* dwarf2-frame.c (execute_cfa_program): Move DWA_CFA_nop before
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 #
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 #
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 #
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 #
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 #
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
604
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
606
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
609 # into RETURN_VALUE. For the moment do not try to fold in
610 # EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
611 # info, and the level of effort, it may well be possible to find the
612 # address of a structure being return on the stack. Someone else can
613 # make that change.
614
615 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
616 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
617 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
618 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
619 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
620 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
621
622 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
623 #
624 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
625 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
626 #
627 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
628 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
629 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
630 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
631 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
632 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
633 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
634 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
635 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
636 #
637 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
638 #
639 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
640 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
641 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
642 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
643 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
644 # note, per UNWIND_PC's doco, that while the two have similar
645 # interfaces they have very different underlying implementations.
646 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
647 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
648 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
649 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
650 # frame-base. Enable frame-base before frame-unwind.
651 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
652 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
653 # frame-base. Enable frame-base before frame-unwind.
654 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
655 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
656 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
657 #
658 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
659 # to frame_align and the requirement that methods such as
660 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
661 # alignment.
662 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
663 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
664 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
665 # stabs_argument_has_addr.
666 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
667 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
668 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
669 v:2:PARM_BOUNDARY:int:parm_boundary
670 #
671 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
672 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
673 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
674 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
675 # On some machines there are bits in addresses which are not really
676 # part of the address, but are used by the kernel, the hardware, etc.
677 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
678 # we get a "real" address such as one would find in a symbol table.
679 # This is used only for addresses of instructions, and even then I'm
680 # not sure it's used in all contexts. It exists to deal with there
681 # being a few stray bits in the PC which would mislead us, not as some
682 # sort of generic thing to handle alignment or segmentation (it's
683 # possible it should be in TARGET_READ_PC instead).
684 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
685 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
686 # ADDR_BITS_REMOVE.
687 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
688 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
689 # the target needs software single step. An ISA method to implement it.
690 #
691 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
692 # using the breakpoint system instead of blatting memory directly (as with rs6000).
693 #
694 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
695 # single step. If not, then implement single step using breakpoints.
696 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
697 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
698 # disassembler. Perhaphs objdump can handle it?
699 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
700 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
701
702
703 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
704 # evaluates non-zero, this is the address where the debugger will place
705 # a step-resume breakpoint to get us past the dynamic linker.
706 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
707 # For SVR4 shared libraries, each call goes through a small piece of
708 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
709 # to nonzero if we are currently stopped in one of these.
710 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
711
712 # Some systems also have trampoline code for returning from shared libs.
713 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
714
715 # Sigtramp is a routine that the kernel calls (which then calls the
716 # signal handler). On most machines it is a library routine that is
717 # linked into the executable.
718 #
719 # This macro, given a program counter value and the name of the
720 # function in which that PC resides (which can be null if the name is
721 # not known), returns nonzero if the PC and name show that we are in
722 # sigtramp.
723 #
724 # On most machines just see if the name is sigtramp (and if we have
725 # no name, assume we are not in sigtramp).
726 #
727 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
728 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
729 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
730 # own local NAME lookup.
731 #
732 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
733 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
734 # does not.
735 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
736 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
737 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
738 # A target might have problems with watchpoints as soon as the stack
739 # frame of the current function has been destroyed. This mostly happens
740 # as the first action in a funtion's epilogue. in_function_epilogue_p()
741 # is defined to return a non-zero value if either the given addr is one
742 # instruction after the stack destroying instruction up to the trailing
743 # return instruction or if we can figure out that the stack frame has
744 # already been invalidated regardless of the value of addr. Targets
745 # which don't suffer from that problem could just let this functionality
746 # untouched.
747 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
748 # Given a vector of command-line arguments, return a newly allocated
749 # string which, when passed to the create_inferior function, will be
750 # parsed (on Unix systems, by the shell) to yield the same vector.
751 # This function should call error() if the argument vector is not
752 # representable for this target or if this target does not support
753 # command-line arguments.
754 # ARGC is the number of elements in the vector.
755 # ARGV is an array of strings, one per argument.
756 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
757 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
758 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
759 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
760 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
761 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
762 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
763 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
764 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
765 # Is a register in a group
766 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
767 # Fetch the pointer to the ith function argument.
768 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
769
770 # Return the appropriate register set for a core file section with
771 # name SECT_NAME and size SECT_SIZE.
772 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
773 EOF
774 }
775
776 #
777 # The .log file
778 #
779 exec > new-gdbarch.log
780 function_list | while do_read
781 do
782 cat <<EOF
783 ${class} ${macro}(${actual})
784 ${returntype} ${function} ($formal)${attrib}
785 EOF
786 for r in ${read}
787 do
788 eval echo \"\ \ \ \ ${r}=\${${r}}\"
789 done
790 if class_is_predicate_p && fallback_default_p
791 then
792 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
793 kill $$
794 exit 1
795 fi
796 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
797 then
798 echo "Error: postdefault is useless when invalid_p=0" 1>&2
799 kill $$
800 exit 1
801 fi
802 if class_is_multiarch_p
803 then
804 if class_is_predicate_p ; then :
805 elif test "x${predefault}" = "x"
806 then
807 echo "Error: pure multi-arch function must have a predefault" 1>&2
808 kill $$
809 exit 1
810 fi
811 fi
812 echo ""
813 done
814
815 exec 1>&2
816 compare_new gdbarch.log
817
818
819 copyright ()
820 {
821 cat <<EOF
822 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
823
824 /* Dynamic architecture support for GDB, the GNU debugger.
825
826 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
827 Software Foundation, Inc.
828
829 This file is part of GDB.
830
831 This program is free software; you can redistribute it and/or modify
832 it under the terms of the GNU General Public License as published by
833 the Free Software Foundation; either version 2 of the License, or
834 (at your option) any later version.
835
836 This program is distributed in the hope that it will be useful,
837 but WITHOUT ANY WARRANTY; without even the implied warranty of
838 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
839 GNU General Public License for more details.
840
841 You should have received a copy of the GNU General Public License
842 along with this program; if not, write to the Free Software
843 Foundation, Inc., 59 Temple Place - Suite 330,
844 Boston, MA 02111-1307, USA. */
845
846 /* This file was created with the aid of \`\`gdbarch.sh''.
847
848 The Bourne shell script \`\`gdbarch.sh'' creates the files
849 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
850 against the existing \`\`gdbarch.[hc]''. Any differences found
851 being reported.
852
853 If editing this file, please also run gdbarch.sh and merge any
854 changes into that script. Conversely, when making sweeping changes
855 to this file, modifying gdbarch.sh and using its output may prove
856 easier. */
857
858 EOF
859 }
860
861 #
862 # The .h file
863 #
864
865 exec > new-gdbarch.h
866 copyright
867 cat <<EOF
868 #ifndef GDBARCH_H
869 #define GDBARCH_H
870
871 struct floatformat;
872 struct ui_file;
873 struct frame_info;
874 struct value;
875 struct objfile;
876 struct minimal_symbol;
877 struct regcache;
878 struct reggroup;
879 struct regset;
880 struct disassemble_info;
881 struct target_ops;
882
883 extern struct gdbarch *current_gdbarch;
884
885
886 /* If any of the following are defined, the target wasn't correctly
887 converted. */
888
889 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
890 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
891 #endif
892 EOF
893
894 # function typedef's
895 printf "\n"
896 printf "\n"
897 printf "/* The following are pre-initialized by GDBARCH. */\n"
898 function_list | while do_read
899 do
900 if class_is_info_p
901 then
902 printf "\n"
903 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
904 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
905 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
906 printf "#error \"Non multi-arch definition of ${macro}\"\n"
907 printf "#endif\n"
908 printf "#if !defined (${macro})\n"
909 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
910 printf "#endif\n"
911 fi
912 done
913
914 # function typedef's
915 printf "\n"
916 printf "\n"
917 printf "/* The following are initialized by the target dependent code. */\n"
918 function_list | while do_read
919 do
920 if [ -n "${comment}" ]
921 then
922 echo "${comment}" | sed \
923 -e '2 s,#,/*,' \
924 -e '3,$ s,#, ,' \
925 -e '$ s,$, */,'
926 fi
927 if class_is_multiarch_p
928 then
929 if class_is_predicate_p
930 then
931 printf "\n"
932 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
933 fi
934 else
935 if class_is_predicate_p
936 then
937 printf "\n"
938 printf "#if defined (${macro})\n"
939 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
940 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
941 printf "#if !defined (${macro}_P)\n"
942 printf "#define ${macro}_P() (1)\n"
943 printf "#endif\n"
944 printf "#endif\n"
945 printf "\n"
946 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
947 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
948 printf "#error \"Non multi-arch definition of ${macro}\"\n"
949 printf "#endif\n"
950 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
951 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
952 printf "#endif\n"
953 fi
954 fi
955 if class_is_variable_p
956 then
957 printf "\n"
958 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
959 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
960 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
961 printf "#error \"Non multi-arch definition of ${macro}\"\n"
962 printf "#endif\n"
963 printf "#if !defined (${macro})\n"
964 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
965 printf "#endif\n"
966 fi
967 if class_is_function_p
968 then
969 printf "\n"
970 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
971 then
972 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
973 elif class_is_multiarch_p
974 then
975 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
976 else
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
978 fi
979 if [ "x${formal}" = "xvoid" ]
980 then
981 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
982 else
983 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
984 fi
985 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
986 if class_is_multiarch_p ; then :
987 else
988 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
989 printf "#error \"Non multi-arch definition of ${macro}\"\n"
990 printf "#endif\n"
991 if [ "x${actual}" = "x" ]
992 then
993 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
994 elif [ "x${actual}" = "x-" ]
995 then
996 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
997 else
998 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
999 fi
1000 printf "#if !defined (${macro})\n"
1001 if [ "x${actual}" = "x" ]
1002 then
1003 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1004 elif [ "x${actual}" = "x-" ]
1005 then
1006 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1007 else
1008 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1009 fi
1010 printf "#endif\n"
1011 fi
1012 fi
1013 done
1014
1015 # close it off
1016 cat <<EOF
1017
1018 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1019
1020
1021 /* Mechanism for co-ordinating the selection of a specific
1022 architecture.
1023
1024 GDB targets (*-tdep.c) can register an interest in a specific
1025 architecture. Other GDB components can register a need to maintain
1026 per-architecture data.
1027
1028 The mechanisms below ensures that there is only a loose connection
1029 between the set-architecture command and the various GDB
1030 components. Each component can independently register their need
1031 to maintain architecture specific data with gdbarch.
1032
1033 Pragmatics:
1034
1035 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1036 didn't scale.
1037
1038 The more traditional mega-struct containing architecture specific
1039 data for all the various GDB components was also considered. Since
1040 GDB is built from a variable number of (fairly independent)
1041 components it was determined that the global aproach was not
1042 applicable. */
1043
1044
1045 /* Register a new architectural family with GDB.
1046
1047 Register support for the specified ARCHITECTURE with GDB. When
1048 gdbarch determines that the specified architecture has been
1049 selected, the corresponding INIT function is called.
1050
1051 --
1052
1053 The INIT function takes two parameters: INFO which contains the
1054 information available to gdbarch about the (possibly new)
1055 architecture; ARCHES which is a list of the previously created
1056 \`\`struct gdbarch'' for this architecture.
1057
1058 The INFO parameter is, as far as possible, be pre-initialized with
1059 information obtained from INFO.ABFD or the previously selected
1060 architecture.
1061
1062 The ARCHES parameter is a linked list (sorted most recently used)
1063 of all the previously created architures for this architecture
1064 family. The (possibly NULL) ARCHES->gdbarch can used to access
1065 values from the previously selected architecture for this
1066 architecture family. The global \`\`current_gdbarch'' shall not be
1067 used.
1068
1069 The INIT function shall return any of: NULL - indicating that it
1070 doesn't recognize the selected architecture; an existing \`\`struct
1071 gdbarch'' from the ARCHES list - indicating that the new
1072 architecture is just a synonym for an earlier architecture (see
1073 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1074 - that describes the selected architecture (see gdbarch_alloc()).
1075
1076 The DUMP_TDEP function shall print out all target specific values.
1077 Care should be taken to ensure that the function works in both the
1078 multi-arch and non- multi-arch cases. */
1079
1080 struct gdbarch_list
1081 {
1082 struct gdbarch *gdbarch;
1083 struct gdbarch_list *next;
1084 };
1085
1086 struct gdbarch_info
1087 {
1088 /* Use default: NULL (ZERO). */
1089 const struct bfd_arch_info *bfd_arch_info;
1090
1091 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1092 int byte_order;
1093
1094 /* Use default: NULL (ZERO). */
1095 bfd *abfd;
1096
1097 /* Use default: NULL (ZERO). */
1098 struct gdbarch_tdep_info *tdep_info;
1099
1100 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1101 enum gdb_osabi osabi;
1102 };
1103
1104 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1105 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1106
1107 /* DEPRECATED - use gdbarch_register() */
1108 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1109
1110 extern void gdbarch_register (enum bfd_architecture architecture,
1111 gdbarch_init_ftype *,
1112 gdbarch_dump_tdep_ftype *);
1113
1114
1115 /* Return a freshly allocated, NULL terminated, array of the valid
1116 architecture names. Since architectures are registered during the
1117 _initialize phase this function only returns useful information
1118 once initialization has been completed. */
1119
1120 extern const char **gdbarch_printable_names (void);
1121
1122
1123 /* Helper function. Search the list of ARCHES for a GDBARCH that
1124 matches the information provided by INFO. */
1125
1126 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1127
1128
1129 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1130 basic initialization using values obtained from the INFO andTDEP
1131 parameters. set_gdbarch_*() functions are called to complete the
1132 initialization of the object. */
1133
1134 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1135
1136
1137 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1138 It is assumed that the caller freeds the \`\`struct
1139 gdbarch_tdep''. */
1140
1141 extern void gdbarch_free (struct gdbarch *);
1142
1143
1144 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1145 obstack. The memory is freed when the corresponding architecture
1146 is also freed. */
1147
1148 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1149 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1150 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1151
1152
1153 /* Helper function. Force an update of the current architecture.
1154
1155 The actual architecture selected is determined by INFO, \`\`(gdb) set
1156 architecture'' et.al., the existing architecture and BFD's default
1157 architecture. INFO should be initialized to zero and then selected
1158 fields should be updated.
1159
1160 Returns non-zero if the update succeeds */
1161
1162 extern int gdbarch_update_p (struct gdbarch_info info);
1163
1164
1165 /* Helper function. Find an architecture matching info.
1166
1167 INFO should be initialized using gdbarch_info_init, relevant fields
1168 set, and then finished using gdbarch_info_fill.
1169
1170 Returns the corresponding architecture, or NULL if no matching
1171 architecture was found. "current_gdbarch" is not updated. */
1172
1173 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1174
1175
1176 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1177
1178 FIXME: kettenis/20031124: Of the functions that follow, only
1179 gdbarch_from_bfd is supposed to survive. The others will
1180 dissappear since in the future GDB will (hopefully) be truly
1181 multi-arch. However, for now we're still stuck with the concept of
1182 a single active architecture. */
1183
1184 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1185
1186
1187 /* Register per-architecture data-pointer.
1188
1189 Reserve space for a per-architecture data-pointer. An identifier
1190 for the reserved data-pointer is returned. That identifer should
1191 be saved in a local static variable.
1192
1193 The per-architecture data-pointer is either initialized explicitly
1194 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1195 gdbarch_data()).
1196
1197 Memory for the per-architecture data shall be allocated using
1198 gdbarch_obstack_zalloc. That memory will be deleted when the
1199 corresponding architecture object is deleted.
1200
1201 When a previously created architecture is re-selected, the
1202 per-architecture data-pointer for that previous architecture is
1203 restored. INIT() is not re-called.
1204
1205 Multiple registrarants for any architecture are allowed (and
1206 strongly encouraged). */
1207
1208 struct gdbarch_data;
1209
1210 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1211 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1212 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1213 struct gdbarch_data *data,
1214 void *pointer);
1215
1216 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1217
1218
1219
1220 /* Register per-architecture memory region.
1221
1222 Provide a memory-region swap mechanism. Per-architecture memory
1223 region are created. These memory regions are swapped whenever the
1224 architecture is changed. For a new architecture, the memory region
1225 is initialized with zero (0) and the INIT function is called.
1226
1227 Memory regions are swapped / initialized in the order that they are
1228 registered. NULL DATA and/or INIT values can be specified.
1229
1230 New code should use register_gdbarch_data(). */
1231
1232 typedef void (gdbarch_swap_ftype) (void);
1233 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1234 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1235
1236
1237
1238 /* Set the dynamic target-system-dependent parameters (architecture,
1239 byte-order, ...) using information found in the BFD */
1240
1241 extern void set_gdbarch_from_file (bfd *);
1242
1243
1244 /* Initialize the current architecture to the "first" one we find on
1245 our list. */
1246
1247 extern void initialize_current_architecture (void);
1248
1249 /* gdbarch trace variable */
1250 extern int gdbarch_debug;
1251
1252 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1253
1254 #endif
1255 EOF
1256 exec 1>&2
1257 #../move-if-change new-gdbarch.h gdbarch.h
1258 compare_new gdbarch.h
1259
1260
1261 #
1262 # C file
1263 #
1264
1265 exec > new-gdbarch.c
1266 copyright
1267 cat <<EOF
1268
1269 #include "defs.h"
1270 #include "arch-utils.h"
1271
1272 #include "gdbcmd.h"
1273 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1274 #include "symcat.h"
1275
1276 #include "floatformat.h"
1277
1278 #include "gdb_assert.h"
1279 #include "gdb_string.h"
1280 #include "gdb-events.h"
1281 #include "reggroups.h"
1282 #include "osabi.h"
1283 #include "symfile.h" /* For entry_point_address. */
1284 #include "gdb_obstack.h"
1285
1286 /* Static function declarations */
1287
1288 static void alloc_gdbarch_data (struct gdbarch *);
1289
1290 /* Non-zero if we want to trace architecture code. */
1291
1292 #ifndef GDBARCH_DEBUG
1293 #define GDBARCH_DEBUG 0
1294 #endif
1295 int gdbarch_debug = GDBARCH_DEBUG;
1296
1297 EOF
1298
1299 # gdbarch open the gdbarch object
1300 printf "\n"
1301 printf "/* Maintain the struct gdbarch object */\n"
1302 printf "\n"
1303 printf "struct gdbarch\n"
1304 printf "{\n"
1305 printf " /* Has this architecture been fully initialized? */\n"
1306 printf " int initialized_p;\n"
1307 printf "\n"
1308 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1309 printf " struct obstack *obstack;\n"
1310 printf "\n"
1311 printf " /* basic architectural information */\n"
1312 function_list | while do_read
1313 do
1314 if class_is_info_p
1315 then
1316 printf " ${returntype} ${function};\n"
1317 fi
1318 done
1319 printf "\n"
1320 printf " /* target specific vector. */\n"
1321 printf " struct gdbarch_tdep *tdep;\n"
1322 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1323 printf "\n"
1324 printf " /* per-architecture data-pointers */\n"
1325 printf " unsigned nr_data;\n"
1326 printf " void **data;\n"
1327 printf "\n"
1328 printf " /* per-architecture swap-regions */\n"
1329 printf " struct gdbarch_swap *swap;\n"
1330 printf "\n"
1331 cat <<EOF
1332 /* Multi-arch values.
1333
1334 When extending this structure you must:
1335
1336 Add the field below.
1337
1338 Declare set/get functions and define the corresponding
1339 macro in gdbarch.h.
1340
1341 gdbarch_alloc(): If zero/NULL is not a suitable default,
1342 initialize the new field.
1343
1344 verify_gdbarch(): Confirm that the target updated the field
1345 correctly.
1346
1347 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1348 field is dumped out
1349
1350 \`\`startup_gdbarch()'': Append an initial value to the static
1351 variable (base values on the host's c-type system).
1352
1353 get_gdbarch(): Implement the set/get functions (probably using
1354 the macro's as shortcuts).
1355
1356 */
1357
1358 EOF
1359 function_list | while do_read
1360 do
1361 if class_is_variable_p
1362 then
1363 printf " ${returntype} ${function};\n"
1364 elif class_is_function_p
1365 then
1366 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1367 fi
1368 done
1369 printf "};\n"
1370
1371 # A pre-initialized vector
1372 printf "\n"
1373 printf "\n"
1374 cat <<EOF
1375 /* The default architecture uses host values (for want of a better
1376 choice). */
1377 EOF
1378 printf "\n"
1379 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1380 printf "\n"
1381 printf "struct gdbarch startup_gdbarch =\n"
1382 printf "{\n"
1383 printf " 1, /* Always initialized. */\n"
1384 printf " NULL, /* The obstack. */\n"
1385 printf " /* basic architecture information */\n"
1386 function_list | while do_read
1387 do
1388 if class_is_info_p
1389 then
1390 printf " ${staticdefault}, /* ${function} */\n"
1391 fi
1392 done
1393 cat <<EOF
1394 /* target specific vector and its dump routine */
1395 NULL, NULL,
1396 /*per-architecture data-pointers and swap regions */
1397 0, NULL, NULL,
1398 /* Multi-arch values */
1399 EOF
1400 function_list | while do_read
1401 do
1402 if class_is_function_p || class_is_variable_p
1403 then
1404 printf " ${staticdefault}, /* ${function} */\n"
1405 fi
1406 done
1407 cat <<EOF
1408 /* startup_gdbarch() */
1409 };
1410
1411 struct gdbarch *current_gdbarch = &startup_gdbarch;
1412 EOF
1413
1414 # Create a new gdbarch struct
1415 cat <<EOF
1416
1417 /* Create a new \`\`struct gdbarch'' based on information provided by
1418 \`\`struct gdbarch_info''. */
1419 EOF
1420 printf "\n"
1421 cat <<EOF
1422 struct gdbarch *
1423 gdbarch_alloc (const struct gdbarch_info *info,
1424 struct gdbarch_tdep *tdep)
1425 {
1426 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1427 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1428 the current local architecture and not the previous global
1429 architecture. This ensures that the new architectures initial
1430 values are not influenced by the previous architecture. Once
1431 everything is parameterised with gdbarch, this will go away. */
1432 struct gdbarch *current_gdbarch;
1433
1434 /* Create an obstack for allocating all the per-architecture memory,
1435 then use that to allocate the architecture vector. */
1436 struct obstack *obstack = XMALLOC (struct obstack);
1437 obstack_init (obstack);
1438 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1439 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1440 current_gdbarch->obstack = obstack;
1441
1442 alloc_gdbarch_data (current_gdbarch);
1443
1444 current_gdbarch->tdep = tdep;
1445 EOF
1446 printf "\n"
1447 function_list | while do_read
1448 do
1449 if class_is_info_p
1450 then
1451 printf " current_gdbarch->${function} = info->${function};\n"
1452 fi
1453 done
1454 printf "\n"
1455 printf " /* Force the explicit initialization of these. */\n"
1456 function_list | while do_read
1457 do
1458 if class_is_function_p || class_is_variable_p
1459 then
1460 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1461 then
1462 printf " current_gdbarch->${function} = ${predefault};\n"
1463 fi
1464 fi
1465 done
1466 cat <<EOF
1467 /* gdbarch_alloc() */
1468
1469 return current_gdbarch;
1470 }
1471 EOF
1472
1473 # Free a gdbarch struct.
1474 printf "\n"
1475 printf "\n"
1476 cat <<EOF
1477 /* Allocate extra space using the per-architecture obstack. */
1478
1479 void *
1480 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1481 {
1482 void *data = obstack_alloc (arch->obstack, size);
1483 memset (data, 0, size);
1484 return data;
1485 }
1486
1487
1488 /* Free a gdbarch struct. This should never happen in normal
1489 operation --- once you've created a gdbarch, you keep it around.
1490 However, if an architecture's init function encounters an error
1491 building the structure, it may need to clean up a partially
1492 constructed gdbarch. */
1493
1494 void
1495 gdbarch_free (struct gdbarch *arch)
1496 {
1497 struct obstack *obstack;
1498 gdb_assert (arch != NULL);
1499 gdb_assert (!arch->initialized_p);
1500 obstack = arch->obstack;
1501 obstack_free (obstack, 0); /* Includes the ARCH. */
1502 xfree (obstack);
1503 }
1504 EOF
1505
1506 # verify a new architecture
1507 cat <<EOF
1508
1509
1510 /* Ensure that all values in a GDBARCH are reasonable. */
1511
1512 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1513 just happens to match the global variable \`\`current_gdbarch''. That
1514 way macros refering to that variable get the local and not the global
1515 version - ulgh. Once everything is parameterised with gdbarch, this
1516 will go away. */
1517
1518 static void
1519 verify_gdbarch (struct gdbarch *current_gdbarch)
1520 {
1521 struct ui_file *log;
1522 struct cleanup *cleanups;
1523 long dummy;
1524 char *buf;
1525 log = mem_fileopen ();
1526 cleanups = make_cleanup_ui_file_delete (log);
1527 /* fundamental */
1528 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1529 fprintf_unfiltered (log, "\n\tbyte-order");
1530 if (current_gdbarch->bfd_arch_info == NULL)
1531 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1532 /* Check those that need to be defined for the given multi-arch level. */
1533 EOF
1534 function_list | while do_read
1535 do
1536 if class_is_function_p || class_is_variable_p
1537 then
1538 if [ "x${invalid_p}" = "x0" ]
1539 then
1540 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1541 elif class_is_predicate_p
1542 then
1543 printf " /* Skip verify of ${function}, has predicate */\n"
1544 # FIXME: See do_read for potential simplification
1545 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1546 then
1547 printf " if (${invalid_p})\n"
1548 printf " current_gdbarch->${function} = ${postdefault};\n"
1549 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1550 then
1551 printf " if (current_gdbarch->${function} == ${predefault})\n"
1552 printf " current_gdbarch->${function} = ${postdefault};\n"
1553 elif [ -n "${postdefault}" ]
1554 then
1555 printf " if (current_gdbarch->${function} == 0)\n"
1556 printf " current_gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${invalid_p}" ]
1558 then
1559 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1560 printf " && (${invalid_p}))\n"
1561 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1562 elif [ -n "${predefault}" ]
1563 then
1564 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1565 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1566 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1567 fi
1568 fi
1569 done
1570 cat <<EOF
1571 buf = ui_file_xstrdup (log, &dummy);
1572 make_cleanup (xfree, buf);
1573 if (strlen (buf) > 0)
1574 internal_error (__FILE__, __LINE__,
1575 "verify_gdbarch: the following are invalid ...%s",
1576 buf);
1577 do_cleanups (cleanups);
1578 }
1579 EOF
1580
1581 # dump the structure
1582 printf "\n"
1583 printf "\n"
1584 cat <<EOF
1585 /* Print out the details of the current architecture. */
1586
1587 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1588 just happens to match the global variable \`\`current_gdbarch''. That
1589 way macros refering to that variable get the local and not the global
1590 version - ulgh. Once everything is parameterised with gdbarch, this
1591 will go away. */
1592
1593 void
1594 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1595 {
1596 fprintf_unfiltered (file,
1597 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1598 GDB_MULTI_ARCH);
1599 EOF
1600 function_list | sort -t: -k 3 | while do_read
1601 do
1602 # First the predicate
1603 if class_is_predicate_p
1604 then
1605 if class_is_multiarch_p
1606 then
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1609 printf " gdbarch_${function}_p (current_gdbarch));\n"
1610 else
1611 printf "#ifdef ${macro}_P\n"
1612 printf " fprintf_unfiltered (file,\n"
1613 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1614 printf " \"${macro}_P()\",\n"
1615 printf " XSTRING (${macro}_P ()));\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1618 printf " ${macro}_P ());\n"
1619 printf "#endif\n"
1620 fi
1621 fi
1622 # multiarch functions don't have macros.
1623 if class_is_multiarch_p
1624 then
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1627 printf " (long) current_gdbarch->${function});\n"
1628 continue
1629 fi
1630 # Print the macro definition.
1631 printf "#ifdef ${macro}\n"
1632 if class_is_function_p
1633 then
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1636 printf " \"${macro}(${actual})\",\n"
1637 printf " XSTRING (${macro} (${actual})));\n"
1638 else
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1641 printf " XSTRING (${macro}));\n"
1642 fi
1643 if [ "x${print_p}" = "x()" ]
1644 then
1645 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1646 elif [ "x${print_p}" = "x0" ]
1647 then
1648 printf " /* skip print of ${macro}, print_p == 0. */\n"
1649 elif [ -n "${print_p}" ]
1650 then
1651 printf " if (${print_p})\n"
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1654 printf " ${print});\n"
1655 elif class_is_function_p
1656 then
1657 printf " fprintf_unfiltered (file,\n"
1658 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1659 printf " (long) current_gdbarch->${function}\n"
1660 printf " /*${macro} ()*/);\n"
1661 else
1662 printf " fprintf_unfiltered (file,\n"
1663 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1664 printf " ${print});\n"
1665 fi
1666 printf "#endif\n"
1667 done
1668 cat <<EOF
1669 if (current_gdbarch->dump_tdep != NULL)
1670 current_gdbarch->dump_tdep (current_gdbarch, file);
1671 }
1672 EOF
1673
1674
1675 # GET/SET
1676 printf "\n"
1677 cat <<EOF
1678 struct gdbarch_tdep *
1679 gdbarch_tdep (struct gdbarch *gdbarch)
1680 {
1681 if (gdbarch_debug >= 2)
1682 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1683 return gdbarch->tdep;
1684 }
1685 EOF
1686 printf "\n"
1687 function_list | while do_read
1688 do
1689 if class_is_predicate_p
1690 then
1691 printf "\n"
1692 printf "int\n"
1693 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1694 printf "{\n"
1695 printf " gdb_assert (gdbarch != NULL);\n"
1696 printf " return ${predicate};\n"
1697 printf "}\n"
1698 fi
1699 if class_is_function_p
1700 then
1701 printf "\n"
1702 printf "${returntype}\n"
1703 if [ "x${formal}" = "xvoid" ]
1704 then
1705 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1706 else
1707 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1708 fi
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1712 if class_is_predicate_p && test -n "${predefault}"
1713 then
1714 # Allow a call to a function with a predicate.
1715 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1716 fi
1717 printf " if (gdbarch_debug >= 2)\n"
1718 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1719 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1720 then
1721 if class_is_multiarch_p
1722 then
1723 params="gdbarch"
1724 else
1725 params=""
1726 fi
1727 else
1728 if class_is_multiarch_p
1729 then
1730 params="gdbarch, ${actual}"
1731 else
1732 params="${actual}"
1733 fi
1734 fi
1735 if [ "x${returntype}" = "xvoid" ]
1736 then
1737 printf " gdbarch->${function} (${params});\n"
1738 else
1739 printf " return gdbarch->${function} (${params});\n"
1740 fi
1741 printf "}\n"
1742 printf "\n"
1743 printf "void\n"
1744 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1745 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1746 printf "{\n"
1747 printf " gdbarch->${function} = ${function};\n"
1748 printf "}\n"
1749 elif class_is_variable_p
1750 then
1751 printf "\n"
1752 printf "${returntype}\n"
1753 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1754 printf "{\n"
1755 printf " gdb_assert (gdbarch != NULL);\n"
1756 if [ "x${invalid_p}" = "x0" ]
1757 then
1758 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1759 elif [ -n "${invalid_p}" ]
1760 then
1761 printf " /* Check variable is valid. */\n"
1762 printf " gdb_assert (!(${invalid_p}));\n"
1763 elif [ -n "${predefault}" ]
1764 then
1765 printf " /* Check variable changed from pre-default. */\n"
1766 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1767 fi
1768 printf " if (gdbarch_debug >= 2)\n"
1769 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1770 printf " return gdbarch->${function};\n"
1771 printf "}\n"
1772 printf "\n"
1773 printf "void\n"
1774 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1775 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1776 printf "{\n"
1777 printf " gdbarch->${function} = ${function};\n"
1778 printf "}\n"
1779 elif class_is_info_p
1780 then
1781 printf "\n"
1782 printf "${returntype}\n"
1783 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1784 printf "{\n"
1785 printf " gdb_assert (gdbarch != NULL);\n"
1786 printf " if (gdbarch_debug >= 2)\n"
1787 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1788 printf " return gdbarch->${function};\n"
1789 printf "}\n"
1790 fi
1791 done
1792
1793 # All the trailing guff
1794 cat <<EOF
1795
1796
1797 /* Keep a registry of per-architecture data-pointers required by GDB
1798 modules. */
1799
1800 struct gdbarch_data
1801 {
1802 unsigned index;
1803 int init_p;
1804 gdbarch_data_init_ftype *init;
1805 };
1806
1807 struct gdbarch_data_registration
1808 {
1809 struct gdbarch_data *data;
1810 struct gdbarch_data_registration *next;
1811 };
1812
1813 struct gdbarch_data_registry
1814 {
1815 unsigned nr;
1816 struct gdbarch_data_registration *registrations;
1817 };
1818
1819 struct gdbarch_data_registry gdbarch_data_registry =
1820 {
1821 0, NULL,
1822 };
1823
1824 struct gdbarch_data *
1825 register_gdbarch_data (gdbarch_data_init_ftype *init)
1826 {
1827 struct gdbarch_data_registration **curr;
1828 /* Append the new registraration. */
1829 for (curr = &gdbarch_data_registry.registrations;
1830 (*curr) != NULL;
1831 curr = &(*curr)->next);
1832 (*curr) = XMALLOC (struct gdbarch_data_registration);
1833 (*curr)->next = NULL;
1834 (*curr)->data = XMALLOC (struct gdbarch_data);
1835 (*curr)->data->index = gdbarch_data_registry.nr++;
1836 (*curr)->data->init = init;
1837 (*curr)->data->init_p = 1;
1838 return (*curr)->data;
1839 }
1840
1841
1842 /* Create/delete the gdbarch data vector. */
1843
1844 static void
1845 alloc_gdbarch_data (struct gdbarch *gdbarch)
1846 {
1847 gdb_assert (gdbarch->data == NULL);
1848 gdbarch->nr_data = gdbarch_data_registry.nr;
1849 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1850 }
1851
1852 /* Initialize the current value of the specified per-architecture
1853 data-pointer. */
1854
1855 void
1856 set_gdbarch_data (struct gdbarch *gdbarch,
1857 struct gdbarch_data *data,
1858 void *pointer)
1859 {
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 gdb_assert (gdbarch->data[data->index] == NULL);
1862 gdbarch->data[data->index] = pointer;
1863 }
1864
1865 /* Return the current value of the specified per-architecture
1866 data-pointer. */
1867
1868 void *
1869 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1870 {
1871 gdb_assert (data->index < gdbarch->nr_data);
1872 /* The data-pointer isn't initialized, call init() to get a value but
1873 only if the architecture initializaiton has completed. Otherwise
1874 punt - hope that the caller knows what they are doing. */
1875 if (gdbarch->data[data->index] == NULL
1876 && gdbarch->initialized_p)
1877 {
1878 /* Be careful to detect an initialization cycle. */
1879 gdb_assert (data->init_p);
1880 data->init_p = 0;
1881 gdb_assert (data->init != NULL);
1882 gdbarch->data[data->index] = data->init (gdbarch);
1883 data->init_p = 1;
1884 gdb_assert (gdbarch->data[data->index] != NULL);
1885 }
1886 return gdbarch->data[data->index];
1887 }
1888
1889
1890
1891 /* Keep a registry of swapped data required by GDB modules. */
1892
1893 struct gdbarch_swap
1894 {
1895 void *swap;
1896 struct gdbarch_swap_registration *source;
1897 struct gdbarch_swap *next;
1898 };
1899
1900 struct gdbarch_swap_registration
1901 {
1902 void *data;
1903 unsigned long sizeof_data;
1904 gdbarch_swap_ftype *init;
1905 struct gdbarch_swap_registration *next;
1906 };
1907
1908 struct gdbarch_swap_registry
1909 {
1910 int nr;
1911 struct gdbarch_swap_registration *registrations;
1912 };
1913
1914 struct gdbarch_swap_registry gdbarch_swap_registry =
1915 {
1916 0, NULL,
1917 };
1918
1919 void
1920 register_gdbarch_swap (void *data,
1921 unsigned long sizeof_data,
1922 gdbarch_swap_ftype *init)
1923 {
1924 struct gdbarch_swap_registration **rego;
1925 for (rego = &gdbarch_swap_registry.registrations;
1926 (*rego) != NULL;
1927 rego = &(*rego)->next);
1928 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1929 (*rego)->next = NULL;
1930 (*rego)->init = init;
1931 (*rego)->data = data;
1932 (*rego)->sizeof_data = sizeof_data;
1933 }
1934
1935 static void
1936 current_gdbarch_swap_init_hack (void)
1937 {
1938 struct gdbarch_swap_registration *rego;
1939 struct gdbarch_swap **curr = &current_gdbarch->swap;
1940 for (rego = gdbarch_swap_registry.registrations;
1941 rego != NULL;
1942 rego = rego->next)
1943 {
1944 if (rego->data != NULL)
1945 {
1946 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1947 struct gdbarch_swap);
1948 (*curr)->source = rego;
1949 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1950 rego->sizeof_data);
1951 (*curr)->next = NULL;
1952 curr = &(*curr)->next;
1953 }
1954 if (rego->init != NULL)
1955 rego->init ();
1956 }
1957 }
1958
1959 static struct gdbarch *
1960 current_gdbarch_swap_out_hack (void)
1961 {
1962 struct gdbarch *old_gdbarch = current_gdbarch;
1963 struct gdbarch_swap *curr;
1964
1965 gdb_assert (old_gdbarch != NULL);
1966 for (curr = old_gdbarch->swap;
1967 curr != NULL;
1968 curr = curr->next)
1969 {
1970 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1971 memset (curr->source->data, 0, curr->source->sizeof_data);
1972 }
1973 current_gdbarch = NULL;
1974 return old_gdbarch;
1975 }
1976
1977 static void
1978 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1979 {
1980 struct gdbarch_swap *curr;
1981
1982 gdb_assert (current_gdbarch == NULL);
1983 for (curr = new_gdbarch->swap;
1984 curr != NULL;
1985 curr = curr->next)
1986 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1987 current_gdbarch = new_gdbarch;
1988 }
1989
1990
1991 /* Keep a registry of the architectures known by GDB. */
1992
1993 struct gdbarch_registration
1994 {
1995 enum bfd_architecture bfd_architecture;
1996 gdbarch_init_ftype *init;
1997 gdbarch_dump_tdep_ftype *dump_tdep;
1998 struct gdbarch_list *arches;
1999 struct gdbarch_registration *next;
2000 };
2001
2002 static struct gdbarch_registration *gdbarch_registry = NULL;
2003
2004 static void
2005 append_name (const char ***buf, int *nr, const char *name)
2006 {
2007 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2008 (*buf)[*nr] = name;
2009 *nr += 1;
2010 }
2011
2012 const char **
2013 gdbarch_printable_names (void)
2014 {
2015 /* Accumulate a list of names based on the registed list of
2016 architectures. */
2017 enum bfd_architecture a;
2018 int nr_arches = 0;
2019 const char **arches = NULL;
2020 struct gdbarch_registration *rego;
2021 for (rego = gdbarch_registry;
2022 rego != NULL;
2023 rego = rego->next)
2024 {
2025 const struct bfd_arch_info *ap;
2026 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2027 if (ap == NULL)
2028 internal_error (__FILE__, __LINE__,
2029 "gdbarch_architecture_names: multi-arch unknown");
2030 do
2031 {
2032 append_name (&arches, &nr_arches, ap->printable_name);
2033 ap = ap->next;
2034 }
2035 while (ap != NULL);
2036 }
2037 append_name (&arches, &nr_arches, NULL);
2038 return arches;
2039 }
2040
2041
2042 void
2043 gdbarch_register (enum bfd_architecture bfd_architecture,
2044 gdbarch_init_ftype *init,
2045 gdbarch_dump_tdep_ftype *dump_tdep)
2046 {
2047 struct gdbarch_registration **curr;
2048 const struct bfd_arch_info *bfd_arch_info;
2049 /* Check that BFD recognizes this architecture */
2050 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2051 if (bfd_arch_info == NULL)
2052 {
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch: Attempt to register unknown architecture (%d)",
2055 bfd_architecture);
2056 }
2057 /* Check that we haven't seen this architecture before */
2058 for (curr = &gdbarch_registry;
2059 (*curr) != NULL;
2060 curr = &(*curr)->next)
2061 {
2062 if (bfd_architecture == (*curr)->bfd_architecture)
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch: Duplicate registraration of architecture (%s)",
2065 bfd_arch_info->printable_name);
2066 }
2067 /* log it */
2068 if (gdbarch_debug)
2069 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2070 bfd_arch_info->printable_name,
2071 (long) init);
2072 /* Append it */
2073 (*curr) = XMALLOC (struct gdbarch_registration);
2074 (*curr)->bfd_architecture = bfd_architecture;
2075 (*curr)->init = init;
2076 (*curr)->dump_tdep = dump_tdep;
2077 (*curr)->arches = NULL;
2078 (*curr)->next = NULL;
2079 }
2080
2081 void
2082 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2083 gdbarch_init_ftype *init)
2084 {
2085 gdbarch_register (bfd_architecture, init, NULL);
2086 }
2087
2088
2089 /* Look for an architecture using gdbarch_info. Base search on only
2090 BFD_ARCH_INFO and BYTE_ORDER. */
2091
2092 struct gdbarch_list *
2093 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2094 const struct gdbarch_info *info)
2095 {
2096 for (; arches != NULL; arches = arches->next)
2097 {
2098 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2099 continue;
2100 if (info->byte_order != arches->gdbarch->byte_order)
2101 continue;
2102 if (info->osabi != arches->gdbarch->osabi)
2103 continue;
2104 return arches;
2105 }
2106 return NULL;
2107 }
2108
2109
2110 /* Find an architecture that matches the specified INFO. Create a new
2111 architecture if needed. Return that new architecture. Assumes
2112 that there is no current architecture. */
2113
2114 static struct gdbarch *
2115 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2116 {
2117 struct gdbarch *new_gdbarch;
2118 struct gdbarch_registration *rego;
2119
2120 /* The existing architecture has been swapped out - all this code
2121 works from a clean slate. */
2122 gdb_assert (current_gdbarch == NULL);
2123
2124 /* Fill in missing parts of the INFO struct using a number of
2125 sources: "set ..."; INFOabfd supplied; and the existing
2126 architecture. */
2127 gdbarch_info_fill (old_gdbarch, &info);
2128
2129 /* Must have found some sort of architecture. */
2130 gdb_assert (info.bfd_arch_info != NULL);
2131
2132 if (gdbarch_debug)
2133 {
2134 fprintf_unfiltered (gdb_stdlog,
2135 "find_arch_by_info: info.bfd_arch_info %s\n",
2136 (info.bfd_arch_info != NULL
2137 ? info.bfd_arch_info->printable_name
2138 : "(null)"));
2139 fprintf_unfiltered (gdb_stdlog,
2140 "find_arch_by_info: info.byte_order %d (%s)\n",
2141 info.byte_order,
2142 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2143 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2144 : "default"));
2145 fprintf_unfiltered (gdb_stdlog,
2146 "find_arch_by_info: info.osabi %d (%s)\n",
2147 info.osabi, gdbarch_osabi_name (info.osabi));
2148 fprintf_unfiltered (gdb_stdlog,
2149 "find_arch_by_info: info.abfd 0x%lx\n",
2150 (long) info.abfd);
2151 fprintf_unfiltered (gdb_stdlog,
2152 "find_arch_by_info: info.tdep_info 0x%lx\n",
2153 (long) info.tdep_info);
2154 }
2155
2156 /* Find the tdep code that knows about this architecture. */
2157 for (rego = gdbarch_registry;
2158 rego != NULL;
2159 rego = rego->next)
2160 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2161 break;
2162 if (rego == NULL)
2163 {
2164 if (gdbarch_debug)
2165 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2166 "No matching architecture\n");
2167 return 0;
2168 }
2169
2170 /* Ask the tdep code for an architecture that matches "info". */
2171 new_gdbarch = rego->init (info, rego->arches);
2172
2173 /* Did the tdep code like it? No. Reject the change and revert to
2174 the old architecture. */
2175 if (new_gdbarch == NULL)
2176 {
2177 if (gdbarch_debug)
2178 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2179 "Target rejected architecture\n");
2180 return NULL;
2181 }
2182
2183 /* Is this a pre-existing architecture (as determined by already
2184 being initialized)? Move it to the front of the architecture
2185 list (keeping the list sorted Most Recently Used). */
2186 if (new_gdbarch->initialized_p)
2187 {
2188 struct gdbarch_list **list;
2189 struct gdbarch_list *this;
2190 if (gdbarch_debug)
2191 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2192 "Previous architecture 0x%08lx (%s) selected\n",
2193 (long) new_gdbarch,
2194 new_gdbarch->bfd_arch_info->printable_name);
2195 /* Find the existing arch in the list. */
2196 for (list = &rego->arches;
2197 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2198 list = &(*list)->next);
2199 /* It had better be in the list of architectures. */
2200 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2201 /* Unlink THIS. */
2202 this = (*list);
2203 (*list) = this->next;
2204 /* Insert THIS at the front. */
2205 this->next = rego->arches;
2206 rego->arches = this;
2207 /* Return it. */
2208 return new_gdbarch;
2209 }
2210
2211 /* It's a new architecture. */
2212 if (gdbarch_debug)
2213 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2214 "New architecture 0x%08lx (%s) selected\n",
2215 (long) new_gdbarch,
2216 new_gdbarch->bfd_arch_info->printable_name);
2217
2218 /* Insert the new architecture into the front of the architecture
2219 list (keep the list sorted Most Recently Used). */
2220 {
2221 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2222 this->next = rego->arches;
2223 this->gdbarch = new_gdbarch;
2224 rego->arches = this;
2225 }
2226
2227 /* Check that the newly installed architecture is valid. Plug in
2228 any post init values. */
2229 new_gdbarch->dump_tdep = rego->dump_tdep;
2230 verify_gdbarch (new_gdbarch);
2231 new_gdbarch->initialized_p = 1;
2232
2233 /* Initialize any per-architecture swap areas. This phase requires
2234 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2235 swap the entire architecture out. */
2236 current_gdbarch = new_gdbarch;
2237 current_gdbarch_swap_init_hack ();
2238 current_gdbarch_swap_out_hack ();
2239
2240 if (gdbarch_debug)
2241 gdbarch_dump (new_gdbarch, gdb_stdlog);
2242
2243 return new_gdbarch;
2244 }
2245
2246 struct gdbarch *
2247 gdbarch_find_by_info (struct gdbarch_info info)
2248 {
2249 /* Save the previously selected architecture, setting the global to
2250 NULL. This stops things like gdbarch->init() trying to use the
2251 previous architecture's configuration. The previous architecture
2252 may not even be of the same architecture family. The most recent
2253 architecture of the same family is found at the head of the
2254 rego->arches list. */
2255 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2256
2257 /* Find the specified architecture. */
2258 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2259
2260 /* Restore the existing architecture. */
2261 gdb_assert (current_gdbarch == NULL);
2262 current_gdbarch_swap_in_hack (old_gdbarch);
2263
2264 return new_gdbarch;
2265 }
2266
2267 /* Make the specified architecture current, swapping the existing one
2268 out. */
2269
2270 void
2271 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2272 {
2273 gdb_assert (new_gdbarch != NULL);
2274 gdb_assert (current_gdbarch != NULL);
2275 gdb_assert (new_gdbarch->initialized_p);
2276 current_gdbarch_swap_out_hack ();
2277 current_gdbarch_swap_in_hack (new_gdbarch);
2278 architecture_changed_event ();
2279 }
2280
2281 extern void _initialize_gdbarch (void);
2282
2283 void
2284 _initialize_gdbarch (void)
2285 {
2286 struct cmd_list_element *c;
2287
2288 add_show_from_set (add_set_cmd ("arch",
2289 class_maintenance,
2290 var_zinteger,
2291 (char *)&gdbarch_debug,
2292 "Set architecture debugging.\\n\\
2293 When non-zero, architecture debugging is enabled.", &setdebuglist),
2294 &showdebuglist);
2295 c = add_set_cmd ("archdebug",
2296 class_maintenance,
2297 var_zinteger,
2298 (char *)&gdbarch_debug,
2299 "Set architecture debugging.\\n\\
2300 When non-zero, architecture debugging is enabled.", &setlist);
2301
2302 deprecate_cmd (c, "set debug arch");
2303 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2304 }
2305 EOF
2306
2307 # close things off
2308 exec 1>&2
2309 #../move-if-change new-gdbarch.c gdbarch.c
2310 compare_new gdbarch.c
This page took 0.083819 seconds and 4 git commands to generate.