2009-01-08 Kai Tietz <kai.tietz@onevision.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Supported register notes in a core file.
604 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
606 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607 # core file into buffer READBUF with length LEN.
608 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
609
610 # If the elements of C++ vtables are in-place function descriptors rather
611 # than normal function pointers (which may point to code or a descriptor),
612 # set this to one.
613 v:int:vtable_function_descriptors:::0:0::0
614
615 # Set if the least significant bit of the delta is used instead of the least
616 # significant bit of the pfn for pointers to virtual member functions.
617 v:int:vbit_in_delta:::0:0::0
618
619 # Advance PC to next instruction in order to skip a permanent breakpoint.
620 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
621
622 # The maximum length of an instruction on this architecture.
623 V:ULONGEST:max_insn_length:::0:0
624
625 # Copy the instruction at FROM to TO, and make any adjustments
626 # necessary to single-step it at that address.
627 #
628 # REGS holds the state the thread's registers will have before
629 # executing the copied instruction; the PC in REGS will refer to FROM,
630 # not the copy at TO. The caller should update it to point at TO later.
631 #
632 # Return a pointer to data of the architecture's choice to be passed
633 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634 # the instruction's effects have been completely simulated, with the
635 # resulting state written back to REGS.
636 #
637 # For a general explanation of displaced stepping and how GDB uses it,
638 # see the comments in infrun.c.
639 #
640 # The TO area is only guaranteed to have space for
641 # gdbarch_max_insn_length (arch) bytes, so this function must not
642 # write more bytes than that to that area.
643 #
644 # If you do not provide this function, GDB assumes that the
645 # architecture does not support displaced stepping.
646 #
647 # If your architecture doesn't need to adjust instructions before
648 # single-stepping them, consider using simple_displaced_step_copy_insn
649 # here.
650 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652 # Fix up the state resulting from successfully single-stepping a
653 # displaced instruction, to give the result we would have gotten from
654 # stepping the instruction in its original location.
655 #
656 # REGS is the register state resulting from single-stepping the
657 # displaced instruction.
658 #
659 # CLOSURE is the result from the matching call to
660 # gdbarch_displaced_step_copy_insn.
661 #
662 # If you provide gdbarch_displaced_step_copy_insn.but not this
663 # function, then GDB assumes that no fixup is needed after
664 # single-stepping the instruction.
665 #
666 # For a general explanation of displaced stepping and how GDB uses it,
667 # see the comments in infrun.c.
668 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670 # Free a closure returned by gdbarch_displaced_step_copy_insn.
671 #
672 # If you provide gdbarch_displaced_step_copy_insn, you must provide
673 # this function as well.
674 #
675 # If your architecture uses closures that don't need to be freed, then
676 # you can use simple_displaced_step_free_closure here.
677 #
678 # For a general explanation of displaced stepping and how GDB uses it,
679 # see the comments in infrun.c.
680 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682 # Return the address of an appropriate place to put displaced
683 # instructions while we step over them. There need only be one such
684 # place, since we're only stepping one thread over a breakpoint at a
685 # time.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
691 # Refresh overlay mapped state for section OSECT.
692 F:void:overlay_update:struct obj_section *osect:osect
693
694 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
695
696 # Handle special encoding of static variables in stabs debug info.
697 F:char *:static_transform_name:char *name:name
698 # Set if the address in N_SO or N_FUN stabs may be zero.
699 v:int:sofun_address_maybe_missing:::0:0::0
700
701 # Signal translation: translate inferior's signal (host's) number into
702 # GDB's representation.
703 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704 # Signal translation: translate GDB's signal number into inferior's host
705 # signal number.
706 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
707
708 # Record architecture-specific information from the symbol table.
709 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
710
711 # True if the list of shared libraries is one and only for all
712 # processes, as opposed to a list of shared libraries per inferior.
713 # When this property is true, GDB assumes that since shared libraries
714 # are shared across processes, so is all code. Hence, GDB further
715 # assumes an inserted breakpoint location is visible to all processes.
716 v:int:has_global_solist:::0:0::0
717 EOF
718 }
719
720 #
721 # The .log file
722 #
723 exec > new-gdbarch.log
724 function_list | while do_read
725 do
726 cat <<EOF
727 ${class} ${returntype} ${function} ($formal)
728 EOF
729 for r in ${read}
730 do
731 eval echo \"\ \ \ \ ${r}=\${${r}}\"
732 done
733 if class_is_predicate_p && fallback_default_p
734 then
735 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
736 kill $$
737 exit 1
738 fi
739 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
740 then
741 echo "Error: postdefault is useless when invalid_p=0" 1>&2
742 kill $$
743 exit 1
744 fi
745 if class_is_multiarch_p
746 then
747 if class_is_predicate_p ; then :
748 elif test "x${predefault}" = "x"
749 then
750 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
751 kill $$
752 exit 1
753 fi
754 fi
755 echo ""
756 done
757
758 exec 1>&2
759 compare_new gdbarch.log
760
761
762 copyright ()
763 {
764 cat <<EOF
765 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
766
767 /* Dynamic architecture support for GDB, the GNU debugger.
768
769 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
770 Free Software Foundation, Inc.
771
772 This file is part of GDB.
773
774 This program is free software; you can redistribute it and/or modify
775 it under the terms of the GNU General Public License as published by
776 the Free Software Foundation; either version 3 of the License, or
777 (at your option) any later version.
778
779 This program is distributed in the hope that it will be useful,
780 but WITHOUT ANY WARRANTY; without even the implied warranty of
781 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
782 GNU General Public License for more details.
783
784 You should have received a copy of the GNU General Public License
785 along with this program. If not, see <http://www.gnu.org/licenses/>. */
786
787 /* This file was created with the aid of \`\`gdbarch.sh''.
788
789 The Bourne shell script \`\`gdbarch.sh'' creates the files
790 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
791 against the existing \`\`gdbarch.[hc]''. Any differences found
792 being reported.
793
794 If editing this file, please also run gdbarch.sh and merge any
795 changes into that script. Conversely, when making sweeping changes
796 to this file, modifying gdbarch.sh and using its output may prove
797 easier. */
798
799 EOF
800 }
801
802 #
803 # The .h file
804 #
805
806 exec > new-gdbarch.h
807 copyright
808 cat <<EOF
809 #ifndef GDBARCH_H
810 #define GDBARCH_H
811
812 struct floatformat;
813 struct ui_file;
814 struct frame_info;
815 struct value;
816 struct objfile;
817 struct obj_section;
818 struct minimal_symbol;
819 struct regcache;
820 struct reggroup;
821 struct regset;
822 struct disassemble_info;
823 struct target_ops;
824 struct obstack;
825 struct bp_target_info;
826 struct target_desc;
827 struct displaced_step_closure;
828 struct core_regset_section;
829
830 extern struct gdbarch *current_gdbarch;
831 extern struct gdbarch *target_gdbarch;
832 EOF
833
834 # function typedef's
835 printf "\n"
836 printf "\n"
837 printf "/* The following are pre-initialized by GDBARCH. */\n"
838 function_list | while do_read
839 do
840 if class_is_info_p
841 then
842 printf "\n"
843 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
844 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
845 fi
846 done
847
848 # function typedef's
849 printf "\n"
850 printf "\n"
851 printf "/* The following are initialized by the target dependent code. */\n"
852 function_list | while do_read
853 do
854 if [ -n "${comment}" ]
855 then
856 echo "${comment}" | sed \
857 -e '2 s,#,/*,' \
858 -e '3,$ s,#, ,' \
859 -e '$ s,$, */,'
860 fi
861
862 if class_is_predicate_p
863 then
864 printf "\n"
865 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
866 fi
867 if class_is_variable_p
868 then
869 printf "\n"
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
872 fi
873 if class_is_function_p
874 then
875 printf "\n"
876 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
877 then
878 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
879 elif class_is_multiarch_p
880 then
881 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
882 else
883 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
884 fi
885 if [ "x${formal}" = "xvoid" ]
886 then
887 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
888 else
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
890 fi
891 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
892 fi
893 done
894
895 # close it off
896 cat <<EOF
897
898 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
899
900
901 /* Mechanism for co-ordinating the selection of a specific
902 architecture.
903
904 GDB targets (*-tdep.c) can register an interest in a specific
905 architecture. Other GDB components can register a need to maintain
906 per-architecture data.
907
908 The mechanisms below ensures that there is only a loose connection
909 between the set-architecture command and the various GDB
910 components. Each component can independently register their need
911 to maintain architecture specific data with gdbarch.
912
913 Pragmatics:
914
915 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
916 didn't scale.
917
918 The more traditional mega-struct containing architecture specific
919 data for all the various GDB components was also considered. Since
920 GDB is built from a variable number of (fairly independent)
921 components it was determined that the global aproach was not
922 applicable. */
923
924
925 /* Register a new architectural family with GDB.
926
927 Register support for the specified ARCHITECTURE with GDB. When
928 gdbarch determines that the specified architecture has been
929 selected, the corresponding INIT function is called.
930
931 --
932
933 The INIT function takes two parameters: INFO which contains the
934 information available to gdbarch about the (possibly new)
935 architecture; ARCHES which is a list of the previously created
936 \`\`struct gdbarch'' for this architecture.
937
938 The INFO parameter is, as far as possible, be pre-initialized with
939 information obtained from INFO.ABFD or the global defaults.
940
941 The ARCHES parameter is a linked list (sorted most recently used)
942 of all the previously created architures for this architecture
943 family. The (possibly NULL) ARCHES->gdbarch can used to access
944 values from the previously selected architecture for this
945 architecture family. The global \`\`current_gdbarch'' shall not be
946 used.
947
948 The INIT function shall return any of: NULL - indicating that it
949 doesn't recognize the selected architecture; an existing \`\`struct
950 gdbarch'' from the ARCHES list - indicating that the new
951 architecture is just a synonym for an earlier architecture (see
952 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
953 - that describes the selected architecture (see gdbarch_alloc()).
954
955 The DUMP_TDEP function shall print out all target specific values.
956 Care should be taken to ensure that the function works in both the
957 multi-arch and non- multi-arch cases. */
958
959 struct gdbarch_list
960 {
961 struct gdbarch *gdbarch;
962 struct gdbarch_list *next;
963 };
964
965 struct gdbarch_info
966 {
967 /* Use default: NULL (ZERO). */
968 const struct bfd_arch_info *bfd_arch_info;
969
970 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
971 int byte_order;
972
973 int byte_order_for_code;
974
975 /* Use default: NULL (ZERO). */
976 bfd *abfd;
977
978 /* Use default: NULL (ZERO). */
979 struct gdbarch_tdep_info *tdep_info;
980
981 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
982 enum gdb_osabi osabi;
983
984 /* Use default: NULL (ZERO). */
985 const struct target_desc *target_desc;
986 };
987
988 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
989 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
990
991 /* DEPRECATED - use gdbarch_register() */
992 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
993
994 extern void gdbarch_register (enum bfd_architecture architecture,
995 gdbarch_init_ftype *,
996 gdbarch_dump_tdep_ftype *);
997
998
999 /* Return a freshly allocated, NULL terminated, array of the valid
1000 architecture names. Since architectures are registered during the
1001 _initialize phase this function only returns useful information
1002 once initialization has been completed. */
1003
1004 extern const char **gdbarch_printable_names (void);
1005
1006
1007 /* Helper function. Search the list of ARCHES for a GDBARCH that
1008 matches the information provided by INFO. */
1009
1010 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1011
1012
1013 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1014 basic initialization using values obtained from the INFO and TDEP
1015 parameters. set_gdbarch_*() functions are called to complete the
1016 initialization of the object. */
1017
1018 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1019
1020
1021 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1022 It is assumed that the caller freeds the \`\`struct
1023 gdbarch_tdep''. */
1024
1025 extern void gdbarch_free (struct gdbarch *);
1026
1027
1028 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1029 obstack. The memory is freed when the corresponding architecture
1030 is also freed. */
1031
1032 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1033 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1034 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1035
1036
1037 /* Helper function. Force an update of the current architecture.
1038
1039 The actual architecture selected is determined by INFO, \`\`(gdb) set
1040 architecture'' et.al., the existing architecture and BFD's default
1041 architecture. INFO should be initialized to zero and then selected
1042 fields should be updated.
1043
1044 Returns non-zero if the update succeeds */
1045
1046 extern int gdbarch_update_p (struct gdbarch_info info);
1047
1048
1049 /* Helper function. Find an architecture matching info.
1050
1051 INFO should be initialized using gdbarch_info_init, relevant fields
1052 set, and then finished using gdbarch_info_fill.
1053
1054 Returns the corresponding architecture, or NULL if no matching
1055 architecture was found. "current_gdbarch" is not updated. */
1056
1057 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1058
1059
1060 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1061
1062 FIXME: kettenis/20031124: Of the functions that follow, only
1063 gdbarch_from_bfd is supposed to survive. The others will
1064 dissappear since in the future GDB will (hopefully) be truly
1065 multi-arch. However, for now we're still stuck with the concept of
1066 a single active architecture. */
1067
1068 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1069
1070
1071 /* Register per-architecture data-pointer.
1072
1073 Reserve space for a per-architecture data-pointer. An identifier
1074 for the reserved data-pointer is returned. That identifer should
1075 be saved in a local static variable.
1076
1077 Memory for the per-architecture data shall be allocated using
1078 gdbarch_obstack_zalloc. That memory will be deleted when the
1079 corresponding architecture object is deleted.
1080
1081 When a previously created architecture is re-selected, the
1082 per-architecture data-pointer for that previous architecture is
1083 restored. INIT() is not re-called.
1084
1085 Multiple registrarants for any architecture are allowed (and
1086 strongly encouraged). */
1087
1088 struct gdbarch_data;
1089
1090 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1091 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1092 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1093 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1094 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1095 struct gdbarch_data *data,
1096 void *pointer);
1097
1098 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1099
1100
1101 /* Set the dynamic target-system-dependent parameters (architecture,
1102 byte-order, ...) using information found in the BFD */
1103
1104 extern void set_gdbarch_from_file (bfd *);
1105
1106
1107 /* Initialize the current architecture to the "first" one we find on
1108 our list. */
1109
1110 extern void initialize_current_architecture (void);
1111
1112 /* gdbarch trace variable */
1113 extern int gdbarch_debug;
1114
1115 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1116
1117 #endif
1118 EOF
1119 exec 1>&2
1120 #../move-if-change new-gdbarch.h gdbarch.h
1121 compare_new gdbarch.h
1122
1123
1124 #
1125 # C file
1126 #
1127
1128 exec > new-gdbarch.c
1129 copyright
1130 cat <<EOF
1131
1132 #include "defs.h"
1133 #include "arch-utils.h"
1134
1135 #include "gdbcmd.h"
1136 #include "inferior.h"
1137 #include "symcat.h"
1138
1139 #include "floatformat.h"
1140
1141 #include "gdb_assert.h"
1142 #include "gdb_string.h"
1143 #include "reggroups.h"
1144 #include "osabi.h"
1145 #include "gdb_obstack.h"
1146 #include "observer.h"
1147 #include "regcache.h"
1148
1149 /* Static function declarations */
1150
1151 static void alloc_gdbarch_data (struct gdbarch *);
1152
1153 /* Non-zero if we want to trace architecture code. */
1154
1155 #ifndef GDBARCH_DEBUG
1156 #define GDBARCH_DEBUG 0
1157 #endif
1158 int gdbarch_debug = GDBARCH_DEBUG;
1159 static void
1160 show_gdbarch_debug (struct ui_file *file, int from_tty,
1161 struct cmd_list_element *c, const char *value)
1162 {
1163 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1164 }
1165
1166 static const char *
1167 pformat (const struct floatformat **format)
1168 {
1169 if (format == NULL)
1170 return "(null)";
1171 else
1172 /* Just print out one of them - this is only for diagnostics. */
1173 return format[0]->name;
1174 }
1175
1176 EOF
1177
1178 # gdbarch open the gdbarch object
1179 printf "\n"
1180 printf "/* Maintain the struct gdbarch object */\n"
1181 printf "\n"
1182 printf "struct gdbarch\n"
1183 printf "{\n"
1184 printf " /* Has this architecture been fully initialized? */\n"
1185 printf " int initialized_p;\n"
1186 printf "\n"
1187 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1188 printf " struct obstack *obstack;\n"
1189 printf "\n"
1190 printf " /* basic architectural information */\n"
1191 function_list | while do_read
1192 do
1193 if class_is_info_p
1194 then
1195 printf " ${returntype} ${function};\n"
1196 fi
1197 done
1198 printf "\n"
1199 printf " /* target specific vector. */\n"
1200 printf " struct gdbarch_tdep *tdep;\n"
1201 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1202 printf "\n"
1203 printf " /* per-architecture data-pointers */\n"
1204 printf " unsigned nr_data;\n"
1205 printf " void **data;\n"
1206 printf "\n"
1207 printf " /* per-architecture swap-regions */\n"
1208 printf " struct gdbarch_swap *swap;\n"
1209 printf "\n"
1210 cat <<EOF
1211 /* Multi-arch values.
1212
1213 When extending this structure you must:
1214
1215 Add the field below.
1216
1217 Declare set/get functions and define the corresponding
1218 macro in gdbarch.h.
1219
1220 gdbarch_alloc(): If zero/NULL is not a suitable default,
1221 initialize the new field.
1222
1223 verify_gdbarch(): Confirm that the target updated the field
1224 correctly.
1225
1226 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1227 field is dumped out
1228
1229 \`\`startup_gdbarch()'': Append an initial value to the static
1230 variable (base values on the host's c-type system).
1231
1232 get_gdbarch(): Implement the set/get functions (probably using
1233 the macro's as shortcuts).
1234
1235 */
1236
1237 EOF
1238 function_list | while do_read
1239 do
1240 if class_is_variable_p
1241 then
1242 printf " ${returntype} ${function};\n"
1243 elif class_is_function_p
1244 then
1245 printf " gdbarch_${function}_ftype *${function};\n"
1246 fi
1247 done
1248 printf "};\n"
1249
1250 # A pre-initialized vector
1251 printf "\n"
1252 printf "\n"
1253 cat <<EOF
1254 /* The default architecture uses host values (for want of a better
1255 choice). */
1256 EOF
1257 printf "\n"
1258 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1259 printf "\n"
1260 printf "struct gdbarch startup_gdbarch =\n"
1261 printf "{\n"
1262 printf " 1, /* Always initialized. */\n"
1263 printf " NULL, /* The obstack. */\n"
1264 printf " /* basic architecture information */\n"
1265 function_list | while do_read
1266 do
1267 if class_is_info_p
1268 then
1269 printf " ${staticdefault}, /* ${function} */\n"
1270 fi
1271 done
1272 cat <<EOF
1273 /* target specific vector and its dump routine */
1274 NULL, NULL,
1275 /*per-architecture data-pointers and swap regions */
1276 0, NULL, NULL,
1277 /* Multi-arch values */
1278 EOF
1279 function_list | while do_read
1280 do
1281 if class_is_function_p || class_is_variable_p
1282 then
1283 printf " ${staticdefault}, /* ${function} */\n"
1284 fi
1285 done
1286 cat <<EOF
1287 /* startup_gdbarch() */
1288 };
1289
1290 struct gdbarch *current_gdbarch = &startup_gdbarch;
1291 struct gdbarch *target_gdbarch = &startup_gdbarch;
1292 EOF
1293
1294 # Create a new gdbarch struct
1295 cat <<EOF
1296
1297 /* Create a new \`\`struct gdbarch'' based on information provided by
1298 \`\`struct gdbarch_info''. */
1299 EOF
1300 printf "\n"
1301 cat <<EOF
1302 struct gdbarch *
1303 gdbarch_alloc (const struct gdbarch_info *info,
1304 struct gdbarch_tdep *tdep)
1305 {
1306 struct gdbarch *gdbarch;
1307
1308 /* Create an obstack for allocating all the per-architecture memory,
1309 then use that to allocate the architecture vector. */
1310 struct obstack *obstack = XMALLOC (struct obstack);
1311 obstack_init (obstack);
1312 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1313 memset (gdbarch, 0, sizeof (*gdbarch));
1314 gdbarch->obstack = obstack;
1315
1316 alloc_gdbarch_data (gdbarch);
1317
1318 gdbarch->tdep = tdep;
1319 EOF
1320 printf "\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " gdbarch->${function} = info->${function};\n"
1326 fi
1327 done
1328 printf "\n"
1329 printf " /* Force the explicit initialization of these. */\n"
1330 function_list | while do_read
1331 do
1332 if class_is_function_p || class_is_variable_p
1333 then
1334 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1335 then
1336 printf " gdbarch->${function} = ${predefault};\n"
1337 fi
1338 fi
1339 done
1340 cat <<EOF
1341 /* gdbarch_alloc() */
1342
1343 return gdbarch;
1344 }
1345 EOF
1346
1347 # Free a gdbarch struct.
1348 printf "\n"
1349 printf "\n"
1350 cat <<EOF
1351 /* Allocate extra space using the per-architecture obstack. */
1352
1353 void *
1354 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1355 {
1356 void *data = obstack_alloc (arch->obstack, size);
1357 memset (data, 0, size);
1358 return data;
1359 }
1360
1361
1362 /* Free a gdbarch struct. This should never happen in normal
1363 operation --- once you've created a gdbarch, you keep it around.
1364 However, if an architecture's init function encounters an error
1365 building the structure, it may need to clean up a partially
1366 constructed gdbarch. */
1367
1368 void
1369 gdbarch_free (struct gdbarch *arch)
1370 {
1371 struct obstack *obstack;
1372 gdb_assert (arch != NULL);
1373 gdb_assert (!arch->initialized_p);
1374 obstack = arch->obstack;
1375 obstack_free (obstack, 0); /* Includes the ARCH. */
1376 xfree (obstack);
1377 }
1378 EOF
1379
1380 # verify a new architecture
1381 cat <<EOF
1382
1383
1384 /* Ensure that all values in a GDBARCH are reasonable. */
1385
1386 static void
1387 verify_gdbarch (struct gdbarch *gdbarch)
1388 {
1389 struct ui_file *log;
1390 struct cleanup *cleanups;
1391 long dummy;
1392 char *buf;
1393 log = mem_fileopen ();
1394 cleanups = make_cleanup_ui_file_delete (log);
1395 /* fundamental */
1396 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1397 fprintf_unfiltered (log, "\n\tbyte-order");
1398 if (gdbarch->bfd_arch_info == NULL)
1399 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1400 /* Check those that need to be defined for the given multi-arch level. */
1401 EOF
1402 function_list | while do_read
1403 do
1404 if class_is_function_p || class_is_variable_p
1405 then
1406 if [ "x${invalid_p}" = "x0" ]
1407 then
1408 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1409 elif class_is_predicate_p
1410 then
1411 printf " /* Skip verify of ${function}, has predicate */\n"
1412 # FIXME: See do_read for potential simplification
1413 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1414 then
1415 printf " if (${invalid_p})\n"
1416 printf " gdbarch->${function} = ${postdefault};\n"
1417 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1418 then
1419 printf " if (gdbarch->${function} == ${predefault})\n"
1420 printf " gdbarch->${function} = ${postdefault};\n"
1421 elif [ -n "${postdefault}" ]
1422 then
1423 printf " if (gdbarch->${function} == 0)\n"
1424 printf " gdbarch->${function} = ${postdefault};\n"
1425 elif [ -n "${invalid_p}" ]
1426 then
1427 printf " if (${invalid_p})\n"
1428 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1429 elif [ -n "${predefault}" ]
1430 then
1431 printf " if (gdbarch->${function} == ${predefault})\n"
1432 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1433 fi
1434 fi
1435 done
1436 cat <<EOF
1437 buf = ui_file_xstrdup (log, &dummy);
1438 make_cleanup (xfree, buf);
1439 if (strlen (buf) > 0)
1440 internal_error (__FILE__, __LINE__,
1441 _("verify_gdbarch: the following are invalid ...%s"),
1442 buf);
1443 do_cleanups (cleanups);
1444 }
1445 EOF
1446
1447 # dump the structure
1448 printf "\n"
1449 printf "\n"
1450 cat <<EOF
1451 /* Print out the details of the current architecture. */
1452
1453 void
1454 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1455 {
1456 const char *gdb_nm_file = "<not-defined>";
1457 #if defined (GDB_NM_FILE)
1458 gdb_nm_file = GDB_NM_FILE;
1459 #endif
1460 fprintf_unfiltered (file,
1461 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1462 gdb_nm_file);
1463 EOF
1464 function_list | sort -t: -k 3 | while do_read
1465 do
1466 # First the predicate
1467 if class_is_predicate_p
1468 then
1469 printf " fprintf_unfiltered (file,\n"
1470 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1471 printf " gdbarch_${function}_p (gdbarch));\n"
1472 fi
1473 # Print the corresponding value.
1474 if class_is_function_p
1475 then
1476 printf " fprintf_unfiltered (file,\n"
1477 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1478 printf " (long) gdbarch->${function});\n"
1479 else
1480 # It is a variable
1481 case "${print}:${returntype}" in
1482 :CORE_ADDR )
1483 fmt="%s"
1484 print="core_addr_to_string_nz (gdbarch->${function})"
1485 ;;
1486 :* )
1487 fmt="%s"
1488 print="plongest (gdbarch->${function})"
1489 ;;
1490 * )
1491 fmt="%s"
1492 ;;
1493 esac
1494 printf " fprintf_unfiltered (file,\n"
1495 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1496 printf " ${print});\n"
1497 fi
1498 done
1499 cat <<EOF
1500 if (gdbarch->dump_tdep != NULL)
1501 gdbarch->dump_tdep (gdbarch, file);
1502 }
1503 EOF
1504
1505
1506 # GET/SET
1507 printf "\n"
1508 cat <<EOF
1509 struct gdbarch_tdep *
1510 gdbarch_tdep (struct gdbarch *gdbarch)
1511 {
1512 if (gdbarch_debug >= 2)
1513 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1514 return gdbarch->tdep;
1515 }
1516 EOF
1517 printf "\n"
1518 function_list | while do_read
1519 do
1520 if class_is_predicate_p
1521 then
1522 printf "\n"
1523 printf "int\n"
1524 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1525 printf "{\n"
1526 printf " gdb_assert (gdbarch != NULL);\n"
1527 printf " return ${predicate};\n"
1528 printf "}\n"
1529 fi
1530 if class_is_function_p
1531 then
1532 printf "\n"
1533 printf "${returntype}\n"
1534 if [ "x${formal}" = "xvoid" ]
1535 then
1536 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1537 else
1538 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1539 fi
1540 printf "{\n"
1541 printf " gdb_assert (gdbarch != NULL);\n"
1542 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1543 if class_is_predicate_p && test -n "${predefault}"
1544 then
1545 # Allow a call to a function with a predicate.
1546 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1547 fi
1548 printf " if (gdbarch_debug >= 2)\n"
1549 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1550 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1551 then
1552 if class_is_multiarch_p
1553 then
1554 params="gdbarch"
1555 else
1556 params=""
1557 fi
1558 else
1559 if class_is_multiarch_p
1560 then
1561 params="gdbarch, ${actual}"
1562 else
1563 params="${actual}"
1564 fi
1565 fi
1566 if [ "x${returntype}" = "xvoid" ]
1567 then
1568 printf " gdbarch->${function} (${params});\n"
1569 else
1570 printf " return gdbarch->${function} (${params});\n"
1571 fi
1572 printf "}\n"
1573 printf "\n"
1574 printf "void\n"
1575 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1576 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1577 printf "{\n"
1578 printf " gdbarch->${function} = ${function};\n"
1579 printf "}\n"
1580 elif class_is_variable_p
1581 then
1582 printf "\n"
1583 printf "${returntype}\n"
1584 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1585 printf "{\n"
1586 printf " gdb_assert (gdbarch != NULL);\n"
1587 if [ "x${invalid_p}" = "x0" ]
1588 then
1589 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1590 elif [ -n "${invalid_p}" ]
1591 then
1592 printf " /* Check variable is valid. */\n"
1593 printf " gdb_assert (!(${invalid_p}));\n"
1594 elif [ -n "${predefault}" ]
1595 then
1596 printf " /* Check variable changed from pre-default. */\n"
1597 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1598 fi
1599 printf " if (gdbarch_debug >= 2)\n"
1600 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1601 printf " return gdbarch->${function};\n"
1602 printf "}\n"
1603 printf "\n"
1604 printf "void\n"
1605 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1606 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1607 printf "{\n"
1608 printf " gdbarch->${function} = ${function};\n"
1609 printf "}\n"
1610 elif class_is_info_p
1611 then
1612 printf "\n"
1613 printf "${returntype}\n"
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 printf "{\n"
1616 printf " gdb_assert (gdbarch != NULL);\n"
1617 printf " if (gdbarch_debug >= 2)\n"
1618 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1619 printf " return gdbarch->${function};\n"
1620 printf "}\n"
1621 fi
1622 done
1623
1624 # All the trailing guff
1625 cat <<EOF
1626
1627
1628 /* Keep a registry of per-architecture data-pointers required by GDB
1629 modules. */
1630
1631 struct gdbarch_data
1632 {
1633 unsigned index;
1634 int init_p;
1635 gdbarch_data_pre_init_ftype *pre_init;
1636 gdbarch_data_post_init_ftype *post_init;
1637 };
1638
1639 struct gdbarch_data_registration
1640 {
1641 struct gdbarch_data *data;
1642 struct gdbarch_data_registration *next;
1643 };
1644
1645 struct gdbarch_data_registry
1646 {
1647 unsigned nr;
1648 struct gdbarch_data_registration *registrations;
1649 };
1650
1651 struct gdbarch_data_registry gdbarch_data_registry =
1652 {
1653 0, NULL,
1654 };
1655
1656 static struct gdbarch_data *
1657 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1658 gdbarch_data_post_init_ftype *post_init)
1659 {
1660 struct gdbarch_data_registration **curr;
1661 /* Append the new registraration. */
1662 for (curr = &gdbarch_data_registry.registrations;
1663 (*curr) != NULL;
1664 curr = &(*curr)->next);
1665 (*curr) = XMALLOC (struct gdbarch_data_registration);
1666 (*curr)->next = NULL;
1667 (*curr)->data = XMALLOC (struct gdbarch_data);
1668 (*curr)->data->index = gdbarch_data_registry.nr++;
1669 (*curr)->data->pre_init = pre_init;
1670 (*curr)->data->post_init = post_init;
1671 (*curr)->data->init_p = 1;
1672 return (*curr)->data;
1673 }
1674
1675 struct gdbarch_data *
1676 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1677 {
1678 return gdbarch_data_register (pre_init, NULL);
1679 }
1680
1681 struct gdbarch_data *
1682 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1683 {
1684 return gdbarch_data_register (NULL, post_init);
1685 }
1686
1687 /* Create/delete the gdbarch data vector. */
1688
1689 static void
1690 alloc_gdbarch_data (struct gdbarch *gdbarch)
1691 {
1692 gdb_assert (gdbarch->data == NULL);
1693 gdbarch->nr_data = gdbarch_data_registry.nr;
1694 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1695 }
1696
1697 /* Initialize the current value of the specified per-architecture
1698 data-pointer. */
1699
1700 void
1701 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1702 struct gdbarch_data *data,
1703 void *pointer)
1704 {
1705 gdb_assert (data->index < gdbarch->nr_data);
1706 gdb_assert (gdbarch->data[data->index] == NULL);
1707 gdb_assert (data->pre_init == NULL);
1708 gdbarch->data[data->index] = pointer;
1709 }
1710
1711 /* Return the current value of the specified per-architecture
1712 data-pointer. */
1713
1714 void *
1715 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1716 {
1717 gdb_assert (data->index < gdbarch->nr_data);
1718 if (gdbarch->data[data->index] == NULL)
1719 {
1720 /* The data-pointer isn't initialized, call init() to get a
1721 value. */
1722 if (data->pre_init != NULL)
1723 /* Mid architecture creation: pass just the obstack, and not
1724 the entire architecture, as that way it isn't possible for
1725 pre-init code to refer to undefined architecture
1726 fields. */
1727 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1728 else if (gdbarch->initialized_p
1729 && data->post_init != NULL)
1730 /* Post architecture creation: pass the entire architecture
1731 (as all fields are valid), but be careful to also detect
1732 recursive references. */
1733 {
1734 gdb_assert (data->init_p);
1735 data->init_p = 0;
1736 gdbarch->data[data->index] = data->post_init (gdbarch);
1737 data->init_p = 1;
1738 }
1739 else
1740 /* The architecture initialization hasn't completed - punt -
1741 hope that the caller knows what they are doing. Once
1742 deprecated_set_gdbarch_data has been initialized, this can be
1743 changed to an internal error. */
1744 return NULL;
1745 gdb_assert (gdbarch->data[data->index] != NULL);
1746 }
1747 return gdbarch->data[data->index];
1748 }
1749
1750
1751 /* Keep a registry of the architectures known by GDB. */
1752
1753 struct gdbarch_registration
1754 {
1755 enum bfd_architecture bfd_architecture;
1756 gdbarch_init_ftype *init;
1757 gdbarch_dump_tdep_ftype *dump_tdep;
1758 struct gdbarch_list *arches;
1759 struct gdbarch_registration *next;
1760 };
1761
1762 static struct gdbarch_registration *gdbarch_registry = NULL;
1763
1764 static void
1765 append_name (const char ***buf, int *nr, const char *name)
1766 {
1767 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1768 (*buf)[*nr] = name;
1769 *nr += 1;
1770 }
1771
1772 const char **
1773 gdbarch_printable_names (void)
1774 {
1775 /* Accumulate a list of names based on the registed list of
1776 architectures. */
1777 enum bfd_architecture a;
1778 int nr_arches = 0;
1779 const char **arches = NULL;
1780 struct gdbarch_registration *rego;
1781 for (rego = gdbarch_registry;
1782 rego != NULL;
1783 rego = rego->next)
1784 {
1785 const struct bfd_arch_info *ap;
1786 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1787 if (ap == NULL)
1788 internal_error (__FILE__, __LINE__,
1789 _("gdbarch_architecture_names: multi-arch unknown"));
1790 do
1791 {
1792 append_name (&arches, &nr_arches, ap->printable_name);
1793 ap = ap->next;
1794 }
1795 while (ap != NULL);
1796 }
1797 append_name (&arches, &nr_arches, NULL);
1798 return arches;
1799 }
1800
1801
1802 void
1803 gdbarch_register (enum bfd_architecture bfd_architecture,
1804 gdbarch_init_ftype *init,
1805 gdbarch_dump_tdep_ftype *dump_tdep)
1806 {
1807 struct gdbarch_registration **curr;
1808 const struct bfd_arch_info *bfd_arch_info;
1809 /* Check that BFD recognizes this architecture */
1810 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1811 if (bfd_arch_info == NULL)
1812 {
1813 internal_error (__FILE__, __LINE__,
1814 _("gdbarch: Attempt to register unknown architecture (%d)"),
1815 bfd_architecture);
1816 }
1817 /* Check that we haven't seen this architecture before */
1818 for (curr = &gdbarch_registry;
1819 (*curr) != NULL;
1820 curr = &(*curr)->next)
1821 {
1822 if (bfd_architecture == (*curr)->bfd_architecture)
1823 internal_error (__FILE__, __LINE__,
1824 _("gdbarch: Duplicate registraration of architecture (%s)"),
1825 bfd_arch_info->printable_name);
1826 }
1827 /* log it */
1828 if (gdbarch_debug)
1829 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1830 bfd_arch_info->printable_name,
1831 (long) init);
1832 /* Append it */
1833 (*curr) = XMALLOC (struct gdbarch_registration);
1834 (*curr)->bfd_architecture = bfd_architecture;
1835 (*curr)->init = init;
1836 (*curr)->dump_tdep = dump_tdep;
1837 (*curr)->arches = NULL;
1838 (*curr)->next = NULL;
1839 }
1840
1841 void
1842 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1843 gdbarch_init_ftype *init)
1844 {
1845 gdbarch_register (bfd_architecture, init, NULL);
1846 }
1847
1848
1849 /* Look for an architecture using gdbarch_info. */
1850
1851 struct gdbarch_list *
1852 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1853 const struct gdbarch_info *info)
1854 {
1855 for (; arches != NULL; arches = arches->next)
1856 {
1857 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1858 continue;
1859 if (info->byte_order != arches->gdbarch->byte_order)
1860 continue;
1861 if (info->osabi != arches->gdbarch->osabi)
1862 continue;
1863 if (info->target_desc != arches->gdbarch->target_desc)
1864 continue;
1865 return arches;
1866 }
1867 return NULL;
1868 }
1869
1870
1871 /* Find an architecture that matches the specified INFO. Create a new
1872 architecture if needed. Return that new architecture. Assumes
1873 that there is no current architecture. */
1874
1875 static struct gdbarch *
1876 find_arch_by_info (struct gdbarch_info info)
1877 {
1878 struct gdbarch *new_gdbarch;
1879 struct gdbarch_registration *rego;
1880
1881 /* The existing architecture has been swapped out - all this code
1882 works from a clean slate. */
1883 gdb_assert (current_gdbarch == NULL);
1884
1885 /* Fill in missing parts of the INFO struct using a number of
1886 sources: "set ..."; INFOabfd supplied; and the global
1887 defaults. */
1888 gdbarch_info_fill (&info);
1889
1890 /* Must have found some sort of architecture. */
1891 gdb_assert (info.bfd_arch_info != NULL);
1892
1893 if (gdbarch_debug)
1894 {
1895 fprintf_unfiltered (gdb_stdlog,
1896 "find_arch_by_info: info.bfd_arch_info %s\n",
1897 (info.bfd_arch_info != NULL
1898 ? info.bfd_arch_info->printable_name
1899 : "(null)"));
1900 fprintf_unfiltered (gdb_stdlog,
1901 "find_arch_by_info: info.byte_order %d (%s)\n",
1902 info.byte_order,
1903 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1904 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1905 : "default"));
1906 fprintf_unfiltered (gdb_stdlog,
1907 "find_arch_by_info: info.osabi %d (%s)\n",
1908 info.osabi, gdbarch_osabi_name (info.osabi));
1909 fprintf_unfiltered (gdb_stdlog,
1910 "find_arch_by_info: info.abfd 0x%lx\n",
1911 (long) info.abfd);
1912 fprintf_unfiltered (gdb_stdlog,
1913 "find_arch_by_info: info.tdep_info 0x%lx\n",
1914 (long) info.tdep_info);
1915 }
1916
1917 /* Find the tdep code that knows about this architecture. */
1918 for (rego = gdbarch_registry;
1919 rego != NULL;
1920 rego = rego->next)
1921 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1922 break;
1923 if (rego == NULL)
1924 {
1925 if (gdbarch_debug)
1926 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1927 "No matching architecture\n");
1928 return 0;
1929 }
1930
1931 /* Ask the tdep code for an architecture that matches "info". */
1932 new_gdbarch = rego->init (info, rego->arches);
1933
1934 /* Did the tdep code like it? No. Reject the change and revert to
1935 the old architecture. */
1936 if (new_gdbarch == NULL)
1937 {
1938 if (gdbarch_debug)
1939 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1940 "Target rejected architecture\n");
1941 return NULL;
1942 }
1943
1944 /* Is this a pre-existing architecture (as determined by already
1945 being initialized)? Move it to the front of the architecture
1946 list (keeping the list sorted Most Recently Used). */
1947 if (new_gdbarch->initialized_p)
1948 {
1949 struct gdbarch_list **list;
1950 struct gdbarch_list *this;
1951 if (gdbarch_debug)
1952 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1953 "Previous architecture 0x%08lx (%s) selected\n",
1954 (long) new_gdbarch,
1955 new_gdbarch->bfd_arch_info->printable_name);
1956 /* Find the existing arch in the list. */
1957 for (list = &rego->arches;
1958 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1959 list = &(*list)->next);
1960 /* It had better be in the list of architectures. */
1961 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1962 /* Unlink THIS. */
1963 this = (*list);
1964 (*list) = this->next;
1965 /* Insert THIS at the front. */
1966 this->next = rego->arches;
1967 rego->arches = this;
1968 /* Return it. */
1969 return new_gdbarch;
1970 }
1971
1972 /* It's a new architecture. */
1973 if (gdbarch_debug)
1974 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1975 "New architecture 0x%08lx (%s) selected\n",
1976 (long) new_gdbarch,
1977 new_gdbarch->bfd_arch_info->printable_name);
1978
1979 /* Insert the new architecture into the front of the architecture
1980 list (keep the list sorted Most Recently Used). */
1981 {
1982 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1983 this->next = rego->arches;
1984 this->gdbarch = new_gdbarch;
1985 rego->arches = this;
1986 }
1987
1988 /* Check that the newly installed architecture is valid. Plug in
1989 any post init values. */
1990 new_gdbarch->dump_tdep = rego->dump_tdep;
1991 verify_gdbarch (new_gdbarch);
1992 new_gdbarch->initialized_p = 1;
1993
1994 if (gdbarch_debug)
1995 gdbarch_dump (new_gdbarch, gdb_stdlog);
1996
1997 return new_gdbarch;
1998 }
1999
2000 struct gdbarch *
2001 gdbarch_find_by_info (struct gdbarch_info info)
2002 {
2003 struct gdbarch *new_gdbarch;
2004
2005 /* Save the previously selected architecture, setting the global to
2006 NULL. This stops things like gdbarch->init() trying to use the
2007 previous architecture's configuration. The previous architecture
2008 may not even be of the same architecture family. The most recent
2009 architecture of the same family is found at the head of the
2010 rego->arches list. */
2011 struct gdbarch *old_gdbarch = current_gdbarch;
2012 current_gdbarch = NULL;
2013
2014 /* Find the specified architecture. */
2015 new_gdbarch = find_arch_by_info (info);
2016
2017 /* Restore the existing architecture. */
2018 gdb_assert (current_gdbarch == NULL);
2019 current_gdbarch = old_gdbarch;
2020
2021 return new_gdbarch;
2022 }
2023
2024 /* Make the specified architecture current. */
2025
2026 void
2027 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2028 {
2029 gdb_assert (new_gdbarch != NULL);
2030 gdb_assert (current_gdbarch != NULL);
2031 gdb_assert (new_gdbarch->initialized_p);
2032 current_gdbarch = new_gdbarch;
2033 target_gdbarch = new_gdbarch;
2034 observer_notify_architecture_changed (new_gdbarch);
2035 registers_changed ();
2036 }
2037
2038 extern void _initialize_gdbarch (void);
2039
2040 void
2041 _initialize_gdbarch (void)
2042 {
2043 struct cmd_list_element *c;
2044
2045 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2046 Set architecture debugging."), _("\\
2047 Show architecture debugging."), _("\\
2048 When non-zero, architecture debugging is enabled."),
2049 NULL,
2050 show_gdbarch_debug,
2051 &setdebuglist, &showdebuglist);
2052 }
2053 EOF
2054
2055 # close things off
2056 exec 1>&2
2057 #../move-if-change new-gdbarch.c gdbarch.c
2058 compare_new gdbarch.c
This page took 0.074658 seconds and 4 git commands to generate.