1dd29f2ccbfe724fefd98e6ec3c2bc990267300b
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
576 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
577 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
578 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
579 v:2:PARM_BOUNDARY:int:parm_boundary
580 #
581 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
582 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
583 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
584 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
585 # On some machines there are bits in addresses which are not really
586 # part of the address, but are used by the kernel, the hardware, etc.
587 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
588 # we get a "real" address such as one would find in a symbol table.
589 # This is used only for addresses of instructions, and even then I'm
590 # not sure it's used in all contexts. It exists to deal with there
591 # being a few stray bits in the PC which would mislead us, not as some
592 # sort of generic thing to handle alignment or segmentation (it's
593 # possible it should be in TARGET_READ_PC instead).
594 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
595 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
596 # ADDR_BITS_REMOVE.
597 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
599 # the target needs software single step. An ISA method to implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
602 # using the breakpoint system instead of blatting memory directly (as with rs6000).
603 #
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
605 # single step. If not, then implement single step using breakpoints.
606 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
607 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
608 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
609
610
611 # For SVR4 shared libraries, each call goes through a small piece of
612 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
613 # to nonzero if we are currently stopped in one of these.
614 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
615
616 # Some systems also have trampoline code for returning from shared libs.
617 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
618
619 # Sigtramp is a routine that the kernel calls (which then calls the
620 # signal handler). On most machines it is a library routine that is
621 # linked into the executable.
622 #
623 # This macro, given a program counter value and the name of the
624 # function in which that PC resides (which can be null if the name is
625 # not known), returns nonzero if the PC and name show that we are in
626 # sigtramp.
627 #
628 # On most machines just see if the name is sigtramp (and if we have
629 # no name, assume we are not in sigtramp).
630 #
631 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
632 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
633 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
634 # own local NAME lookup.
635 #
636 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
637 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
638 # does not.
639 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
640 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
641 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a funtion's epilogue. in_function_epilogue_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
652 # Given a vector of command-line arguments, return a newly allocated
653 # string which, when passed to the create_inferior function, will be
654 # parsed (on Unix systems, by the shell) to yield the same vector.
655 # This function should call error() if the argument vector is not
656 # representable for this target or if this target does not support
657 # command-line arguments.
658 # ARGC is the number of elements in the vector.
659 # ARGV is an array of strings, one per argument.
660 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
661 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
662 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
663 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
664 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
665 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
666 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
667 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
668 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
669 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
670 # Is a register in a group
671 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p
672 EOF
673 }
674
675 #
676 # The .log file
677 #
678 exec > new-gdbarch.log
679 function_list | while do_read
680 do
681 cat <<EOF
682 ${class} ${macro}(${actual})
683 ${returntype} ${function} ($formal)${attrib}
684 EOF
685 for r in ${read}
686 do
687 eval echo \"\ \ \ \ ${r}=\${${r}}\"
688 done
689 # #fallbackdefault=${fallbackdefault}
690 # #valid_p=${valid_p}
691 #EOF
692 if class_is_predicate_p && fallback_default_p
693 then
694 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
695 kill $$
696 exit 1
697 fi
698 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
699 then
700 echo "Error: postdefault is useless when invalid_p=0" 1>&2
701 kill $$
702 exit 1
703 fi
704 if class_is_multiarch_p
705 then
706 if class_is_predicate_p ; then :
707 elif test "x${predefault}" = "x"
708 then
709 echo "Error: pure multi-arch function must have a predefault" 1>&2
710 kill $$
711 exit 1
712 fi
713 fi
714 echo ""
715 done
716
717 exec 1>&2
718 compare_new gdbarch.log
719
720
721 copyright ()
722 {
723 cat <<EOF
724 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
725
726 /* Dynamic architecture support for GDB, the GNU debugger.
727 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
728
729 This file is part of GDB.
730
731 This program is free software; you can redistribute it and/or modify
732 it under the terms of the GNU General Public License as published by
733 the Free Software Foundation; either version 2 of the License, or
734 (at your option) any later version.
735
736 This program is distributed in the hope that it will be useful,
737 but WITHOUT ANY WARRANTY; without even the implied warranty of
738 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
739 GNU General Public License for more details.
740
741 You should have received a copy of the GNU General Public License
742 along with this program; if not, write to the Free Software
743 Foundation, Inc., 59 Temple Place - Suite 330,
744 Boston, MA 02111-1307, USA. */
745
746 /* This file was created with the aid of \`\`gdbarch.sh''.
747
748 The Bourne shell script \`\`gdbarch.sh'' creates the files
749 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
750 against the existing \`\`gdbarch.[hc]''. Any differences found
751 being reported.
752
753 If editing this file, please also run gdbarch.sh and merge any
754 changes into that script. Conversely, when making sweeping changes
755 to this file, modifying gdbarch.sh and using its output may prove
756 easier. */
757
758 EOF
759 }
760
761 #
762 # The .h file
763 #
764
765 exec > new-gdbarch.h
766 copyright
767 cat <<EOF
768 #ifndef GDBARCH_H
769 #define GDBARCH_H
770
771 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
772 #if !GDB_MULTI_ARCH
773 /* Pull in function declarations refered to, indirectly, via macros. */
774 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
775 #include "inferior.h" /* For unsigned_address_to_pointer(). */
776 #endif
777
778 struct frame_info;
779 struct value;
780 struct objfile;
781 struct minimal_symbol;
782 struct regcache;
783 struct reggroup;
784
785 extern struct gdbarch *current_gdbarch;
786
787
788 /* If any of the following are defined, the target wasn't correctly
789 converted. */
790
791 #if GDB_MULTI_ARCH
792 #if defined (EXTRA_FRAME_INFO)
793 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
794 #endif
795 #endif
796
797 #if GDB_MULTI_ARCH
798 #if defined (FRAME_FIND_SAVED_REGS)
799 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
800 #endif
801 #endif
802
803 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
804 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
805 #endif
806 EOF
807
808 # function typedef's
809 printf "\n"
810 printf "\n"
811 printf "/* The following are pre-initialized by GDBARCH. */\n"
812 function_list | while do_read
813 do
814 if class_is_info_p
815 then
816 printf "\n"
817 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
818 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
819 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
820 printf "#error \"Non multi-arch definition of ${macro}\"\n"
821 printf "#endif\n"
822 printf "#if GDB_MULTI_ARCH\n"
823 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
824 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
825 printf "#endif\n"
826 printf "#endif\n"
827 fi
828 done
829
830 # function typedef's
831 printf "\n"
832 printf "\n"
833 printf "/* The following are initialized by the target dependent code. */\n"
834 function_list | while do_read
835 do
836 if [ -n "${comment}" ]
837 then
838 echo "${comment}" | sed \
839 -e '2 s,#,/*,' \
840 -e '3,$ s,#, ,' \
841 -e '$ s,$, */,'
842 fi
843 if class_is_multiarch_p
844 then
845 if class_is_predicate_p
846 then
847 printf "\n"
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
849 fi
850 else
851 if class_is_predicate_p
852 then
853 printf "\n"
854 printf "#if defined (${macro})\n"
855 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
856 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
857 printf "#if !defined (${macro}_P)\n"
858 printf "#define ${macro}_P() (1)\n"
859 printf "#endif\n"
860 printf "#endif\n"
861 printf "\n"
862 printf "/* Default predicate for non- multi-arch targets. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
864 printf "#define ${macro}_P() (0)\n"
865 printf "#endif\n"
866 printf "\n"
867 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
868 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
869 printf "#error \"Non multi-arch definition of ${macro}\"\n"
870 printf "#endif\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
873 printf "#endif\n"
874 fi
875 fi
876 if class_is_variable_p
877 then
878 if fallback_default_p || class_is_predicate_p
879 then
880 printf "\n"
881 printf "/* Default (value) for non- multi-arch platforms. */\n"
882 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
883 echo "#define ${macro} (${fallbackdefault})" \
884 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
885 printf "#endif\n"
886 fi
887 printf "\n"
888 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
889 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 printf "#if GDB_MULTI_ARCH\n"
894 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
896 printf "#endif\n"
897 printf "#endif\n"
898 fi
899 if class_is_function_p
900 then
901 if class_is_multiarch_p ; then :
902 elif fallback_default_p || class_is_predicate_p
903 then
904 printf "\n"
905 printf "/* Default (function) for non- multi-arch platforms. */\n"
906 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
907 if [ "x${fallbackdefault}" = "x0" ]
908 then
909 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
910 else
911 # FIXME: Should be passing current_gdbarch through!
912 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
913 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
914 fi
915 printf "#endif\n"
916 fi
917 printf "\n"
918 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
919 then
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
921 elif class_is_multiarch_p
922 then
923 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
924 else
925 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
926 fi
927 if [ "x${formal}" = "xvoid" ]
928 then
929 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
930 else
931 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
932 fi
933 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
934 if class_is_multiarch_p ; then :
935 else
936 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
937 printf "#error \"Non multi-arch definition of ${macro}\"\n"
938 printf "#endif\n"
939 printf "#if GDB_MULTI_ARCH\n"
940 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
941 if [ "x${actual}" = "x" ]
942 then
943 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
944 elif [ "x${actual}" = "x-" ]
945 then
946 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
947 else
948 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
949 fi
950 printf "#endif\n"
951 printf "#endif\n"
952 fi
953 fi
954 done
955
956 # close it off
957 cat <<EOF
958
959 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
960
961
962 /* Mechanism for co-ordinating the selection of a specific
963 architecture.
964
965 GDB targets (*-tdep.c) can register an interest in a specific
966 architecture. Other GDB components can register a need to maintain
967 per-architecture data.
968
969 The mechanisms below ensures that there is only a loose connection
970 between the set-architecture command and the various GDB
971 components. Each component can independently register their need
972 to maintain architecture specific data with gdbarch.
973
974 Pragmatics:
975
976 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
977 didn't scale.
978
979 The more traditional mega-struct containing architecture specific
980 data for all the various GDB components was also considered. Since
981 GDB is built from a variable number of (fairly independent)
982 components it was determined that the global aproach was not
983 applicable. */
984
985
986 /* Register a new architectural family with GDB.
987
988 Register support for the specified ARCHITECTURE with GDB. When
989 gdbarch determines that the specified architecture has been
990 selected, the corresponding INIT function is called.
991
992 --
993
994 The INIT function takes two parameters: INFO which contains the
995 information available to gdbarch about the (possibly new)
996 architecture; ARCHES which is a list of the previously created
997 \`\`struct gdbarch'' for this architecture.
998
999 The INFO parameter is, as far as possible, be pre-initialized with
1000 information obtained from INFO.ABFD or the previously selected
1001 architecture.
1002
1003 The ARCHES parameter is a linked list (sorted most recently used)
1004 of all the previously created architures for this architecture
1005 family. The (possibly NULL) ARCHES->gdbarch can used to access
1006 values from the previously selected architecture for this
1007 architecture family. The global \`\`current_gdbarch'' shall not be
1008 used.
1009
1010 The INIT function shall return any of: NULL - indicating that it
1011 doesn't recognize the selected architecture; an existing \`\`struct
1012 gdbarch'' from the ARCHES list - indicating that the new
1013 architecture is just a synonym for an earlier architecture (see
1014 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1015 - that describes the selected architecture (see gdbarch_alloc()).
1016
1017 The DUMP_TDEP function shall print out all target specific values.
1018 Care should be taken to ensure that the function works in both the
1019 multi-arch and non- multi-arch cases. */
1020
1021 struct gdbarch_list
1022 {
1023 struct gdbarch *gdbarch;
1024 struct gdbarch_list *next;
1025 };
1026
1027 struct gdbarch_info
1028 {
1029 /* Use default: NULL (ZERO). */
1030 const struct bfd_arch_info *bfd_arch_info;
1031
1032 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1033 int byte_order;
1034
1035 /* Use default: NULL (ZERO). */
1036 bfd *abfd;
1037
1038 /* Use default: NULL (ZERO). */
1039 struct gdbarch_tdep_info *tdep_info;
1040 };
1041
1042 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1043 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1044
1045 /* DEPRECATED - use gdbarch_register() */
1046 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1047
1048 extern void gdbarch_register (enum bfd_architecture architecture,
1049 gdbarch_init_ftype *,
1050 gdbarch_dump_tdep_ftype *);
1051
1052
1053 /* Return a freshly allocated, NULL terminated, array of the valid
1054 architecture names. Since architectures are registered during the
1055 _initialize phase this function only returns useful information
1056 once initialization has been completed. */
1057
1058 extern const char **gdbarch_printable_names (void);
1059
1060
1061 /* Helper function. Search the list of ARCHES for a GDBARCH that
1062 matches the information provided by INFO. */
1063
1064 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1065
1066
1067 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1068 basic initialization using values obtained from the INFO andTDEP
1069 parameters. set_gdbarch_*() functions are called to complete the
1070 initialization of the object. */
1071
1072 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1073
1074
1075 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1076 It is assumed that the caller freeds the \`\`struct
1077 gdbarch_tdep''. */
1078
1079 extern void gdbarch_free (struct gdbarch *);
1080
1081
1082 /* Helper function. Force an update of the current architecture.
1083
1084 The actual architecture selected is determined by INFO, \`\`(gdb) set
1085 architecture'' et.al., the existing architecture and BFD's default
1086 architecture. INFO should be initialized to zero and then selected
1087 fields should be updated.
1088
1089 Returns non-zero if the update succeeds */
1090
1091 extern int gdbarch_update_p (struct gdbarch_info info);
1092
1093
1094
1095 /* Register per-architecture data-pointer.
1096
1097 Reserve space for a per-architecture data-pointer. An identifier
1098 for the reserved data-pointer is returned. That identifer should
1099 be saved in a local static variable.
1100
1101 The per-architecture data-pointer is either initialized explicitly
1102 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1103 gdbarch_data()). FREE() is called to delete either an existing
1104 data-pointer overridden by set_gdbarch_data() or when the
1105 architecture object is being deleted.
1106
1107 When a previously created architecture is re-selected, the
1108 per-architecture data-pointer for that previous architecture is
1109 restored. INIT() is not re-called.
1110
1111 Multiple registrarants for any architecture are allowed (and
1112 strongly encouraged). */
1113
1114 struct gdbarch_data;
1115
1116 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1117 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1118 void *pointer);
1119 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1120 gdbarch_data_free_ftype *free);
1121 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1122 struct gdbarch_data *data,
1123 void *pointer);
1124
1125 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1126
1127
1128 /* Register per-architecture memory region.
1129
1130 Provide a memory-region swap mechanism. Per-architecture memory
1131 region are created. These memory regions are swapped whenever the
1132 architecture is changed. For a new architecture, the memory region
1133 is initialized with zero (0) and the INIT function is called.
1134
1135 Memory regions are swapped / initialized in the order that they are
1136 registered. NULL DATA and/or INIT values can be specified.
1137
1138 New code should use register_gdbarch_data(). */
1139
1140 typedef void (gdbarch_swap_ftype) (void);
1141 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1142 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1143
1144
1145
1146 /* The target-system-dependent byte order is dynamic */
1147
1148 extern int target_byte_order;
1149 #ifndef TARGET_BYTE_ORDER
1150 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1151 #endif
1152
1153 extern int target_byte_order_auto;
1154 #ifndef TARGET_BYTE_ORDER_AUTO
1155 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1156 #endif
1157
1158
1159
1160 /* The target-system-dependent BFD architecture is dynamic */
1161
1162 extern int target_architecture_auto;
1163 #ifndef TARGET_ARCHITECTURE_AUTO
1164 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1165 #endif
1166
1167 extern const struct bfd_arch_info *target_architecture;
1168 #ifndef TARGET_ARCHITECTURE
1169 #define TARGET_ARCHITECTURE (target_architecture + 0)
1170 #endif
1171
1172
1173 /* The target-system-dependent disassembler is semi-dynamic */
1174
1175 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1176 unsigned int len, disassemble_info *info);
1177
1178 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1179 disassemble_info *info);
1180
1181 extern void dis_asm_print_address (bfd_vma addr,
1182 disassemble_info *info);
1183
1184 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1185 extern disassemble_info tm_print_insn_info;
1186 #ifndef TARGET_PRINT_INSN_INFO
1187 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1188 #endif
1189
1190
1191
1192 /* Set the dynamic target-system-dependent parameters (architecture,
1193 byte-order, ...) using information found in the BFD */
1194
1195 extern void set_gdbarch_from_file (bfd *);
1196
1197
1198 /* Initialize the current architecture to the "first" one we find on
1199 our list. */
1200
1201 extern void initialize_current_architecture (void);
1202
1203 /* For non-multiarched targets, do any initialization of the default
1204 gdbarch object necessary after the _initialize_MODULE functions
1205 have run. */
1206 extern void initialize_non_multiarch (void);
1207
1208 /* gdbarch trace variable */
1209 extern int gdbarch_debug;
1210
1211 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1212
1213 #endif
1214 EOF
1215 exec 1>&2
1216 #../move-if-change new-gdbarch.h gdbarch.h
1217 compare_new gdbarch.h
1218
1219
1220 #
1221 # C file
1222 #
1223
1224 exec > new-gdbarch.c
1225 copyright
1226 cat <<EOF
1227
1228 #include "defs.h"
1229 #include "arch-utils.h"
1230
1231 #if GDB_MULTI_ARCH
1232 #include "gdbcmd.h"
1233 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1234 #else
1235 /* Just include everything in sight so that the every old definition
1236 of macro is visible. */
1237 #include "gdb_string.h"
1238 #include <ctype.h>
1239 #include "symtab.h"
1240 #include "frame.h"
1241 #include "inferior.h"
1242 #include "breakpoint.h"
1243 #include "gdb_wait.h"
1244 #include "gdbcore.h"
1245 #include "gdbcmd.h"
1246 #include "target.h"
1247 #include "gdbthread.h"
1248 #include "annotate.h"
1249 #include "symfile.h" /* for overlay functions */
1250 #include "value.h" /* For old tm.h/nm.h macros. */
1251 #endif
1252 #include "symcat.h"
1253
1254 #include "floatformat.h"
1255
1256 #include "gdb_assert.h"
1257 #include "gdb_string.h"
1258 #include "gdb-events.h"
1259 #include "reggroups.h"
1260
1261 /* Static function declarations */
1262
1263 static void verify_gdbarch (struct gdbarch *gdbarch);
1264 static void alloc_gdbarch_data (struct gdbarch *);
1265 static void free_gdbarch_data (struct gdbarch *);
1266 static void init_gdbarch_swap (struct gdbarch *);
1267 static void clear_gdbarch_swap (struct gdbarch *);
1268 static void swapout_gdbarch_swap (struct gdbarch *);
1269 static void swapin_gdbarch_swap (struct gdbarch *);
1270
1271 /* Non-zero if we want to trace architecture code. */
1272
1273 #ifndef GDBARCH_DEBUG
1274 #define GDBARCH_DEBUG 0
1275 #endif
1276 int gdbarch_debug = GDBARCH_DEBUG;
1277
1278 EOF
1279
1280 # gdbarch open the gdbarch object
1281 printf "\n"
1282 printf "/* Maintain the struct gdbarch object */\n"
1283 printf "\n"
1284 printf "struct gdbarch\n"
1285 printf "{\n"
1286 printf " /* Has this architecture been fully initialized? */\n"
1287 printf " int initialized_p;\n"
1288 printf " /* basic architectural information */\n"
1289 function_list | while do_read
1290 do
1291 if class_is_info_p
1292 then
1293 printf " ${returntype} ${function};\n"
1294 fi
1295 done
1296 printf "\n"
1297 printf " /* target specific vector. */\n"
1298 printf " struct gdbarch_tdep *tdep;\n"
1299 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1300 printf "\n"
1301 printf " /* per-architecture data-pointers */\n"
1302 printf " unsigned nr_data;\n"
1303 printf " void **data;\n"
1304 printf "\n"
1305 printf " /* per-architecture swap-regions */\n"
1306 printf " struct gdbarch_swap *swap;\n"
1307 printf "\n"
1308 cat <<EOF
1309 /* Multi-arch values.
1310
1311 When extending this structure you must:
1312
1313 Add the field below.
1314
1315 Declare set/get functions and define the corresponding
1316 macro in gdbarch.h.
1317
1318 gdbarch_alloc(): If zero/NULL is not a suitable default,
1319 initialize the new field.
1320
1321 verify_gdbarch(): Confirm that the target updated the field
1322 correctly.
1323
1324 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1325 field is dumped out
1326
1327 \`\`startup_gdbarch()'': Append an initial value to the static
1328 variable (base values on the host's c-type system).
1329
1330 get_gdbarch(): Implement the set/get functions (probably using
1331 the macro's as shortcuts).
1332
1333 */
1334
1335 EOF
1336 function_list | while do_read
1337 do
1338 if class_is_variable_p
1339 then
1340 printf " ${returntype} ${function};\n"
1341 elif class_is_function_p
1342 then
1343 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1344 fi
1345 done
1346 printf "};\n"
1347
1348 # A pre-initialized vector
1349 printf "\n"
1350 printf "\n"
1351 cat <<EOF
1352 /* The default architecture uses host values (for want of a better
1353 choice). */
1354 EOF
1355 printf "\n"
1356 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1357 printf "\n"
1358 printf "struct gdbarch startup_gdbarch =\n"
1359 printf "{\n"
1360 printf " 1, /* Always initialized. */\n"
1361 printf " /* basic architecture information */\n"
1362 function_list | while do_read
1363 do
1364 if class_is_info_p
1365 then
1366 printf " ${staticdefault},\n"
1367 fi
1368 done
1369 cat <<EOF
1370 /* target specific vector and its dump routine */
1371 NULL, NULL,
1372 /*per-architecture data-pointers and swap regions */
1373 0, NULL, NULL,
1374 /* Multi-arch values */
1375 EOF
1376 function_list | while do_read
1377 do
1378 if class_is_function_p || class_is_variable_p
1379 then
1380 printf " ${staticdefault},\n"
1381 fi
1382 done
1383 cat <<EOF
1384 /* startup_gdbarch() */
1385 };
1386
1387 struct gdbarch *current_gdbarch = &startup_gdbarch;
1388
1389 /* Do any initialization needed for a non-multiarch configuration
1390 after the _initialize_MODULE functions have been run. */
1391 void
1392 initialize_non_multiarch (void)
1393 {
1394 alloc_gdbarch_data (&startup_gdbarch);
1395 /* Ensure that all swap areas are zeroed so that they again think
1396 they are starting from scratch. */
1397 clear_gdbarch_swap (&startup_gdbarch);
1398 init_gdbarch_swap (&startup_gdbarch);
1399 }
1400 EOF
1401
1402 # Create a new gdbarch struct
1403 printf "\n"
1404 printf "\n"
1405 cat <<EOF
1406 /* Create a new \`\`struct gdbarch'' based on information provided by
1407 \`\`struct gdbarch_info''. */
1408 EOF
1409 printf "\n"
1410 cat <<EOF
1411 struct gdbarch *
1412 gdbarch_alloc (const struct gdbarch_info *info,
1413 struct gdbarch_tdep *tdep)
1414 {
1415 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1416 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1417 the current local architecture and not the previous global
1418 architecture. This ensures that the new architectures initial
1419 values are not influenced by the previous architecture. Once
1420 everything is parameterised with gdbarch, this will go away. */
1421 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1422 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1423
1424 alloc_gdbarch_data (current_gdbarch);
1425
1426 current_gdbarch->tdep = tdep;
1427 EOF
1428 printf "\n"
1429 function_list | while do_read
1430 do
1431 if class_is_info_p
1432 then
1433 printf " current_gdbarch->${function} = info->${function};\n"
1434 fi
1435 done
1436 printf "\n"
1437 printf " /* Force the explicit initialization of these. */\n"
1438 function_list | while do_read
1439 do
1440 if class_is_function_p || class_is_variable_p
1441 then
1442 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1443 then
1444 printf " current_gdbarch->${function} = ${predefault};\n"
1445 fi
1446 fi
1447 done
1448 cat <<EOF
1449 /* gdbarch_alloc() */
1450
1451 return current_gdbarch;
1452 }
1453 EOF
1454
1455 # Free a gdbarch struct.
1456 printf "\n"
1457 printf "\n"
1458 cat <<EOF
1459 /* Free a gdbarch struct. This should never happen in normal
1460 operation --- once you've created a gdbarch, you keep it around.
1461 However, if an architecture's init function encounters an error
1462 building the structure, it may need to clean up a partially
1463 constructed gdbarch. */
1464
1465 void
1466 gdbarch_free (struct gdbarch *arch)
1467 {
1468 gdb_assert (arch != NULL);
1469 free_gdbarch_data (arch);
1470 xfree (arch);
1471 }
1472 EOF
1473
1474 # verify a new architecture
1475 printf "\n"
1476 printf "\n"
1477 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1478 printf "\n"
1479 cat <<EOF
1480 static void
1481 verify_gdbarch (struct gdbarch *gdbarch)
1482 {
1483 struct ui_file *log;
1484 struct cleanup *cleanups;
1485 long dummy;
1486 char *buf;
1487 /* Only perform sanity checks on a multi-arch target. */
1488 if (!GDB_MULTI_ARCH)
1489 return;
1490 log = mem_fileopen ();
1491 cleanups = make_cleanup_ui_file_delete (log);
1492 /* fundamental */
1493 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1494 fprintf_unfiltered (log, "\n\tbyte-order");
1495 if (gdbarch->bfd_arch_info == NULL)
1496 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1497 /* Check those that need to be defined for the given multi-arch level. */
1498 EOF
1499 function_list | while do_read
1500 do
1501 if class_is_function_p || class_is_variable_p
1502 then
1503 if [ "x${invalid_p}" = "x0" ]
1504 then
1505 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1506 elif class_is_predicate_p
1507 then
1508 printf " /* Skip verify of ${function}, has predicate */\n"
1509 # FIXME: See do_read for potential simplification
1510 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1511 then
1512 printf " if (${invalid_p})\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
1514 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1515 then
1516 printf " if (gdbarch->${function} == ${predefault})\n"
1517 printf " gdbarch->${function} = ${postdefault};\n"
1518 elif [ -n "${postdefault}" ]
1519 then
1520 printf " if (gdbarch->${function} == 0)\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${invalid_p}" ]
1523 then
1524 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1525 printf " && (${invalid_p}))\n"
1526 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1527 elif [ -n "${predefault}" ]
1528 then
1529 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1530 printf " && (gdbarch->${function} == ${predefault}))\n"
1531 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1532 fi
1533 fi
1534 done
1535 cat <<EOF
1536 buf = ui_file_xstrdup (log, &dummy);
1537 make_cleanup (xfree, buf);
1538 if (strlen (buf) > 0)
1539 internal_error (__FILE__, __LINE__,
1540 "verify_gdbarch: the following are invalid ...%s",
1541 buf);
1542 do_cleanups (cleanups);
1543 }
1544 EOF
1545
1546 # dump the structure
1547 printf "\n"
1548 printf "\n"
1549 cat <<EOF
1550 /* Print out the details of the current architecture. */
1551
1552 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1553 just happens to match the global variable \`\`current_gdbarch''. That
1554 way macros refering to that variable get the local and not the global
1555 version - ulgh. Once everything is parameterised with gdbarch, this
1556 will go away. */
1557
1558 void
1559 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1560 {
1561 fprintf_unfiltered (file,
1562 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1563 GDB_MULTI_ARCH);
1564 EOF
1565 function_list | sort -t: +2 | while do_read
1566 do
1567 # multiarch functions don't have macros.
1568 if class_is_multiarch_p
1569 then
1570 printf " if (GDB_MULTI_ARCH)\n"
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1573 printf " (long) current_gdbarch->${function});\n"
1574 continue
1575 fi
1576 # Print the macro definition.
1577 printf "#ifdef ${macro}\n"
1578 if [ "x${returntype}" = "xvoid" ]
1579 then
1580 printf "#if GDB_MULTI_ARCH\n"
1581 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1582 fi
1583 if class_is_function_p
1584 then
1585 printf " fprintf_unfiltered (file,\n"
1586 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1587 printf " \"${macro}(${actual})\",\n"
1588 printf " XSTRING (${macro} (${actual})));\n"
1589 else
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1592 printf " XSTRING (${macro}));\n"
1593 fi
1594 # Print the architecture vector value
1595 if [ "x${returntype}" = "xvoid" ]
1596 then
1597 printf "#endif\n"
1598 fi
1599 if [ "x${print_p}" = "x()" ]
1600 then
1601 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1602 elif [ "x${print_p}" = "x0" ]
1603 then
1604 printf " /* skip print of ${macro}, print_p == 0. */\n"
1605 elif [ -n "${print_p}" ]
1606 then
1607 printf " if (${print_p})\n"
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1610 printf " ${print});\n"
1611 elif class_is_function_p
1612 then
1613 printf " if (GDB_MULTI_ARCH)\n"
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1616 printf " (long) current_gdbarch->${function}\n"
1617 printf " /*${macro} ()*/);\n"
1618 else
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1621 printf " ${print});\n"
1622 fi
1623 printf "#endif\n"
1624 done
1625 cat <<EOF
1626 if (current_gdbarch->dump_tdep != NULL)
1627 current_gdbarch->dump_tdep (current_gdbarch, file);
1628 }
1629 EOF
1630
1631
1632 # GET/SET
1633 printf "\n"
1634 cat <<EOF
1635 struct gdbarch_tdep *
1636 gdbarch_tdep (struct gdbarch *gdbarch)
1637 {
1638 if (gdbarch_debug >= 2)
1639 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1640 return gdbarch->tdep;
1641 }
1642 EOF
1643 printf "\n"
1644 function_list | while do_read
1645 do
1646 if class_is_predicate_p
1647 then
1648 printf "\n"
1649 printf "int\n"
1650 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1651 printf "{\n"
1652 printf " gdb_assert (gdbarch != NULL);\n"
1653 if [ -n "${valid_p}" ]
1654 then
1655 printf " return ${valid_p};\n"
1656 else
1657 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1658 fi
1659 printf "}\n"
1660 fi
1661 if class_is_function_p
1662 then
1663 printf "\n"
1664 printf "${returntype}\n"
1665 if [ "x${formal}" = "xvoid" ]
1666 then
1667 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1668 else
1669 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1670 fi
1671 printf "{\n"
1672 printf " gdb_assert (gdbarch != NULL);\n"
1673 printf " if (gdbarch->${function} == 0)\n"
1674 printf " internal_error (__FILE__, __LINE__,\n"
1675 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1679 then
1680 if class_is_multiarch_p
1681 then
1682 params="gdbarch"
1683 else
1684 params=""
1685 fi
1686 else
1687 if class_is_multiarch_p
1688 then
1689 params="gdbarch, ${actual}"
1690 else
1691 params="${actual}"
1692 fi
1693 fi
1694 if [ "x${returntype}" = "xvoid" ]
1695 then
1696 printf " gdbarch->${function} (${params});\n"
1697 else
1698 printf " return gdbarch->${function} (${params});\n"
1699 fi
1700 printf "}\n"
1701 printf "\n"
1702 printf "void\n"
1703 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1704 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1705 printf "{\n"
1706 printf " gdbarch->${function} = ${function};\n"
1707 printf "}\n"
1708 elif class_is_variable_p
1709 then
1710 printf "\n"
1711 printf "${returntype}\n"
1712 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1713 printf "{\n"
1714 printf " gdb_assert (gdbarch != NULL);\n"
1715 if [ "x${invalid_p}" = "x0" ]
1716 then
1717 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1718 elif [ -n "${invalid_p}" ]
1719 then
1720 printf " if (${invalid_p})\n"
1721 printf " internal_error (__FILE__, __LINE__,\n"
1722 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1723 elif [ -n "${predefault}" ]
1724 then
1725 printf " if (gdbarch->${function} == ${predefault})\n"
1726 printf " internal_error (__FILE__, __LINE__,\n"
1727 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1728 fi
1729 printf " if (gdbarch_debug >= 2)\n"
1730 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1731 printf " return gdbarch->${function};\n"
1732 printf "}\n"
1733 printf "\n"
1734 printf "void\n"
1735 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1736 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1737 printf "{\n"
1738 printf " gdbarch->${function} = ${function};\n"
1739 printf "}\n"
1740 elif class_is_info_p
1741 then
1742 printf "\n"
1743 printf "${returntype}\n"
1744 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1745 printf "{\n"
1746 printf " gdb_assert (gdbarch != NULL);\n"
1747 printf " if (gdbarch_debug >= 2)\n"
1748 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1749 printf " return gdbarch->${function};\n"
1750 printf "}\n"
1751 fi
1752 done
1753
1754 # All the trailing guff
1755 cat <<EOF
1756
1757
1758 /* Keep a registry of per-architecture data-pointers required by GDB
1759 modules. */
1760
1761 struct gdbarch_data
1762 {
1763 unsigned index;
1764 int init_p;
1765 gdbarch_data_init_ftype *init;
1766 gdbarch_data_free_ftype *free;
1767 };
1768
1769 struct gdbarch_data_registration
1770 {
1771 struct gdbarch_data *data;
1772 struct gdbarch_data_registration *next;
1773 };
1774
1775 struct gdbarch_data_registry
1776 {
1777 unsigned nr;
1778 struct gdbarch_data_registration *registrations;
1779 };
1780
1781 struct gdbarch_data_registry gdbarch_data_registry =
1782 {
1783 0, NULL,
1784 };
1785
1786 struct gdbarch_data *
1787 register_gdbarch_data (gdbarch_data_init_ftype *init,
1788 gdbarch_data_free_ftype *free)
1789 {
1790 struct gdbarch_data_registration **curr;
1791 /* Append the new registraration. */
1792 for (curr = &gdbarch_data_registry.registrations;
1793 (*curr) != NULL;
1794 curr = &(*curr)->next);
1795 (*curr) = XMALLOC (struct gdbarch_data_registration);
1796 (*curr)->next = NULL;
1797 (*curr)->data = XMALLOC (struct gdbarch_data);
1798 (*curr)->data->index = gdbarch_data_registry.nr++;
1799 (*curr)->data->init = init;
1800 (*curr)->data->init_p = 1;
1801 (*curr)->data->free = free;
1802 return (*curr)->data;
1803 }
1804
1805
1806 /* Create/delete the gdbarch data vector. */
1807
1808 static void
1809 alloc_gdbarch_data (struct gdbarch *gdbarch)
1810 {
1811 gdb_assert (gdbarch->data == NULL);
1812 gdbarch->nr_data = gdbarch_data_registry.nr;
1813 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1814 }
1815
1816 static void
1817 free_gdbarch_data (struct gdbarch *gdbarch)
1818 {
1819 struct gdbarch_data_registration *rego;
1820 gdb_assert (gdbarch->data != NULL);
1821 for (rego = gdbarch_data_registry.registrations;
1822 rego != NULL;
1823 rego = rego->next)
1824 {
1825 struct gdbarch_data *data = rego->data;
1826 gdb_assert (data->index < gdbarch->nr_data);
1827 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1828 {
1829 data->free (gdbarch, gdbarch->data[data->index]);
1830 gdbarch->data[data->index] = NULL;
1831 }
1832 }
1833 xfree (gdbarch->data);
1834 gdbarch->data = NULL;
1835 }
1836
1837
1838 /* Initialize the current value of the specified per-architecture
1839 data-pointer. */
1840
1841 void
1842 set_gdbarch_data (struct gdbarch *gdbarch,
1843 struct gdbarch_data *data,
1844 void *pointer)
1845 {
1846 gdb_assert (data->index < gdbarch->nr_data);
1847 if (gdbarch->data[data->index] != NULL)
1848 {
1849 gdb_assert (data->free != NULL);
1850 data->free (gdbarch, gdbarch->data[data->index]);
1851 }
1852 gdbarch->data[data->index] = pointer;
1853 }
1854
1855 /* Return the current value of the specified per-architecture
1856 data-pointer. */
1857
1858 void *
1859 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1860 {
1861 gdb_assert (data->index < gdbarch->nr_data);
1862 /* The data-pointer isn't initialized, call init() to get a value but
1863 only if the architecture initializaiton has completed. Otherwise
1864 punt - hope that the caller knows what they are doing. */
1865 if (gdbarch->data[data->index] == NULL
1866 && gdbarch->initialized_p)
1867 {
1868 /* Be careful to detect an initialization cycle. */
1869 gdb_assert (data->init_p);
1870 data->init_p = 0;
1871 gdb_assert (data->init != NULL);
1872 gdbarch->data[data->index] = data->init (gdbarch);
1873 data->init_p = 1;
1874 gdb_assert (gdbarch->data[data->index] != NULL);
1875 }
1876 return gdbarch->data[data->index];
1877 }
1878
1879
1880
1881 /* Keep a registry of swapped data required by GDB modules. */
1882
1883 struct gdbarch_swap
1884 {
1885 void *swap;
1886 struct gdbarch_swap_registration *source;
1887 struct gdbarch_swap *next;
1888 };
1889
1890 struct gdbarch_swap_registration
1891 {
1892 void *data;
1893 unsigned long sizeof_data;
1894 gdbarch_swap_ftype *init;
1895 struct gdbarch_swap_registration *next;
1896 };
1897
1898 struct gdbarch_swap_registry
1899 {
1900 int nr;
1901 struct gdbarch_swap_registration *registrations;
1902 };
1903
1904 struct gdbarch_swap_registry gdbarch_swap_registry =
1905 {
1906 0, NULL,
1907 };
1908
1909 void
1910 register_gdbarch_swap (void *data,
1911 unsigned long sizeof_data,
1912 gdbarch_swap_ftype *init)
1913 {
1914 struct gdbarch_swap_registration **rego;
1915 for (rego = &gdbarch_swap_registry.registrations;
1916 (*rego) != NULL;
1917 rego = &(*rego)->next);
1918 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1919 (*rego)->next = NULL;
1920 (*rego)->init = init;
1921 (*rego)->data = data;
1922 (*rego)->sizeof_data = sizeof_data;
1923 }
1924
1925 static void
1926 clear_gdbarch_swap (struct gdbarch *gdbarch)
1927 {
1928 struct gdbarch_swap *curr;
1929 for (curr = gdbarch->swap;
1930 curr != NULL;
1931 curr = curr->next)
1932 {
1933 memset (curr->source->data, 0, curr->source->sizeof_data);
1934 }
1935 }
1936
1937 static void
1938 init_gdbarch_swap (struct gdbarch *gdbarch)
1939 {
1940 struct gdbarch_swap_registration *rego;
1941 struct gdbarch_swap **curr = &gdbarch->swap;
1942 for (rego = gdbarch_swap_registry.registrations;
1943 rego != NULL;
1944 rego = rego->next)
1945 {
1946 if (rego->data != NULL)
1947 {
1948 (*curr) = XMALLOC (struct gdbarch_swap);
1949 (*curr)->source = rego;
1950 (*curr)->swap = xmalloc (rego->sizeof_data);
1951 (*curr)->next = NULL;
1952 curr = &(*curr)->next;
1953 }
1954 if (rego->init != NULL)
1955 rego->init ();
1956 }
1957 }
1958
1959 static void
1960 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1961 {
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1964 curr != NULL;
1965 curr = curr->next)
1966 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1967 }
1968
1969 static void
1970 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1971 {
1972 struct gdbarch_swap *curr;
1973 for (curr = gdbarch->swap;
1974 curr != NULL;
1975 curr = curr->next)
1976 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1977 }
1978
1979
1980 /* Keep a registry of the architectures known by GDB. */
1981
1982 struct gdbarch_registration
1983 {
1984 enum bfd_architecture bfd_architecture;
1985 gdbarch_init_ftype *init;
1986 gdbarch_dump_tdep_ftype *dump_tdep;
1987 struct gdbarch_list *arches;
1988 struct gdbarch_registration *next;
1989 };
1990
1991 static struct gdbarch_registration *gdbarch_registry = NULL;
1992
1993 static void
1994 append_name (const char ***buf, int *nr, const char *name)
1995 {
1996 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1997 (*buf)[*nr] = name;
1998 *nr += 1;
1999 }
2000
2001 const char **
2002 gdbarch_printable_names (void)
2003 {
2004 if (GDB_MULTI_ARCH)
2005 {
2006 /* Accumulate a list of names based on the registed list of
2007 architectures. */
2008 enum bfd_architecture a;
2009 int nr_arches = 0;
2010 const char **arches = NULL;
2011 struct gdbarch_registration *rego;
2012 for (rego = gdbarch_registry;
2013 rego != NULL;
2014 rego = rego->next)
2015 {
2016 const struct bfd_arch_info *ap;
2017 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2018 if (ap == NULL)
2019 internal_error (__FILE__, __LINE__,
2020 "gdbarch_architecture_names: multi-arch unknown");
2021 do
2022 {
2023 append_name (&arches, &nr_arches, ap->printable_name);
2024 ap = ap->next;
2025 }
2026 while (ap != NULL);
2027 }
2028 append_name (&arches, &nr_arches, NULL);
2029 return arches;
2030 }
2031 else
2032 /* Just return all the architectures that BFD knows. Assume that
2033 the legacy architecture framework supports them. */
2034 return bfd_arch_list ();
2035 }
2036
2037
2038 void
2039 gdbarch_register (enum bfd_architecture bfd_architecture,
2040 gdbarch_init_ftype *init,
2041 gdbarch_dump_tdep_ftype *dump_tdep)
2042 {
2043 struct gdbarch_registration **curr;
2044 const struct bfd_arch_info *bfd_arch_info;
2045 /* Check that BFD recognizes this architecture */
2046 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2047 if (bfd_arch_info == NULL)
2048 {
2049 internal_error (__FILE__, __LINE__,
2050 "gdbarch: Attempt to register unknown architecture (%d)",
2051 bfd_architecture);
2052 }
2053 /* Check that we haven't seen this architecture before */
2054 for (curr = &gdbarch_registry;
2055 (*curr) != NULL;
2056 curr = &(*curr)->next)
2057 {
2058 if (bfd_architecture == (*curr)->bfd_architecture)
2059 internal_error (__FILE__, __LINE__,
2060 "gdbarch: Duplicate registraration of architecture (%s)",
2061 bfd_arch_info->printable_name);
2062 }
2063 /* log it */
2064 if (gdbarch_debug)
2065 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2066 bfd_arch_info->printable_name,
2067 (long) init);
2068 /* Append it */
2069 (*curr) = XMALLOC (struct gdbarch_registration);
2070 (*curr)->bfd_architecture = bfd_architecture;
2071 (*curr)->init = init;
2072 (*curr)->dump_tdep = dump_tdep;
2073 (*curr)->arches = NULL;
2074 (*curr)->next = NULL;
2075 /* When non- multi-arch, install whatever target dump routine we've
2076 been provided - hopefully that routine has been written correctly
2077 and works regardless of multi-arch. */
2078 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2079 && startup_gdbarch.dump_tdep == NULL)
2080 startup_gdbarch.dump_tdep = dump_tdep;
2081 }
2082
2083 void
2084 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2085 gdbarch_init_ftype *init)
2086 {
2087 gdbarch_register (bfd_architecture, init, NULL);
2088 }
2089
2090
2091 /* Look for an architecture using gdbarch_info. Base search on only
2092 BFD_ARCH_INFO and BYTE_ORDER. */
2093
2094 struct gdbarch_list *
2095 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2096 const struct gdbarch_info *info)
2097 {
2098 for (; arches != NULL; arches = arches->next)
2099 {
2100 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2101 continue;
2102 if (info->byte_order != arches->gdbarch->byte_order)
2103 continue;
2104 return arches;
2105 }
2106 return NULL;
2107 }
2108
2109
2110 /* Update the current architecture. Return ZERO if the update request
2111 failed. */
2112
2113 int
2114 gdbarch_update_p (struct gdbarch_info info)
2115 {
2116 struct gdbarch *new_gdbarch;
2117 struct gdbarch *old_gdbarch;
2118 struct gdbarch_registration *rego;
2119
2120 /* Fill in missing parts of the INFO struct using a number of
2121 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2122
2123 /* \`\`(gdb) set architecture ...'' */
2124 if (info.bfd_arch_info == NULL
2125 && !TARGET_ARCHITECTURE_AUTO)
2126 info.bfd_arch_info = TARGET_ARCHITECTURE;
2127 if (info.bfd_arch_info == NULL
2128 && info.abfd != NULL
2129 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2130 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2131 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2132 if (info.bfd_arch_info == NULL)
2133 info.bfd_arch_info = TARGET_ARCHITECTURE;
2134
2135 /* \`\`(gdb) set byte-order ...'' */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2137 && !TARGET_BYTE_ORDER_AUTO)
2138 info.byte_order = TARGET_BYTE_ORDER;
2139 /* From the INFO struct. */
2140 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2141 && info.abfd != NULL)
2142 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2143 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2144 : BFD_ENDIAN_UNKNOWN);
2145 /* From the current target. */
2146 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2147 info.byte_order = TARGET_BYTE_ORDER;
2148
2149 /* Must have found some sort of architecture. */
2150 gdb_assert (info.bfd_arch_info != NULL);
2151
2152 if (gdbarch_debug)
2153 {
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_update: info.bfd_arch_info %s\n",
2156 (info.bfd_arch_info != NULL
2157 ? info.bfd_arch_info->printable_name
2158 : "(null)"));
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_update: info.byte_order %d (%s)\n",
2161 info.byte_order,
2162 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2163 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2164 : "default"));
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.abfd 0x%lx\n",
2167 (long) info.abfd);
2168 fprintf_unfiltered (gdb_stdlog,
2169 "gdbarch_update: info.tdep_info 0x%lx\n",
2170 (long) info.tdep_info);
2171 }
2172
2173 /* Find the target that knows about this architecture. */
2174 for (rego = gdbarch_registry;
2175 rego != NULL;
2176 rego = rego->next)
2177 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2178 break;
2179 if (rego == NULL)
2180 {
2181 if (gdbarch_debug)
2182 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2183 return 0;
2184 }
2185
2186 /* Swap the data belonging to the old target out setting the
2187 installed data to zero. This stops the ->init() function trying
2188 to refer to the previous architecture's global data structures. */
2189 swapout_gdbarch_swap (current_gdbarch);
2190 clear_gdbarch_swap (current_gdbarch);
2191
2192 /* Save the previously selected architecture, setting the global to
2193 NULL. This stops ->init() trying to use the previous
2194 architecture's configuration. The previous architecture may not
2195 even be of the same architecture family. The most recent
2196 architecture of the same family is found at the head of the
2197 rego->arches list. */
2198 old_gdbarch = current_gdbarch;
2199 current_gdbarch = NULL;
2200
2201 /* Ask the target for a replacement architecture. */
2202 new_gdbarch = rego->init (info, rego->arches);
2203
2204 /* Did the target like it? No. Reject the change and revert to the
2205 old architecture. */
2206 if (new_gdbarch == NULL)
2207 {
2208 if (gdbarch_debug)
2209 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2210 swapin_gdbarch_swap (old_gdbarch);
2211 current_gdbarch = old_gdbarch;
2212 return 0;
2213 }
2214
2215 /* Did the architecture change? No. Oops, put the old architecture
2216 back. */
2217 if (old_gdbarch == new_gdbarch)
2218 {
2219 if (gdbarch_debug)
2220 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2221 (long) new_gdbarch,
2222 new_gdbarch->bfd_arch_info->printable_name);
2223 swapin_gdbarch_swap (old_gdbarch);
2224 current_gdbarch = old_gdbarch;
2225 return 1;
2226 }
2227
2228 /* Is this a pre-existing architecture? Yes. Move it to the front
2229 of the list of architectures (keeping the list sorted Most
2230 Recently Used) and then copy it in. */
2231 {
2232 struct gdbarch_list **list;
2233 for (list = &rego->arches;
2234 (*list) != NULL;
2235 list = &(*list)->next)
2236 {
2237 if ((*list)->gdbarch == new_gdbarch)
2238 {
2239 struct gdbarch_list *this;
2240 if (gdbarch_debug)
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2243 (long) new_gdbarch,
2244 new_gdbarch->bfd_arch_info->printable_name);
2245 /* Unlink this. */
2246 this = (*list);
2247 (*list) = this->next;
2248 /* Insert in the front. */
2249 this->next = rego->arches;
2250 rego->arches = this;
2251 /* Copy the new architecture in. */
2252 current_gdbarch = new_gdbarch;
2253 swapin_gdbarch_swap (new_gdbarch);
2254 architecture_changed_event ();
2255 return 1;
2256 }
2257 }
2258 }
2259
2260 /* Prepend this new architecture to the architecture list (keep the
2261 list sorted Most Recently Used). */
2262 {
2263 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2264 this->next = rego->arches;
2265 this->gdbarch = new_gdbarch;
2266 rego->arches = this;
2267 }
2268
2269 /* Switch to this new architecture marking it initialized. */
2270 current_gdbarch = new_gdbarch;
2271 current_gdbarch->initialized_p = 1;
2272 if (gdbarch_debug)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
2275 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2276 (long) new_gdbarch,
2277 new_gdbarch->bfd_arch_info->printable_name);
2278 }
2279
2280 /* Check that the newly installed architecture is valid. Plug in
2281 any post init values. */
2282 new_gdbarch->dump_tdep = rego->dump_tdep;
2283 verify_gdbarch (new_gdbarch);
2284
2285 /* Initialize the per-architecture memory (swap) areas.
2286 CURRENT_GDBARCH must be update before these modules are
2287 called. */
2288 init_gdbarch_swap (new_gdbarch);
2289
2290 /* Initialize the per-architecture data. CURRENT_GDBARCH
2291 must be updated before these modules are called. */
2292 architecture_changed_event ();
2293
2294 if (gdbarch_debug)
2295 gdbarch_dump (current_gdbarch, gdb_stdlog);
2296
2297 return 1;
2298 }
2299
2300
2301 /* Disassembler */
2302
2303 /* Pointer to the target-dependent disassembly function. */
2304 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2305 disassemble_info tm_print_insn_info;
2306
2307
2308 extern void _initialize_gdbarch (void);
2309
2310 void
2311 _initialize_gdbarch (void)
2312 {
2313 struct cmd_list_element *c;
2314
2315 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2316 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2317 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2318 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2319 tm_print_insn_info.print_address_func = dis_asm_print_address;
2320
2321 add_show_from_set (add_set_cmd ("arch",
2322 class_maintenance,
2323 var_zinteger,
2324 (char *)&gdbarch_debug,
2325 "Set architecture debugging.\\n\\
2326 When non-zero, architecture debugging is enabled.", &setdebuglist),
2327 &showdebuglist);
2328 c = add_set_cmd ("archdebug",
2329 class_maintenance,
2330 var_zinteger,
2331 (char *)&gdbarch_debug,
2332 "Set architecture debugging.\\n\\
2333 When non-zero, architecture debugging is enabled.", &setlist);
2334
2335 deprecate_cmd (c, "set debug arch");
2336 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2337 }
2338 EOF
2339
2340 # close things off
2341 exec 1>&2
2342 #../move-if-change new-gdbarch.c gdbarch.c
2343 compare_new gdbarch.c
This page took 0.150825 seconds and 4 git commands to generate.