2003-02-18 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
475 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
476 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
477 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
478 #
479 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
480 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
481 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
486 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
487 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
488 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
491 #
492 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
493 # much better but at least they are vaguely consistent). The headers
494 # and body contain convoluted #if/#else sequences for determine how
495 # things should be compiled. Instead of trying to mimic that
496 # behaviour here (and hence entrench it further) gdbarch simply
497 # reqires that these methods be set up from the word go. This also
498 # avoids any potential problems with moving beyond multi-arch partial.
499 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
500 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
501 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
502 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
504 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
505 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
506 # NOTE: cagney/2002-11-24: This function with predicate has a valid
507 # (callable) initial value. As a consequence, even when the predicate
508 # is false, the corresponding function works. This simplifies the
509 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
510 # doesn't need to be modified.
511 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
512 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
513 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
514 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
515 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
516 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
517 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
518 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
519 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
520 #
521 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
522 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
523 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
524 #
525 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
526 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
527 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
528 #
529 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
530 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
531 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
532 #
533 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
534 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
535 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
536 #
537 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
538 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
539 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
540 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
541 F:2:POP_FRAME:void:pop_frame:void:-:::0
542 #
543 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
544 #
545 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
549 #
550 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
551 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
552 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
553 #
554 F:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame:::0
555 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
556 #
557 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
558 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
559 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
560 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
561 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
562 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
563 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
564 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
565 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
566 #
567 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
568 #
569 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
570 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
571 F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
572 F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
573 F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
574 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
575 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
576 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
577 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
578 #
579 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
580 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
581 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
582 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
583 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
584 v:2:PARM_BOUNDARY:int:parm_boundary
585 #
586 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
587 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
588 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
589 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
600 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
601 # ADDR_BITS_REMOVE.
602 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
603 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
604 # the target needs software single step. An ISA method to implement it.
605 #
606 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
607 # using the breakpoint system instead of blatting memory directly (as with rs6000).
608 #
609 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
610 # single step. If not, then implement single step using breakpoints.
611 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
612 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
613 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
614
615
616 # For SVR4 shared libraries, each call goes through a small piece of
617 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
618 # to nonzero if we are currently stopped in one of these.
619 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
620
621 # Some systems also have trampoline code for returning from shared libs.
622 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
623
624 # Sigtramp is a routine that the kernel calls (which then calls the
625 # signal handler). On most machines it is a library routine that is
626 # linked into the executable.
627 #
628 # This macro, given a program counter value and the name of the
629 # function in which that PC resides (which can be null if the name is
630 # not known), returns nonzero if the PC and name show that we are in
631 # sigtramp.
632 #
633 # On most machines just see if the name is sigtramp (and if we have
634 # no name, assume we are not in sigtramp).
635 #
636 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
637 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
638 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
639 # own local NAME lookup.
640 #
641 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
642 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
643 # does not.
644 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
645 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
646 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
647 # A target might have problems with watchpoints as soon as the stack
648 # frame of the current function has been destroyed. This mostly happens
649 # as the first action in a funtion's epilogue. in_function_epilogue_p()
650 # is defined to return a non-zero value if either the given addr is one
651 # instruction after the stack destroying instruction up to the trailing
652 # return instruction or if we can figure out that the stack frame has
653 # already been invalidated regardless of the value of addr. Targets
654 # which don't suffer from that problem could just let this functionality
655 # untouched.
656 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
657 # Given a vector of command-line arguments, return a newly allocated
658 # string which, when passed to the create_inferior function, will be
659 # parsed (on Unix systems, by the shell) to yield the same vector.
660 # This function should call error() if the argument vector is not
661 # representable for this target or if this target does not support
662 # command-line arguments.
663 # ARGC is the number of elements in the vector.
664 # ARGV is an array of strings, one per argument.
665 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
666 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
667 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
668 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
669 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
670 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
671 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
672 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
673 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
674 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
675 # Is a register in a group
676 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
677 EOF
678 }
679
680 #
681 # The .log file
682 #
683 exec > new-gdbarch.log
684 function_list | while do_read
685 do
686 cat <<EOF
687 ${class} ${macro}(${actual})
688 ${returntype} ${function} ($formal)${attrib}
689 EOF
690 for r in ${read}
691 do
692 eval echo \"\ \ \ \ ${r}=\${${r}}\"
693 done
694 if class_is_predicate_p && fallback_default_p
695 then
696 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
697 kill $$
698 exit 1
699 fi
700 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
701 then
702 echo "Error: postdefault is useless when invalid_p=0" 1>&2
703 kill $$
704 exit 1
705 fi
706 if class_is_multiarch_p
707 then
708 if class_is_predicate_p ; then :
709 elif test "x${predefault}" = "x"
710 then
711 echo "Error: pure multi-arch function must have a predefault" 1>&2
712 kill $$
713 exit 1
714 fi
715 fi
716 echo ""
717 done
718
719 exec 1>&2
720 compare_new gdbarch.log
721
722
723 copyright ()
724 {
725 cat <<EOF
726 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
727
728 /* Dynamic architecture support for GDB, the GNU debugger.
729 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
730
731 This file is part of GDB.
732
733 This program is free software; you can redistribute it and/or modify
734 it under the terms of the GNU General Public License as published by
735 the Free Software Foundation; either version 2 of the License, or
736 (at your option) any later version.
737
738 This program is distributed in the hope that it will be useful,
739 but WITHOUT ANY WARRANTY; without even the implied warranty of
740 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
741 GNU General Public License for more details.
742
743 You should have received a copy of the GNU General Public License
744 along with this program; if not, write to the Free Software
745 Foundation, Inc., 59 Temple Place - Suite 330,
746 Boston, MA 02111-1307, USA. */
747
748 /* This file was created with the aid of \`\`gdbarch.sh''.
749
750 The Bourne shell script \`\`gdbarch.sh'' creates the files
751 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
752 against the existing \`\`gdbarch.[hc]''. Any differences found
753 being reported.
754
755 If editing this file, please also run gdbarch.sh and merge any
756 changes into that script. Conversely, when making sweeping changes
757 to this file, modifying gdbarch.sh and using its output may prove
758 easier. */
759
760 EOF
761 }
762
763 #
764 # The .h file
765 #
766
767 exec > new-gdbarch.h
768 copyright
769 cat <<EOF
770 #ifndef GDBARCH_H
771 #define GDBARCH_H
772
773 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
774 #if !GDB_MULTI_ARCH
775 /* Pull in function declarations refered to, indirectly, via macros. */
776 #include "inferior.h" /* For unsigned_address_to_pointer(). */
777 #endif
778
779 struct frame_info;
780 struct value;
781 struct objfile;
782 struct minimal_symbol;
783 struct regcache;
784 struct reggroup;
785
786 extern struct gdbarch *current_gdbarch;
787
788
789 /* If any of the following are defined, the target wasn't correctly
790 converted. */
791
792 #if GDB_MULTI_ARCH
793 #if defined (EXTRA_FRAME_INFO)
794 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
795 #endif
796 #endif
797
798 #if GDB_MULTI_ARCH
799 #if defined (FRAME_FIND_SAVED_REGS)
800 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
801 #endif
802 #endif
803
804 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
805 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
806 #endif
807 EOF
808
809 # function typedef's
810 printf "\n"
811 printf "\n"
812 printf "/* The following are pre-initialized by GDBARCH. */\n"
813 function_list | while do_read
814 do
815 if class_is_info_p
816 then
817 printf "\n"
818 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
819 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
820 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
821 printf "#error \"Non multi-arch definition of ${macro}\"\n"
822 printf "#endif\n"
823 printf "#if GDB_MULTI_ARCH\n"
824 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
825 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
826 printf "#endif\n"
827 printf "#endif\n"
828 fi
829 done
830
831 # function typedef's
832 printf "\n"
833 printf "\n"
834 printf "/* The following are initialized by the target dependent code. */\n"
835 function_list | while do_read
836 do
837 if [ -n "${comment}" ]
838 then
839 echo "${comment}" | sed \
840 -e '2 s,#,/*,' \
841 -e '3,$ s,#, ,' \
842 -e '$ s,$, */,'
843 fi
844 if class_is_multiarch_p
845 then
846 if class_is_predicate_p
847 then
848 printf "\n"
849 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
850 fi
851 else
852 if class_is_predicate_p
853 then
854 printf "\n"
855 printf "#if defined (${macro})\n"
856 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
857 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
858 printf "#if !defined (${macro}_P)\n"
859 printf "#define ${macro}_P() (1)\n"
860 printf "#endif\n"
861 printf "#endif\n"
862 printf "\n"
863 printf "/* Default predicate for non- multi-arch targets. */\n"
864 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
865 printf "#define ${macro}_P() (0)\n"
866 printf "#endif\n"
867 printf "\n"
868 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
869 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#endif\n"
872 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
873 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
874 printf "#endif\n"
875 fi
876 fi
877 if class_is_variable_p
878 then
879 if fallback_default_p || class_is_predicate_p
880 then
881 printf "\n"
882 printf "/* Default (value) for non- multi-arch platforms. */\n"
883 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
884 echo "#define ${macro} (${fallbackdefault})" \
885 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
886 printf "#endif\n"
887 fi
888 printf "\n"
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
890 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
891 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
892 printf "#error \"Non multi-arch definition of ${macro}\"\n"
893 printf "#endif\n"
894 if test "${level}" = ""
895 then
896 printf "#if !defined (${macro})\n"
897 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
898 printf "#endif\n"
899 else
900 printf "#if GDB_MULTI_ARCH\n"
901 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
902 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
903 printf "#endif\n"
904 printf "#endif\n"
905 fi
906 fi
907 if class_is_function_p
908 then
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 if [ "x${fallbackdefault}" = "x0" ]
916 then
917 if [ "x${actual}" = "x-" ]
918 then
919 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
920 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
921 else
922 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
923 fi
924 else
925 # FIXME: Should be passing current_gdbarch through!
926 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
927 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
928 fi
929 printf "#endif\n"
930 fi
931 printf "\n"
932 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
933 then
934 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
935 elif class_is_multiarch_p
936 then
937 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
938 else
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
940 fi
941 if [ "x${formal}" = "xvoid" ]
942 then
943 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
944 else
945 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
946 fi
947 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
948 if class_is_multiarch_p ; then :
949 else
950 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
951 printf "#error \"Non multi-arch definition of ${macro}\"\n"
952 printf "#endif\n"
953 printf "#if GDB_MULTI_ARCH\n"
954 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
955 if [ "x${actual}" = "x" ]
956 then
957 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
958 elif [ "x${actual}" = "x-" ]
959 then
960 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
961 else
962 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
963 fi
964 printf "#endif\n"
965 printf "#endif\n"
966 fi
967 fi
968 done
969
970 # close it off
971 cat <<EOF
972
973 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
974
975
976 /* Mechanism for co-ordinating the selection of a specific
977 architecture.
978
979 GDB targets (*-tdep.c) can register an interest in a specific
980 architecture. Other GDB components can register a need to maintain
981 per-architecture data.
982
983 The mechanisms below ensures that there is only a loose connection
984 between the set-architecture command and the various GDB
985 components. Each component can independently register their need
986 to maintain architecture specific data with gdbarch.
987
988 Pragmatics:
989
990 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
991 didn't scale.
992
993 The more traditional mega-struct containing architecture specific
994 data for all the various GDB components was also considered. Since
995 GDB is built from a variable number of (fairly independent)
996 components it was determined that the global aproach was not
997 applicable. */
998
999
1000 /* Register a new architectural family with GDB.
1001
1002 Register support for the specified ARCHITECTURE with GDB. When
1003 gdbarch determines that the specified architecture has been
1004 selected, the corresponding INIT function is called.
1005
1006 --
1007
1008 The INIT function takes two parameters: INFO which contains the
1009 information available to gdbarch about the (possibly new)
1010 architecture; ARCHES which is a list of the previously created
1011 \`\`struct gdbarch'' for this architecture.
1012
1013 The INFO parameter is, as far as possible, be pre-initialized with
1014 information obtained from INFO.ABFD or the previously selected
1015 architecture.
1016
1017 The ARCHES parameter is a linked list (sorted most recently used)
1018 of all the previously created architures for this architecture
1019 family. The (possibly NULL) ARCHES->gdbarch can used to access
1020 values from the previously selected architecture for this
1021 architecture family. The global \`\`current_gdbarch'' shall not be
1022 used.
1023
1024 The INIT function shall return any of: NULL - indicating that it
1025 doesn't recognize the selected architecture; an existing \`\`struct
1026 gdbarch'' from the ARCHES list - indicating that the new
1027 architecture is just a synonym for an earlier architecture (see
1028 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1029 - that describes the selected architecture (see gdbarch_alloc()).
1030
1031 The DUMP_TDEP function shall print out all target specific values.
1032 Care should be taken to ensure that the function works in both the
1033 multi-arch and non- multi-arch cases. */
1034
1035 struct gdbarch_list
1036 {
1037 struct gdbarch *gdbarch;
1038 struct gdbarch_list *next;
1039 };
1040
1041 struct gdbarch_info
1042 {
1043 /* Use default: NULL (ZERO). */
1044 const struct bfd_arch_info *bfd_arch_info;
1045
1046 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1047 int byte_order;
1048
1049 /* Use default: NULL (ZERO). */
1050 bfd *abfd;
1051
1052 /* Use default: NULL (ZERO). */
1053 struct gdbarch_tdep_info *tdep_info;
1054
1055 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1056 enum gdb_osabi osabi;
1057 };
1058
1059 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1060 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1061
1062 /* DEPRECATED - use gdbarch_register() */
1063 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1064
1065 extern void gdbarch_register (enum bfd_architecture architecture,
1066 gdbarch_init_ftype *,
1067 gdbarch_dump_tdep_ftype *);
1068
1069
1070 /* Return a freshly allocated, NULL terminated, array of the valid
1071 architecture names. Since architectures are registered during the
1072 _initialize phase this function only returns useful information
1073 once initialization has been completed. */
1074
1075 extern const char **gdbarch_printable_names (void);
1076
1077
1078 /* Helper function. Search the list of ARCHES for a GDBARCH that
1079 matches the information provided by INFO. */
1080
1081 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1082
1083
1084 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1085 basic initialization using values obtained from the INFO andTDEP
1086 parameters. set_gdbarch_*() functions are called to complete the
1087 initialization of the object. */
1088
1089 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1090
1091
1092 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1093 It is assumed that the caller freeds the \`\`struct
1094 gdbarch_tdep''. */
1095
1096 extern void gdbarch_free (struct gdbarch *);
1097
1098
1099 /* Helper function. Force an update of the current architecture.
1100
1101 The actual architecture selected is determined by INFO, \`\`(gdb) set
1102 architecture'' et.al., the existing architecture and BFD's default
1103 architecture. INFO should be initialized to zero and then selected
1104 fields should be updated.
1105
1106 Returns non-zero if the update succeeds */
1107
1108 extern int gdbarch_update_p (struct gdbarch_info info);
1109
1110
1111
1112 /* Register per-architecture data-pointer.
1113
1114 Reserve space for a per-architecture data-pointer. An identifier
1115 for the reserved data-pointer is returned. That identifer should
1116 be saved in a local static variable.
1117
1118 The per-architecture data-pointer is either initialized explicitly
1119 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1120 gdbarch_data()). FREE() is called to delete either an existing
1121 data-pointer overridden by set_gdbarch_data() or when the
1122 architecture object is being deleted.
1123
1124 When a previously created architecture is re-selected, the
1125 per-architecture data-pointer for that previous architecture is
1126 restored. INIT() is not re-called.
1127
1128 Multiple registrarants for any architecture are allowed (and
1129 strongly encouraged). */
1130
1131 struct gdbarch_data;
1132
1133 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1134 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1135 void *pointer);
1136 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1137 gdbarch_data_free_ftype *free);
1138 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1139 struct gdbarch_data *data,
1140 void *pointer);
1141
1142 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1143
1144
1145 /* Register per-architecture memory region.
1146
1147 Provide a memory-region swap mechanism. Per-architecture memory
1148 region are created. These memory regions are swapped whenever the
1149 architecture is changed. For a new architecture, the memory region
1150 is initialized with zero (0) and the INIT function is called.
1151
1152 Memory regions are swapped / initialized in the order that they are
1153 registered. NULL DATA and/or INIT values can be specified.
1154
1155 New code should use register_gdbarch_data(). */
1156
1157 typedef void (gdbarch_swap_ftype) (void);
1158 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1159 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1160
1161
1162
1163 /* The target-system-dependent byte order is dynamic */
1164
1165 extern int target_byte_order;
1166 #ifndef TARGET_BYTE_ORDER
1167 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1168 #endif
1169
1170 extern int target_byte_order_auto;
1171 #ifndef TARGET_BYTE_ORDER_AUTO
1172 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1173 #endif
1174
1175
1176
1177 /* The target-system-dependent BFD architecture is dynamic */
1178
1179 extern int target_architecture_auto;
1180 #ifndef TARGET_ARCHITECTURE_AUTO
1181 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1182 #endif
1183
1184 extern const struct bfd_arch_info *target_architecture;
1185 #ifndef TARGET_ARCHITECTURE
1186 #define TARGET_ARCHITECTURE (target_architecture + 0)
1187 #endif
1188
1189
1190 /* The target-system-dependent disassembler is semi-dynamic */
1191
1192 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1193 unsigned int len, disassemble_info *info);
1194
1195 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1196 disassemble_info *info);
1197
1198 extern void dis_asm_print_address (bfd_vma addr,
1199 disassemble_info *info);
1200
1201 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1202 extern disassemble_info tm_print_insn_info;
1203 #ifndef TARGET_PRINT_INSN_INFO
1204 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1205 #endif
1206
1207
1208
1209 /* Set the dynamic target-system-dependent parameters (architecture,
1210 byte-order, ...) using information found in the BFD */
1211
1212 extern void set_gdbarch_from_file (bfd *);
1213
1214
1215 /* Initialize the current architecture to the "first" one we find on
1216 our list. */
1217
1218 extern void initialize_current_architecture (void);
1219
1220 /* For non-multiarched targets, do any initialization of the default
1221 gdbarch object necessary after the _initialize_MODULE functions
1222 have run. */
1223 extern void initialize_non_multiarch (void);
1224
1225 /* gdbarch trace variable */
1226 extern int gdbarch_debug;
1227
1228 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1229
1230 #endif
1231 EOF
1232 exec 1>&2
1233 #../move-if-change new-gdbarch.h gdbarch.h
1234 compare_new gdbarch.h
1235
1236
1237 #
1238 # C file
1239 #
1240
1241 exec > new-gdbarch.c
1242 copyright
1243 cat <<EOF
1244
1245 #include "defs.h"
1246 #include "arch-utils.h"
1247
1248 #if GDB_MULTI_ARCH
1249 #include "gdbcmd.h"
1250 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1251 #else
1252 /* Just include everything in sight so that the every old definition
1253 of macro is visible. */
1254 #include "gdb_string.h"
1255 #include <ctype.h>
1256 #include "symtab.h"
1257 #include "frame.h"
1258 #include "inferior.h"
1259 #include "breakpoint.h"
1260 #include "gdb_wait.h"
1261 #include "gdbcore.h"
1262 #include "gdbcmd.h"
1263 #include "target.h"
1264 #include "gdbthread.h"
1265 #include "annotate.h"
1266 #include "symfile.h" /* for overlay functions */
1267 #include "value.h" /* For old tm.h/nm.h macros. */
1268 #endif
1269 #include "symcat.h"
1270
1271 #include "floatformat.h"
1272
1273 #include "gdb_assert.h"
1274 #include "gdb_string.h"
1275 #include "gdb-events.h"
1276 #include "reggroups.h"
1277 #include "osabi.h"
1278
1279 /* Static function declarations */
1280
1281 static void verify_gdbarch (struct gdbarch *gdbarch);
1282 static void alloc_gdbarch_data (struct gdbarch *);
1283 static void free_gdbarch_data (struct gdbarch *);
1284 static void init_gdbarch_swap (struct gdbarch *);
1285 static void clear_gdbarch_swap (struct gdbarch *);
1286 static void swapout_gdbarch_swap (struct gdbarch *);
1287 static void swapin_gdbarch_swap (struct gdbarch *);
1288
1289 /* Non-zero if we want to trace architecture code. */
1290
1291 #ifndef GDBARCH_DEBUG
1292 #define GDBARCH_DEBUG 0
1293 #endif
1294 int gdbarch_debug = GDBARCH_DEBUG;
1295
1296 EOF
1297
1298 # gdbarch open the gdbarch object
1299 printf "\n"
1300 printf "/* Maintain the struct gdbarch object */\n"
1301 printf "\n"
1302 printf "struct gdbarch\n"
1303 printf "{\n"
1304 printf " /* Has this architecture been fully initialized? */\n"
1305 printf " int initialized_p;\n"
1306 printf " /* basic architectural information */\n"
1307 function_list | while do_read
1308 do
1309 if class_is_info_p
1310 then
1311 printf " ${returntype} ${function};\n"
1312 fi
1313 done
1314 printf "\n"
1315 printf " /* target specific vector. */\n"
1316 printf " struct gdbarch_tdep *tdep;\n"
1317 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1318 printf "\n"
1319 printf " /* per-architecture data-pointers */\n"
1320 printf " unsigned nr_data;\n"
1321 printf " void **data;\n"
1322 printf "\n"
1323 printf " /* per-architecture swap-regions */\n"
1324 printf " struct gdbarch_swap *swap;\n"
1325 printf "\n"
1326 cat <<EOF
1327 /* Multi-arch values.
1328
1329 When extending this structure you must:
1330
1331 Add the field below.
1332
1333 Declare set/get functions and define the corresponding
1334 macro in gdbarch.h.
1335
1336 gdbarch_alloc(): If zero/NULL is not a suitable default,
1337 initialize the new field.
1338
1339 verify_gdbarch(): Confirm that the target updated the field
1340 correctly.
1341
1342 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1343 field is dumped out
1344
1345 \`\`startup_gdbarch()'': Append an initial value to the static
1346 variable (base values on the host's c-type system).
1347
1348 get_gdbarch(): Implement the set/get functions (probably using
1349 the macro's as shortcuts).
1350
1351 */
1352
1353 EOF
1354 function_list | while do_read
1355 do
1356 if class_is_variable_p
1357 then
1358 printf " ${returntype} ${function};\n"
1359 elif class_is_function_p
1360 then
1361 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1362 fi
1363 done
1364 printf "};\n"
1365
1366 # A pre-initialized vector
1367 printf "\n"
1368 printf "\n"
1369 cat <<EOF
1370 /* The default architecture uses host values (for want of a better
1371 choice). */
1372 EOF
1373 printf "\n"
1374 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1375 printf "\n"
1376 printf "struct gdbarch startup_gdbarch =\n"
1377 printf "{\n"
1378 printf " 1, /* Always initialized. */\n"
1379 printf " /* basic architecture information */\n"
1380 function_list | while do_read
1381 do
1382 if class_is_info_p
1383 then
1384 printf " ${staticdefault},\n"
1385 fi
1386 done
1387 cat <<EOF
1388 /* target specific vector and its dump routine */
1389 NULL, NULL,
1390 /*per-architecture data-pointers and swap regions */
1391 0, NULL, NULL,
1392 /* Multi-arch values */
1393 EOF
1394 function_list | while do_read
1395 do
1396 if class_is_function_p || class_is_variable_p
1397 then
1398 printf " ${staticdefault},\n"
1399 fi
1400 done
1401 cat <<EOF
1402 /* startup_gdbarch() */
1403 };
1404
1405 struct gdbarch *current_gdbarch = &startup_gdbarch;
1406
1407 /* Do any initialization needed for a non-multiarch configuration
1408 after the _initialize_MODULE functions have been run. */
1409 void
1410 initialize_non_multiarch (void)
1411 {
1412 alloc_gdbarch_data (&startup_gdbarch);
1413 /* Ensure that all swap areas are zeroed so that they again think
1414 they are starting from scratch. */
1415 clear_gdbarch_swap (&startup_gdbarch);
1416 init_gdbarch_swap (&startup_gdbarch);
1417 }
1418 EOF
1419
1420 # Create a new gdbarch struct
1421 printf "\n"
1422 printf "\n"
1423 cat <<EOF
1424 /* Create a new \`\`struct gdbarch'' based on information provided by
1425 \`\`struct gdbarch_info''. */
1426 EOF
1427 printf "\n"
1428 cat <<EOF
1429 struct gdbarch *
1430 gdbarch_alloc (const struct gdbarch_info *info,
1431 struct gdbarch_tdep *tdep)
1432 {
1433 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1434 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1435 the current local architecture and not the previous global
1436 architecture. This ensures that the new architectures initial
1437 values are not influenced by the previous architecture. Once
1438 everything is parameterised with gdbarch, this will go away. */
1439 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1440 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1441
1442 alloc_gdbarch_data (current_gdbarch);
1443
1444 current_gdbarch->tdep = tdep;
1445 EOF
1446 printf "\n"
1447 function_list | while do_read
1448 do
1449 if class_is_info_p
1450 then
1451 printf " current_gdbarch->${function} = info->${function};\n"
1452 fi
1453 done
1454 printf "\n"
1455 printf " /* Force the explicit initialization of these. */\n"
1456 function_list | while do_read
1457 do
1458 if class_is_function_p || class_is_variable_p
1459 then
1460 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1461 then
1462 printf " current_gdbarch->${function} = ${predefault};\n"
1463 fi
1464 fi
1465 done
1466 cat <<EOF
1467 /* gdbarch_alloc() */
1468
1469 return current_gdbarch;
1470 }
1471 EOF
1472
1473 # Free a gdbarch struct.
1474 printf "\n"
1475 printf "\n"
1476 cat <<EOF
1477 /* Free a gdbarch struct. This should never happen in normal
1478 operation --- once you've created a gdbarch, you keep it around.
1479 However, if an architecture's init function encounters an error
1480 building the structure, it may need to clean up a partially
1481 constructed gdbarch. */
1482
1483 void
1484 gdbarch_free (struct gdbarch *arch)
1485 {
1486 gdb_assert (arch != NULL);
1487 free_gdbarch_data (arch);
1488 xfree (arch);
1489 }
1490 EOF
1491
1492 # verify a new architecture
1493 printf "\n"
1494 printf "\n"
1495 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1496 printf "\n"
1497 cat <<EOF
1498 static void
1499 verify_gdbarch (struct gdbarch *gdbarch)
1500 {
1501 struct ui_file *log;
1502 struct cleanup *cleanups;
1503 long dummy;
1504 char *buf;
1505 /* Only perform sanity checks on a multi-arch target. */
1506 if (!GDB_MULTI_ARCH)
1507 return;
1508 log = mem_fileopen ();
1509 cleanups = make_cleanup_ui_file_delete (log);
1510 /* fundamental */
1511 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1512 fprintf_unfiltered (log, "\n\tbyte-order");
1513 if (gdbarch->bfd_arch_info == NULL)
1514 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1515 /* Check those that need to be defined for the given multi-arch level. */
1516 EOF
1517 function_list | while do_read
1518 do
1519 if class_is_function_p || class_is_variable_p
1520 then
1521 if [ "x${invalid_p}" = "x0" ]
1522 then
1523 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1524 elif class_is_predicate_p
1525 then
1526 printf " /* Skip verify of ${function}, has predicate */\n"
1527 # FIXME: See do_read for potential simplification
1528 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1529 then
1530 printf " if (${invalid_p})\n"
1531 printf " gdbarch->${function} = ${postdefault};\n"
1532 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1533 then
1534 printf " if (gdbarch->${function} == ${predefault})\n"
1535 printf " gdbarch->${function} = ${postdefault};\n"
1536 elif [ -n "${postdefault}" ]
1537 then
1538 printf " if (gdbarch->${function} == 0)\n"
1539 printf " gdbarch->${function} = ${postdefault};\n"
1540 elif [ -n "${invalid_p}" ]
1541 then
1542 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1543 printf " && (${invalid_p}))\n"
1544 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1545 elif [ -n "${predefault}" ]
1546 then
1547 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1548 printf " && (gdbarch->${function} == ${predefault}))\n"
1549 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1550 fi
1551 fi
1552 done
1553 cat <<EOF
1554 buf = ui_file_xstrdup (log, &dummy);
1555 make_cleanup (xfree, buf);
1556 if (strlen (buf) > 0)
1557 internal_error (__FILE__, __LINE__,
1558 "verify_gdbarch: the following are invalid ...%s",
1559 buf);
1560 do_cleanups (cleanups);
1561 }
1562 EOF
1563
1564 # dump the structure
1565 printf "\n"
1566 printf "\n"
1567 cat <<EOF
1568 /* Print out the details of the current architecture. */
1569
1570 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1571 just happens to match the global variable \`\`current_gdbarch''. That
1572 way macros refering to that variable get the local and not the global
1573 version - ulgh. Once everything is parameterised with gdbarch, this
1574 will go away. */
1575
1576 void
1577 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1578 {
1579 fprintf_unfiltered (file,
1580 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1581 GDB_MULTI_ARCH);
1582 EOF
1583 function_list | sort -t: -k 3 | while do_read
1584 do
1585 # First the predicate
1586 if class_is_predicate_p
1587 then
1588 if class_is_multiarch_p
1589 then
1590 printf " if (GDB_MULTI_ARCH)\n"
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1593 printf " gdbarch_${function}_p (current_gdbarch));\n"
1594 else
1595 printf "#ifdef ${macro}_P\n"
1596 printf " fprintf_unfiltered (file,\n"
1597 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1598 printf " \"${macro}_P()\",\n"
1599 printf " XSTRING (${macro}_P ()));\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1602 printf " ${macro}_P ());\n"
1603 printf "#endif\n"
1604 fi
1605 fi
1606 # multiarch functions don't have macros.
1607 if class_is_multiarch_p
1608 then
1609 printf " if (GDB_MULTI_ARCH)\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1612 printf " (long) current_gdbarch->${function});\n"
1613 continue
1614 fi
1615 # Print the macro definition.
1616 printf "#ifdef ${macro}\n"
1617 if [ "x${returntype}" = "xvoid" ]
1618 then
1619 printf "#if GDB_MULTI_ARCH\n"
1620 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1621 fi
1622 if class_is_function_p
1623 then
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1626 printf " \"${macro}(${actual})\",\n"
1627 printf " XSTRING (${macro} (${actual})));\n"
1628 else
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1631 printf " XSTRING (${macro}));\n"
1632 fi
1633 # Print the architecture vector value
1634 if [ "x${returntype}" = "xvoid" ]
1635 then
1636 printf "#endif\n"
1637 fi
1638 if [ "x${print_p}" = "x()" ]
1639 then
1640 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1641 elif [ "x${print_p}" = "x0" ]
1642 then
1643 printf " /* skip print of ${macro}, print_p == 0. */\n"
1644 elif [ -n "${print_p}" ]
1645 then
1646 printf " if (${print_p})\n"
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1649 printf " ${print});\n"
1650 elif class_is_function_p
1651 then
1652 printf " if (GDB_MULTI_ARCH)\n"
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1655 printf " (long) current_gdbarch->${function}\n"
1656 printf " /*${macro} ()*/);\n"
1657 else
1658 printf " fprintf_unfiltered (file,\n"
1659 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1660 printf " ${print});\n"
1661 fi
1662 printf "#endif\n"
1663 done
1664 cat <<EOF
1665 if (current_gdbarch->dump_tdep != NULL)
1666 current_gdbarch->dump_tdep (current_gdbarch, file);
1667 }
1668 EOF
1669
1670
1671 # GET/SET
1672 printf "\n"
1673 cat <<EOF
1674 struct gdbarch_tdep *
1675 gdbarch_tdep (struct gdbarch *gdbarch)
1676 {
1677 if (gdbarch_debug >= 2)
1678 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1679 return gdbarch->tdep;
1680 }
1681 EOF
1682 printf "\n"
1683 function_list | while do_read
1684 do
1685 if class_is_predicate_p
1686 then
1687 printf "\n"
1688 printf "int\n"
1689 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1690 printf "{\n"
1691 printf " gdb_assert (gdbarch != NULL);\n"
1692 if [ -n "${predicate}" ]
1693 then
1694 printf " return ${predicate};\n"
1695 else
1696 printf " return gdbarch->${function} != 0;\n"
1697 fi
1698 printf "}\n"
1699 fi
1700 if class_is_function_p
1701 then
1702 printf "\n"
1703 printf "${returntype}\n"
1704 if [ "x${formal}" = "xvoid" ]
1705 then
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1707 else
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1709 fi
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 printf " if (gdbarch->${function} == 0)\n"
1713 printf " internal_error (__FILE__, __LINE__,\n"
1714 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1715 if class_is_predicate_p && test -n "${predicate}"
1716 then
1717 # Allow a call to a function with a predicate.
1718 printf " /* Ignore predicate (${predicate}). */\n"
1719 fi
1720 printf " if (gdbarch_debug >= 2)\n"
1721 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1722 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1723 then
1724 if class_is_multiarch_p
1725 then
1726 params="gdbarch"
1727 else
1728 params=""
1729 fi
1730 else
1731 if class_is_multiarch_p
1732 then
1733 params="gdbarch, ${actual}"
1734 else
1735 params="${actual}"
1736 fi
1737 fi
1738 if [ "x${returntype}" = "xvoid" ]
1739 then
1740 printf " gdbarch->${function} (${params});\n"
1741 else
1742 printf " return gdbarch->${function} (${params});\n"
1743 fi
1744 printf "}\n"
1745 printf "\n"
1746 printf "void\n"
1747 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1748 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1749 printf "{\n"
1750 printf " gdbarch->${function} = ${function};\n"
1751 printf "}\n"
1752 elif class_is_variable_p
1753 then
1754 printf "\n"
1755 printf "${returntype}\n"
1756 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1757 printf "{\n"
1758 printf " gdb_assert (gdbarch != NULL);\n"
1759 if [ "x${invalid_p}" = "x0" ]
1760 then
1761 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1762 elif [ -n "${invalid_p}" ]
1763 then
1764 printf " if (${invalid_p})\n"
1765 printf " internal_error (__FILE__, __LINE__,\n"
1766 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1767 elif [ -n "${predefault}" ]
1768 then
1769 printf " if (gdbarch->${function} == ${predefault})\n"
1770 printf " internal_error (__FILE__, __LINE__,\n"
1771 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1772 fi
1773 printf " if (gdbarch_debug >= 2)\n"
1774 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1775 printf " return gdbarch->${function};\n"
1776 printf "}\n"
1777 printf "\n"
1778 printf "void\n"
1779 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1780 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1781 printf "{\n"
1782 printf " gdbarch->${function} = ${function};\n"
1783 printf "}\n"
1784 elif class_is_info_p
1785 then
1786 printf "\n"
1787 printf "${returntype}\n"
1788 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1789 printf "{\n"
1790 printf " gdb_assert (gdbarch != NULL);\n"
1791 printf " if (gdbarch_debug >= 2)\n"
1792 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1793 printf " return gdbarch->${function};\n"
1794 printf "}\n"
1795 fi
1796 done
1797
1798 # All the trailing guff
1799 cat <<EOF
1800
1801
1802 /* Keep a registry of per-architecture data-pointers required by GDB
1803 modules. */
1804
1805 struct gdbarch_data
1806 {
1807 unsigned index;
1808 int init_p;
1809 gdbarch_data_init_ftype *init;
1810 gdbarch_data_free_ftype *free;
1811 };
1812
1813 struct gdbarch_data_registration
1814 {
1815 struct gdbarch_data *data;
1816 struct gdbarch_data_registration *next;
1817 };
1818
1819 struct gdbarch_data_registry
1820 {
1821 unsigned nr;
1822 struct gdbarch_data_registration *registrations;
1823 };
1824
1825 struct gdbarch_data_registry gdbarch_data_registry =
1826 {
1827 0, NULL,
1828 };
1829
1830 struct gdbarch_data *
1831 register_gdbarch_data (gdbarch_data_init_ftype *init,
1832 gdbarch_data_free_ftype *free)
1833 {
1834 struct gdbarch_data_registration **curr;
1835 /* Append the new registraration. */
1836 for (curr = &gdbarch_data_registry.registrations;
1837 (*curr) != NULL;
1838 curr = &(*curr)->next);
1839 (*curr) = XMALLOC (struct gdbarch_data_registration);
1840 (*curr)->next = NULL;
1841 (*curr)->data = XMALLOC (struct gdbarch_data);
1842 (*curr)->data->index = gdbarch_data_registry.nr++;
1843 (*curr)->data->init = init;
1844 (*curr)->data->init_p = 1;
1845 (*curr)->data->free = free;
1846 return (*curr)->data;
1847 }
1848
1849
1850 /* Create/delete the gdbarch data vector. */
1851
1852 static void
1853 alloc_gdbarch_data (struct gdbarch *gdbarch)
1854 {
1855 gdb_assert (gdbarch->data == NULL);
1856 gdbarch->nr_data = gdbarch_data_registry.nr;
1857 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1858 }
1859
1860 static void
1861 free_gdbarch_data (struct gdbarch *gdbarch)
1862 {
1863 struct gdbarch_data_registration *rego;
1864 gdb_assert (gdbarch->data != NULL);
1865 for (rego = gdbarch_data_registry.registrations;
1866 rego != NULL;
1867 rego = rego->next)
1868 {
1869 struct gdbarch_data *data = rego->data;
1870 gdb_assert (data->index < gdbarch->nr_data);
1871 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1872 {
1873 data->free (gdbarch, gdbarch->data[data->index]);
1874 gdbarch->data[data->index] = NULL;
1875 }
1876 }
1877 xfree (gdbarch->data);
1878 gdbarch->data = NULL;
1879 }
1880
1881
1882 /* Initialize the current value of the specified per-architecture
1883 data-pointer. */
1884
1885 void
1886 set_gdbarch_data (struct gdbarch *gdbarch,
1887 struct gdbarch_data *data,
1888 void *pointer)
1889 {
1890 gdb_assert (data->index < gdbarch->nr_data);
1891 if (gdbarch->data[data->index] != NULL)
1892 {
1893 gdb_assert (data->free != NULL);
1894 data->free (gdbarch, gdbarch->data[data->index]);
1895 }
1896 gdbarch->data[data->index] = pointer;
1897 }
1898
1899 /* Return the current value of the specified per-architecture
1900 data-pointer. */
1901
1902 void *
1903 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1904 {
1905 gdb_assert (data->index < gdbarch->nr_data);
1906 /* The data-pointer isn't initialized, call init() to get a value but
1907 only if the architecture initializaiton has completed. Otherwise
1908 punt - hope that the caller knows what they are doing. */
1909 if (gdbarch->data[data->index] == NULL
1910 && gdbarch->initialized_p)
1911 {
1912 /* Be careful to detect an initialization cycle. */
1913 gdb_assert (data->init_p);
1914 data->init_p = 0;
1915 gdb_assert (data->init != NULL);
1916 gdbarch->data[data->index] = data->init (gdbarch);
1917 data->init_p = 1;
1918 gdb_assert (gdbarch->data[data->index] != NULL);
1919 }
1920 return gdbarch->data[data->index];
1921 }
1922
1923
1924
1925 /* Keep a registry of swapped data required by GDB modules. */
1926
1927 struct gdbarch_swap
1928 {
1929 void *swap;
1930 struct gdbarch_swap_registration *source;
1931 struct gdbarch_swap *next;
1932 };
1933
1934 struct gdbarch_swap_registration
1935 {
1936 void *data;
1937 unsigned long sizeof_data;
1938 gdbarch_swap_ftype *init;
1939 struct gdbarch_swap_registration *next;
1940 };
1941
1942 struct gdbarch_swap_registry
1943 {
1944 int nr;
1945 struct gdbarch_swap_registration *registrations;
1946 };
1947
1948 struct gdbarch_swap_registry gdbarch_swap_registry =
1949 {
1950 0, NULL,
1951 };
1952
1953 void
1954 register_gdbarch_swap (void *data,
1955 unsigned long sizeof_data,
1956 gdbarch_swap_ftype *init)
1957 {
1958 struct gdbarch_swap_registration **rego;
1959 for (rego = &gdbarch_swap_registry.registrations;
1960 (*rego) != NULL;
1961 rego = &(*rego)->next);
1962 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1963 (*rego)->next = NULL;
1964 (*rego)->init = init;
1965 (*rego)->data = data;
1966 (*rego)->sizeof_data = sizeof_data;
1967 }
1968
1969 static void
1970 clear_gdbarch_swap (struct gdbarch *gdbarch)
1971 {
1972 struct gdbarch_swap *curr;
1973 for (curr = gdbarch->swap;
1974 curr != NULL;
1975 curr = curr->next)
1976 {
1977 memset (curr->source->data, 0, curr->source->sizeof_data);
1978 }
1979 }
1980
1981 static void
1982 init_gdbarch_swap (struct gdbarch *gdbarch)
1983 {
1984 struct gdbarch_swap_registration *rego;
1985 struct gdbarch_swap **curr = &gdbarch->swap;
1986 for (rego = gdbarch_swap_registry.registrations;
1987 rego != NULL;
1988 rego = rego->next)
1989 {
1990 if (rego->data != NULL)
1991 {
1992 (*curr) = XMALLOC (struct gdbarch_swap);
1993 (*curr)->source = rego;
1994 (*curr)->swap = xmalloc (rego->sizeof_data);
1995 (*curr)->next = NULL;
1996 curr = &(*curr)->next;
1997 }
1998 if (rego->init != NULL)
1999 rego->init ();
2000 }
2001 }
2002
2003 static void
2004 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2005 {
2006 struct gdbarch_swap *curr;
2007 for (curr = gdbarch->swap;
2008 curr != NULL;
2009 curr = curr->next)
2010 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2011 }
2012
2013 static void
2014 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2015 {
2016 struct gdbarch_swap *curr;
2017 for (curr = gdbarch->swap;
2018 curr != NULL;
2019 curr = curr->next)
2020 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2021 }
2022
2023
2024 /* Keep a registry of the architectures known by GDB. */
2025
2026 struct gdbarch_registration
2027 {
2028 enum bfd_architecture bfd_architecture;
2029 gdbarch_init_ftype *init;
2030 gdbarch_dump_tdep_ftype *dump_tdep;
2031 struct gdbarch_list *arches;
2032 struct gdbarch_registration *next;
2033 };
2034
2035 static struct gdbarch_registration *gdbarch_registry = NULL;
2036
2037 static void
2038 append_name (const char ***buf, int *nr, const char *name)
2039 {
2040 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2041 (*buf)[*nr] = name;
2042 *nr += 1;
2043 }
2044
2045 const char **
2046 gdbarch_printable_names (void)
2047 {
2048 if (GDB_MULTI_ARCH)
2049 {
2050 /* Accumulate a list of names based on the registed list of
2051 architectures. */
2052 enum bfd_architecture a;
2053 int nr_arches = 0;
2054 const char **arches = NULL;
2055 struct gdbarch_registration *rego;
2056 for (rego = gdbarch_registry;
2057 rego != NULL;
2058 rego = rego->next)
2059 {
2060 const struct bfd_arch_info *ap;
2061 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2062 if (ap == NULL)
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch_architecture_names: multi-arch unknown");
2065 do
2066 {
2067 append_name (&arches, &nr_arches, ap->printable_name);
2068 ap = ap->next;
2069 }
2070 while (ap != NULL);
2071 }
2072 append_name (&arches, &nr_arches, NULL);
2073 return arches;
2074 }
2075 else
2076 /* Just return all the architectures that BFD knows. Assume that
2077 the legacy architecture framework supports them. */
2078 return bfd_arch_list ();
2079 }
2080
2081
2082 void
2083 gdbarch_register (enum bfd_architecture bfd_architecture,
2084 gdbarch_init_ftype *init,
2085 gdbarch_dump_tdep_ftype *dump_tdep)
2086 {
2087 struct gdbarch_registration **curr;
2088 const struct bfd_arch_info *bfd_arch_info;
2089 /* Check that BFD recognizes this architecture */
2090 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2091 if (bfd_arch_info == NULL)
2092 {
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch: Attempt to register unknown architecture (%d)",
2095 bfd_architecture);
2096 }
2097 /* Check that we haven't seen this architecture before */
2098 for (curr = &gdbarch_registry;
2099 (*curr) != NULL;
2100 curr = &(*curr)->next)
2101 {
2102 if (bfd_architecture == (*curr)->bfd_architecture)
2103 internal_error (__FILE__, __LINE__,
2104 "gdbarch: Duplicate registraration of architecture (%s)",
2105 bfd_arch_info->printable_name);
2106 }
2107 /* log it */
2108 if (gdbarch_debug)
2109 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2110 bfd_arch_info->printable_name,
2111 (long) init);
2112 /* Append it */
2113 (*curr) = XMALLOC (struct gdbarch_registration);
2114 (*curr)->bfd_architecture = bfd_architecture;
2115 (*curr)->init = init;
2116 (*curr)->dump_tdep = dump_tdep;
2117 (*curr)->arches = NULL;
2118 (*curr)->next = NULL;
2119 /* When non- multi-arch, install whatever target dump routine we've
2120 been provided - hopefully that routine has been written correctly
2121 and works regardless of multi-arch. */
2122 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2123 && startup_gdbarch.dump_tdep == NULL)
2124 startup_gdbarch.dump_tdep = dump_tdep;
2125 }
2126
2127 void
2128 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2129 gdbarch_init_ftype *init)
2130 {
2131 gdbarch_register (bfd_architecture, init, NULL);
2132 }
2133
2134
2135 /* Look for an architecture using gdbarch_info. Base search on only
2136 BFD_ARCH_INFO and BYTE_ORDER. */
2137
2138 struct gdbarch_list *
2139 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2140 const struct gdbarch_info *info)
2141 {
2142 for (; arches != NULL; arches = arches->next)
2143 {
2144 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2145 continue;
2146 if (info->byte_order != arches->gdbarch->byte_order)
2147 continue;
2148 if (info->osabi != arches->gdbarch->osabi)
2149 continue;
2150 return arches;
2151 }
2152 return NULL;
2153 }
2154
2155
2156 /* Update the current architecture. Return ZERO if the update request
2157 failed. */
2158
2159 int
2160 gdbarch_update_p (struct gdbarch_info info)
2161 {
2162 struct gdbarch *new_gdbarch;
2163 struct gdbarch *old_gdbarch;
2164 struct gdbarch_registration *rego;
2165
2166 /* Fill in missing parts of the INFO struct using a number of
2167 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2168
2169 /* \`\`(gdb) set architecture ...'' */
2170 if (info.bfd_arch_info == NULL
2171 && !TARGET_ARCHITECTURE_AUTO)
2172 info.bfd_arch_info = TARGET_ARCHITECTURE;
2173 if (info.bfd_arch_info == NULL
2174 && info.abfd != NULL
2175 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2176 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2177 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2178 if (info.bfd_arch_info == NULL)
2179 info.bfd_arch_info = TARGET_ARCHITECTURE;
2180
2181 /* \`\`(gdb) set byte-order ...'' */
2182 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2183 && !TARGET_BYTE_ORDER_AUTO)
2184 info.byte_order = TARGET_BYTE_ORDER;
2185 /* From the INFO struct. */
2186 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2187 && info.abfd != NULL)
2188 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2189 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2190 : BFD_ENDIAN_UNKNOWN);
2191 /* From the current target. */
2192 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2193 info.byte_order = TARGET_BYTE_ORDER;
2194
2195 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2196 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2197 info.osabi = gdbarch_lookup_osabi (info.abfd);
2198 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2199 info.osabi = current_gdbarch->osabi;
2200
2201 /* Must have found some sort of architecture. */
2202 gdb_assert (info.bfd_arch_info != NULL);
2203
2204 if (gdbarch_debug)
2205 {
2206 fprintf_unfiltered (gdb_stdlog,
2207 "gdbarch_update: info.bfd_arch_info %s\n",
2208 (info.bfd_arch_info != NULL
2209 ? info.bfd_arch_info->printable_name
2210 : "(null)"));
2211 fprintf_unfiltered (gdb_stdlog,
2212 "gdbarch_update: info.byte_order %d (%s)\n",
2213 info.byte_order,
2214 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2215 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2216 : "default"));
2217 fprintf_unfiltered (gdb_stdlog,
2218 "gdbarch_update: info.osabi %d (%s)\n",
2219 info.osabi, gdbarch_osabi_name (info.osabi));
2220 fprintf_unfiltered (gdb_stdlog,
2221 "gdbarch_update: info.abfd 0x%lx\n",
2222 (long) info.abfd);
2223 fprintf_unfiltered (gdb_stdlog,
2224 "gdbarch_update: info.tdep_info 0x%lx\n",
2225 (long) info.tdep_info);
2226 }
2227
2228 /* Find the target that knows about this architecture. */
2229 for (rego = gdbarch_registry;
2230 rego != NULL;
2231 rego = rego->next)
2232 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2233 break;
2234 if (rego == NULL)
2235 {
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2238 return 0;
2239 }
2240
2241 /* Swap the data belonging to the old target out setting the
2242 installed data to zero. This stops the ->init() function trying
2243 to refer to the previous architecture's global data structures. */
2244 swapout_gdbarch_swap (current_gdbarch);
2245 clear_gdbarch_swap (current_gdbarch);
2246
2247 /* Save the previously selected architecture, setting the global to
2248 NULL. This stops ->init() trying to use the previous
2249 architecture's configuration. The previous architecture may not
2250 even be of the same architecture family. The most recent
2251 architecture of the same family is found at the head of the
2252 rego->arches list. */
2253 old_gdbarch = current_gdbarch;
2254 current_gdbarch = NULL;
2255
2256 /* Ask the target for a replacement architecture. */
2257 new_gdbarch = rego->init (info, rego->arches);
2258
2259 /* Did the target like it? No. Reject the change and revert to the
2260 old architecture. */
2261 if (new_gdbarch == NULL)
2262 {
2263 if (gdbarch_debug)
2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2265 swapin_gdbarch_swap (old_gdbarch);
2266 current_gdbarch = old_gdbarch;
2267 return 0;
2268 }
2269
2270 /* Did the architecture change? No. Oops, put the old architecture
2271 back. */
2272 if (old_gdbarch == new_gdbarch)
2273 {
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2276 (long) new_gdbarch,
2277 new_gdbarch->bfd_arch_info->printable_name);
2278 swapin_gdbarch_swap (old_gdbarch);
2279 current_gdbarch = old_gdbarch;
2280 return 1;
2281 }
2282
2283 /* Is this a pre-existing architecture? Yes. Move it to the front
2284 of the list of architectures (keeping the list sorted Most
2285 Recently Used) and then copy it in. */
2286 {
2287 struct gdbarch_list **list;
2288 for (list = &rego->arches;
2289 (*list) != NULL;
2290 list = &(*list)->next)
2291 {
2292 if ((*list)->gdbarch == new_gdbarch)
2293 {
2294 struct gdbarch_list *this;
2295 if (gdbarch_debug)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2298 (long) new_gdbarch,
2299 new_gdbarch->bfd_arch_info->printable_name);
2300 /* Unlink this. */
2301 this = (*list);
2302 (*list) = this->next;
2303 /* Insert in the front. */
2304 this->next = rego->arches;
2305 rego->arches = this;
2306 /* Copy the new architecture in. */
2307 current_gdbarch = new_gdbarch;
2308 swapin_gdbarch_swap (new_gdbarch);
2309 architecture_changed_event ();
2310 return 1;
2311 }
2312 }
2313 }
2314
2315 /* Prepend this new architecture to the architecture list (keep the
2316 list sorted Most Recently Used). */
2317 {
2318 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2319 this->next = rego->arches;
2320 this->gdbarch = new_gdbarch;
2321 rego->arches = this;
2322 }
2323
2324 /* Switch to this new architecture marking it initialized. */
2325 current_gdbarch = new_gdbarch;
2326 current_gdbarch->initialized_p = 1;
2327 if (gdbarch_debug)
2328 {
2329 fprintf_unfiltered (gdb_stdlog,
2330 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2331 (long) new_gdbarch,
2332 new_gdbarch->bfd_arch_info->printable_name);
2333 }
2334
2335 /* Check that the newly installed architecture is valid. Plug in
2336 any post init values. */
2337 new_gdbarch->dump_tdep = rego->dump_tdep;
2338 verify_gdbarch (new_gdbarch);
2339
2340 /* Initialize the per-architecture memory (swap) areas.
2341 CURRENT_GDBARCH must be update before these modules are
2342 called. */
2343 init_gdbarch_swap (new_gdbarch);
2344
2345 /* Initialize the per-architecture data. CURRENT_GDBARCH
2346 must be updated before these modules are called. */
2347 architecture_changed_event ();
2348
2349 if (gdbarch_debug)
2350 gdbarch_dump (current_gdbarch, gdb_stdlog);
2351
2352 return 1;
2353 }
2354
2355
2356 /* Disassembler */
2357
2358 /* Pointer to the target-dependent disassembly function. */
2359 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2360 disassemble_info tm_print_insn_info;
2361
2362
2363 extern void _initialize_gdbarch (void);
2364
2365 void
2366 _initialize_gdbarch (void)
2367 {
2368 struct cmd_list_element *c;
2369
2370 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2371 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2372 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2373 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2374 tm_print_insn_info.print_address_func = dis_asm_print_address;
2375
2376 add_show_from_set (add_set_cmd ("arch",
2377 class_maintenance,
2378 var_zinteger,
2379 (char *)&gdbarch_debug,
2380 "Set architecture debugging.\\n\\
2381 When non-zero, architecture debugging is enabled.", &setdebuglist),
2382 &showdebuglist);
2383 c = add_set_cmd ("archdebug",
2384 class_maintenance,
2385 var_zinteger,
2386 (char *)&gdbarch_debug,
2387 "Set architecture debugging.\\n\\
2388 When non-zero, architecture debugging is enabled.", &setlist);
2389
2390 deprecate_cmd (c, "set debug arch");
2391 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2392 }
2393 EOF
2394
2395 # close things off
2396 exec 1>&2
2397 #../move-if-change new-gdbarch.c gdbarch.c
2398 compare_new gdbarch.c
This page took 0.103865 seconds and 4 git commands to generate.