13d5cc6539cb9485864bc51ebfa28d8fb85e2bff
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
537
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
545
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
547
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
551
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
554 #
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
561 #
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
565 #
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577 # It is not at all clear why gdbarch_smash_text_address is not folded into
578 # gdbarch_addr_bits_remove.
579 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Iterate over all objfiles in the order that makes the most sense
947 # for the architecture to make global symbol searches.
948 #
949 # CB is a callback function where OBJFILE is the objfile to be searched,
950 # and CB_DATA a pointer to user-defined data (the same data that is passed
951 # when calling this gdbarch method). The iteration stops if this function
952 # returns nonzero.
953 #
954 # CB_DATA is a pointer to some user-defined data to be passed to
955 # the callback.
956 #
957 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958 # inspected when the symbol search was requested.
959 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
960
961 EOF
962 }
963
964 #
965 # The .log file
966 #
967 exec > new-gdbarch.log
968 function_list | while do_read
969 do
970 cat <<EOF
971 ${class} ${returntype} ${function} ($formal)
972 EOF
973 for r in ${read}
974 do
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
976 done
977 if class_is_predicate_p && fallback_default_p
978 then
979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
980 kill $$
981 exit 1
982 fi
983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
984 then
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 kill $$
987 exit 1
988 fi
989 if class_is_multiarch_p
990 then
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
993 then
994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
995 kill $$
996 exit 1
997 fi
998 fi
999 echo ""
1000 done
1001
1002 exec 1>&2
1003 compare_new gdbarch.log
1004
1005
1006 copyright ()
1007 {
1008 cat <<EOF
1009 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1010 /* vi:set ro: */
1011
1012 /* Dynamic architecture support for GDB, the GNU debugger.
1013
1014 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1015 2007, 2008, 2009 Free Software Foundation, Inc.
1016
1017 This file is part of GDB.
1018
1019 This program is free software; you can redistribute it and/or modify
1020 it under the terms of the GNU General Public License as published by
1021 the Free Software Foundation; either version 3 of the License, or
1022 (at your option) any later version.
1023
1024 This program is distributed in the hope that it will be useful,
1025 but WITHOUT ANY WARRANTY; without even the implied warranty of
1026 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1027 GNU General Public License for more details.
1028
1029 You should have received a copy of the GNU General Public License
1030 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1031
1032 /* This file was created with the aid of \`\`gdbarch.sh''.
1033
1034 The Bourne shell script \`\`gdbarch.sh'' creates the files
1035 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1036 against the existing \`\`gdbarch.[hc]''. Any differences found
1037 being reported.
1038
1039 If editing this file, please also run gdbarch.sh and merge any
1040 changes into that script. Conversely, when making sweeping changes
1041 to this file, modifying gdbarch.sh and using its output may prove
1042 easier. */
1043
1044 EOF
1045 }
1046
1047 #
1048 # The .h file
1049 #
1050
1051 exec > new-gdbarch.h
1052 copyright
1053 cat <<EOF
1054 #ifndef GDBARCH_H
1055 #define GDBARCH_H
1056
1057 struct floatformat;
1058 struct ui_file;
1059 struct frame_info;
1060 struct value;
1061 struct objfile;
1062 struct obj_section;
1063 struct minimal_symbol;
1064 struct regcache;
1065 struct reggroup;
1066 struct regset;
1067 struct disassemble_info;
1068 struct target_ops;
1069 struct obstack;
1070 struct bp_target_info;
1071 struct target_desc;
1072 struct displaced_step_closure;
1073 struct core_regset_section;
1074 struct syscall;
1075 struct agent_expr;
1076 struct axs_value;
1077 struct stap_parse_info;
1078
1079 /* The architecture associated with the inferior through the
1080 connection to the target.
1081
1082 The architecture vector provides some information that is really a
1083 property of the inferior, accessed through a particular target:
1084 ptrace operations; the layout of certain RSP packets; the solib_ops
1085 vector; etc. To differentiate architecture accesses to
1086 per-inferior/target properties from
1087 per-thread/per-frame/per-objfile properties, accesses to
1088 per-inferior/target properties should be made through this
1089 gdbarch. */
1090
1091 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1092 #define target_gdbarch get_target_gdbarch ()
1093 extern struct gdbarch *get_target_gdbarch (void);
1094
1095 /* The initial, default architecture. It uses host values (for want of a better
1096 choice). */
1097 extern struct gdbarch startup_gdbarch;
1098
1099
1100 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1101 gdbarch method. */
1102
1103 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1104 (struct objfile *objfile, void *cb_data);
1105 EOF
1106
1107 # function typedef's
1108 printf "\n"
1109 printf "\n"
1110 printf "/* The following are pre-initialized by GDBARCH. */\n"
1111 function_list | while do_read
1112 do
1113 if class_is_info_p
1114 then
1115 printf "\n"
1116 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1117 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1118 fi
1119 done
1120
1121 # function typedef's
1122 printf "\n"
1123 printf "\n"
1124 printf "/* The following are initialized by the target dependent code. */\n"
1125 function_list | while do_read
1126 do
1127 if [ -n "${comment}" ]
1128 then
1129 echo "${comment}" | sed \
1130 -e '2 s,#,/*,' \
1131 -e '3,$ s,#, ,' \
1132 -e '$ s,$, */,'
1133 fi
1134
1135 if class_is_predicate_p
1136 then
1137 printf "\n"
1138 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1139 fi
1140 if class_is_variable_p
1141 then
1142 printf "\n"
1143 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1144 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1145 fi
1146 if class_is_function_p
1147 then
1148 printf "\n"
1149 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1150 then
1151 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1152 elif class_is_multiarch_p
1153 then
1154 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1155 else
1156 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1157 fi
1158 if [ "x${formal}" = "xvoid" ]
1159 then
1160 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1161 else
1162 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1163 fi
1164 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1165 fi
1166 done
1167
1168 # close it off
1169 cat <<EOF
1170
1171 /* Definition for an unknown syscall, used basically in error-cases. */
1172 #define UNKNOWN_SYSCALL (-1)
1173
1174 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1175
1176
1177 /* Mechanism for co-ordinating the selection of a specific
1178 architecture.
1179
1180 GDB targets (*-tdep.c) can register an interest in a specific
1181 architecture. Other GDB components can register a need to maintain
1182 per-architecture data.
1183
1184 The mechanisms below ensures that there is only a loose connection
1185 between the set-architecture command and the various GDB
1186 components. Each component can independently register their need
1187 to maintain architecture specific data with gdbarch.
1188
1189 Pragmatics:
1190
1191 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1192 didn't scale.
1193
1194 The more traditional mega-struct containing architecture specific
1195 data for all the various GDB components was also considered. Since
1196 GDB is built from a variable number of (fairly independent)
1197 components it was determined that the global aproach was not
1198 applicable. */
1199
1200
1201 /* Register a new architectural family with GDB.
1202
1203 Register support for the specified ARCHITECTURE with GDB. When
1204 gdbarch determines that the specified architecture has been
1205 selected, the corresponding INIT function is called.
1206
1207 --
1208
1209 The INIT function takes two parameters: INFO which contains the
1210 information available to gdbarch about the (possibly new)
1211 architecture; ARCHES which is a list of the previously created
1212 \`\`struct gdbarch'' for this architecture.
1213
1214 The INFO parameter is, as far as possible, be pre-initialized with
1215 information obtained from INFO.ABFD or the global defaults.
1216
1217 The ARCHES parameter is a linked list (sorted most recently used)
1218 of all the previously created architures for this architecture
1219 family. The (possibly NULL) ARCHES->gdbarch can used to access
1220 values from the previously selected architecture for this
1221 architecture family.
1222
1223 The INIT function shall return any of: NULL - indicating that it
1224 doesn't recognize the selected architecture; an existing \`\`struct
1225 gdbarch'' from the ARCHES list - indicating that the new
1226 architecture is just a synonym for an earlier architecture (see
1227 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1228 - that describes the selected architecture (see gdbarch_alloc()).
1229
1230 The DUMP_TDEP function shall print out all target specific values.
1231 Care should be taken to ensure that the function works in both the
1232 multi-arch and non- multi-arch cases. */
1233
1234 struct gdbarch_list
1235 {
1236 struct gdbarch *gdbarch;
1237 struct gdbarch_list *next;
1238 };
1239
1240 struct gdbarch_info
1241 {
1242 /* Use default: NULL (ZERO). */
1243 const struct bfd_arch_info *bfd_arch_info;
1244
1245 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1246 int byte_order;
1247
1248 int byte_order_for_code;
1249
1250 /* Use default: NULL (ZERO). */
1251 bfd *abfd;
1252
1253 /* Use default: NULL (ZERO). */
1254 struct gdbarch_tdep_info *tdep_info;
1255
1256 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1257 enum gdb_osabi osabi;
1258
1259 /* Use default: NULL (ZERO). */
1260 const struct target_desc *target_desc;
1261 };
1262
1263 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1264 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1265
1266 /* DEPRECATED - use gdbarch_register() */
1267 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1268
1269 extern void gdbarch_register (enum bfd_architecture architecture,
1270 gdbarch_init_ftype *,
1271 gdbarch_dump_tdep_ftype *);
1272
1273
1274 /* Return a freshly allocated, NULL terminated, array of the valid
1275 architecture names. Since architectures are registered during the
1276 _initialize phase this function only returns useful information
1277 once initialization has been completed. */
1278
1279 extern const char **gdbarch_printable_names (void);
1280
1281
1282 /* Helper function. Search the list of ARCHES for a GDBARCH that
1283 matches the information provided by INFO. */
1284
1285 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1286
1287
1288 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1289 basic initialization using values obtained from the INFO and TDEP
1290 parameters. set_gdbarch_*() functions are called to complete the
1291 initialization of the object. */
1292
1293 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1294
1295
1296 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1297 It is assumed that the caller freeds the \`\`struct
1298 gdbarch_tdep''. */
1299
1300 extern void gdbarch_free (struct gdbarch *);
1301
1302
1303 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1304 obstack. The memory is freed when the corresponding architecture
1305 is also freed. */
1306
1307 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1308 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1309 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1310
1311
1312 /* Helper function. Force an update of the current architecture.
1313
1314 The actual architecture selected is determined by INFO, \`\`(gdb) set
1315 architecture'' et.al., the existing architecture and BFD's default
1316 architecture. INFO should be initialized to zero and then selected
1317 fields should be updated.
1318
1319 Returns non-zero if the update succeeds. */
1320
1321 extern int gdbarch_update_p (struct gdbarch_info info);
1322
1323
1324 /* Helper function. Find an architecture matching info.
1325
1326 INFO should be initialized using gdbarch_info_init, relevant fields
1327 set, and then finished using gdbarch_info_fill.
1328
1329 Returns the corresponding architecture, or NULL if no matching
1330 architecture was found. */
1331
1332 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1333
1334
1335 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1336
1337 FIXME: kettenis/20031124: Of the functions that follow, only
1338 gdbarch_from_bfd is supposed to survive. The others will
1339 dissappear since in the future GDB will (hopefully) be truly
1340 multi-arch. However, for now we're still stuck with the concept of
1341 a single active architecture. */
1342
1343 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1344
1345
1346 /* Register per-architecture data-pointer.
1347
1348 Reserve space for a per-architecture data-pointer. An identifier
1349 for the reserved data-pointer is returned. That identifer should
1350 be saved in a local static variable.
1351
1352 Memory for the per-architecture data shall be allocated using
1353 gdbarch_obstack_zalloc. That memory will be deleted when the
1354 corresponding architecture object is deleted.
1355
1356 When a previously created architecture is re-selected, the
1357 per-architecture data-pointer for that previous architecture is
1358 restored. INIT() is not re-called.
1359
1360 Multiple registrarants for any architecture are allowed (and
1361 strongly encouraged). */
1362
1363 struct gdbarch_data;
1364
1365 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1366 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1367 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1368 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1369 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1370 struct gdbarch_data *data,
1371 void *pointer);
1372
1373 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1374
1375
1376 /* Set the dynamic target-system-dependent parameters (architecture,
1377 byte-order, ...) using information found in the BFD. */
1378
1379 extern void set_gdbarch_from_file (bfd *);
1380
1381
1382 /* Initialize the current architecture to the "first" one we find on
1383 our list. */
1384
1385 extern void initialize_current_architecture (void);
1386
1387 /* gdbarch trace variable */
1388 extern unsigned int gdbarch_debug;
1389
1390 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1391
1392 #endif
1393 EOF
1394 exec 1>&2
1395 #../move-if-change new-gdbarch.h gdbarch.h
1396 compare_new gdbarch.h
1397
1398
1399 #
1400 # C file
1401 #
1402
1403 exec > new-gdbarch.c
1404 copyright
1405 cat <<EOF
1406
1407 #include "defs.h"
1408 #include "arch-utils.h"
1409
1410 #include "gdbcmd.h"
1411 #include "inferior.h"
1412 #include "symcat.h"
1413
1414 #include "floatformat.h"
1415
1416 #include "gdb_assert.h"
1417 #include "gdb_string.h"
1418 #include "reggroups.h"
1419 #include "osabi.h"
1420 #include "gdb_obstack.h"
1421 #include "observer.h"
1422 #include "regcache.h"
1423 #include "objfiles.h"
1424
1425 /* Static function declarations */
1426
1427 static void alloc_gdbarch_data (struct gdbarch *);
1428
1429 /* Non-zero if we want to trace architecture code. */
1430
1431 #ifndef GDBARCH_DEBUG
1432 #define GDBARCH_DEBUG 0
1433 #endif
1434 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1435 static void
1436 show_gdbarch_debug (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1440 }
1441
1442 static const char *
1443 pformat (const struct floatformat **format)
1444 {
1445 if (format == NULL)
1446 return "(null)";
1447 else
1448 /* Just print out one of them - this is only for diagnostics. */
1449 return format[0]->name;
1450 }
1451
1452 static const char *
1453 pstring (const char *string)
1454 {
1455 if (string == NULL)
1456 return "(null)";
1457 return string;
1458 }
1459
1460 EOF
1461
1462 # gdbarch open the gdbarch object
1463 printf "\n"
1464 printf "/* Maintain the struct gdbarch object. */\n"
1465 printf "\n"
1466 printf "struct gdbarch\n"
1467 printf "{\n"
1468 printf " /* Has this architecture been fully initialized? */\n"
1469 printf " int initialized_p;\n"
1470 printf "\n"
1471 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1472 printf " struct obstack *obstack;\n"
1473 printf "\n"
1474 printf " /* basic architectural information. */\n"
1475 function_list | while do_read
1476 do
1477 if class_is_info_p
1478 then
1479 printf " ${returntype} ${function};\n"
1480 fi
1481 done
1482 printf "\n"
1483 printf " /* target specific vector. */\n"
1484 printf " struct gdbarch_tdep *tdep;\n"
1485 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1486 printf "\n"
1487 printf " /* per-architecture data-pointers. */\n"
1488 printf " unsigned nr_data;\n"
1489 printf " void **data;\n"
1490 printf "\n"
1491 cat <<EOF
1492 /* Multi-arch values.
1493
1494 When extending this structure you must:
1495
1496 Add the field below.
1497
1498 Declare set/get functions and define the corresponding
1499 macro in gdbarch.h.
1500
1501 gdbarch_alloc(): If zero/NULL is not a suitable default,
1502 initialize the new field.
1503
1504 verify_gdbarch(): Confirm that the target updated the field
1505 correctly.
1506
1507 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1508 field is dumped out
1509
1510 \`\`startup_gdbarch()'': Append an initial value to the static
1511 variable (base values on the host's c-type system).
1512
1513 get_gdbarch(): Implement the set/get functions (probably using
1514 the macro's as shortcuts).
1515
1516 */
1517
1518 EOF
1519 function_list | while do_read
1520 do
1521 if class_is_variable_p
1522 then
1523 printf " ${returntype} ${function};\n"
1524 elif class_is_function_p
1525 then
1526 printf " gdbarch_${function}_ftype *${function};\n"
1527 fi
1528 done
1529 printf "};\n"
1530
1531 # A pre-initialized vector
1532 printf "\n"
1533 printf "\n"
1534 cat <<EOF
1535 /* The default architecture uses host values (for want of a better
1536 choice). */
1537 EOF
1538 printf "\n"
1539 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1540 printf "\n"
1541 printf "struct gdbarch startup_gdbarch =\n"
1542 printf "{\n"
1543 printf " 1, /* Always initialized. */\n"
1544 printf " NULL, /* The obstack. */\n"
1545 printf " /* basic architecture information. */\n"
1546 function_list | while do_read
1547 do
1548 if class_is_info_p
1549 then
1550 printf " ${staticdefault}, /* ${function} */\n"
1551 fi
1552 done
1553 cat <<EOF
1554 /* target specific vector and its dump routine. */
1555 NULL, NULL,
1556 /*per-architecture data-pointers. */
1557 0, NULL,
1558 /* Multi-arch values */
1559 EOF
1560 function_list | while do_read
1561 do
1562 if class_is_function_p || class_is_variable_p
1563 then
1564 printf " ${staticdefault}, /* ${function} */\n"
1565 fi
1566 done
1567 cat <<EOF
1568 /* startup_gdbarch() */
1569 };
1570
1571 EOF
1572
1573 # Create a new gdbarch struct
1574 cat <<EOF
1575
1576 /* Create a new \`\`struct gdbarch'' based on information provided by
1577 \`\`struct gdbarch_info''. */
1578 EOF
1579 printf "\n"
1580 cat <<EOF
1581 struct gdbarch *
1582 gdbarch_alloc (const struct gdbarch_info *info,
1583 struct gdbarch_tdep *tdep)
1584 {
1585 struct gdbarch *gdbarch;
1586
1587 /* Create an obstack for allocating all the per-architecture memory,
1588 then use that to allocate the architecture vector. */
1589 struct obstack *obstack = XMALLOC (struct obstack);
1590 obstack_init (obstack);
1591 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1592 memset (gdbarch, 0, sizeof (*gdbarch));
1593 gdbarch->obstack = obstack;
1594
1595 alloc_gdbarch_data (gdbarch);
1596
1597 gdbarch->tdep = tdep;
1598 EOF
1599 printf "\n"
1600 function_list | while do_read
1601 do
1602 if class_is_info_p
1603 then
1604 printf " gdbarch->${function} = info->${function};\n"
1605 fi
1606 done
1607 printf "\n"
1608 printf " /* Force the explicit initialization of these. */\n"
1609 function_list | while do_read
1610 do
1611 if class_is_function_p || class_is_variable_p
1612 then
1613 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1614 then
1615 printf " gdbarch->${function} = ${predefault};\n"
1616 fi
1617 fi
1618 done
1619 cat <<EOF
1620 /* gdbarch_alloc() */
1621
1622 return gdbarch;
1623 }
1624 EOF
1625
1626 # Free a gdbarch struct.
1627 printf "\n"
1628 printf "\n"
1629 cat <<EOF
1630 /* Allocate extra space using the per-architecture obstack. */
1631
1632 void *
1633 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1634 {
1635 void *data = obstack_alloc (arch->obstack, size);
1636
1637 memset (data, 0, size);
1638 return data;
1639 }
1640
1641
1642 /* Free a gdbarch struct. This should never happen in normal
1643 operation --- once you've created a gdbarch, you keep it around.
1644 However, if an architecture's init function encounters an error
1645 building the structure, it may need to clean up a partially
1646 constructed gdbarch. */
1647
1648 void
1649 gdbarch_free (struct gdbarch *arch)
1650 {
1651 struct obstack *obstack;
1652
1653 gdb_assert (arch != NULL);
1654 gdb_assert (!arch->initialized_p);
1655 obstack = arch->obstack;
1656 obstack_free (obstack, 0); /* Includes the ARCH. */
1657 xfree (obstack);
1658 }
1659 EOF
1660
1661 # verify a new architecture
1662 cat <<EOF
1663
1664
1665 /* Ensure that all values in a GDBARCH are reasonable. */
1666
1667 static void
1668 verify_gdbarch (struct gdbarch *gdbarch)
1669 {
1670 struct ui_file *log;
1671 struct cleanup *cleanups;
1672 long length;
1673 char *buf;
1674
1675 log = mem_fileopen ();
1676 cleanups = make_cleanup_ui_file_delete (log);
1677 /* fundamental */
1678 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1679 fprintf_unfiltered (log, "\n\tbyte-order");
1680 if (gdbarch->bfd_arch_info == NULL)
1681 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1682 /* Check those that need to be defined for the given multi-arch level. */
1683 EOF
1684 function_list | while do_read
1685 do
1686 if class_is_function_p || class_is_variable_p
1687 then
1688 if [ "x${invalid_p}" = "x0" ]
1689 then
1690 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1691 elif class_is_predicate_p
1692 then
1693 printf " /* Skip verify of ${function}, has predicate. */\n"
1694 # FIXME: See do_read for potential simplification
1695 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1696 then
1697 printf " if (${invalid_p})\n"
1698 printf " gdbarch->${function} = ${postdefault};\n"
1699 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1700 then
1701 printf " if (gdbarch->${function} == ${predefault})\n"
1702 printf " gdbarch->${function} = ${postdefault};\n"
1703 elif [ -n "${postdefault}" ]
1704 then
1705 printf " if (gdbarch->${function} == 0)\n"
1706 printf " gdbarch->${function} = ${postdefault};\n"
1707 elif [ -n "${invalid_p}" ]
1708 then
1709 printf " if (${invalid_p})\n"
1710 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1711 elif [ -n "${predefault}" ]
1712 then
1713 printf " if (gdbarch->${function} == ${predefault})\n"
1714 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1715 fi
1716 fi
1717 done
1718 cat <<EOF
1719 buf = ui_file_xstrdup (log, &length);
1720 make_cleanup (xfree, buf);
1721 if (length > 0)
1722 internal_error (__FILE__, __LINE__,
1723 _("verify_gdbarch: the following are invalid ...%s"),
1724 buf);
1725 do_cleanups (cleanups);
1726 }
1727 EOF
1728
1729 # dump the structure
1730 printf "\n"
1731 printf "\n"
1732 cat <<EOF
1733 /* Print out the details of the current architecture. */
1734
1735 void
1736 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1737 {
1738 const char *gdb_nm_file = "<not-defined>";
1739
1740 #if defined (GDB_NM_FILE)
1741 gdb_nm_file = GDB_NM_FILE;
1742 #endif
1743 fprintf_unfiltered (file,
1744 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1745 gdb_nm_file);
1746 EOF
1747 function_list | sort -t: -k 3 | while do_read
1748 do
1749 # First the predicate
1750 if class_is_predicate_p
1751 then
1752 printf " fprintf_unfiltered (file,\n"
1753 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1754 printf " gdbarch_${function}_p (gdbarch));\n"
1755 fi
1756 # Print the corresponding value.
1757 if class_is_function_p
1758 then
1759 printf " fprintf_unfiltered (file,\n"
1760 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1761 printf " host_address_to_string (gdbarch->${function}));\n"
1762 else
1763 # It is a variable
1764 case "${print}:${returntype}" in
1765 :CORE_ADDR )
1766 fmt="%s"
1767 print="core_addr_to_string_nz (gdbarch->${function})"
1768 ;;
1769 :* )
1770 fmt="%s"
1771 print="plongest (gdbarch->${function})"
1772 ;;
1773 * )
1774 fmt="%s"
1775 ;;
1776 esac
1777 printf " fprintf_unfiltered (file,\n"
1778 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1779 printf " ${print});\n"
1780 fi
1781 done
1782 cat <<EOF
1783 if (gdbarch->dump_tdep != NULL)
1784 gdbarch->dump_tdep (gdbarch, file);
1785 }
1786 EOF
1787
1788
1789 # GET/SET
1790 printf "\n"
1791 cat <<EOF
1792 struct gdbarch_tdep *
1793 gdbarch_tdep (struct gdbarch *gdbarch)
1794 {
1795 if (gdbarch_debug >= 2)
1796 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1797 return gdbarch->tdep;
1798 }
1799 EOF
1800 printf "\n"
1801 function_list | while do_read
1802 do
1803 if class_is_predicate_p
1804 then
1805 printf "\n"
1806 printf "int\n"
1807 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1808 printf "{\n"
1809 printf " gdb_assert (gdbarch != NULL);\n"
1810 printf " return ${predicate};\n"
1811 printf "}\n"
1812 fi
1813 if class_is_function_p
1814 then
1815 printf "\n"
1816 printf "${returntype}\n"
1817 if [ "x${formal}" = "xvoid" ]
1818 then
1819 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1820 else
1821 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1822 fi
1823 printf "{\n"
1824 printf " gdb_assert (gdbarch != NULL);\n"
1825 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1826 if class_is_predicate_p && test -n "${predefault}"
1827 then
1828 # Allow a call to a function with a predicate.
1829 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1830 fi
1831 printf " if (gdbarch_debug >= 2)\n"
1832 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1833 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1834 then
1835 if class_is_multiarch_p
1836 then
1837 params="gdbarch"
1838 else
1839 params=""
1840 fi
1841 else
1842 if class_is_multiarch_p
1843 then
1844 params="gdbarch, ${actual}"
1845 else
1846 params="${actual}"
1847 fi
1848 fi
1849 if [ "x${returntype}" = "xvoid" ]
1850 then
1851 printf " gdbarch->${function} (${params});\n"
1852 else
1853 printf " return gdbarch->${function} (${params});\n"
1854 fi
1855 printf "}\n"
1856 printf "\n"
1857 printf "void\n"
1858 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1859 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1860 printf "{\n"
1861 printf " gdbarch->${function} = ${function};\n"
1862 printf "}\n"
1863 elif class_is_variable_p
1864 then
1865 printf "\n"
1866 printf "${returntype}\n"
1867 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1868 printf "{\n"
1869 printf " gdb_assert (gdbarch != NULL);\n"
1870 if [ "x${invalid_p}" = "x0" ]
1871 then
1872 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1873 elif [ -n "${invalid_p}" ]
1874 then
1875 printf " /* Check variable is valid. */\n"
1876 printf " gdb_assert (!(${invalid_p}));\n"
1877 elif [ -n "${predefault}" ]
1878 then
1879 printf " /* Check variable changed from pre-default. */\n"
1880 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1881 fi
1882 printf " if (gdbarch_debug >= 2)\n"
1883 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1884 printf " return gdbarch->${function};\n"
1885 printf "}\n"
1886 printf "\n"
1887 printf "void\n"
1888 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1889 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1890 printf "{\n"
1891 printf " gdbarch->${function} = ${function};\n"
1892 printf "}\n"
1893 elif class_is_info_p
1894 then
1895 printf "\n"
1896 printf "${returntype}\n"
1897 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1898 printf "{\n"
1899 printf " gdb_assert (gdbarch != NULL);\n"
1900 printf " if (gdbarch_debug >= 2)\n"
1901 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1902 printf " return gdbarch->${function};\n"
1903 printf "}\n"
1904 fi
1905 done
1906
1907 # All the trailing guff
1908 cat <<EOF
1909
1910
1911 /* Keep a registry of per-architecture data-pointers required by GDB
1912 modules. */
1913
1914 struct gdbarch_data
1915 {
1916 unsigned index;
1917 int init_p;
1918 gdbarch_data_pre_init_ftype *pre_init;
1919 gdbarch_data_post_init_ftype *post_init;
1920 };
1921
1922 struct gdbarch_data_registration
1923 {
1924 struct gdbarch_data *data;
1925 struct gdbarch_data_registration *next;
1926 };
1927
1928 struct gdbarch_data_registry
1929 {
1930 unsigned nr;
1931 struct gdbarch_data_registration *registrations;
1932 };
1933
1934 struct gdbarch_data_registry gdbarch_data_registry =
1935 {
1936 0, NULL,
1937 };
1938
1939 static struct gdbarch_data *
1940 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1941 gdbarch_data_post_init_ftype *post_init)
1942 {
1943 struct gdbarch_data_registration **curr;
1944
1945 /* Append the new registration. */
1946 for (curr = &gdbarch_data_registry.registrations;
1947 (*curr) != NULL;
1948 curr = &(*curr)->next);
1949 (*curr) = XMALLOC (struct gdbarch_data_registration);
1950 (*curr)->next = NULL;
1951 (*curr)->data = XMALLOC (struct gdbarch_data);
1952 (*curr)->data->index = gdbarch_data_registry.nr++;
1953 (*curr)->data->pre_init = pre_init;
1954 (*curr)->data->post_init = post_init;
1955 (*curr)->data->init_p = 1;
1956 return (*curr)->data;
1957 }
1958
1959 struct gdbarch_data *
1960 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1961 {
1962 return gdbarch_data_register (pre_init, NULL);
1963 }
1964
1965 struct gdbarch_data *
1966 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1967 {
1968 return gdbarch_data_register (NULL, post_init);
1969 }
1970
1971 /* Create/delete the gdbarch data vector. */
1972
1973 static void
1974 alloc_gdbarch_data (struct gdbarch *gdbarch)
1975 {
1976 gdb_assert (gdbarch->data == NULL);
1977 gdbarch->nr_data = gdbarch_data_registry.nr;
1978 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1979 }
1980
1981 /* Initialize the current value of the specified per-architecture
1982 data-pointer. */
1983
1984 void
1985 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1986 struct gdbarch_data *data,
1987 void *pointer)
1988 {
1989 gdb_assert (data->index < gdbarch->nr_data);
1990 gdb_assert (gdbarch->data[data->index] == NULL);
1991 gdb_assert (data->pre_init == NULL);
1992 gdbarch->data[data->index] = pointer;
1993 }
1994
1995 /* Return the current value of the specified per-architecture
1996 data-pointer. */
1997
1998 void *
1999 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2000 {
2001 gdb_assert (data->index < gdbarch->nr_data);
2002 if (gdbarch->data[data->index] == NULL)
2003 {
2004 /* The data-pointer isn't initialized, call init() to get a
2005 value. */
2006 if (data->pre_init != NULL)
2007 /* Mid architecture creation: pass just the obstack, and not
2008 the entire architecture, as that way it isn't possible for
2009 pre-init code to refer to undefined architecture
2010 fields. */
2011 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2012 else if (gdbarch->initialized_p
2013 && data->post_init != NULL)
2014 /* Post architecture creation: pass the entire architecture
2015 (as all fields are valid), but be careful to also detect
2016 recursive references. */
2017 {
2018 gdb_assert (data->init_p);
2019 data->init_p = 0;
2020 gdbarch->data[data->index] = data->post_init (gdbarch);
2021 data->init_p = 1;
2022 }
2023 else
2024 /* The architecture initialization hasn't completed - punt -
2025 hope that the caller knows what they are doing. Once
2026 deprecated_set_gdbarch_data has been initialized, this can be
2027 changed to an internal error. */
2028 return NULL;
2029 gdb_assert (gdbarch->data[data->index] != NULL);
2030 }
2031 return gdbarch->data[data->index];
2032 }
2033
2034
2035 /* Keep a registry of the architectures known by GDB. */
2036
2037 struct gdbarch_registration
2038 {
2039 enum bfd_architecture bfd_architecture;
2040 gdbarch_init_ftype *init;
2041 gdbarch_dump_tdep_ftype *dump_tdep;
2042 struct gdbarch_list *arches;
2043 struct gdbarch_registration *next;
2044 };
2045
2046 static struct gdbarch_registration *gdbarch_registry = NULL;
2047
2048 static void
2049 append_name (const char ***buf, int *nr, const char *name)
2050 {
2051 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2052 (*buf)[*nr] = name;
2053 *nr += 1;
2054 }
2055
2056 const char **
2057 gdbarch_printable_names (void)
2058 {
2059 /* Accumulate a list of names based on the registed list of
2060 architectures. */
2061 int nr_arches = 0;
2062 const char **arches = NULL;
2063 struct gdbarch_registration *rego;
2064
2065 for (rego = gdbarch_registry;
2066 rego != NULL;
2067 rego = rego->next)
2068 {
2069 const struct bfd_arch_info *ap;
2070 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2071 if (ap == NULL)
2072 internal_error (__FILE__, __LINE__,
2073 _("gdbarch_architecture_names: multi-arch unknown"));
2074 do
2075 {
2076 append_name (&arches, &nr_arches, ap->printable_name);
2077 ap = ap->next;
2078 }
2079 while (ap != NULL);
2080 }
2081 append_name (&arches, &nr_arches, NULL);
2082 return arches;
2083 }
2084
2085
2086 void
2087 gdbarch_register (enum bfd_architecture bfd_architecture,
2088 gdbarch_init_ftype *init,
2089 gdbarch_dump_tdep_ftype *dump_tdep)
2090 {
2091 struct gdbarch_registration **curr;
2092 const struct bfd_arch_info *bfd_arch_info;
2093
2094 /* Check that BFD recognizes this architecture */
2095 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2096 if (bfd_arch_info == NULL)
2097 {
2098 internal_error (__FILE__, __LINE__,
2099 _("gdbarch: Attempt to register "
2100 "unknown architecture (%d)"),
2101 bfd_architecture);
2102 }
2103 /* Check that we haven't seen this architecture before. */
2104 for (curr = &gdbarch_registry;
2105 (*curr) != NULL;
2106 curr = &(*curr)->next)
2107 {
2108 if (bfd_architecture == (*curr)->bfd_architecture)
2109 internal_error (__FILE__, __LINE__,
2110 _("gdbarch: Duplicate registration "
2111 "of architecture (%s)"),
2112 bfd_arch_info->printable_name);
2113 }
2114 /* log it */
2115 if (gdbarch_debug)
2116 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2117 bfd_arch_info->printable_name,
2118 host_address_to_string (init));
2119 /* Append it */
2120 (*curr) = XMALLOC (struct gdbarch_registration);
2121 (*curr)->bfd_architecture = bfd_architecture;
2122 (*curr)->init = init;
2123 (*curr)->dump_tdep = dump_tdep;
2124 (*curr)->arches = NULL;
2125 (*curr)->next = NULL;
2126 }
2127
2128 void
2129 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2130 gdbarch_init_ftype *init)
2131 {
2132 gdbarch_register (bfd_architecture, init, NULL);
2133 }
2134
2135
2136 /* Look for an architecture using gdbarch_info. */
2137
2138 struct gdbarch_list *
2139 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2140 const struct gdbarch_info *info)
2141 {
2142 for (; arches != NULL; arches = arches->next)
2143 {
2144 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2145 continue;
2146 if (info->byte_order != arches->gdbarch->byte_order)
2147 continue;
2148 if (info->osabi != arches->gdbarch->osabi)
2149 continue;
2150 if (info->target_desc != arches->gdbarch->target_desc)
2151 continue;
2152 return arches;
2153 }
2154 return NULL;
2155 }
2156
2157
2158 /* Find an architecture that matches the specified INFO. Create a new
2159 architecture if needed. Return that new architecture. */
2160
2161 struct gdbarch *
2162 gdbarch_find_by_info (struct gdbarch_info info)
2163 {
2164 struct gdbarch *new_gdbarch;
2165 struct gdbarch_registration *rego;
2166
2167 /* Fill in missing parts of the INFO struct using a number of
2168 sources: "set ..."; INFOabfd supplied; and the global
2169 defaults. */
2170 gdbarch_info_fill (&info);
2171
2172 /* Must have found some sort of architecture. */
2173 gdb_assert (info.bfd_arch_info != NULL);
2174
2175 if (gdbarch_debug)
2176 {
2177 fprintf_unfiltered (gdb_stdlog,
2178 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2179 (info.bfd_arch_info != NULL
2180 ? info.bfd_arch_info->printable_name
2181 : "(null)"));
2182 fprintf_unfiltered (gdb_stdlog,
2183 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2184 info.byte_order,
2185 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2186 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2187 : "default"));
2188 fprintf_unfiltered (gdb_stdlog,
2189 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2190 info.osabi, gdbarch_osabi_name (info.osabi));
2191 fprintf_unfiltered (gdb_stdlog,
2192 "gdbarch_find_by_info: info.abfd %s\n",
2193 host_address_to_string (info.abfd));
2194 fprintf_unfiltered (gdb_stdlog,
2195 "gdbarch_find_by_info: info.tdep_info %s\n",
2196 host_address_to_string (info.tdep_info));
2197 }
2198
2199 /* Find the tdep code that knows about this architecture. */
2200 for (rego = gdbarch_registry;
2201 rego != NULL;
2202 rego = rego->next)
2203 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2204 break;
2205 if (rego == NULL)
2206 {
2207 if (gdbarch_debug)
2208 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2209 "No matching architecture\n");
2210 return 0;
2211 }
2212
2213 /* Ask the tdep code for an architecture that matches "info". */
2214 new_gdbarch = rego->init (info, rego->arches);
2215
2216 /* Did the tdep code like it? No. Reject the change and revert to
2217 the old architecture. */
2218 if (new_gdbarch == NULL)
2219 {
2220 if (gdbarch_debug)
2221 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2222 "Target rejected architecture\n");
2223 return NULL;
2224 }
2225
2226 /* Is this a pre-existing architecture (as determined by already
2227 being initialized)? Move it to the front of the architecture
2228 list (keeping the list sorted Most Recently Used). */
2229 if (new_gdbarch->initialized_p)
2230 {
2231 struct gdbarch_list **list;
2232 struct gdbarch_list *this;
2233 if (gdbarch_debug)
2234 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2235 "Previous architecture %s (%s) selected\n",
2236 host_address_to_string (new_gdbarch),
2237 new_gdbarch->bfd_arch_info->printable_name);
2238 /* Find the existing arch in the list. */
2239 for (list = &rego->arches;
2240 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2241 list = &(*list)->next);
2242 /* It had better be in the list of architectures. */
2243 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2244 /* Unlink THIS. */
2245 this = (*list);
2246 (*list) = this->next;
2247 /* Insert THIS at the front. */
2248 this->next = rego->arches;
2249 rego->arches = this;
2250 /* Return it. */
2251 return new_gdbarch;
2252 }
2253
2254 /* It's a new architecture. */
2255 if (gdbarch_debug)
2256 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2257 "New architecture %s (%s) selected\n",
2258 host_address_to_string (new_gdbarch),
2259 new_gdbarch->bfd_arch_info->printable_name);
2260
2261 /* Insert the new architecture into the front of the architecture
2262 list (keep the list sorted Most Recently Used). */
2263 {
2264 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2265 this->next = rego->arches;
2266 this->gdbarch = new_gdbarch;
2267 rego->arches = this;
2268 }
2269
2270 /* Check that the newly installed architecture is valid. Plug in
2271 any post init values. */
2272 new_gdbarch->dump_tdep = rego->dump_tdep;
2273 verify_gdbarch (new_gdbarch);
2274 new_gdbarch->initialized_p = 1;
2275
2276 if (gdbarch_debug)
2277 gdbarch_dump (new_gdbarch, gdb_stdlog);
2278
2279 return new_gdbarch;
2280 }
2281
2282 /* Make the specified architecture current. */
2283
2284 void
2285 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2286 {
2287 gdb_assert (new_gdbarch != NULL);
2288 gdb_assert (new_gdbarch->initialized_p);
2289 current_inferior ()->gdbarch = new_gdbarch;
2290 observer_notify_architecture_changed (new_gdbarch);
2291 registers_changed ();
2292 }
2293
2294 /* Helper for 'target_gdbarch'. */
2295
2296 struct gdbarch *
2297 get_target_gdbarch (void)
2298 {
2299 return current_inferior ()->gdbarch;
2300 }
2301
2302 extern void _initialize_gdbarch (void);
2303
2304 void
2305 _initialize_gdbarch (void)
2306 {
2307 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2308 Set architecture debugging."), _("\\
2309 Show architecture debugging."), _("\\
2310 When non-zero, architecture debugging is enabled."),
2311 NULL,
2312 show_gdbarch_debug,
2313 &setdebuglist, &showdebuglist);
2314 }
2315 EOF
2316
2317 # close things off
2318 exec 1>&2
2319 #../move-if-change new-gdbarch.c gdbarch.c
2320 compare_new gdbarch.c
This page took 0.116698 seconds and 4 git commands to generate.