
538 #
539 M:CORE_ADDR:frame_align:CORE_ADDR address:address
540 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
541 v:int:frame_red_zone_size
542 #
543 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
544 # On some machines there are bits in addresses which are not really
545 # part of the address, but are used by the kernel, the hardware, etc.
546 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
547 # we get a "real" address such as one would find in a symbol table.
548 # This is used only for addresses of instructions, and even then I'm
549 # not sure it's used in all contexts. It exists to deal with there
550 # being a few stray bits in the PC which would mislead us, not as some
551 # sort of generic thing to handle alignment or segmentation (it's
552 # possible it should be in TARGET_READ_PC instead).
553 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
554 # It is not at all clear why gdbarch_smash_text_address is not folded into
555 # gdbarch_addr_bits_remove.
556 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
557
558 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
559 # indicates if the target needs software single step. An ISA method to
560 # implement it.
561 #
562 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
563 # breakpoints using the breakpoint system instead of blatting memory directly
564 # (as with rs6000).
565 #
566 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
567 # target can single step. If not, then implement single step using breakpoints.
568 #
569 # A return value of 1 means that the software_single_step breakpoints
570 # were inserted; 0 means they were not.
571 F:int:software_single_step:struct frame_info *frame:frame
572
573 # Return non-zero if the processor is executing a delay slot and a
574 # further single-step is needed before the instruction finishes.
575 M:int:single_step_through_delay:struct frame_info *frame:frame
576 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
577 # disassembler. Perhaps objdump can handle it?
578 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
579 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
580
581
582 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
583 # evaluates non-zero, this is the address where the debugger will place
584 # a step-resume breakpoint to get us past the dynamic linker.
585 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
586 # Some systems also have trampoline code for returning from shared libs.
587 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
588
589 # A target might have problems with watchpoints as soon as the stack
590 # frame of the current function has been destroyed. This mostly happens
591 # as the first action in a funtion's epilogue. in_function_epilogue_p()
592 # is defined to return a non-zero value if either the given addr is one
593 # instruction after the stack destroying instruction up to the trailing
594 # return instruction or if we can figure out that the stack frame has
595 # already been invalidated regardless of the value of addr. Targets
596 # which don't suffer from that problem could just let this functionality
597 # untouched.
598 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
599 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
600 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
601 v:int:cannot_step_breakpoint:::0:0::0
602 v:int:have_nonsteppable_watchpoint:::0:0::0
603 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
604 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
605 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
606 # Is a register in a group
607 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
608 # Fetch the pointer to the ith function argument.
609 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
610
611 # Return the appropriate register set for a core file section with
612 # name SECT_NAME and size SECT_SIZE.
613 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
614
615 # When creating core dumps, some systems encode the PID in addition
616 # to the LWP id in core file register section names. In those cases, the
617 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
618 # is set to true for such architectures; false if "XXX" represents an LWP
619 # or thread id with no special encoding.
620 v:int:core_reg_section_encodes_pid:::0:0::0
621
622 # Supported register notes in a core file.
623 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
624
625 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
626 # core file into buffer READBUF with length LEN.
627 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
628
629 # How the core target converts a PTID from a core file to a string.
630 M:char *:core_pid_to_str:ptid_t ptid:ptid
631
632 # BFD target to use when generating a core file.
633 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
634
635 # If the elements of C++ vtables are in-place function descriptors rather
636 # than normal function pointers (which may point to code or a descriptor),
637 # set this to one.
638 v:int:vtable_function_descriptors:::0:0::0
639
640 # Set if the least significant bit of the delta is used instead of the least
641 # significant bit of the pfn for pointers to virtual member functions.
642 v:int:vbit_in_delta:::0:0::0
643
644 # Advance PC to next instruction in order to skip a permanent breakpoint.
645 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
646
647 # The maximum length of an instruction on this architecture.
648 V:ULONGEST:max_insn_length:::0:0
649
650 # Copy the instruction at FROM to TO, and make any adjustments
651 # necessary to single-step it at that address.
652 #
653 # REGS holds the state the thread's registers will have before
654 # executing the copied instruction; the PC in REGS will refer to FROM,
655 # not the copy at TO. The caller should update it to point at TO later.
656 #
657 # Return a pointer to data of the architecture's choice to be passed
658 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
659 # the instruction's effects have been completely simulated, with the
660 # resulting state written back to REGS.
661 #
662 # For a general explanation of displaced stepping and how GDB uses it,
663 # see the comments in infrun.c.
664 #
665 # The TO area is only guaranteed to have space for
666 # gdbarch_max_insn_length (arch) bytes, so this function must not
667 # write more bytes than that to that area.
668 #
669 # If you do not provide this function, GDB assumes that the
670 # architecture does not support displaced stepping.
671 #
672 # If your architecture doesn't need to adjust instructions before
673 # single-stepping them, consider using simple_displaced_step_copy_insn
674 # here.
675 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
676
677 # Return true if GDB should use hardware single-stepping to execute
678 # the displaced instruction identified by CLOSURE. If false,
679 # GDB will simply restart execution at the displaced instruction
680 # location, and it is up to the target to ensure GDB will receive
681 # control again (e.g. by placing a software breakpoint instruction
682 # into the displaced instruction buffer).
683 #
684 # The default implementation returns false on all targets that
685 # provide a gdbarch_software_single_step routine, and true otherwise.
686 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
687
688 # Fix up the state resulting from successfully single-stepping a
689 # displaced instruction, to give the result we would have gotten from
690 # stepping the instruction in its original location.
691 #
692 # REGS is the register state resulting from single-stepping the
693 # displaced instruction.
694 #
695 # CLOSURE is the result from the matching call to
696 # gdbarch_displaced_step_copy_insn.
697 #
698 # If you provide gdbarch_displaced_step_copy_insn.but not this
699 # function, then GDB assumes that no fixup is needed after
700 # single-stepping the instruction.
701 #
702 # For a general explanation of displaced stepping and how GDB uses it,
703 # see the comments in infrun.c.
704 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
705
706 # Free a closure returned by gdbarch_displaced_step_copy_insn.
707 #
708 # If you provide gdbarch_displaced_step_copy_insn, you must provide
709 # this function as well.
710 #
711 # If your architecture uses closures that don't need to be freed, then
712 # you can use simple_displaced_step_free_closure here.
713 #
714 # For a general explanation of displaced stepping and how GDB uses it,
715 # see the comments in infrun.c.
716 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
717
718 # Return the address of an appropriate place to put displaced
719 # instructions while we step over them. There need only be one such
720 # place, since we're only stepping one thread over a breakpoint at a
721 # time.
722 #
723 # For a general explanation of displaced stepping and how GDB uses it,
724 # see the comments in infrun.c.
725 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
726
727 # Relocate an instruction to execute at a different address. OLDLOC
728 # is the address in the inferior memory where the instruction to
729 # relocate is currently at. On input, TO points to the destination
730 # where we want the instruction to be copied (and possibly adjusted)
731 # to. On output, it points to one past the end of the resulting
732 # instruction(s). The effect of executing the instruction at TO shall
733 # be the same as if executing it at FROM. For example, call
734 # instructions that implicitly push the return address on the stack
735 # should be adjusted to return to the instruction after OLDLOC;
736 # relative branches, and other PC-relative instructions need the
737 # offset adjusted; etc.
738 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
739
740 # Refresh overlay mapped state for section OSECT.
741 F:void:overlay_update:struct obj_section *osect:osect
742
743 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
744
745 # Handle special encoding of static variables in stabs debug info.
746 F:char *:static_transform_name:char *name:name
747 # Set if the address in N_SO or N_FUN stabs may be zero.
748 v:int:sofun_address_maybe_missing:::0:0::0
749
750 # Parse the instruction at ADDR storing in the record execution log
751 # the registers REGCACHE and memory ranges that will be affected when
752 # the instruction executes, along with their current values.
753 # Return -1 if something goes wrong, 0 otherwise.
754 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
755
756 # Save process state after a signal.
757 # Return -1 if something goes wrong, 0 otherwise.
758 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
759
760 # Signal translation: translate inferior's signal (host's) number into
761 # GDB's representation.
762 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
763 # Signal translation: translate GDB's signal number into inferior's host
764 # signal number.
765 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
766
767 # Extra signal info inspection.
768 #
769 # Return a type suitable to inspect extra signal information.
770 M:struct type *:get_siginfo_type:void:
771
772 # Record architecture-specific information from the symbol table.
773 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
774
775 # Function for the 'catch syscall' feature.
776
777 # Get architecture-specific system calls information from registers.
778 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
779
780 # True if the list of shared libraries is one and only for all
781 # processes, as opposed to a list of shared libraries per inferior.
782 # This usually means that all processes, although may or may not share
783 # an address space, will see the same set of symbols at the same
784 # addresses.
785 v:int:has_global_solist:::0:0::0
786
787 # On some targets, even though each inferior has its own private
788 # address space, the debug interface takes care of making breakpoints
789 # visible to all address spaces automatically. For such cases,
790 # this property should be set to true.
791 v:int:has_global_breakpoints:::0:0::0
792
793 # True if inferiors share an address space (e.g., uClinux).
794 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
795
796 # True if a fast tracepoint can be set at an address.
797 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
798
799 # Return the "auto" target charset.
800 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
801 # Return the "auto" target wide charset.
802 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
803
804 # If non-empty, this is a file extension that will be opened in place
805 # of the file extension reported by the shared library list.
806 #
807 # This is most useful for toolchains that use a post-linker tool,
808 # where the names of the files run on the target differ in extension
809 # compared to the names of the files GDB should load for debug info.
810 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
811
812 # If true, the target OS has DOS-based file system semantics. That
813 # is, absolute paths include a drive name, and the backslash is
814 # considered a directory separator.
815 v:int:has_dos_based_file_system:::0:0::0
816 EOF
817 }
818
819 #
820 # The .log file
821 #
822 exec > new-gdbarch.log
823 function_list | while do_read
824 do
825 cat <<EOF
826 ${class} ${returntype} ${function} ($formal)
827 EOF
828 for r in ${read}
829 do
830 eval echo \"\ \ \ \ ${r}=\${${r}}\"
831 done
832 if class_is_predicate_p && fallback_default_p
833 then
834 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
835 kill $$
836 exit 1
837 fi
838 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
839 then
840 echo "Error: postdefault is useless when invalid_p=0" 1>&2
841 kill $$
842 exit 1
843 fi
844 if class_is_multiarch_p
845 then
846 if class_is_predicate_p ; then :
847 elif test "x${predefault}" = "x"
848 then
849 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
850 kill $$
851 exit 1
852 fi
853 fi
854 echo ""
855 done
856
857 exec 1>&2
858 compare_new gdbarch.log
859
860
861 copyright ()
862 {
863 cat <<EOF
864 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
865
866 /* Dynamic architecture support for GDB, the GNU debugger.
867
868 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
869 2007, 2008, 2009 Free Software Foundation, Inc.
870
871 This file is part of GDB.
872
873 This program is free software; you can redistribute it and/or modify
874 it under the terms of the GNU General Public License as published by
875 the Free Software Foundation; either version 3 of the License, or
876 (at your option) any later version.
877
878 This program is distributed in the hope that it will be useful,
879 but WITHOUT ANY WARRANTY; without even the implied warranty of
880 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
881 GNU General Public License for more details.
882
883 You should have received a copy of the GNU General Public License
884 along with this program. If not, see <http://www.gnu.org/licenses/>. */
885
886 /* This file was created with the aid of \`\`gdbarch.sh''.
887
888 The Bourne shell script \`\`gdbarch.sh'' creates the files
889 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
890 against the existing \`\`gdbarch.[hc]''. Any differences found
891 being reported.
892
893 If editing this file, please also run gdbarch.sh and merge any
894 changes into that script. Conversely, when making sweeping changes
895 to this file, modifying gdbarch.sh and using its output may prove
896 easier. */
897
898 EOF
899 }
900
901 #
902 # The .h file
903 #
904
905 exec > new-gdbarch.h
906 copyright
907 cat <<EOF
908 #ifndef GDBARCH_H
909 #define GDBARCH_H
910
911 struct floatformat;
912 struct ui_file;
913 struct frame_info;
914 struct value;
915 struct objfile;
916 struct obj_section;
917 struct minimal_symbol;
918 struct regcache;
919 struct reggroup;
920 struct regset;
921 struct disassemble_info;
922 struct target_ops;
923 struct obstack;
924 struct bp_target_info;
925 struct target_desc;
926 struct displaced_step_closure;
927 struct core_regset_section;
928 struct syscall;
929
930 /* The architecture associated with the connection to the target.
931
932 The architecture vector provides some information that is really
933 a property of the target: The layout of certain packets, for instance;
934 or the solib_ops vector. Etc. To differentiate architecture accesses
935 to per-target properties from per-thread/per-frame/per-objfile properties,
936 accesses to per-target properties should be made through target_gdbarch.
937
938 Eventually, when support for multiple targets is implemented in
939 GDB, this global should be made target-specific. */
940 extern struct gdbarch *target_gdbarch;
941 EOF
942
943 # function typedef's
944 printf "\n"
945 printf "\n"
946 printf "/* The following are pre-initialized by GDBARCH. */\n"
947 function_list | while do_read
948 do
949 if class_is_info_p
950 then
951 printf "\n"
952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
953 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
954 fi
955 done
956
957 # function typedef's
958 printf "\n"
959 printf "\n"
960 printf "/* The following are initialized by the target dependent code. */\n"
961 function_list | while do_read
962 do
963 if [ -n "${comment}" ]
964 then
965 echo "${comment}" | sed \
966 -e '2 s,#,/*,' \
967 -e '3,$ s,#, ,' \
968 -e '$ s,$, */,'
969 fi
970
971 if class_is_predicate_p
972 then
973 printf "\n"
974 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
975 fi
976 if class_is_variable_p
977 then
978 printf "\n"
979 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
980 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
981 fi
982 if class_is_function_p
983 then
984 printf "\n"
985 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
986 then
987 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
988 elif class_is_multiarch_p
989 then
990 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
991 else
992 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
993 fi
994 if [ "x${formal}" = "xvoid" ]
995 then
996 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
997 else
998 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
999 fi
1000 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1001 fi
1002 done
1003
1004 # close it off
1005 cat <<EOF
1006
1007 /* Definition for an unknown syscall, used basically in error-cases. */
1008 #define UNKNOWN_SYSCALL (-1)
1009
1010 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1011
1012
1013 /* Mechanism for co-ordinating the selection of a specific
1014 architecture.
1015
1016 GDB targets (*-tdep.c) can register an interest in a specific
1017 architecture. Other GDB components can register a need to maintain
1018 per-architecture data.
1019
1020 The mechanisms below ensures that there is only a loose connection
1021 between the set-architecture command and the various GDB
1022 components. Each component can independently register their need
1023 to maintain architecture specific data with gdbarch.
1024
1025 Pragmatics:
1026
1027 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1028 didn't scale.
1029
1030 The more traditional mega-struct containing architecture specific
1031 data for all the various GDB components was also considered. Since
1032 GDB is built from a variable number of (fairly independent)
1033 components it was determined that the global aproach was not
1034 applicable. */
1035
1036
1037 /* Register a new architectural family with GDB.
1038
1039 Register support for the specified ARCHITECTURE with GDB. When
1040 gdbarch determines that the specified architecture has been
1041 selected, the corresponding INIT function is called.
1042
1043 --
1044
1045 The INIT function takes two parameters: INFO which contains the
1046 information available to gdbarch about the (possibly new)
1047 architecture; ARCHES which is a list of the previously created
1048 \`\`struct gdbarch'' for this architecture.
1049
1050 The INFO parameter is, as far as possible, be pre-initialized with
1051 information obtained from INFO.ABFD or the global defaults.
1052
1053 The ARCHES parameter is a linked list (sorted most recently used)
1054 of all the previously created architures for this architecture
1055 family. The (possibly NULL) ARCHES->gdbarch can used to access
1056 values from the previously selected architecture for this
1057 architecture family.
1058
1059 The INIT function shall return any of: NULL - indicating that it
1060 doesn't recognize the selected architecture; an existing \`\`struct
1061 gdbarch'' from the ARCHES list - indicating that the new
1062 architecture is just a synonym for an earlier architecture (see
1063 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1064 - that describes the selected architecture (see gdbarch_alloc()).
1065
1066 The DUMP_TDEP function shall print out all target specific values.
1067 Care should be taken to ensure that the function works in both the
1068 multi-arch and non- multi-arch cases. */
1069
1070 struct gdbarch_list
1071 {
1072 struct gdbarch *gdbarch;
1073 struct gdbarch_list *next;
1074 };
1075
1076 struct gdbarch_info
1077 {
1078 /* Use default: NULL (ZERO). */
1079 const struct bfd_arch_info *bfd_arch_info;
1080
1081 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1082 int byte_order;
1083
1084 int byte_order_for_code;
1085
1086 /* Use default: NULL (ZERO). */
1087 bfd *abfd;
1088
1089 /* Use default: NULL (ZERO). */
1090 struct gdbarch_tdep_info *tdep_info;
1091
1092 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1093 enum gdb_osabi osabi;
1094
1095 /* Use default: NULL (ZERO). */
1096 const struct target_desc *target_desc;
1097 };
1098
1099 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1100 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1101
1102 /* DEPRECATED - use gdbarch_register() */
1103 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1104
1105 extern void gdbarch_register (enum bfd_architecture architecture,
1106 gdbarch_init_ftype *,
1107 gdbarch_dump_tdep_ftype *);
1108
1109
1110 /* Return a freshly allocated, NULL terminated, array of the valid
1111 architecture names. Since architectures are registered during the
1112 _initialize phase this function only returns useful information
1113 once initialization has been completed. */
1114
1115 extern const char **gdbarch_printable_names (void);
1116
1117
1118 /* Helper function. Search the list of ARCHES for a GDBARCH that
1119 matches the information provided by INFO. */
1120
1121 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1122
1123
1124 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1125 basic initialization using values obtained from the INFO and TDEP
1126 parameters. set_gdbarch_*() functions are called to complete the
1127 initialization of the object. */
1128
1129 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1130
1131
1132 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1133 It is assumed that the caller freeds the \`\`struct
1134 gdbarch_tdep''. */
1135
1136 extern void gdbarch_free (struct gdbarch *);
1137
1138
1139 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1140 obstack. The memory is freed when the corresponding architecture
1141 is also freed. */
1142
1143 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1144 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1145 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1146
1147
1148 /* Helper function. Force an update of the current architecture.
1149
1150 The actual architecture selected is determined by INFO, \`\`(gdb) set
1151 architecture'' et.al., the existing architecture and BFD's default
1152 architecture. INFO should be initialized to zero and then selected
1153 fields should be updated.
1154
1155 Returns non-zero if the update succeeds */
1156
1157 extern int gdbarch_update_p (struct gdbarch_info info);
1158
1159
1160 /* Helper function. Find an architecture matching info.
1161
1162 INFO should be initialized using gdbarch_info_init, relevant fields
1163 set, and then finished using gdbarch_info_fill.
1164
1165 Returns the corresponding architecture, or NULL if no matching
1166 architecture was found. */
1167
1168 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1169
1170
1171 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1172
1173 FIXME: kettenis/20031124: Of the functions that follow, only
1174 gdbarch_from_bfd is supposed to survive. The others will
1175 dissappear since in the future GDB will (hopefully) be truly
1176 multi-arch. However, for now we're still stuck with the concept of
1177 a single active architecture. */
1178
1179 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1180
1181
1182 /* Register per-architecture data-pointer.
1183
1184 Reserve space for a per-architecture data-pointer. An identifier
1185 for the reserved data-pointer is returned. That identifer should
1186 be saved in a local static variable.
1187
1188 Memory for the per-architecture data shall be allocated using
1189 gdbarch_obstack_zalloc. That memory will be deleted when the
1190 corresponding architecture object is deleted.
1191
1192 When a previously created architecture is re-selected, the
1193 per-architecture data-pointer for that previous architecture is
1194 restored. INIT() is not re-called.
1195
1196 Multiple registrarants for any architecture are allowed (and
1197 strongly encouraged). */
1198
1199 struct gdbarch_data;
1200
1201 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1202 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1203 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1204 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1205 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1206 struct gdbarch_data *data,
1207 void *pointer);
1208
1209 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1210
1211
1212 /* Set the dynamic target-system-dependent parameters (architecture,
1213 byte-order, ...) using information found in the BFD */
1214
1215 extern void set_gdbarch_from_file (bfd *);
1216
1217
1218 /* Initialize the current architecture to the "first" one we find on
1219 our list. */
1220
1221 extern void initialize_current_architecture (void);
1222
1223 /* gdbarch trace variable */
1224 extern int gdbarch_debug;
1225
1226 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1227
1228 #endif
1229 EOF
1230 exec 1>&2
1231 #../move-if-change new-gdbarch.h gdbarch.h
1232 compare_new gdbarch.h
1233
1234
1235 #
1236 # C file
1237 #
1238
1239 exec > new-gdbarch.c
1240 copyright
1241 cat <<EOF
1242
1243 #include "defs.h"
1244 #include "arch-utils.h"
1245
1246 #include "gdbcmd.h"
1247 #include "inferior.h"
1248 #include "symcat.h"
1249
1250 #include "floatformat.h"
1251
1252 #include "gdb_assert.h"
1253 #include "gdb_string.h"
1254 #include "reggroups.h"
1255 #include "osabi.h"
1256 #include "gdb_obstack.h"
1257 #include "observer.h"
1258 #include "regcache.h"
1259
1260 /* Static function declarations */
1261
1262 static void alloc_gdbarch_data (struct gdbarch *);
1263
1264 /* Non-zero if we want to trace architecture code. */
1265
1266 #ifndef GDBARCH_DEBUG
1267 #define GDBARCH_DEBUG 0
1268 #endif
1269 int gdbarch_debug = GDBARCH_DEBUG;
1270 static void
1271 show_gdbarch_debug (struct ui_file *file, int from_tty,
1272 struct cmd_list_element *c, const char *value)
1273 {
1274 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1275 }
1276
1277 static const char *
1278 pformat (const struct floatformat **format)
1279 {
1280 if (format == NULL)
1281 return "(null)";
1282 else
1283 /* Just print out one of them - this is only for diagnostics. */
1284 return format[0]->name;
1285 }
1286
1287 static const char *
1288 pstring (const char *string)
1289 {
1290 if (string == NULL)
1291 return "(null)";
1292 return string;
1293 }
1294
1295 EOF
1296
1297 # gdbarch open the gdbarch object
1298 printf "\n"
1299 printf "/* Maintain the struct gdbarch object */\n"
1300 printf "\n"
1301 printf "struct gdbarch\n"
1302 printf "{\n"
1303 printf " /* Has this architecture been fully initialized? */\n"
1304 printf " int initialized_p;\n"
1305 printf "\n"
1306 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1307 printf " struct obstack *obstack;\n"
1308 printf "\n"
1309 printf " /* basic architectural information */\n"
1310 function_list | while do_read
1311 do
1312 if class_is_info_p
1313 then
1314 printf " ${returntype} ${function};\n"
1315 fi
1316 done
1317 printf "\n"
1318 printf " /* target specific vector. */\n"
1319 printf " struct gdbarch_tdep *tdep;\n"
1320 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1321 printf "\n"
1322 printf " /* per-architecture data-pointers */\n"
1323 printf " unsigned nr_data;\n"
1324 printf " void **data;\n"
1325 printf "\n"
1326 printf " /* per-architecture swap-regions */\n"
1327 printf " struct gdbarch_swap *swap;\n"
1328 printf "\n"
1329 cat <<EOF
1330 /* Multi-arch values.
1331
1332 When extending this structure you must:
1333
1334 Add the field below.
1335
1336 Declare set/get functions and define the corresponding
1337 macro in gdbarch.h.
1338
1339 gdbarch_alloc(): If zero/NULL is not a suitable default,
1340 initialize the new field.
1341
1342 verify_gdbarch(): Confirm that the target updated the field
1343 correctly.
1344
1345 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1346 field is dumped out
1347
1348 \`\`startup_gdbarch()'': Append an initial value to the static
1349 variable (base values on the host's c-type system).
1350
1351 get_gdbarch(): Implement the set/get functions (probably using
1352 the macro's as shortcuts).
1353
1354 */
1355
1356 EOF
1357 function_list | while do_read
1358 do
1359 if class_is_variable_p
1360 then
1361 printf " ${returntype} ${function};\n"
1362 elif class_is_function_p
1363 then
1364 printf " gdbarch_${function}_ftype *${function};\n"
1365 fi
1366 done
1367 printf "};\n"
1368
1369 # A pre-initialized vector
1370 printf "\n"
1371 printf "\n"
1372 cat <<EOF
1373 /* The default architecture uses host values (for want of a better
1374 choice). */
1375 EOF
1376 printf "\n"
1377 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1378 printf "\n"
1379 printf "struct gdbarch startup_gdbarch =\n"
1380 printf "{\n"
1381 printf " 1, /* Always initialized. */\n"
1382 printf " NULL, /* The obstack. */\n"
1383 printf " /* basic architecture information */\n"
1384 function_list | while do_read
1385 do
1386 if class_is_info_p
1387 then
1388 printf " ${staticdefault}, /* ${function} */\n"
1389 fi
1390 done
1391 cat <<EOF
1392 /* target specific vector and its dump routine */
1393 NULL, NULL,
1394 /*per-architecture data-pointers and swap regions */
1395 0, NULL, NULL,
1396 /* Multi-arch values */
1397 EOF
1398 function_list | while do_read
1399 do
1400 if class_is_function_p || class_is_variable_p
1401 then
1402 printf " ${staticdefault}, /* ${function} */\n"
1403 fi
1404 done
1405 cat <<EOF
1406 /* startup_gdbarch() */
1407 };
1408
1409 struct gdbarch *target_gdbarch = &startup_gdbarch;
1410 EOF
1411
1412 # Create a new gdbarch struct
1413 cat <<EOF
1414
1415 /* Create a new \`\`struct gdbarch'' based on information provided by
1416 \`\`struct gdbarch_info''. */
1417 EOF
1418 printf "\n"
1419 cat <<EOF
1420 struct gdbarch *
1421 gdbarch_alloc (const struct gdbarch_info *info,
1422 struct gdbarch_tdep *tdep)
1423 {
1424 struct gdbarch *gdbarch;
1425
1426 /* Create an obstack for allocating all the per-architecture memory,
1427 then use that to allocate the architecture vector. */
1428 struct obstack *obstack = XMALLOC (struct obstack);
1429 obstack_init (obstack);
1430 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1431 memset (gdbarch, 0, sizeof (*gdbarch));
1432 gdbarch->obstack = obstack;
1433
1434 alloc_gdbarch_data (gdbarch);
1435
1436 gdbarch->tdep = tdep;
1437 EOF
1438 printf "\n"
1439 function_list | while do_read
1440 do
1441 if class_is_info_p
1442 then
1443 printf " gdbarch->${function} = info->${function};\n"
1444 fi
1445 done
1446 printf "\n"
1447 printf " /* Force the explicit initialization of these. */\n"
1448 function_list | while do_read
1449 do
1450 if class_is_function_p || class_is_variable_p
1451 then
1452 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1453 then
1454 printf " gdbarch->${function} = ${predefault};\n"
1455 fi
1456 fi
1457 done
1458 cat <<EOF
1459 /* gdbarch_alloc() */
1460
1461 return gdbarch;
1462 }
1463 EOF
1464
1465 # Free a gdbarch struct.
1466 printf "\n"
1467 printf "\n"
1468 cat <<EOF
1469 /* Allocate extra space using the per-architecture obstack. */
1470
1471 void *
1472 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1473 {
1474 void *data = obstack_alloc (arch->obstack, size);
1475
1476 memset (data, 0, size);
1477 return data;
1478 }
1479
1480
1481 /* Free a gdbarch struct. This should never happen in normal
1482 operation --- once you've created a gdbarch, you keep it around.
1483 However, if an architecture's init function encounters an error
1484 building the structure, it may need to clean up a partially
1485 constructed gdbarch. */
1486
1487 void
1488 gdbarch_free (struct gdbarch *arch)
1489 {
1490 struct obstack *obstack;
1491
1492 gdb_assert (arch != NULL);
1493 gdb_assert (!arch->initialized_p);
1494 obstack = arch->obstack;
1495 obstack_free (obstack, 0); /* Includes the ARCH. */
1496 xfree (obstack);
1497 }
1498 EOF
1499
1500 # verify a new architecture
1501 cat <<EOF
1502
1503
1504 /* Ensure that all values in a GDBARCH are reasonable. */
1505
1506 static void
1507 verify_gdbarch (struct gdbarch *gdbarch)
1508 {
1509 struct ui_file *log;
1510 struct cleanup *cleanups;
1511 long length;
1512 char *buf;
1513
1514 log = mem_fileopen ();
1515 cleanups = make_cleanup_ui_file_delete (log);
1516 /* fundamental */
1517 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1518 fprintf_unfiltered (log, "\n\tbyte-order");
1519 if (gdbarch->bfd_arch_info == NULL)
1520 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1521 /* Check those that need to be defined for the given multi-arch level. */
1522 EOF
1523 function_list | while do_read
1524 do
1525 if class_is_function_p || class_is_variable_p
1526 then
1527 if [ "x${invalid_p}" = "x0" ]
1528 then
1529 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1530 elif class_is_predicate_p
1531 then
1532 printf " /* Skip verify of ${function}, has predicate */\n"
1533 # FIXME: See do_read for potential simplification
1534 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1535 then
1536 printf " if (${invalid_p})\n"
1537 printf " gdbarch->${function} = ${postdefault};\n"
1538 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1539 then
1540 printf " if (gdbarch->${function} == ${predefault})\n"
1541 printf " gdbarch->${function} = ${postdefault};\n"
1542 elif [ -n "${postdefault}" ]
1543 then
1544 printf " if (gdbarch->${function} == 0)\n"
1545 printf " gdbarch->${function} = ${postdefault};\n"
1546 elif [ -n "${invalid_p}" ]
1547 then
1548 printf " if (${invalid_p})\n"
1549 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1550 elif [ -n "${predefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == ${predefault})\n"
1553 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1554 fi
1555 fi
1556 done
1557 cat <<EOF
1558 buf = ui_file_xstrdup (log, &length);
1559 make_cleanup (xfree, buf);
1560 if (length > 0)
1561 internal_error (__FILE__, __LINE__,
1562 _("verify_gdbarch: the following are invalid ...%s"),
1563 buf);
1564 do_cleanups (cleanups);
1565 }
1566 EOF
1567
1568 # dump the structure
1569 printf "\n"
1570 printf "\n"
1571 cat <<EOF
1572 /* Print out the details of the current architecture. */
1573
1574 void
1575 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1576 {
1577 const char *gdb_nm_file = "<not-defined>";
1578
1579 #if defined (GDB_NM_FILE)
1580 gdb_nm_file = GDB_NM_FILE;
1581 #endif
1582 fprintf_unfiltered (file,
1583 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1584 gdb_nm_file);
1585 EOF
1586 function_list | sort -t: -k 3 | while do_read
1587 do
1588 # First the predicate
1589 if class_is_predicate_p
1590 then
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1593 printf " gdbarch_${function}_p (gdbarch));\n"
1594 fi
1595 # Print the corresponding value.
1596 if class_is_function_p
1597 then
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1600 printf " host_address_to_string (gdbarch->${function}));\n"
1601 else
1602 # It is a variable
1603 case "${print}:${returntype}" in
1604 :CORE_ADDR )
1605 fmt="%s"
1606 print="core_addr_to_string_nz (gdbarch->${function})"
1607 ;;
1608 :* )
1609 fmt="%s"
1610 print="plongest (gdbarch->${function})"
1611 ;;
1612 * )
1613 fmt="%s"
1614 ;;
1615 esac
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1618 printf " ${print});\n"
1619 fi
1620 done
1621 cat <<EOF
1622 if (gdbarch->dump_tdep != NULL)
1623 gdbarch->dump_tdep (gdbarch, file);
1624 }
1625 EOF
1626
1627
1628 # GET/SET
1629 printf "\n"
1630 cat <<EOF
1631 struct gdbarch_tdep *
1632 gdbarch_tdep (struct gdbarch *gdbarch)
1633 {
1634 if (gdbarch_debug >= 2)
1635 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1636 return gdbarch->tdep;
1637 }
1638 EOF
1639 printf "\n"
1640 function_list | while do_read
1641 do
1642 if class_is_predicate_p
1643 then
1644 printf "\n"
1645 printf "int\n"
1646 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1647 printf "{\n"
1648 printf " gdb_assert (gdbarch != NULL);\n"
1649 printf " return ${predicate};\n"
1650 printf "}\n"
1651 fi
1652 if class_is_function_p
1653 then
1654 printf "\n"
1655 printf "${returntype}\n"
1656 if [ "x${formal}" = "xvoid" ]
1657 then
1658 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1659 else
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1661 fi
1662 printf "{\n"
1663 printf " gdb_assert (gdbarch != NULL);\n"
1664 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1665 if class_is_predicate_p && test -n "${predefault}"
1666 then
1667 # Allow a call to a function with a predicate.
1668 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1669 fi
1670 printf " if (gdbarch_debug >= 2)\n"
1671 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1672 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1673 then
1674 if class_is_multiarch_p
1675 then
1676 params="gdbarch"
1677 else
1678 params=""
1679 fi
1680 else
1681 if class_is_multiarch_p
1682 then
1683 params="gdbarch, ${actual}"
1684 else
1685 params="${actual}"
1686 fi
1687 fi
1688 if [ "x${returntype}" = "xvoid" ]
1689 then
1690 printf " gdbarch->${function} (${params});\n"
1691 else
1692 printf " return gdbarch->${function} (${params});\n"
1693 fi
1694 printf "}\n"
1695 printf "\n"
1696 printf "void\n"
1697 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1698 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1699 printf "{\n"
1700 printf " gdbarch->${function} = ${function};\n"
1701 printf "}\n"
1702 elif class_is_variable_p
1703 then
1704 printf "\n"
1705 printf "${returntype}\n"
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1707 printf "{\n"
1708 printf " gdb_assert (gdbarch != NULL);\n"
1709 if [ "x${invalid_p}" = "x0" ]
1710 then
1711 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1712 elif [ -n "${invalid_p}" ]
1713 then
1714 printf " /* Check variable is valid. */\n"
1715 printf " gdb_assert (!(${invalid_p}));\n"
1716 elif [ -n "${predefault}" ]
1717 then
1718 printf " /* Check variable changed from pre-default. */\n"
1719 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1720 fi
1721 printf " if (gdbarch_debug >= 2)\n"
1722 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1723 printf " return gdbarch->${function};\n"
1724 printf "}\n"
1725 printf "\n"
1726 printf "void\n"
1727 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1728 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1729 printf "{\n"
1730 printf " gdbarch->${function} = ${function};\n"
1731 printf "}\n"
1732 elif class_is_info_p
1733 then
1734 printf "\n"
1735 printf "${returntype}\n"
1736 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1737 printf "{\n"
1738 printf " gdb_assert (gdbarch != NULL);\n"
1739 printf " if (gdbarch_debug >= 2)\n"
1740 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1741 printf " return gdbarch->${function};\n"
1742 printf "}\n"
1743 fi
1744 done
1745
1746 # All the trailing guff
1747 cat <<EOF
1748
1749
1750 /* Keep a registry of per-architecture data-pointers required by GDB
1751 modules. */
1752
1753 struct gdbarch_data
1754 {
1755 unsigned index;
1756 int init_p;
1757 gdbarch_data_pre_init_ftype *pre_init;
1758 gdbarch_data_post_init_ftype *post_init;
1759 };
1760
1761 struct gdbarch_data_registration
1762 {
1763 struct gdbarch_data *data;
1764 struct gdbarch_data_registration *next;
1765 };
1766
1767 struct gdbarch_data_registry
1768 {
1769 unsigned nr;
1770 struct gdbarch_data_registration *registrations;
1771 };
1772
1773 struct gdbarch_data_registry gdbarch_data_registry =
1774 {
1775 0, NULL,
1776 };
1777
1778 static struct gdbarch_data *
1779 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1780 gdbarch_data_post_init_ftype *post_init)
1781 {
1782 struct gdbarch_data_registration **curr;
1783
1784 /* Append the new registration. */
1785 for (curr = &gdbarch_data_registry.registrations;
1786 (*curr) != NULL;
1787 curr = &(*curr)->next);
1788 (*curr) = XMALLOC (struct gdbarch_data_registration);
1789 (*curr)->next = NULL;
1790 (*curr)->data = XMALLOC (struct gdbarch_data);
1791 (*curr)->data->index = gdbarch_data_registry.nr++;
1792 (*curr)->data->pre_init = pre_init;
1793 (*curr)->data->post_init = post_init;
1794 (*curr)->data->init_p = 1;
1795 return (*curr)->data;
1796 }
1797
1798 struct gdbarch_data *
1799 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1800 {
1801 return gdbarch_data_register (pre_init, NULL);
1802 }
1803
1804 struct gdbarch_data *
1805 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1806 {
1807 return gdbarch_data_register (NULL, post_init);
1808 }
1809
1810 /* Create/delete the gdbarch data vector. */
1811
1812 static void
1813 alloc_gdbarch_data (struct gdbarch *gdbarch)
1814 {
1815 gdb_assert (gdbarch->data == NULL);
1816 gdbarch->nr_data = gdbarch_data_registry.nr;
1817 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1818 }
1819
1820 /* Initialize the current value of the specified per-architecture
1821 data-pointer. */
1822
1823 void
1824 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1825 struct gdbarch_data *data,
1826 void *pointer)
1827 {
1828 gdb_assert (data->index < gdbarch->nr_data);
1829 gdb_assert (gdbarch->data[data->index] == NULL);
1830 gdb_assert (data->pre_init == NULL);
1831 gdbarch->data[data->index] = pointer;
1832 }
1833
1834 /* Return the current value of the specified per-architecture
1835 data-pointer. */
1836
1837 void *
1838 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1839 {
1840 gdb_assert (data->index < gdbarch->nr_data);
1841 if (gdbarch->data[data->index] == NULL)
1842 {
1843 /* The data-pointer isn't initialized, call init() to get a
1844 value. */
1845 if (data->pre_init != NULL)
1846 /* Mid architecture creation: pass just the obstack, and not
1847 the entire architecture, as that way it isn't possible for
1848 pre-init code to refer to undefined architecture
1849 fields. */
1850 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1851 else if (gdbarch->initialized_p
1852 && data->post_init != NULL)
1853 /* Post architecture creation: pass the entire architecture
1854 (as all fields are valid), but be careful to also detect
1855 recursive references. */
1856 {
1857 gdb_assert (data->init_p);
1858 data->init_p = 0;
1859 gdbarch->data[data->index] = data->post_init (gdbarch);
1860 data->init_p = 1;
1861 }
1862 else
1863 /* The architecture initialization hasn't completed - punt -
1864 hope that the caller knows what they are doing. Once
1865 deprecated_set_gdbarch_data has been initialized, this can be
1866 changed to an internal error. */
1867 return NULL;
1868 gdb_assert (gdbarch->data[data->index] != NULL);
1869 }
1870 return gdbarch->data[data->index];
1871 }
1872
1873
1874 /* Keep a registry of the architectures known by GDB. */
1875
1876 struct gdbarch_registration
1877 {
1878 enum bfd_architecture bfd_architecture;
1879 gdbarch_init_ftype *init;
1880 gdbarch_dump_tdep_ftype *dump_tdep;
1881 struct gdbarch_list *arches;
1882 struct gdbarch_registration *next;
1883 };
1884
1885 static struct gdbarch_registration *gdbarch_registry = NULL;
1886
1887 static void
1888 append_name (const char ***buf, int *nr, const char *name)
1889 {
1890 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1891 (*buf)[*nr] = name;
1892 *nr += 1;
1893 }
1894
1895 const char **
1896 gdbarch_printable_names (void)
1897 {
1898 /* Accumulate a list of names based on the registed list of
1899 architectures. */
1900 int nr_arches = 0;
1901 const char **arches = NULL;
1902 struct gdbarch_registration *rego;
1903
1904 for (rego = gdbarch_registry;
1905 rego != NULL;
1906 rego = rego->next)
1907 {
1908 const struct bfd_arch_info *ap;
1909 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1910 if (ap == NULL)
1911 internal_error (__FILE__, __LINE__,
1912 _("gdbarch_architecture_names: multi-arch unknown"));
1913 do
1914 {
1915 append_name (&arches, &nr_arches, ap->printable_name);
1916 ap = ap->next;
1917 }
1918 while (ap != NULL);
1919 }
1920 append_name (&arches, &nr_arches, NULL);
1921 return arches;
1922 }
1923
1924
1925 void
1926 gdbarch_register (enum bfd_architecture bfd_architecture,
1927 gdbarch_init_ftype *init,
1928 gdbarch_dump_tdep_ftype *dump_tdep)
1929 {
1930 struct gdbarch_registration **curr;
1931 const struct bfd_arch_info *bfd_arch_info;
1932
1933 /* Check that BFD recognizes this architecture */
1934 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1935 if (bfd_arch_info == NULL)
1936 {
1937 internal_error (__FILE__, __LINE__,
1938 _("gdbarch: Attempt to register unknown architecture (%d)"),
1939 bfd_architecture);
1940 }
1941 /* Check that we haven't seen this architecture before */
1942 for (curr = &gdbarch_registry;
1943 (*curr) != NULL;
1944 curr = &(*curr)->next)
1945 {
1946 if (bfd_architecture == (*curr)->bfd_architecture)
1947 internal_error (__FILE__, __LINE__,
1948 _("gdbarch: Duplicate registraration of architecture (%s)"),
1949 bfd_arch_info->printable_name);
1950 }
1951 /* log it */
1952 if (gdbarch_debug)
1953 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1954 bfd_arch_info->printable_name,
1955 host_address_to_string (init));
1956 /* Append it */
1957 (*curr) = XMALLOC (struct gdbarch_registration);
1958 (*curr)->bfd_architecture = bfd_architecture;
1959 (*curr)->init = init;
1960 (*curr)->dump_tdep = dump_tdep;
1961 (*curr)->arches = NULL;
1962 (*curr)->next = NULL;
1963 }
1964
1965 void
1966 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1967 gdbarch_init_ftype *init)
1968 {
1969 gdbarch_register (bfd_architecture, init, NULL);
1970 }
1971
1972
1973 /* Look for an architecture using gdbarch_info. */
1974
1975 struct gdbarch_list *
1976 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1977 const struct gdbarch_info *info)
1978 {
1979 for (; arches != NULL; arches = arches->next)
1980 {
1981 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1982 continue;
1983 if (info->byte_order != arches->gdbarch->byte_order)
1984 continue;
1985 if (info->osabi != arches->gdbarch->osabi)
1986 continue;
1987 if (info->target_desc != arches->gdbarch->target_desc)
1988 continue;
1989 return arches;
1990 }
1991 return NULL;
1992 }
1993
1994
1995 /* Find an architecture that matches the specified INFO. Create a new
1996 architecture if needed. Return that new architecture. */
1997
1998 struct gdbarch *
1999 gdbarch_find_by_info (struct gdbarch_info info)
2000 {
2001 struct gdbarch *new_gdbarch;
2002 struct gdbarch_registration *rego;
2003
2004 /* Fill in missing parts of the INFO struct using a number of
2005 sources: "set ..."; INFOabfd supplied; and the global
2006 defaults. */
2007 gdbarch_info_fill (&info);
2008
2009 /* Must have found some sort of architecture. */
2010 gdb_assert (info.bfd_arch_info != NULL);
2011
2012 if (gdbarch_debug)
2013 {
2014 fprintf_unfiltered (gdb_stdlog,
2015 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2016 (info.bfd_arch_info != NULL
2017 ? info.bfd_arch_info->printable_name
2018 : "(null)"));
2019 fprintf_unfiltered (gdb_stdlog,
2020 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2021 info.byte_order,
2022 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2023 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2024 : "default"));
2025 fprintf_unfiltered (gdb_stdlog,
2026 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2027 info.osabi, gdbarch_osabi_name (info.osabi));
2028 fprintf_unfiltered (gdb_stdlog,
2029 "gdbarch_find_by_info: info.abfd %s\n",
2030 host_address_to_string (info.abfd));
2031 fprintf_unfiltered (gdb_stdlog,
2032 "gdbarch_find_by_info: info.tdep_info %s\n",
2033 host_address_to_string (info.tdep_info));
2034 }
2035
2036 /* Find the tdep code that knows about this architecture. */
2037 for (rego = gdbarch_registry;
2038 rego != NULL;
2039 rego = rego->next)
2040 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2041 break;
2042 if (rego == NULL)
2043 {
2044 if (gdbarch_debug)
2045 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2046 "No matching architecture\n");
2047 return 0;
2048 }
2049
2050 /* Ask the tdep code for an architecture that matches "info". */
2051 new_gdbarch = rego->init (info, rego->arches);
2052
2053 /* Did the tdep code like it? No. Reject the change and revert to
2054 the old architecture. */
2055 if (new_gdbarch == NULL)
2056 {
2057 if (gdbarch_debug)
2058 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2059 "Target rejected architecture\n");
2060 return NULL;
2061 }
2062
2063 /* Is this a pre-existing architecture (as determined by already
2064 being initialized)? Move it to the front of the architecture
2065 list (keeping the list sorted Most Recently Used). */
2066 if (new_gdbarch->initialized_p)
2067 {
2068 struct gdbarch_list **list;
2069 struct gdbarch_list *this;
2070 if (gdbarch_debug)
2071 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2072 "Previous architecture %s (%s) selected\n",
2073 host_address_to_string (new_gdbarch),
2074 new_gdbarch->bfd_arch_info->printable_name);
2075 /* Find the existing arch in the list. */
2076 for (list = &rego->arches;
2077 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2078 list = &(*list)->next);
2079 /* It had better be in the list of architectures. */
2080 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2081 /* Unlink THIS. */
2082 this = (*list);
2083 (*list) = this->next;
2084 /* Insert THIS at the front. */
2085 this->next = rego->arches;
2086 rego->arches = this;
2087 /* Return it. */
2088 return new_gdbarch;
2089 }
2090
2091 /* It's a new architecture. */
2092 if (gdbarch_debug)
2093 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2094 "New architecture %s (%s) selected\n",
2095 host_address_to_string (new_gdbarch),
2096 new_gdbarch->bfd_arch_info->printable_name);
2097
2098 /* Insert the new architecture into the front of the architecture
2099 list (keep the list sorted Most Recently Used). */
2100 {
2101 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2102 this->next = rego->arches;
2103 this->gdbarch = new_gdbarch;
2104 rego->arches = this;
2105 }
2106
2107 /* Check that the newly installed architecture is valid. Plug in
2108 any post init values. */
2109 new_gdbarch->dump_tdep = rego->dump_tdep;
2110 verify_gdbarch (new_gdbarch);
2111 new_gdbarch->initialized_p = 1;
2112
2113 if (gdbarch_debug)
2114 gdbarch_dump (new_gdbarch, gdb_stdlog);
2115
2116 return new_gdbarch;
2117 }
2118
2119 /* Make the specified architecture current. */
2120
2121 void
2122 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2123 {
2124 gdb_assert (new_gdbarch != NULL);
2125 gdb_assert (new_gdbarch->initialized_p);
2126 target_gdbarch = new_gdbarch;
2127 observer_notify_architecture_changed (new_gdbarch);
2128 registers_changed ();
2129 }
2130
2131 extern void _initialize_gdbarch (void);
2132
2133 void
2134 _initialize_gdbarch (void)
2135 {
2136 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2137 Set architecture debugging."), _("\\
2138 Show architecture debugging."), _("\\
2139 When non-zero, architecture debugging is enabled."),
2140 NULL,
2141 show_gdbarch_debug,
2142 &setdebuglist, &showdebuglist);
2143 }
2144 EOF
2145
2146 # close things off
2147 exec 1>&2
2148 #../move-if-change new-gdbarch.c gdbarch.c
2149 compare_new gdbarch.c
This page took 0.0812349999999999 seconds and 4 git commands to generate.