12aac5b9cbbe15d2d976028064312d91bda65cf9
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # Implement PUSH_RETURN_ADDRESS, and then merge in
521 # DEPRECATED_PUSH_RETURN_ADDRESS.
522 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
523 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
524 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
525 # DEPRECATED_REGISTER_SIZE can be deleted.
526 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
527 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
528 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
529
530 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
531 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
532 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
533 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
534 # MAP a GDB RAW register number onto a simulator register number. See
535 # also include/...-sim.h.
536 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
537 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
538 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
539 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
540 # setjmp/longjmp support.
541 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
542 # NOTE: cagney/2002-11-24: This function with predicate has a valid
543 # (callable) initial value. As a consequence, even when the predicate
544 # is false, the corresponding function works. This simplifies the
545 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
546 # doesn't need to be modified.
547 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
548 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
549 #
550 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
551 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
552 #
553 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
554 # For raw <-> cooked register conversions, replaced by pseudo registers.
555 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
556 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
557 # For raw <-> cooked register conversions, replaced by pseudo registers.
558 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
559 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
560 # For raw <-> cooked register conversions, replaced by pseudo registers.
561 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
562 #
563 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
564 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
565 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
566 #
567 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
568 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
569 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
570 #
571 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
572 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
573 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
574
575 # It has been suggested that this, well actually its predecessor,
576 # should take the type/value of the function to be called and not the
577 # return type. This is left as an exercise for the reader.
578
579 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
580
581 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
582 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
583 # into RETURN_VALUE.
584
585 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
586 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
587 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
588 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
589 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
590 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
591
592 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
593 # ABI suitable for the implementation of a robust extract
594 # struct-convention return-value address method (the sparc saves the
595 # address in the callers frame). All the other cases so far examined,
596 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
597 # erreneous - the code was incorrectly assuming that the return-value
598 # address, stored in a register, was preserved across the entire
599 # function call.
600
601 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
602 # the ABIs that are still to be analyzed - perhaps this should simply
603 # be deleted. The commented out extract_returned_value_address method
604 # is provided as a starting point for the 32-bit SPARC. It, or
605 # something like it, along with changes to both infcmd.c and stack.c
606 # will be needed for that case to work. NB: It is passed the callers
607 # frame since it is only after the callee has returned that this
608 # function is used.
609
610 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
611 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
612
613 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
614 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
615 #
616 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
617 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
618 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
619 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
620 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
621 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
622 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
623 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
624 #
625 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
626 #
627 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
628 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
629 # frame code works regardless of the type of frame - frameless,
630 # stackless, or normal.
631 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
632 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
633 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
634 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
635 # note, per UNWIND_PC's doco, that while the two have similar
636 # interfaces they have very different underlying implementations.
637 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
638 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
639 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
640 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
641 # frame-base. Enable frame-base before frame-unwind.
642 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
643 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
644 # frame-base. Enable frame-base before frame-unwind.
645 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
646 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
647 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
648 #
649 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
650 # to frame_align and the requirement that methods such as
651 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
652 # alignment.
653 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
654 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
655 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
656 # stabs_argument_has_addr.
657 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
658 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
659 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
660 #
661 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
662 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
663 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
664 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
665 # On some machines there are bits in addresses which are not really
666 # part of the address, but are used by the kernel, the hardware, etc.
667 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
668 # we get a "real" address such as one would find in a symbol table.
669 # This is used only for addresses of instructions, and even then I'm
670 # not sure it's used in all contexts. It exists to deal with there
671 # being a few stray bits in the PC which would mislead us, not as some
672 # sort of generic thing to handle alignment or segmentation (it's
673 # possible it should be in TARGET_READ_PC instead).
674 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
675 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
676 # ADDR_BITS_REMOVE.
677 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
678 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
679 # the target needs software single step. An ISA method to implement it.
680 #
681 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
682 # using the breakpoint system instead of blatting memory directly (as with rs6000).
683 #
684 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
685 # single step. If not, then implement single step using breakpoints.
686 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
687 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
688 # disassembler. Perhaphs objdump can handle it?
689 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
690 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
691
692
693 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
694 # evaluates non-zero, this is the address where the debugger will place
695 # a step-resume breakpoint to get us past the dynamic linker.
696 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
697 # For SVR4 shared libraries, each call goes through a small piece of
698 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
699 # to nonzero if we are currently stopped in one of these.
700 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
701
702 # Some systems also have trampoline code for returning from shared libs.
703 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
704
705 # A target might have problems with watchpoints as soon as the stack
706 # frame of the current function has been destroyed. This mostly happens
707 # as the first action in a funtion's epilogue. in_function_epilogue_p()
708 # is defined to return a non-zero value if either the given addr is one
709 # instruction after the stack destroying instruction up to the trailing
710 # return instruction or if we can figure out that the stack frame has
711 # already been invalidated regardless of the value of addr. Targets
712 # which don't suffer from that problem could just let this functionality
713 # untouched.
714 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
715 # Given a vector of command-line arguments, return a newly allocated
716 # string which, when passed to the create_inferior function, will be
717 # parsed (on Unix systems, by the shell) to yield the same vector.
718 # This function should call error() if the argument vector is not
719 # representable for this target or if this target does not support
720 # command-line arguments.
721 # ARGC is the number of elements in the vector.
722 # ARGV is an array of strings, one per argument.
723 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
724 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
725 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
726 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
727 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
728 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
729 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
730 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
731 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
732 # Is a register in a group
733 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
734 # Fetch the pointer to the ith function argument.
735 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
736
737 # Return the appropriate register set for a core file section with
738 # name SECT_NAME and size SECT_SIZE.
739 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
740 EOF
741 }
742
743 #
744 # The .log file
745 #
746 exec > new-gdbarch.log
747 function_list | while do_read
748 do
749 cat <<EOF
750 ${class} ${macro}(${actual})
751 ${returntype} ${function} ($formal)${attrib}
752 EOF
753 for r in ${read}
754 do
755 eval echo \"\ \ \ \ ${r}=\${${r}}\"
756 done
757 if class_is_predicate_p && fallback_default_p
758 then
759 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
760 kill $$
761 exit 1
762 fi
763 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
764 then
765 echo "Error: postdefault is useless when invalid_p=0" 1>&2
766 kill $$
767 exit 1
768 fi
769 if class_is_multiarch_p
770 then
771 if class_is_predicate_p ; then :
772 elif test "x${predefault}" = "x"
773 then
774 echo "Error: pure multi-arch function must have a predefault" 1>&2
775 kill $$
776 exit 1
777 fi
778 fi
779 echo ""
780 done
781
782 exec 1>&2
783 compare_new gdbarch.log
784
785
786 copyright ()
787 {
788 cat <<EOF
789 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
790
791 /* Dynamic architecture support for GDB, the GNU debugger.
792
793 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
794 Software Foundation, Inc.
795
796 This file is part of GDB.
797
798 This program is free software; you can redistribute it and/or modify
799 it under the terms of the GNU General Public License as published by
800 the Free Software Foundation; either version 2 of the License, or
801 (at your option) any later version.
802
803 This program is distributed in the hope that it will be useful,
804 but WITHOUT ANY WARRANTY; without even the implied warranty of
805 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
806 GNU General Public License for more details.
807
808 You should have received a copy of the GNU General Public License
809 along with this program; if not, write to the Free Software
810 Foundation, Inc., 59 Temple Place - Suite 330,
811 Boston, MA 02111-1307, USA. */
812
813 /* This file was created with the aid of \`\`gdbarch.sh''.
814
815 The Bourne shell script \`\`gdbarch.sh'' creates the files
816 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
817 against the existing \`\`gdbarch.[hc]''. Any differences found
818 being reported.
819
820 If editing this file, please also run gdbarch.sh and merge any
821 changes into that script. Conversely, when making sweeping changes
822 to this file, modifying gdbarch.sh and using its output may prove
823 easier. */
824
825 EOF
826 }
827
828 #
829 # The .h file
830 #
831
832 exec > new-gdbarch.h
833 copyright
834 cat <<EOF
835 #ifndef GDBARCH_H
836 #define GDBARCH_H
837
838 struct floatformat;
839 struct ui_file;
840 struct frame_info;
841 struct value;
842 struct objfile;
843 struct minimal_symbol;
844 struct regcache;
845 struct reggroup;
846 struct regset;
847 struct disassemble_info;
848 struct target_ops;
849 struct obstack;
850
851 extern struct gdbarch *current_gdbarch;
852
853 /* If any of the following are defined, the target wasn't correctly
854 converted. */
855
856 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
857 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
858 #endif
859 EOF
860
861 # function typedef's
862 printf "\n"
863 printf "\n"
864 printf "/* The following are pre-initialized by GDBARCH. */\n"
865 function_list | while do_read
866 do
867 if class_is_info_p
868 then
869 printf "\n"
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
872 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
873 printf "#error \"Non multi-arch definition of ${macro}\"\n"
874 printf "#endif\n"
875 printf "#if !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 fi
879 done
880
881 # function typedef's
882 printf "\n"
883 printf "\n"
884 printf "/* The following are initialized by the target dependent code. */\n"
885 function_list | while do_read
886 do
887 if [ -n "${comment}" ]
888 then
889 echo "${comment}" | sed \
890 -e '2 s,#,/*,' \
891 -e '3,$ s,#, ,' \
892 -e '$ s,$, */,'
893 fi
894 if class_is_multiarch_p
895 then
896 if class_is_predicate_p
897 then
898 printf "\n"
899 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 fi
901 else
902 if class_is_predicate_p
903 then
904 printf "\n"
905 printf "#if defined (${macro})\n"
906 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
907 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
908 printf "#if !defined (${macro}_P)\n"
909 printf "#define ${macro}_P() (1)\n"
910 printf "#endif\n"
911 printf "#endif\n"
912 printf "\n"
913 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
914 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
915 printf "#error \"Non multi-arch definition of ${macro}\"\n"
916 printf "#endif\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
918 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
919 printf "#endif\n"
920 fi
921 fi
922 if class_is_variable_p
923 then
924 printf "\n"
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
929 printf "#endif\n"
930 printf "#if !defined (${macro})\n"
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 printf "#endif\n"
933 fi
934 if class_is_function_p
935 then
936 printf "\n"
937 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
938 then
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
940 elif class_is_multiarch_p
941 then
942 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
943 else
944 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
945 fi
946 if [ "x${formal}" = "xvoid" ]
947 then
948 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
949 else
950 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
951 fi
952 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
953 if class_is_multiarch_p ; then :
954 else
955 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
956 printf "#error \"Non multi-arch definition of ${macro}\"\n"
957 printf "#endif\n"
958 if [ "x${actual}" = "x" ]
959 then
960 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
961 elif [ "x${actual}" = "x-" ]
962 then
963 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
964 else
965 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
966 fi
967 printf "#if !defined (${macro})\n"
968 if [ "x${actual}" = "x" ]
969 then
970 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
971 elif [ "x${actual}" = "x-" ]
972 then
973 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
974 else
975 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
976 fi
977 printf "#endif\n"
978 fi
979 fi
980 done
981
982 # close it off
983 cat <<EOF
984
985 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
986
987
988 /* Mechanism for co-ordinating the selection of a specific
989 architecture.
990
991 GDB targets (*-tdep.c) can register an interest in a specific
992 architecture. Other GDB components can register a need to maintain
993 per-architecture data.
994
995 The mechanisms below ensures that there is only a loose connection
996 between the set-architecture command and the various GDB
997 components. Each component can independently register their need
998 to maintain architecture specific data with gdbarch.
999
1000 Pragmatics:
1001
1002 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1003 didn't scale.
1004
1005 The more traditional mega-struct containing architecture specific
1006 data for all the various GDB components was also considered. Since
1007 GDB is built from a variable number of (fairly independent)
1008 components it was determined that the global aproach was not
1009 applicable. */
1010
1011
1012 /* Register a new architectural family with GDB.
1013
1014 Register support for the specified ARCHITECTURE with GDB. When
1015 gdbarch determines that the specified architecture has been
1016 selected, the corresponding INIT function is called.
1017
1018 --
1019
1020 The INIT function takes two parameters: INFO which contains the
1021 information available to gdbarch about the (possibly new)
1022 architecture; ARCHES which is a list of the previously created
1023 \`\`struct gdbarch'' for this architecture.
1024
1025 The INFO parameter is, as far as possible, be pre-initialized with
1026 information obtained from INFO.ABFD or the previously selected
1027 architecture.
1028
1029 The ARCHES parameter is a linked list (sorted most recently used)
1030 of all the previously created architures for this architecture
1031 family. The (possibly NULL) ARCHES->gdbarch can used to access
1032 values from the previously selected architecture for this
1033 architecture family. The global \`\`current_gdbarch'' shall not be
1034 used.
1035
1036 The INIT function shall return any of: NULL - indicating that it
1037 doesn't recognize the selected architecture; an existing \`\`struct
1038 gdbarch'' from the ARCHES list - indicating that the new
1039 architecture is just a synonym for an earlier architecture (see
1040 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1041 - that describes the selected architecture (see gdbarch_alloc()).
1042
1043 The DUMP_TDEP function shall print out all target specific values.
1044 Care should be taken to ensure that the function works in both the
1045 multi-arch and non- multi-arch cases. */
1046
1047 struct gdbarch_list
1048 {
1049 struct gdbarch *gdbarch;
1050 struct gdbarch_list *next;
1051 };
1052
1053 struct gdbarch_info
1054 {
1055 /* Use default: NULL (ZERO). */
1056 const struct bfd_arch_info *bfd_arch_info;
1057
1058 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1059 int byte_order;
1060
1061 /* Use default: NULL (ZERO). */
1062 bfd *abfd;
1063
1064 /* Use default: NULL (ZERO). */
1065 struct gdbarch_tdep_info *tdep_info;
1066
1067 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1068 enum gdb_osabi osabi;
1069 };
1070
1071 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1072 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1073
1074 /* DEPRECATED - use gdbarch_register() */
1075 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1076
1077 extern void gdbarch_register (enum bfd_architecture architecture,
1078 gdbarch_init_ftype *,
1079 gdbarch_dump_tdep_ftype *);
1080
1081
1082 /* Return a freshly allocated, NULL terminated, array of the valid
1083 architecture names. Since architectures are registered during the
1084 _initialize phase this function only returns useful information
1085 once initialization has been completed. */
1086
1087 extern const char **gdbarch_printable_names (void);
1088
1089
1090 /* Helper function. Search the list of ARCHES for a GDBARCH that
1091 matches the information provided by INFO. */
1092
1093 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1094
1095
1096 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1097 basic initialization using values obtained from the INFO andTDEP
1098 parameters. set_gdbarch_*() functions are called to complete the
1099 initialization of the object. */
1100
1101 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1102
1103
1104 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1105 It is assumed that the caller freeds the \`\`struct
1106 gdbarch_tdep''. */
1107
1108 extern void gdbarch_free (struct gdbarch *);
1109
1110
1111 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1112 obstack. The memory is freed when the corresponding architecture
1113 is also freed. */
1114
1115 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1116 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1117 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1118
1119
1120 /* Helper function. Force an update of the current architecture.
1121
1122 The actual architecture selected is determined by INFO, \`\`(gdb) set
1123 architecture'' et.al., the existing architecture and BFD's default
1124 architecture. INFO should be initialized to zero and then selected
1125 fields should be updated.
1126
1127 Returns non-zero if the update succeeds */
1128
1129 extern int gdbarch_update_p (struct gdbarch_info info);
1130
1131
1132 /* Helper function. Find an architecture matching info.
1133
1134 INFO should be initialized using gdbarch_info_init, relevant fields
1135 set, and then finished using gdbarch_info_fill.
1136
1137 Returns the corresponding architecture, or NULL if no matching
1138 architecture was found. "current_gdbarch" is not updated. */
1139
1140 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1141
1142
1143 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1144
1145 FIXME: kettenis/20031124: Of the functions that follow, only
1146 gdbarch_from_bfd is supposed to survive. The others will
1147 dissappear since in the future GDB will (hopefully) be truly
1148 multi-arch. However, for now we're still stuck with the concept of
1149 a single active architecture. */
1150
1151 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1152
1153
1154 /* Register per-architecture data-pointer.
1155
1156 Reserve space for a per-architecture data-pointer. An identifier
1157 for the reserved data-pointer is returned. That identifer should
1158 be saved in a local static variable.
1159
1160 Memory for the per-architecture data shall be allocated using
1161 gdbarch_obstack_zalloc. That memory will be deleted when the
1162 corresponding architecture object is deleted.
1163
1164 When a previously created architecture is re-selected, the
1165 per-architecture data-pointer for that previous architecture is
1166 restored. INIT() is not re-called.
1167
1168 Multiple registrarants for any architecture are allowed (and
1169 strongly encouraged). */
1170
1171 struct gdbarch_data;
1172
1173 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1174 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1175 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1176 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1177 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1178 struct gdbarch_data *data,
1179 void *pointer);
1180
1181 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1182
1183
1184
1185 /* Register per-architecture memory region.
1186
1187 Provide a memory-region swap mechanism. Per-architecture memory
1188 region are created. These memory regions are swapped whenever the
1189 architecture is changed. For a new architecture, the memory region
1190 is initialized with zero (0) and the INIT function is called.
1191
1192 Memory regions are swapped / initialized in the order that they are
1193 registered. NULL DATA and/or INIT values can be specified.
1194
1195 New code should use gdbarch_data_register_*(). */
1196
1197 typedef void (gdbarch_swap_ftype) (void);
1198 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1199 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1200
1201
1202
1203 /* Set the dynamic target-system-dependent parameters (architecture,
1204 byte-order, ...) using information found in the BFD */
1205
1206 extern void set_gdbarch_from_file (bfd *);
1207
1208
1209 /* Initialize the current architecture to the "first" one we find on
1210 our list. */
1211
1212 extern void initialize_current_architecture (void);
1213
1214 /* gdbarch trace variable */
1215 extern int gdbarch_debug;
1216
1217 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1218
1219 #endif
1220 EOF
1221 exec 1>&2
1222 #../move-if-change new-gdbarch.h gdbarch.h
1223 compare_new gdbarch.h
1224
1225
1226 #
1227 # C file
1228 #
1229
1230 exec > new-gdbarch.c
1231 copyright
1232 cat <<EOF
1233
1234 #include "defs.h"
1235 #include "arch-utils.h"
1236
1237 #include "gdbcmd.h"
1238 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1239 #include "symcat.h"
1240
1241 #include "floatformat.h"
1242
1243 #include "gdb_assert.h"
1244 #include "gdb_string.h"
1245 #include "gdb-events.h"
1246 #include "reggroups.h"
1247 #include "osabi.h"
1248 #include "gdb_obstack.h"
1249
1250 /* Static function declarations */
1251
1252 static void alloc_gdbarch_data (struct gdbarch *);
1253
1254 /* Non-zero if we want to trace architecture code. */
1255
1256 #ifndef GDBARCH_DEBUG
1257 #define GDBARCH_DEBUG 0
1258 #endif
1259 int gdbarch_debug = GDBARCH_DEBUG;
1260
1261 EOF
1262
1263 # gdbarch open the gdbarch object
1264 printf "\n"
1265 printf "/* Maintain the struct gdbarch object */\n"
1266 printf "\n"
1267 printf "struct gdbarch\n"
1268 printf "{\n"
1269 printf " /* Has this architecture been fully initialized? */\n"
1270 printf " int initialized_p;\n"
1271 printf "\n"
1272 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1273 printf " struct obstack *obstack;\n"
1274 printf "\n"
1275 printf " /* basic architectural information */\n"
1276 function_list | while do_read
1277 do
1278 if class_is_info_p
1279 then
1280 printf " ${returntype} ${function};\n"
1281 fi
1282 done
1283 printf "\n"
1284 printf " /* target specific vector. */\n"
1285 printf " struct gdbarch_tdep *tdep;\n"
1286 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1287 printf "\n"
1288 printf " /* per-architecture data-pointers */\n"
1289 printf " unsigned nr_data;\n"
1290 printf " void **data;\n"
1291 printf "\n"
1292 printf " /* per-architecture swap-regions */\n"
1293 printf " struct gdbarch_swap *swap;\n"
1294 printf "\n"
1295 cat <<EOF
1296 /* Multi-arch values.
1297
1298 When extending this structure you must:
1299
1300 Add the field below.
1301
1302 Declare set/get functions and define the corresponding
1303 macro in gdbarch.h.
1304
1305 gdbarch_alloc(): If zero/NULL is not a suitable default,
1306 initialize the new field.
1307
1308 verify_gdbarch(): Confirm that the target updated the field
1309 correctly.
1310
1311 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1312 field is dumped out
1313
1314 \`\`startup_gdbarch()'': Append an initial value to the static
1315 variable (base values on the host's c-type system).
1316
1317 get_gdbarch(): Implement the set/get functions (probably using
1318 the macro's as shortcuts).
1319
1320 */
1321
1322 EOF
1323 function_list | while do_read
1324 do
1325 if class_is_variable_p
1326 then
1327 printf " ${returntype} ${function};\n"
1328 elif class_is_function_p
1329 then
1330 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1331 fi
1332 done
1333 printf "};\n"
1334
1335 # A pre-initialized vector
1336 printf "\n"
1337 printf "\n"
1338 cat <<EOF
1339 /* The default architecture uses host values (for want of a better
1340 choice). */
1341 EOF
1342 printf "\n"
1343 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1344 printf "\n"
1345 printf "struct gdbarch startup_gdbarch =\n"
1346 printf "{\n"
1347 printf " 1, /* Always initialized. */\n"
1348 printf " NULL, /* The obstack. */\n"
1349 printf " /* basic architecture information */\n"
1350 function_list | while do_read
1351 do
1352 if class_is_info_p
1353 then
1354 printf " ${staticdefault}, /* ${function} */\n"
1355 fi
1356 done
1357 cat <<EOF
1358 /* target specific vector and its dump routine */
1359 NULL, NULL,
1360 /*per-architecture data-pointers and swap regions */
1361 0, NULL, NULL,
1362 /* Multi-arch values */
1363 EOF
1364 function_list | while do_read
1365 do
1366 if class_is_function_p || class_is_variable_p
1367 then
1368 printf " ${staticdefault}, /* ${function} */\n"
1369 fi
1370 done
1371 cat <<EOF
1372 /* startup_gdbarch() */
1373 };
1374
1375 struct gdbarch *current_gdbarch = &startup_gdbarch;
1376 EOF
1377
1378 # Create a new gdbarch struct
1379 cat <<EOF
1380
1381 /* Create a new \`\`struct gdbarch'' based on information provided by
1382 \`\`struct gdbarch_info''. */
1383 EOF
1384 printf "\n"
1385 cat <<EOF
1386 struct gdbarch *
1387 gdbarch_alloc (const struct gdbarch_info *info,
1388 struct gdbarch_tdep *tdep)
1389 {
1390 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1391 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1392 the current local architecture and not the previous global
1393 architecture. This ensures that the new architectures initial
1394 values are not influenced by the previous architecture. Once
1395 everything is parameterised with gdbarch, this will go away. */
1396 struct gdbarch *current_gdbarch;
1397
1398 /* Create an obstack for allocating all the per-architecture memory,
1399 then use that to allocate the architecture vector. */
1400 struct obstack *obstack = XMALLOC (struct obstack);
1401 obstack_init (obstack);
1402 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1403 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1404 current_gdbarch->obstack = obstack;
1405
1406 alloc_gdbarch_data (current_gdbarch);
1407
1408 current_gdbarch->tdep = tdep;
1409 EOF
1410 printf "\n"
1411 function_list | while do_read
1412 do
1413 if class_is_info_p
1414 then
1415 printf " current_gdbarch->${function} = info->${function};\n"
1416 fi
1417 done
1418 printf "\n"
1419 printf " /* Force the explicit initialization of these. */\n"
1420 function_list | while do_read
1421 do
1422 if class_is_function_p || class_is_variable_p
1423 then
1424 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1425 then
1426 printf " current_gdbarch->${function} = ${predefault};\n"
1427 fi
1428 fi
1429 done
1430 cat <<EOF
1431 /* gdbarch_alloc() */
1432
1433 return current_gdbarch;
1434 }
1435 EOF
1436
1437 # Free a gdbarch struct.
1438 printf "\n"
1439 printf "\n"
1440 cat <<EOF
1441 /* Allocate extra space using the per-architecture obstack. */
1442
1443 void *
1444 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1445 {
1446 void *data = obstack_alloc (arch->obstack, size);
1447 memset (data, 0, size);
1448 return data;
1449 }
1450
1451
1452 /* Free a gdbarch struct. This should never happen in normal
1453 operation --- once you've created a gdbarch, you keep it around.
1454 However, if an architecture's init function encounters an error
1455 building the structure, it may need to clean up a partially
1456 constructed gdbarch. */
1457
1458 void
1459 gdbarch_free (struct gdbarch *arch)
1460 {
1461 struct obstack *obstack;
1462 gdb_assert (arch != NULL);
1463 gdb_assert (!arch->initialized_p);
1464 obstack = arch->obstack;
1465 obstack_free (obstack, 0); /* Includes the ARCH. */
1466 xfree (obstack);
1467 }
1468 EOF
1469
1470 # verify a new architecture
1471 cat <<EOF
1472
1473
1474 /* Ensure that all values in a GDBARCH are reasonable. */
1475
1476 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1477 just happens to match the global variable \`\`current_gdbarch''. That
1478 way macros refering to that variable get the local and not the global
1479 version - ulgh. Once everything is parameterised with gdbarch, this
1480 will go away. */
1481
1482 static void
1483 verify_gdbarch (struct gdbarch *current_gdbarch)
1484 {
1485 struct ui_file *log;
1486 struct cleanup *cleanups;
1487 long dummy;
1488 char *buf;
1489 log = mem_fileopen ();
1490 cleanups = make_cleanup_ui_file_delete (log);
1491 /* fundamental */
1492 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1493 fprintf_unfiltered (log, "\n\tbyte-order");
1494 if (current_gdbarch->bfd_arch_info == NULL)
1495 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1496 /* Check those that need to be defined for the given multi-arch level. */
1497 EOF
1498 function_list | while do_read
1499 do
1500 if class_is_function_p || class_is_variable_p
1501 then
1502 if [ "x${invalid_p}" = "x0" ]
1503 then
1504 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1505 elif class_is_predicate_p
1506 then
1507 printf " /* Skip verify of ${function}, has predicate */\n"
1508 # FIXME: See do_read for potential simplification
1509 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1510 then
1511 printf " if (${invalid_p})\n"
1512 printf " current_gdbarch->${function} = ${postdefault};\n"
1513 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1514 then
1515 printf " if (current_gdbarch->${function} == ${predefault})\n"
1516 printf " current_gdbarch->${function} = ${postdefault};\n"
1517 elif [ -n "${postdefault}" ]
1518 then
1519 printf " if (current_gdbarch->${function} == 0)\n"
1520 printf " current_gdbarch->${function} = ${postdefault};\n"
1521 elif [ -n "${invalid_p}" ]
1522 then
1523 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1524 printf " && (${invalid_p}))\n"
1525 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1526 elif [ -n "${predefault}" ]
1527 then
1528 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1529 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1530 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1531 fi
1532 fi
1533 done
1534 cat <<EOF
1535 buf = ui_file_xstrdup (log, &dummy);
1536 make_cleanup (xfree, buf);
1537 if (strlen (buf) > 0)
1538 internal_error (__FILE__, __LINE__,
1539 "verify_gdbarch: the following are invalid ...%s",
1540 buf);
1541 do_cleanups (cleanups);
1542 }
1543 EOF
1544
1545 # dump the structure
1546 printf "\n"
1547 printf "\n"
1548 cat <<EOF
1549 /* Print out the details of the current architecture. */
1550
1551 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1552 just happens to match the global variable \`\`current_gdbarch''. That
1553 way macros refering to that variable get the local and not the global
1554 version - ulgh. Once everything is parameterised with gdbarch, this
1555 will go away. */
1556
1557 void
1558 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1559 {
1560 fprintf_unfiltered (file,
1561 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1562 GDB_MULTI_ARCH);
1563 EOF
1564 function_list | sort -t: -k 3 | while do_read
1565 do
1566 # First the predicate
1567 if class_is_predicate_p
1568 then
1569 if class_is_multiarch_p
1570 then
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1573 printf " gdbarch_${function}_p (current_gdbarch));\n"
1574 else
1575 printf "#ifdef ${macro}_P\n"
1576 printf " fprintf_unfiltered (file,\n"
1577 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1578 printf " \"${macro}_P()\",\n"
1579 printf " XSTRING (${macro}_P ()));\n"
1580 printf " fprintf_unfiltered (file,\n"
1581 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1582 printf " ${macro}_P ());\n"
1583 printf "#endif\n"
1584 fi
1585 fi
1586 # multiarch functions don't have macros.
1587 if class_is_multiarch_p
1588 then
1589 printf " fprintf_unfiltered (file,\n"
1590 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1591 printf " (long) current_gdbarch->${function});\n"
1592 continue
1593 fi
1594 # Print the macro definition.
1595 printf "#ifdef ${macro}\n"
1596 if class_is_function_p
1597 then
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1600 printf " \"${macro}(${actual})\",\n"
1601 printf " XSTRING (${macro} (${actual})));\n"
1602 else
1603 printf " fprintf_unfiltered (file,\n"
1604 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1605 printf " XSTRING (${macro}));\n"
1606 fi
1607 if [ "x${print_p}" = "x()" ]
1608 then
1609 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1610 elif [ "x${print_p}" = "x0" ]
1611 then
1612 printf " /* skip print of ${macro}, print_p == 0. */\n"
1613 elif [ -n "${print_p}" ]
1614 then
1615 printf " if (${print_p})\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1618 printf " ${print});\n"
1619 elif class_is_function_p
1620 then
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1623 printf " (long) current_gdbarch->${function}\n"
1624 printf " /*${macro} ()*/);\n"
1625 else
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1628 printf " ${print});\n"
1629 fi
1630 printf "#endif\n"
1631 done
1632 cat <<EOF
1633 if (current_gdbarch->dump_tdep != NULL)
1634 current_gdbarch->dump_tdep (current_gdbarch, file);
1635 }
1636 EOF
1637
1638
1639 # GET/SET
1640 printf "\n"
1641 cat <<EOF
1642 struct gdbarch_tdep *
1643 gdbarch_tdep (struct gdbarch *gdbarch)
1644 {
1645 if (gdbarch_debug >= 2)
1646 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1647 return gdbarch->tdep;
1648 }
1649 EOF
1650 printf "\n"
1651 function_list | while do_read
1652 do
1653 if class_is_predicate_p
1654 then
1655 printf "\n"
1656 printf "int\n"
1657 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1658 printf "{\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 printf " return ${predicate};\n"
1661 printf "}\n"
1662 fi
1663 if class_is_function_p
1664 then
1665 printf "\n"
1666 printf "${returntype}\n"
1667 if [ "x${formal}" = "xvoid" ]
1668 then
1669 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1670 else
1671 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1672 fi
1673 printf "{\n"
1674 printf " gdb_assert (gdbarch != NULL);\n"
1675 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1676 if class_is_predicate_p && test -n "${predefault}"
1677 then
1678 # Allow a call to a function with a predicate.
1679 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1680 fi
1681 printf " if (gdbarch_debug >= 2)\n"
1682 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1683 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1684 then
1685 if class_is_multiarch_p
1686 then
1687 params="gdbarch"
1688 else
1689 params=""
1690 fi
1691 else
1692 if class_is_multiarch_p
1693 then
1694 params="gdbarch, ${actual}"
1695 else
1696 params="${actual}"
1697 fi
1698 fi
1699 if [ "x${returntype}" = "xvoid" ]
1700 then
1701 printf " gdbarch->${function} (${params});\n"
1702 else
1703 printf " return gdbarch->${function} (${params});\n"
1704 fi
1705 printf "}\n"
1706 printf "\n"
1707 printf "void\n"
1708 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1709 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1710 printf "{\n"
1711 printf " gdbarch->${function} = ${function};\n"
1712 printf "}\n"
1713 elif class_is_variable_p
1714 then
1715 printf "\n"
1716 printf "${returntype}\n"
1717 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1718 printf "{\n"
1719 printf " gdb_assert (gdbarch != NULL);\n"
1720 if [ "x${invalid_p}" = "x0" ]
1721 then
1722 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1723 elif [ -n "${invalid_p}" ]
1724 then
1725 printf " /* Check variable is valid. */\n"
1726 printf " gdb_assert (!(${invalid_p}));\n"
1727 elif [ -n "${predefault}" ]
1728 then
1729 printf " /* Check variable changed from pre-default. */\n"
1730 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1731 fi
1732 printf " if (gdbarch_debug >= 2)\n"
1733 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1734 printf " return gdbarch->${function};\n"
1735 printf "}\n"
1736 printf "\n"
1737 printf "void\n"
1738 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1739 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1740 printf "{\n"
1741 printf " gdbarch->${function} = ${function};\n"
1742 printf "}\n"
1743 elif class_is_info_p
1744 then
1745 printf "\n"
1746 printf "${returntype}\n"
1747 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1748 printf "{\n"
1749 printf " gdb_assert (gdbarch != NULL);\n"
1750 printf " if (gdbarch_debug >= 2)\n"
1751 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1752 printf " return gdbarch->${function};\n"
1753 printf "}\n"
1754 fi
1755 done
1756
1757 # All the trailing guff
1758 cat <<EOF
1759
1760
1761 /* Keep a registry of per-architecture data-pointers required by GDB
1762 modules. */
1763
1764 struct gdbarch_data
1765 {
1766 unsigned index;
1767 int init_p;
1768 gdbarch_data_pre_init_ftype *pre_init;
1769 gdbarch_data_post_init_ftype *post_init;
1770 };
1771
1772 struct gdbarch_data_registration
1773 {
1774 struct gdbarch_data *data;
1775 struct gdbarch_data_registration *next;
1776 };
1777
1778 struct gdbarch_data_registry
1779 {
1780 unsigned nr;
1781 struct gdbarch_data_registration *registrations;
1782 };
1783
1784 struct gdbarch_data_registry gdbarch_data_registry =
1785 {
1786 0, NULL,
1787 };
1788
1789 static struct gdbarch_data *
1790 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1791 gdbarch_data_post_init_ftype *post_init)
1792 {
1793 struct gdbarch_data_registration **curr;
1794 /* Append the new registraration. */
1795 for (curr = &gdbarch_data_registry.registrations;
1796 (*curr) != NULL;
1797 curr = &(*curr)->next);
1798 (*curr) = XMALLOC (struct gdbarch_data_registration);
1799 (*curr)->next = NULL;
1800 (*curr)->data = XMALLOC (struct gdbarch_data);
1801 (*curr)->data->index = gdbarch_data_registry.nr++;
1802 (*curr)->data->pre_init = pre_init;
1803 (*curr)->data->post_init = post_init;
1804 (*curr)->data->init_p = 1;
1805 return (*curr)->data;
1806 }
1807
1808 struct gdbarch_data *
1809 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1810 {
1811 return gdbarch_data_register (pre_init, NULL);
1812 }
1813
1814 struct gdbarch_data *
1815 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1816 {
1817 return gdbarch_data_register (NULL, post_init);
1818 }
1819
1820 /* Create/delete the gdbarch data vector. */
1821
1822 static void
1823 alloc_gdbarch_data (struct gdbarch *gdbarch)
1824 {
1825 gdb_assert (gdbarch->data == NULL);
1826 gdbarch->nr_data = gdbarch_data_registry.nr;
1827 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1828 }
1829
1830 /* Initialize the current value of the specified per-architecture
1831 data-pointer. */
1832
1833 void
1834 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1835 struct gdbarch_data *data,
1836 void *pointer)
1837 {
1838 gdb_assert (data->index < gdbarch->nr_data);
1839 gdb_assert (gdbarch->data[data->index] == NULL);
1840 gdb_assert (data->pre_init == NULL);
1841 gdbarch->data[data->index] = pointer;
1842 }
1843
1844 /* Return the current value of the specified per-architecture
1845 data-pointer. */
1846
1847 void *
1848 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1849 {
1850 gdb_assert (data->index < gdbarch->nr_data);
1851 if (gdbarch->data[data->index] == NULL)
1852 {
1853 /* The data-pointer isn't initialized, call init() to get a
1854 value. */
1855 if (data->pre_init != NULL)
1856 /* Mid architecture creation: pass just the obstack, and not
1857 the entire architecture, as that way it isn't possible for
1858 pre-init code to refer to undefined architecture
1859 fields. */
1860 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1861 else if (gdbarch->initialized_p
1862 && data->post_init != NULL)
1863 /* Post architecture creation: pass the entire architecture
1864 (as all fields are valid), but be careful to also detect
1865 recursive references. */
1866 {
1867 gdb_assert (data->init_p);
1868 data->init_p = 0;
1869 gdbarch->data[data->index] = data->post_init (gdbarch);
1870 data->init_p = 1;
1871 }
1872 else
1873 /* The architecture initialization hasn't completed - punt -
1874 hope that the caller knows what they are doing. Once
1875 deprecated_set_gdbarch_data has been initialized, this can be
1876 changed to an internal error. */
1877 return NULL;
1878 gdb_assert (gdbarch->data[data->index] != NULL);
1879 }
1880 return gdbarch->data[data->index];
1881 }
1882
1883
1884
1885 /* Keep a registry of swapped data required by GDB modules. */
1886
1887 struct gdbarch_swap
1888 {
1889 void *swap;
1890 struct gdbarch_swap_registration *source;
1891 struct gdbarch_swap *next;
1892 };
1893
1894 struct gdbarch_swap_registration
1895 {
1896 void *data;
1897 unsigned long sizeof_data;
1898 gdbarch_swap_ftype *init;
1899 struct gdbarch_swap_registration *next;
1900 };
1901
1902 struct gdbarch_swap_registry
1903 {
1904 int nr;
1905 struct gdbarch_swap_registration *registrations;
1906 };
1907
1908 struct gdbarch_swap_registry gdbarch_swap_registry =
1909 {
1910 0, NULL,
1911 };
1912
1913 void
1914 deprecated_register_gdbarch_swap (void *data,
1915 unsigned long sizeof_data,
1916 gdbarch_swap_ftype *init)
1917 {
1918 struct gdbarch_swap_registration **rego;
1919 for (rego = &gdbarch_swap_registry.registrations;
1920 (*rego) != NULL;
1921 rego = &(*rego)->next);
1922 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1923 (*rego)->next = NULL;
1924 (*rego)->init = init;
1925 (*rego)->data = data;
1926 (*rego)->sizeof_data = sizeof_data;
1927 }
1928
1929 static void
1930 current_gdbarch_swap_init_hack (void)
1931 {
1932 struct gdbarch_swap_registration *rego;
1933 struct gdbarch_swap **curr = &current_gdbarch->swap;
1934 for (rego = gdbarch_swap_registry.registrations;
1935 rego != NULL;
1936 rego = rego->next)
1937 {
1938 if (rego->data != NULL)
1939 {
1940 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1941 struct gdbarch_swap);
1942 (*curr)->source = rego;
1943 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1944 rego->sizeof_data);
1945 (*curr)->next = NULL;
1946 curr = &(*curr)->next;
1947 }
1948 if (rego->init != NULL)
1949 rego->init ();
1950 }
1951 }
1952
1953 static struct gdbarch *
1954 current_gdbarch_swap_out_hack (void)
1955 {
1956 struct gdbarch *old_gdbarch = current_gdbarch;
1957 struct gdbarch_swap *curr;
1958
1959 gdb_assert (old_gdbarch != NULL);
1960 for (curr = old_gdbarch->swap;
1961 curr != NULL;
1962 curr = curr->next)
1963 {
1964 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1965 memset (curr->source->data, 0, curr->source->sizeof_data);
1966 }
1967 current_gdbarch = NULL;
1968 return old_gdbarch;
1969 }
1970
1971 static void
1972 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1973 {
1974 struct gdbarch_swap *curr;
1975
1976 gdb_assert (current_gdbarch == NULL);
1977 for (curr = new_gdbarch->swap;
1978 curr != NULL;
1979 curr = curr->next)
1980 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1981 current_gdbarch = new_gdbarch;
1982 }
1983
1984
1985 /* Keep a registry of the architectures known by GDB. */
1986
1987 struct gdbarch_registration
1988 {
1989 enum bfd_architecture bfd_architecture;
1990 gdbarch_init_ftype *init;
1991 gdbarch_dump_tdep_ftype *dump_tdep;
1992 struct gdbarch_list *arches;
1993 struct gdbarch_registration *next;
1994 };
1995
1996 static struct gdbarch_registration *gdbarch_registry = NULL;
1997
1998 static void
1999 append_name (const char ***buf, int *nr, const char *name)
2000 {
2001 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2002 (*buf)[*nr] = name;
2003 *nr += 1;
2004 }
2005
2006 const char **
2007 gdbarch_printable_names (void)
2008 {
2009 /* Accumulate a list of names based on the registed list of
2010 architectures. */
2011 enum bfd_architecture a;
2012 int nr_arches = 0;
2013 const char **arches = NULL;
2014 struct gdbarch_registration *rego;
2015 for (rego = gdbarch_registry;
2016 rego != NULL;
2017 rego = rego->next)
2018 {
2019 const struct bfd_arch_info *ap;
2020 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2021 if (ap == NULL)
2022 internal_error (__FILE__, __LINE__,
2023 "gdbarch_architecture_names: multi-arch unknown");
2024 do
2025 {
2026 append_name (&arches, &nr_arches, ap->printable_name);
2027 ap = ap->next;
2028 }
2029 while (ap != NULL);
2030 }
2031 append_name (&arches, &nr_arches, NULL);
2032 return arches;
2033 }
2034
2035
2036 void
2037 gdbarch_register (enum bfd_architecture bfd_architecture,
2038 gdbarch_init_ftype *init,
2039 gdbarch_dump_tdep_ftype *dump_tdep)
2040 {
2041 struct gdbarch_registration **curr;
2042 const struct bfd_arch_info *bfd_arch_info;
2043 /* Check that BFD recognizes this architecture */
2044 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2045 if (bfd_arch_info == NULL)
2046 {
2047 internal_error (__FILE__, __LINE__,
2048 "gdbarch: Attempt to register unknown architecture (%d)",
2049 bfd_architecture);
2050 }
2051 /* Check that we haven't seen this architecture before */
2052 for (curr = &gdbarch_registry;
2053 (*curr) != NULL;
2054 curr = &(*curr)->next)
2055 {
2056 if (bfd_architecture == (*curr)->bfd_architecture)
2057 internal_error (__FILE__, __LINE__,
2058 "gdbarch: Duplicate registraration of architecture (%s)",
2059 bfd_arch_info->printable_name);
2060 }
2061 /* log it */
2062 if (gdbarch_debug)
2063 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2064 bfd_arch_info->printable_name,
2065 (long) init);
2066 /* Append it */
2067 (*curr) = XMALLOC (struct gdbarch_registration);
2068 (*curr)->bfd_architecture = bfd_architecture;
2069 (*curr)->init = init;
2070 (*curr)->dump_tdep = dump_tdep;
2071 (*curr)->arches = NULL;
2072 (*curr)->next = NULL;
2073 }
2074
2075 void
2076 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2077 gdbarch_init_ftype *init)
2078 {
2079 gdbarch_register (bfd_architecture, init, NULL);
2080 }
2081
2082
2083 /* Look for an architecture using gdbarch_info. Base search on only
2084 BFD_ARCH_INFO and BYTE_ORDER. */
2085
2086 struct gdbarch_list *
2087 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2088 const struct gdbarch_info *info)
2089 {
2090 for (; arches != NULL; arches = arches->next)
2091 {
2092 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2093 continue;
2094 if (info->byte_order != arches->gdbarch->byte_order)
2095 continue;
2096 if (info->osabi != arches->gdbarch->osabi)
2097 continue;
2098 return arches;
2099 }
2100 return NULL;
2101 }
2102
2103
2104 /* Find an architecture that matches the specified INFO. Create a new
2105 architecture if needed. Return that new architecture. Assumes
2106 that there is no current architecture. */
2107
2108 static struct gdbarch *
2109 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2110 {
2111 struct gdbarch *new_gdbarch;
2112 struct gdbarch_registration *rego;
2113
2114 /* The existing architecture has been swapped out - all this code
2115 works from a clean slate. */
2116 gdb_assert (current_gdbarch == NULL);
2117
2118 /* Fill in missing parts of the INFO struct using a number of
2119 sources: "set ..."; INFOabfd supplied; and the existing
2120 architecture. */
2121 gdbarch_info_fill (old_gdbarch, &info);
2122
2123 /* Must have found some sort of architecture. */
2124 gdb_assert (info.bfd_arch_info != NULL);
2125
2126 if (gdbarch_debug)
2127 {
2128 fprintf_unfiltered (gdb_stdlog,
2129 "find_arch_by_info: info.bfd_arch_info %s\n",
2130 (info.bfd_arch_info != NULL
2131 ? info.bfd_arch_info->printable_name
2132 : "(null)"));
2133 fprintf_unfiltered (gdb_stdlog,
2134 "find_arch_by_info: info.byte_order %d (%s)\n",
2135 info.byte_order,
2136 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2137 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2138 : "default"));
2139 fprintf_unfiltered (gdb_stdlog,
2140 "find_arch_by_info: info.osabi %d (%s)\n",
2141 info.osabi, gdbarch_osabi_name (info.osabi));
2142 fprintf_unfiltered (gdb_stdlog,
2143 "find_arch_by_info: info.abfd 0x%lx\n",
2144 (long) info.abfd);
2145 fprintf_unfiltered (gdb_stdlog,
2146 "find_arch_by_info: info.tdep_info 0x%lx\n",
2147 (long) info.tdep_info);
2148 }
2149
2150 /* Find the tdep code that knows about this architecture. */
2151 for (rego = gdbarch_registry;
2152 rego != NULL;
2153 rego = rego->next)
2154 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2155 break;
2156 if (rego == NULL)
2157 {
2158 if (gdbarch_debug)
2159 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2160 "No matching architecture\n");
2161 return 0;
2162 }
2163
2164 /* Ask the tdep code for an architecture that matches "info". */
2165 new_gdbarch = rego->init (info, rego->arches);
2166
2167 /* Did the tdep code like it? No. Reject the change and revert to
2168 the old architecture. */
2169 if (new_gdbarch == NULL)
2170 {
2171 if (gdbarch_debug)
2172 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2173 "Target rejected architecture\n");
2174 return NULL;
2175 }
2176
2177 /* Is this a pre-existing architecture (as determined by already
2178 being initialized)? Move it to the front of the architecture
2179 list (keeping the list sorted Most Recently Used). */
2180 if (new_gdbarch->initialized_p)
2181 {
2182 struct gdbarch_list **list;
2183 struct gdbarch_list *this;
2184 if (gdbarch_debug)
2185 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2186 "Previous architecture 0x%08lx (%s) selected\n",
2187 (long) new_gdbarch,
2188 new_gdbarch->bfd_arch_info->printable_name);
2189 /* Find the existing arch in the list. */
2190 for (list = &rego->arches;
2191 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2192 list = &(*list)->next);
2193 /* It had better be in the list of architectures. */
2194 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2195 /* Unlink THIS. */
2196 this = (*list);
2197 (*list) = this->next;
2198 /* Insert THIS at the front. */
2199 this->next = rego->arches;
2200 rego->arches = this;
2201 /* Return it. */
2202 return new_gdbarch;
2203 }
2204
2205 /* It's a new architecture. */
2206 if (gdbarch_debug)
2207 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2208 "New architecture 0x%08lx (%s) selected\n",
2209 (long) new_gdbarch,
2210 new_gdbarch->bfd_arch_info->printable_name);
2211
2212 /* Insert the new architecture into the front of the architecture
2213 list (keep the list sorted Most Recently Used). */
2214 {
2215 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2216 this->next = rego->arches;
2217 this->gdbarch = new_gdbarch;
2218 rego->arches = this;
2219 }
2220
2221 /* Check that the newly installed architecture is valid. Plug in
2222 any post init values. */
2223 new_gdbarch->dump_tdep = rego->dump_tdep;
2224 verify_gdbarch (new_gdbarch);
2225 new_gdbarch->initialized_p = 1;
2226
2227 /* Initialize any per-architecture swap areas. This phase requires
2228 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2229 swap the entire architecture out. */
2230 current_gdbarch = new_gdbarch;
2231 current_gdbarch_swap_init_hack ();
2232 current_gdbarch_swap_out_hack ();
2233
2234 if (gdbarch_debug)
2235 gdbarch_dump (new_gdbarch, gdb_stdlog);
2236
2237 return new_gdbarch;
2238 }
2239
2240 struct gdbarch *
2241 gdbarch_find_by_info (struct gdbarch_info info)
2242 {
2243 /* Save the previously selected architecture, setting the global to
2244 NULL. This stops things like gdbarch->init() trying to use the
2245 previous architecture's configuration. The previous architecture
2246 may not even be of the same architecture family. The most recent
2247 architecture of the same family is found at the head of the
2248 rego->arches list. */
2249 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2250
2251 /* Find the specified architecture. */
2252 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2253
2254 /* Restore the existing architecture. */
2255 gdb_assert (current_gdbarch == NULL);
2256 current_gdbarch_swap_in_hack (old_gdbarch);
2257
2258 return new_gdbarch;
2259 }
2260
2261 /* Make the specified architecture current, swapping the existing one
2262 out. */
2263
2264 void
2265 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2266 {
2267 gdb_assert (new_gdbarch != NULL);
2268 gdb_assert (current_gdbarch != NULL);
2269 gdb_assert (new_gdbarch->initialized_p);
2270 current_gdbarch_swap_out_hack ();
2271 current_gdbarch_swap_in_hack (new_gdbarch);
2272 architecture_changed_event ();
2273 }
2274
2275 extern void _initialize_gdbarch (void);
2276
2277 void
2278 _initialize_gdbarch (void)
2279 {
2280 struct cmd_list_element *c;
2281
2282 add_show_from_set (add_set_cmd ("arch",
2283 class_maintenance,
2284 var_zinteger,
2285 (char *)&gdbarch_debug,
2286 "Set architecture debugging.\\n\\
2287 When non-zero, architecture debugging is enabled.", &setdebuglist),
2288 &showdebuglist);
2289 c = add_set_cmd ("archdebug",
2290 class_maintenance,
2291 var_zinteger,
2292 (char *)&gdbarch_debug,
2293 "Set architecture debugging.\\n\\
2294 When non-zero, architecture debugging is enabled.", &setlist);
2295
2296 deprecate_cmd (c, "set debug arch");
2297 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2298 }
2299 EOF
2300
2301 # close things off
2302 exec 1>&2
2303 #../move-if-change new-gdbarch.c gdbarch.c
2304 compare_new gdbarch.c
This page took 0.082022 seconds and 4 git commands to generate.