Address class support.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
576 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
577 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
578 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
579 v:2:PARM_BOUNDARY:int:parm_boundary
580 #
581 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
582 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
583 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
584 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
585 # On some machines there are bits in addresses which are not really
586 # part of the address, but are used by the kernel, the hardware, etc.
587 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
588 # we get a "real" address such as one would find in a symbol table.
589 # This is used only for addresses of instructions, and even then I'm
590 # not sure it's used in all contexts. It exists to deal with there
591 # being a few stray bits in the PC which would mislead us, not as some
592 # sort of generic thing to handle alignment or segmentation (it's
593 # possible it should be in TARGET_READ_PC instead).
594 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
595 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
596 # ADDR_BITS_REMOVE.
597 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
599 # the target needs software single step. An ISA method to implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
602 # using the breakpoint system instead of blatting memory directly (as with rs6000).
603 #
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
605 # single step. If not, then implement single step using breakpoints.
606 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
607 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
608 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
609
610
611 # For SVR4 shared libraries, each call goes through a small piece of
612 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
613 # to nonzero if we are currently stopped in one of these.
614 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
615
616 # Some systems also have trampoline code for returning from shared libs.
617 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
618
619 # Sigtramp is a routine that the kernel calls (which then calls the
620 # signal handler). On most machines it is a library routine that is
621 # linked into the executable.
622 #
623 # This macro, given a program counter value and the name of the
624 # function in which that PC resides (which can be null if the name is
625 # not known), returns nonzero if the PC and name show that we are in
626 # sigtramp.
627 #
628 # On most machines just see if the name is sigtramp (and if we have
629 # no name, assume we are not in sigtramp).
630 #
631 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
632 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
633 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
634 # own local NAME lookup.
635 #
636 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
637 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
638 # does not.
639 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
640 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
641 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a funtion's epilogue. in_function_epilogue_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
652 # Given a vector of command-line arguments, return a newly allocated
653 # string which, when passed to the create_inferior function, will be
654 # parsed (on Unix systems, by the shell) to yield the same vector.
655 # This function should call error() if the argument vector is not
656 # representable for this target or if this target does not support
657 # command-line arguments.
658 # ARGC is the number of elements in the vector.
659 # ARGV is an array of strings, one per argument.
660 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
661 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
662 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
663 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
664 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
665 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
666 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
667 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
668 F:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags
669 F:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
670 EOF
671 }
672
673 #
674 # The .log file
675 #
676 exec > new-gdbarch.log
677 function_list | while do_read
678 do
679 cat <<EOF
680 ${class} ${macro}(${actual})
681 ${returntype} ${function} ($formal)${attrib}
682 EOF
683 for r in ${read}
684 do
685 eval echo \"\ \ \ \ ${r}=\${${r}}\"
686 done
687 # #fallbackdefault=${fallbackdefault}
688 # #valid_p=${valid_p}
689 #EOF
690 if class_is_predicate_p && fallback_default_p
691 then
692 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
693 kill $$
694 exit 1
695 fi
696 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
697 then
698 echo "Error: postdefault is useless when invalid_p=0" 1>&2
699 kill $$
700 exit 1
701 fi
702 if class_is_multiarch_p
703 then
704 if class_is_predicate_p ; then :
705 elif test "x${predefault}" = "x"
706 then
707 echo "Error: pure multi-arch function must have a predefault" 1>&2
708 kill $$
709 exit 1
710 fi
711 fi
712 echo ""
713 done
714
715 exec 1>&2
716 compare_new gdbarch.log
717
718
719 copyright ()
720 {
721 cat <<EOF
722 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
723
724 /* Dynamic architecture support for GDB, the GNU debugger.
725 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
726
727 This file is part of GDB.
728
729 This program is free software; you can redistribute it and/or modify
730 it under the terms of the GNU General Public License as published by
731 the Free Software Foundation; either version 2 of the License, or
732 (at your option) any later version.
733
734 This program is distributed in the hope that it will be useful,
735 but WITHOUT ANY WARRANTY; without even the implied warranty of
736 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
737 GNU General Public License for more details.
738
739 You should have received a copy of the GNU General Public License
740 along with this program; if not, write to the Free Software
741 Foundation, Inc., 59 Temple Place - Suite 330,
742 Boston, MA 02111-1307, USA. */
743
744 /* This file was created with the aid of \`\`gdbarch.sh''.
745
746 The Bourne shell script \`\`gdbarch.sh'' creates the files
747 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
748 against the existing \`\`gdbarch.[hc]''. Any differences found
749 being reported.
750
751 If editing this file, please also run gdbarch.sh and merge any
752 changes into that script. Conversely, when making sweeping changes
753 to this file, modifying gdbarch.sh and using its output may prove
754 easier. */
755
756 EOF
757 }
758
759 #
760 # The .h file
761 #
762
763 exec > new-gdbarch.h
764 copyright
765 cat <<EOF
766 #ifndef GDBARCH_H
767 #define GDBARCH_H
768
769 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
770 #if !GDB_MULTI_ARCH
771 /* Pull in function declarations refered to, indirectly, via macros. */
772 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
773 #include "inferior.h" /* For unsigned_address_to_pointer(). */
774 #endif
775
776 struct frame_info;
777 struct value;
778 struct objfile;
779 struct minimal_symbol;
780 struct regcache;
781
782 extern struct gdbarch *current_gdbarch;
783
784
785 /* If any of the following are defined, the target wasn't correctly
786 converted. */
787
788 #if GDB_MULTI_ARCH
789 #if defined (EXTRA_FRAME_INFO)
790 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
791 #endif
792 #endif
793
794 #if GDB_MULTI_ARCH
795 #if defined (FRAME_FIND_SAVED_REGS)
796 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
797 #endif
798 #endif
799
800 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
801 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
802 #endif
803 EOF
804
805 # function typedef's
806 printf "\n"
807 printf "\n"
808 printf "/* The following are pre-initialized by GDBARCH. */\n"
809 function_list | while do_read
810 do
811 if class_is_info_p
812 then
813 printf "\n"
814 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
815 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
816 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
817 printf "#error \"Non multi-arch definition of ${macro}\"\n"
818 printf "#endif\n"
819 printf "#if GDB_MULTI_ARCH\n"
820 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
821 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
822 printf "#endif\n"
823 printf "#endif\n"
824 fi
825 done
826
827 # function typedef's
828 printf "\n"
829 printf "\n"
830 printf "/* The following are initialized by the target dependent code. */\n"
831 function_list | while do_read
832 do
833 if [ -n "${comment}" ]
834 then
835 echo "${comment}" | sed \
836 -e '2 s,#,/*,' \
837 -e '3,$ s,#, ,' \
838 -e '$ s,$, */,'
839 fi
840 if class_is_multiarch_p
841 then
842 if class_is_predicate_p
843 then
844 printf "\n"
845 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
846 fi
847 else
848 if class_is_predicate_p
849 then
850 printf "\n"
851 printf "#if defined (${macro})\n"
852 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
853 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
854 printf "#if !defined (${macro}_P)\n"
855 printf "#define ${macro}_P() (1)\n"
856 printf "#endif\n"
857 printf "#endif\n"
858 printf "\n"
859 printf "/* Default predicate for non- multi-arch targets. */\n"
860 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
861 printf "#define ${macro}_P() (0)\n"
862 printf "#endif\n"
863 printf "\n"
864 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
865 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
866 printf "#error \"Non multi-arch definition of ${macro}\"\n"
867 printf "#endif\n"
868 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
869 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
870 printf "#endif\n"
871 fi
872 fi
873 if class_is_variable_p
874 then
875 if fallback_default_p || class_is_predicate_p
876 then
877 printf "\n"
878 printf "/* Default (value) for non- multi-arch platforms. */\n"
879 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
880 echo "#define ${macro} (${fallbackdefault})" \
881 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
882 printf "#endif\n"
883 fi
884 printf "\n"
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
886 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
887 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
888 printf "#error \"Non multi-arch definition of ${macro}\"\n"
889 printf "#endif\n"
890 printf "#if GDB_MULTI_ARCH\n"
891 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
892 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
893 printf "#endif\n"
894 printf "#endif\n"
895 fi
896 if class_is_function_p
897 then
898 if class_is_multiarch_p ; then :
899 elif fallback_default_p || class_is_predicate_p
900 then
901 printf "\n"
902 printf "/* Default (function) for non- multi-arch platforms. */\n"
903 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
904 if [ "x${fallbackdefault}" = "x0" ]
905 then
906 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
907 else
908 # FIXME: Should be passing current_gdbarch through!
909 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
910 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
911 fi
912 printf "#endif\n"
913 fi
914 printf "\n"
915 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
916 then
917 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
918 elif class_is_multiarch_p
919 then
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
921 else
922 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
923 fi
924 if [ "x${formal}" = "xvoid" ]
925 then
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
927 else
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
929 fi
930 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
931 if class_is_multiarch_p ; then :
932 else
933 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
934 printf "#error \"Non multi-arch definition of ${macro}\"\n"
935 printf "#endif\n"
936 printf "#if GDB_MULTI_ARCH\n"
937 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
938 if [ "x${actual}" = "x" ]
939 then
940 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
941 elif [ "x${actual}" = "x-" ]
942 then
943 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
944 else
945 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
946 fi
947 printf "#endif\n"
948 printf "#endif\n"
949 fi
950 fi
951 done
952
953 # close it off
954 cat <<EOF
955
956 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
957
958
959 /* Mechanism for co-ordinating the selection of a specific
960 architecture.
961
962 GDB targets (*-tdep.c) can register an interest in a specific
963 architecture. Other GDB components can register a need to maintain
964 per-architecture data.
965
966 The mechanisms below ensures that there is only a loose connection
967 between the set-architecture command and the various GDB
968 components. Each component can independently register their need
969 to maintain architecture specific data with gdbarch.
970
971 Pragmatics:
972
973 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
974 didn't scale.
975
976 The more traditional mega-struct containing architecture specific
977 data for all the various GDB components was also considered. Since
978 GDB is built from a variable number of (fairly independent)
979 components it was determined that the global aproach was not
980 applicable. */
981
982
983 /* Register a new architectural family with GDB.
984
985 Register support for the specified ARCHITECTURE with GDB. When
986 gdbarch determines that the specified architecture has been
987 selected, the corresponding INIT function is called.
988
989 --
990
991 The INIT function takes two parameters: INFO which contains the
992 information available to gdbarch about the (possibly new)
993 architecture; ARCHES which is a list of the previously created
994 \`\`struct gdbarch'' for this architecture.
995
996 The INFO parameter is, as far as possible, be pre-initialized with
997 information obtained from INFO.ABFD or the previously selected
998 architecture.
999
1000 The ARCHES parameter is a linked list (sorted most recently used)
1001 of all the previously created architures for this architecture
1002 family. The (possibly NULL) ARCHES->gdbarch can used to access
1003 values from the previously selected architecture for this
1004 architecture family. The global \`\`current_gdbarch'' shall not be
1005 used.
1006
1007 The INIT function shall return any of: NULL - indicating that it
1008 doesn't recognize the selected architecture; an existing \`\`struct
1009 gdbarch'' from the ARCHES list - indicating that the new
1010 architecture is just a synonym for an earlier architecture (see
1011 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1012 - that describes the selected architecture (see gdbarch_alloc()).
1013
1014 The DUMP_TDEP function shall print out all target specific values.
1015 Care should be taken to ensure that the function works in both the
1016 multi-arch and non- multi-arch cases. */
1017
1018 struct gdbarch_list
1019 {
1020 struct gdbarch *gdbarch;
1021 struct gdbarch_list *next;
1022 };
1023
1024 struct gdbarch_info
1025 {
1026 /* Use default: NULL (ZERO). */
1027 const struct bfd_arch_info *bfd_arch_info;
1028
1029 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1030 int byte_order;
1031
1032 /* Use default: NULL (ZERO). */
1033 bfd *abfd;
1034
1035 /* Use default: NULL (ZERO). */
1036 struct gdbarch_tdep_info *tdep_info;
1037 };
1038
1039 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1040 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1041
1042 /* DEPRECATED - use gdbarch_register() */
1043 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1044
1045 extern void gdbarch_register (enum bfd_architecture architecture,
1046 gdbarch_init_ftype *,
1047 gdbarch_dump_tdep_ftype *);
1048
1049
1050 /* Return a freshly allocated, NULL terminated, array of the valid
1051 architecture names. Since architectures are registered during the
1052 _initialize phase this function only returns useful information
1053 once initialization has been completed. */
1054
1055 extern const char **gdbarch_printable_names (void);
1056
1057
1058 /* Helper function. Search the list of ARCHES for a GDBARCH that
1059 matches the information provided by INFO. */
1060
1061 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1062
1063
1064 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1065 basic initialization using values obtained from the INFO andTDEP
1066 parameters. set_gdbarch_*() functions are called to complete the
1067 initialization of the object. */
1068
1069 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1070
1071
1072 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1073 It is assumed that the caller freeds the \`\`struct
1074 gdbarch_tdep''. */
1075
1076 extern void gdbarch_free (struct gdbarch *);
1077
1078
1079 /* Helper function. Force an update of the current architecture.
1080
1081 The actual architecture selected is determined by INFO, \`\`(gdb) set
1082 architecture'' et.al., the existing architecture and BFD's default
1083 architecture. INFO should be initialized to zero and then selected
1084 fields should be updated.
1085
1086 Returns non-zero if the update succeeds */
1087
1088 extern int gdbarch_update_p (struct gdbarch_info info);
1089
1090
1091
1092 /* Register per-architecture data-pointer.
1093
1094 Reserve space for a per-architecture data-pointer. An identifier
1095 for the reserved data-pointer is returned. That identifer should
1096 be saved in a local static variable.
1097
1098 The per-architecture data-pointer is either initialized explicitly
1099 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1100 gdbarch_data()). FREE() is called to delete either an existing
1101 data-pointer overridden by set_gdbarch_data() or when the
1102 architecture object is being deleted.
1103
1104 When a previously created architecture is re-selected, the
1105 per-architecture data-pointer for that previous architecture is
1106 restored. INIT() is not re-called.
1107
1108 Multiple registrarants for any architecture are allowed (and
1109 strongly encouraged). */
1110
1111 struct gdbarch_data;
1112
1113 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1114 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1115 void *pointer);
1116 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1117 gdbarch_data_free_ftype *free);
1118 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1119 struct gdbarch_data *data,
1120 void *pointer);
1121
1122 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1123
1124
1125 /* Register per-architecture memory region.
1126
1127 Provide a memory-region swap mechanism. Per-architecture memory
1128 region are created. These memory regions are swapped whenever the
1129 architecture is changed. For a new architecture, the memory region
1130 is initialized with zero (0) and the INIT function is called.
1131
1132 Memory regions are swapped / initialized in the order that they are
1133 registered. NULL DATA and/or INIT values can be specified.
1134
1135 New code should use register_gdbarch_data(). */
1136
1137 typedef void (gdbarch_swap_ftype) (void);
1138 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1139 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1140
1141
1142
1143 /* The target-system-dependent byte order is dynamic */
1144
1145 extern int target_byte_order;
1146 #ifndef TARGET_BYTE_ORDER
1147 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1148 #endif
1149
1150 extern int target_byte_order_auto;
1151 #ifndef TARGET_BYTE_ORDER_AUTO
1152 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1153 #endif
1154
1155
1156
1157 /* The target-system-dependent BFD architecture is dynamic */
1158
1159 extern int target_architecture_auto;
1160 #ifndef TARGET_ARCHITECTURE_AUTO
1161 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1162 #endif
1163
1164 extern const struct bfd_arch_info *target_architecture;
1165 #ifndef TARGET_ARCHITECTURE
1166 #define TARGET_ARCHITECTURE (target_architecture + 0)
1167 #endif
1168
1169
1170 /* The target-system-dependent disassembler is semi-dynamic */
1171
1172 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1173 unsigned int len, disassemble_info *info);
1174
1175 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1176 disassemble_info *info);
1177
1178 extern void dis_asm_print_address (bfd_vma addr,
1179 disassemble_info *info);
1180
1181 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1182 extern disassemble_info tm_print_insn_info;
1183 #ifndef TARGET_PRINT_INSN_INFO
1184 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1185 #endif
1186
1187
1188
1189 /* Set the dynamic target-system-dependent parameters (architecture,
1190 byte-order, ...) using information found in the BFD */
1191
1192 extern void set_gdbarch_from_file (bfd *);
1193
1194
1195 /* Initialize the current architecture to the "first" one we find on
1196 our list. */
1197
1198 extern void initialize_current_architecture (void);
1199
1200 /* For non-multiarched targets, do any initialization of the default
1201 gdbarch object necessary after the _initialize_MODULE functions
1202 have run. */
1203 extern void initialize_non_multiarch (void);
1204
1205 /* gdbarch trace variable */
1206 extern int gdbarch_debug;
1207
1208 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1209
1210 #endif
1211 EOF
1212 exec 1>&2
1213 #../move-if-change new-gdbarch.h gdbarch.h
1214 compare_new gdbarch.h
1215
1216
1217 #
1218 # C file
1219 #
1220
1221 exec > new-gdbarch.c
1222 copyright
1223 cat <<EOF
1224
1225 #include "defs.h"
1226 #include "arch-utils.h"
1227
1228 #if GDB_MULTI_ARCH
1229 #include "gdbcmd.h"
1230 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1231 #else
1232 /* Just include everything in sight so that the every old definition
1233 of macro is visible. */
1234 #include "gdb_string.h"
1235 #include <ctype.h>
1236 #include "symtab.h"
1237 #include "frame.h"
1238 #include "inferior.h"
1239 #include "breakpoint.h"
1240 #include "gdb_wait.h"
1241 #include "gdbcore.h"
1242 #include "gdbcmd.h"
1243 #include "target.h"
1244 #include "gdbthread.h"
1245 #include "annotate.h"
1246 #include "symfile.h" /* for overlay functions */
1247 #include "value.h" /* For old tm.h/nm.h macros. */
1248 #endif
1249 #include "symcat.h"
1250
1251 #include "floatformat.h"
1252
1253 #include "gdb_assert.h"
1254 #include "gdb_string.h"
1255 #include "gdb-events.h"
1256
1257 /* Static function declarations */
1258
1259 static void verify_gdbarch (struct gdbarch *gdbarch);
1260 static void alloc_gdbarch_data (struct gdbarch *);
1261 static void free_gdbarch_data (struct gdbarch *);
1262 static void init_gdbarch_swap (struct gdbarch *);
1263 static void clear_gdbarch_swap (struct gdbarch *);
1264 static void swapout_gdbarch_swap (struct gdbarch *);
1265 static void swapin_gdbarch_swap (struct gdbarch *);
1266
1267 /* Non-zero if we want to trace architecture code. */
1268
1269 #ifndef GDBARCH_DEBUG
1270 #define GDBARCH_DEBUG 0
1271 #endif
1272 int gdbarch_debug = GDBARCH_DEBUG;
1273
1274 EOF
1275
1276 # gdbarch open the gdbarch object
1277 printf "\n"
1278 printf "/* Maintain the struct gdbarch object */\n"
1279 printf "\n"
1280 printf "struct gdbarch\n"
1281 printf "{\n"
1282 printf " /* Has this architecture been fully initialized? */\n"
1283 printf " int initialized_p;\n"
1284 printf " /* basic architectural information */\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf " ${returntype} ${function};\n"
1290 fi
1291 done
1292 printf "\n"
1293 printf " /* target specific vector. */\n"
1294 printf " struct gdbarch_tdep *tdep;\n"
1295 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1296 printf "\n"
1297 printf " /* per-architecture data-pointers */\n"
1298 printf " unsigned nr_data;\n"
1299 printf " void **data;\n"
1300 printf "\n"
1301 printf " /* per-architecture swap-regions */\n"
1302 printf " struct gdbarch_swap *swap;\n"
1303 printf "\n"
1304 cat <<EOF
1305 /* Multi-arch values.
1306
1307 When extending this structure you must:
1308
1309 Add the field below.
1310
1311 Declare set/get functions and define the corresponding
1312 macro in gdbarch.h.
1313
1314 gdbarch_alloc(): If zero/NULL is not a suitable default,
1315 initialize the new field.
1316
1317 verify_gdbarch(): Confirm that the target updated the field
1318 correctly.
1319
1320 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1321 field is dumped out
1322
1323 \`\`startup_gdbarch()'': Append an initial value to the static
1324 variable (base values on the host's c-type system).
1325
1326 get_gdbarch(): Implement the set/get functions (probably using
1327 the macro's as shortcuts).
1328
1329 */
1330
1331 EOF
1332 function_list | while do_read
1333 do
1334 if class_is_variable_p
1335 then
1336 printf " ${returntype} ${function};\n"
1337 elif class_is_function_p
1338 then
1339 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1340 fi
1341 done
1342 printf "};\n"
1343
1344 # A pre-initialized vector
1345 printf "\n"
1346 printf "\n"
1347 cat <<EOF
1348 /* The default architecture uses host values (for want of a better
1349 choice). */
1350 EOF
1351 printf "\n"
1352 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1353 printf "\n"
1354 printf "struct gdbarch startup_gdbarch =\n"
1355 printf "{\n"
1356 printf " 1, /* Always initialized. */\n"
1357 printf " /* basic architecture information */\n"
1358 function_list | while do_read
1359 do
1360 if class_is_info_p
1361 then
1362 printf " ${staticdefault},\n"
1363 fi
1364 done
1365 cat <<EOF
1366 /* target specific vector and its dump routine */
1367 NULL, NULL,
1368 /*per-architecture data-pointers and swap regions */
1369 0, NULL, NULL,
1370 /* Multi-arch values */
1371 EOF
1372 function_list | while do_read
1373 do
1374 if class_is_function_p || class_is_variable_p
1375 then
1376 printf " ${staticdefault},\n"
1377 fi
1378 done
1379 cat <<EOF
1380 /* startup_gdbarch() */
1381 };
1382
1383 struct gdbarch *current_gdbarch = &startup_gdbarch;
1384
1385 /* Do any initialization needed for a non-multiarch configuration
1386 after the _initialize_MODULE functions have been run. */
1387 void
1388 initialize_non_multiarch (void)
1389 {
1390 alloc_gdbarch_data (&startup_gdbarch);
1391 /* Ensure that all swap areas are zeroed so that they again think
1392 they are starting from scratch. */
1393 clear_gdbarch_swap (&startup_gdbarch);
1394 init_gdbarch_swap (&startup_gdbarch);
1395 }
1396 EOF
1397
1398 # Create a new gdbarch struct
1399 printf "\n"
1400 printf "\n"
1401 cat <<EOF
1402 /* Create a new \`\`struct gdbarch'' based on information provided by
1403 \`\`struct gdbarch_info''. */
1404 EOF
1405 printf "\n"
1406 cat <<EOF
1407 struct gdbarch *
1408 gdbarch_alloc (const struct gdbarch_info *info,
1409 struct gdbarch_tdep *tdep)
1410 {
1411 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1412 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1413 the current local architecture and not the previous global
1414 architecture. This ensures that the new architectures initial
1415 values are not influenced by the previous architecture. Once
1416 everything is parameterised with gdbarch, this will go away. */
1417 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1418 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1419
1420 alloc_gdbarch_data (current_gdbarch);
1421
1422 current_gdbarch->tdep = tdep;
1423 EOF
1424 printf "\n"
1425 function_list | while do_read
1426 do
1427 if class_is_info_p
1428 then
1429 printf " current_gdbarch->${function} = info->${function};\n"
1430 fi
1431 done
1432 printf "\n"
1433 printf " /* Force the explicit initialization of these. */\n"
1434 function_list | while do_read
1435 do
1436 if class_is_function_p || class_is_variable_p
1437 then
1438 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1439 then
1440 printf " current_gdbarch->${function} = ${predefault};\n"
1441 fi
1442 fi
1443 done
1444 cat <<EOF
1445 /* gdbarch_alloc() */
1446
1447 return current_gdbarch;
1448 }
1449 EOF
1450
1451 # Free a gdbarch struct.
1452 printf "\n"
1453 printf "\n"
1454 cat <<EOF
1455 /* Free a gdbarch struct. This should never happen in normal
1456 operation --- once you've created a gdbarch, you keep it around.
1457 However, if an architecture's init function encounters an error
1458 building the structure, it may need to clean up a partially
1459 constructed gdbarch. */
1460
1461 void
1462 gdbarch_free (struct gdbarch *arch)
1463 {
1464 gdb_assert (arch != NULL);
1465 free_gdbarch_data (arch);
1466 xfree (arch);
1467 }
1468 EOF
1469
1470 # verify a new architecture
1471 printf "\n"
1472 printf "\n"
1473 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1474 printf "\n"
1475 cat <<EOF
1476 static void
1477 verify_gdbarch (struct gdbarch *gdbarch)
1478 {
1479 struct ui_file *log;
1480 struct cleanup *cleanups;
1481 long dummy;
1482 char *buf;
1483 /* Only perform sanity checks on a multi-arch target. */
1484 if (!GDB_MULTI_ARCH)
1485 return;
1486 log = mem_fileopen ();
1487 cleanups = make_cleanup_ui_file_delete (log);
1488 /* fundamental */
1489 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1490 fprintf_unfiltered (log, "\n\tbyte-order");
1491 if (gdbarch->bfd_arch_info == NULL)
1492 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1493 /* Check those that need to be defined for the given multi-arch level. */
1494 EOF
1495 function_list | while do_read
1496 do
1497 if class_is_function_p || class_is_variable_p
1498 then
1499 if [ "x${invalid_p}" = "x0" ]
1500 then
1501 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1502 elif class_is_predicate_p
1503 then
1504 printf " /* Skip verify of ${function}, has predicate */\n"
1505 # FIXME: See do_read for potential simplification
1506 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1507 then
1508 printf " if (${invalid_p})\n"
1509 printf " gdbarch->${function} = ${postdefault};\n"
1510 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1511 then
1512 printf " if (gdbarch->${function} == ${predefault})\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
1514 elif [ -n "${postdefault}" ]
1515 then
1516 printf " if (gdbarch->${function} == 0)\n"
1517 printf " gdbarch->${function} = ${postdefault};\n"
1518 elif [ -n "${invalid_p}" ]
1519 then
1520 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1521 printf " && (${invalid_p}))\n"
1522 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1523 elif [ -n "${predefault}" ]
1524 then
1525 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1526 printf " && (gdbarch->${function} == ${predefault}))\n"
1527 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1528 fi
1529 fi
1530 done
1531 cat <<EOF
1532 buf = ui_file_xstrdup (log, &dummy);
1533 make_cleanup (xfree, buf);
1534 if (strlen (buf) > 0)
1535 internal_error (__FILE__, __LINE__,
1536 "verify_gdbarch: the following are invalid ...%s",
1537 buf);
1538 do_cleanups (cleanups);
1539 }
1540 EOF
1541
1542 # dump the structure
1543 printf "\n"
1544 printf "\n"
1545 cat <<EOF
1546 /* Print out the details of the current architecture. */
1547
1548 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1549 just happens to match the global variable \`\`current_gdbarch''. That
1550 way macros refering to that variable get the local and not the global
1551 version - ulgh. Once everything is parameterised with gdbarch, this
1552 will go away. */
1553
1554 void
1555 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1556 {
1557 fprintf_unfiltered (file,
1558 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1559 GDB_MULTI_ARCH);
1560 EOF
1561 function_list | sort -t: +2 | while do_read
1562 do
1563 # multiarch functions don't have macros.
1564 if class_is_multiarch_p
1565 then
1566 printf " if (GDB_MULTI_ARCH)\n"
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1569 printf " (long) current_gdbarch->${function});\n"
1570 continue
1571 fi
1572 # Print the macro definition.
1573 printf "#ifdef ${macro}\n"
1574 if [ "x${returntype}" = "xvoid" ]
1575 then
1576 printf "#if GDB_MULTI_ARCH\n"
1577 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1578 fi
1579 if class_is_function_p
1580 then
1581 printf " fprintf_unfiltered (file,\n"
1582 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1583 printf " \"${macro}(${actual})\",\n"
1584 printf " XSTRING (${macro} (${actual})));\n"
1585 else
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1588 printf " XSTRING (${macro}));\n"
1589 fi
1590 # Print the architecture vector value
1591 if [ "x${returntype}" = "xvoid" ]
1592 then
1593 printf "#endif\n"
1594 fi
1595 if [ "x${print_p}" = "x()" ]
1596 then
1597 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1598 elif [ "x${print_p}" = "x0" ]
1599 then
1600 printf " /* skip print of ${macro}, print_p == 0. */\n"
1601 elif [ -n "${print_p}" ]
1602 then
1603 printf " if (${print_p})\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1606 printf " ${print});\n"
1607 elif class_is_function_p
1608 then
1609 printf " if (GDB_MULTI_ARCH)\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1612 printf " (long) current_gdbarch->${function}\n"
1613 printf " /*${macro} ()*/);\n"
1614 else
1615 printf " fprintf_unfiltered (file,\n"
1616 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1617 printf " ${print});\n"
1618 fi
1619 printf "#endif\n"
1620 done
1621 cat <<EOF
1622 if (current_gdbarch->dump_tdep != NULL)
1623 current_gdbarch->dump_tdep (current_gdbarch, file);
1624 }
1625 EOF
1626
1627
1628 # GET/SET
1629 printf "\n"
1630 cat <<EOF
1631 struct gdbarch_tdep *
1632 gdbarch_tdep (struct gdbarch *gdbarch)
1633 {
1634 if (gdbarch_debug >= 2)
1635 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1636 return gdbarch->tdep;
1637 }
1638 EOF
1639 printf "\n"
1640 function_list | while do_read
1641 do
1642 if class_is_predicate_p
1643 then
1644 printf "\n"
1645 printf "int\n"
1646 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1647 printf "{\n"
1648 printf " gdb_assert (gdbarch != NULL);\n"
1649 if [ -n "${valid_p}" ]
1650 then
1651 printf " return ${valid_p};\n"
1652 else
1653 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1654 fi
1655 printf "}\n"
1656 fi
1657 if class_is_function_p
1658 then
1659 printf "\n"
1660 printf "${returntype}\n"
1661 if [ "x${formal}" = "xvoid" ]
1662 then
1663 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1664 else
1665 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1666 fi
1667 printf "{\n"
1668 printf " gdb_assert (gdbarch != NULL);\n"
1669 printf " if (gdbarch->${function} == 0)\n"
1670 printf " internal_error (__FILE__, __LINE__,\n"
1671 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1672 printf " if (gdbarch_debug >= 2)\n"
1673 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1674 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1675 then
1676 if class_is_multiarch_p
1677 then
1678 params="gdbarch"
1679 else
1680 params=""
1681 fi
1682 else
1683 if class_is_multiarch_p
1684 then
1685 params="gdbarch, ${actual}"
1686 else
1687 params="${actual}"
1688 fi
1689 fi
1690 if [ "x${returntype}" = "xvoid" ]
1691 then
1692 printf " gdbarch->${function} (${params});\n"
1693 else
1694 printf " return gdbarch->${function} (${params});\n"
1695 fi
1696 printf "}\n"
1697 printf "\n"
1698 printf "void\n"
1699 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1700 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1701 printf "{\n"
1702 printf " gdbarch->${function} = ${function};\n"
1703 printf "}\n"
1704 elif class_is_variable_p
1705 then
1706 printf "\n"
1707 printf "${returntype}\n"
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1709 printf "{\n"
1710 printf " gdb_assert (gdbarch != NULL);\n"
1711 if [ "x${invalid_p}" = "x0" ]
1712 then
1713 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1714 elif [ -n "${invalid_p}" ]
1715 then
1716 printf " if (${invalid_p})\n"
1717 printf " internal_error (__FILE__, __LINE__,\n"
1718 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1719 elif [ -n "${predefault}" ]
1720 then
1721 printf " if (gdbarch->${function} == ${predefault})\n"
1722 printf " internal_error (__FILE__, __LINE__,\n"
1723 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1724 fi
1725 printf " if (gdbarch_debug >= 2)\n"
1726 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1727 printf " return gdbarch->${function};\n"
1728 printf "}\n"
1729 printf "\n"
1730 printf "void\n"
1731 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1732 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1733 printf "{\n"
1734 printf " gdbarch->${function} = ${function};\n"
1735 printf "}\n"
1736 elif class_is_info_p
1737 then
1738 printf "\n"
1739 printf "${returntype}\n"
1740 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1741 printf "{\n"
1742 printf " gdb_assert (gdbarch != NULL);\n"
1743 printf " if (gdbarch_debug >= 2)\n"
1744 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1745 printf " return gdbarch->${function};\n"
1746 printf "}\n"
1747 fi
1748 done
1749
1750 # All the trailing guff
1751 cat <<EOF
1752
1753
1754 /* Keep a registry of per-architecture data-pointers required by GDB
1755 modules. */
1756
1757 struct gdbarch_data
1758 {
1759 unsigned index;
1760 int init_p;
1761 gdbarch_data_init_ftype *init;
1762 gdbarch_data_free_ftype *free;
1763 };
1764
1765 struct gdbarch_data_registration
1766 {
1767 struct gdbarch_data *data;
1768 struct gdbarch_data_registration *next;
1769 };
1770
1771 struct gdbarch_data_registry
1772 {
1773 unsigned nr;
1774 struct gdbarch_data_registration *registrations;
1775 };
1776
1777 struct gdbarch_data_registry gdbarch_data_registry =
1778 {
1779 0, NULL,
1780 };
1781
1782 struct gdbarch_data *
1783 register_gdbarch_data (gdbarch_data_init_ftype *init,
1784 gdbarch_data_free_ftype *free)
1785 {
1786 struct gdbarch_data_registration **curr;
1787 /* Append the new registraration. */
1788 for (curr = &gdbarch_data_registry.registrations;
1789 (*curr) != NULL;
1790 curr = &(*curr)->next);
1791 (*curr) = XMALLOC (struct gdbarch_data_registration);
1792 (*curr)->next = NULL;
1793 (*curr)->data = XMALLOC (struct gdbarch_data);
1794 (*curr)->data->index = gdbarch_data_registry.nr++;
1795 (*curr)->data->init = init;
1796 (*curr)->data->init_p = 1;
1797 (*curr)->data->free = free;
1798 return (*curr)->data;
1799 }
1800
1801
1802 /* Create/delete the gdbarch data vector. */
1803
1804 static void
1805 alloc_gdbarch_data (struct gdbarch *gdbarch)
1806 {
1807 gdb_assert (gdbarch->data == NULL);
1808 gdbarch->nr_data = gdbarch_data_registry.nr;
1809 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1810 }
1811
1812 static void
1813 free_gdbarch_data (struct gdbarch *gdbarch)
1814 {
1815 struct gdbarch_data_registration *rego;
1816 gdb_assert (gdbarch->data != NULL);
1817 for (rego = gdbarch_data_registry.registrations;
1818 rego != NULL;
1819 rego = rego->next)
1820 {
1821 struct gdbarch_data *data = rego->data;
1822 gdb_assert (data->index < gdbarch->nr_data);
1823 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1824 {
1825 data->free (gdbarch, gdbarch->data[data->index]);
1826 gdbarch->data[data->index] = NULL;
1827 }
1828 }
1829 xfree (gdbarch->data);
1830 gdbarch->data = NULL;
1831 }
1832
1833
1834 /* Initialize the current value of the specified per-architecture
1835 data-pointer. */
1836
1837 void
1838 set_gdbarch_data (struct gdbarch *gdbarch,
1839 struct gdbarch_data *data,
1840 void *pointer)
1841 {
1842 gdb_assert (data->index < gdbarch->nr_data);
1843 if (gdbarch->data[data->index] != NULL)
1844 {
1845 gdb_assert (data->free != NULL);
1846 data->free (gdbarch, gdbarch->data[data->index]);
1847 }
1848 gdbarch->data[data->index] = pointer;
1849 }
1850
1851 /* Return the current value of the specified per-architecture
1852 data-pointer. */
1853
1854 void *
1855 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1856 {
1857 gdb_assert (data->index < gdbarch->nr_data);
1858 /* The data-pointer isn't initialized, call init() to get a value but
1859 only if the architecture initializaiton has completed. Otherwise
1860 punt - hope that the caller knows what they are doing. */
1861 if (gdbarch->data[data->index] == NULL
1862 && gdbarch->initialized_p)
1863 {
1864 /* Be careful to detect an initialization cycle. */
1865 gdb_assert (data->init_p);
1866 data->init_p = 0;
1867 gdb_assert (data->init != NULL);
1868 gdbarch->data[data->index] = data->init (gdbarch);
1869 data->init_p = 1;
1870 gdb_assert (gdbarch->data[data->index] != NULL);
1871 }
1872 return gdbarch->data[data->index];
1873 }
1874
1875
1876
1877 /* Keep a registry of swapped data required by GDB modules. */
1878
1879 struct gdbarch_swap
1880 {
1881 void *swap;
1882 struct gdbarch_swap_registration *source;
1883 struct gdbarch_swap *next;
1884 };
1885
1886 struct gdbarch_swap_registration
1887 {
1888 void *data;
1889 unsigned long sizeof_data;
1890 gdbarch_swap_ftype *init;
1891 struct gdbarch_swap_registration *next;
1892 };
1893
1894 struct gdbarch_swap_registry
1895 {
1896 int nr;
1897 struct gdbarch_swap_registration *registrations;
1898 };
1899
1900 struct gdbarch_swap_registry gdbarch_swap_registry =
1901 {
1902 0, NULL,
1903 };
1904
1905 void
1906 register_gdbarch_swap (void *data,
1907 unsigned long sizeof_data,
1908 gdbarch_swap_ftype *init)
1909 {
1910 struct gdbarch_swap_registration **rego;
1911 for (rego = &gdbarch_swap_registry.registrations;
1912 (*rego) != NULL;
1913 rego = &(*rego)->next);
1914 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1915 (*rego)->next = NULL;
1916 (*rego)->init = init;
1917 (*rego)->data = data;
1918 (*rego)->sizeof_data = sizeof_data;
1919 }
1920
1921 static void
1922 clear_gdbarch_swap (struct gdbarch *gdbarch)
1923 {
1924 struct gdbarch_swap *curr;
1925 for (curr = gdbarch->swap;
1926 curr != NULL;
1927 curr = curr->next)
1928 {
1929 memset (curr->source->data, 0, curr->source->sizeof_data);
1930 }
1931 }
1932
1933 static void
1934 init_gdbarch_swap (struct gdbarch *gdbarch)
1935 {
1936 struct gdbarch_swap_registration *rego;
1937 struct gdbarch_swap **curr = &gdbarch->swap;
1938 for (rego = gdbarch_swap_registry.registrations;
1939 rego != NULL;
1940 rego = rego->next)
1941 {
1942 if (rego->data != NULL)
1943 {
1944 (*curr) = XMALLOC (struct gdbarch_swap);
1945 (*curr)->source = rego;
1946 (*curr)->swap = xmalloc (rego->sizeof_data);
1947 (*curr)->next = NULL;
1948 curr = &(*curr)->next;
1949 }
1950 if (rego->init != NULL)
1951 rego->init ();
1952 }
1953 }
1954
1955 static void
1956 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1957 {
1958 struct gdbarch_swap *curr;
1959 for (curr = gdbarch->swap;
1960 curr != NULL;
1961 curr = curr->next)
1962 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1963 }
1964
1965 static void
1966 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1967 {
1968 struct gdbarch_swap *curr;
1969 for (curr = gdbarch->swap;
1970 curr != NULL;
1971 curr = curr->next)
1972 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1973 }
1974
1975
1976 /* Keep a registry of the architectures known by GDB. */
1977
1978 struct gdbarch_registration
1979 {
1980 enum bfd_architecture bfd_architecture;
1981 gdbarch_init_ftype *init;
1982 gdbarch_dump_tdep_ftype *dump_tdep;
1983 struct gdbarch_list *arches;
1984 struct gdbarch_registration *next;
1985 };
1986
1987 static struct gdbarch_registration *gdbarch_registry = NULL;
1988
1989 static void
1990 append_name (const char ***buf, int *nr, const char *name)
1991 {
1992 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1993 (*buf)[*nr] = name;
1994 *nr += 1;
1995 }
1996
1997 const char **
1998 gdbarch_printable_names (void)
1999 {
2000 if (GDB_MULTI_ARCH)
2001 {
2002 /* Accumulate a list of names based on the registed list of
2003 architectures. */
2004 enum bfd_architecture a;
2005 int nr_arches = 0;
2006 const char **arches = NULL;
2007 struct gdbarch_registration *rego;
2008 for (rego = gdbarch_registry;
2009 rego != NULL;
2010 rego = rego->next)
2011 {
2012 const struct bfd_arch_info *ap;
2013 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2014 if (ap == NULL)
2015 internal_error (__FILE__, __LINE__,
2016 "gdbarch_architecture_names: multi-arch unknown");
2017 do
2018 {
2019 append_name (&arches, &nr_arches, ap->printable_name);
2020 ap = ap->next;
2021 }
2022 while (ap != NULL);
2023 }
2024 append_name (&arches, &nr_arches, NULL);
2025 return arches;
2026 }
2027 else
2028 /* Just return all the architectures that BFD knows. Assume that
2029 the legacy architecture framework supports them. */
2030 return bfd_arch_list ();
2031 }
2032
2033
2034 void
2035 gdbarch_register (enum bfd_architecture bfd_architecture,
2036 gdbarch_init_ftype *init,
2037 gdbarch_dump_tdep_ftype *dump_tdep)
2038 {
2039 struct gdbarch_registration **curr;
2040 const struct bfd_arch_info *bfd_arch_info;
2041 /* Check that BFD recognizes this architecture */
2042 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2043 if (bfd_arch_info == NULL)
2044 {
2045 internal_error (__FILE__, __LINE__,
2046 "gdbarch: Attempt to register unknown architecture (%d)",
2047 bfd_architecture);
2048 }
2049 /* Check that we haven't seen this architecture before */
2050 for (curr = &gdbarch_registry;
2051 (*curr) != NULL;
2052 curr = &(*curr)->next)
2053 {
2054 if (bfd_architecture == (*curr)->bfd_architecture)
2055 internal_error (__FILE__, __LINE__,
2056 "gdbarch: Duplicate registraration of architecture (%s)",
2057 bfd_arch_info->printable_name);
2058 }
2059 /* log it */
2060 if (gdbarch_debug)
2061 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2062 bfd_arch_info->printable_name,
2063 (long) init);
2064 /* Append it */
2065 (*curr) = XMALLOC (struct gdbarch_registration);
2066 (*curr)->bfd_architecture = bfd_architecture;
2067 (*curr)->init = init;
2068 (*curr)->dump_tdep = dump_tdep;
2069 (*curr)->arches = NULL;
2070 (*curr)->next = NULL;
2071 /* When non- multi-arch, install whatever target dump routine we've
2072 been provided - hopefully that routine has been written correctly
2073 and works regardless of multi-arch. */
2074 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2075 && startup_gdbarch.dump_tdep == NULL)
2076 startup_gdbarch.dump_tdep = dump_tdep;
2077 }
2078
2079 void
2080 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2081 gdbarch_init_ftype *init)
2082 {
2083 gdbarch_register (bfd_architecture, init, NULL);
2084 }
2085
2086
2087 /* Look for an architecture using gdbarch_info. Base search on only
2088 BFD_ARCH_INFO and BYTE_ORDER. */
2089
2090 struct gdbarch_list *
2091 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2092 const struct gdbarch_info *info)
2093 {
2094 for (; arches != NULL; arches = arches->next)
2095 {
2096 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2097 continue;
2098 if (info->byte_order != arches->gdbarch->byte_order)
2099 continue;
2100 return arches;
2101 }
2102 return NULL;
2103 }
2104
2105
2106 /* Update the current architecture. Return ZERO if the update request
2107 failed. */
2108
2109 int
2110 gdbarch_update_p (struct gdbarch_info info)
2111 {
2112 struct gdbarch *new_gdbarch;
2113 struct gdbarch *old_gdbarch;
2114 struct gdbarch_registration *rego;
2115
2116 /* Fill in missing parts of the INFO struct using a number of
2117 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2118
2119 /* \`\`(gdb) set architecture ...'' */
2120 if (info.bfd_arch_info == NULL
2121 && !TARGET_ARCHITECTURE_AUTO)
2122 info.bfd_arch_info = TARGET_ARCHITECTURE;
2123 if (info.bfd_arch_info == NULL
2124 && info.abfd != NULL
2125 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2126 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2127 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2128 if (info.bfd_arch_info == NULL)
2129 info.bfd_arch_info = TARGET_ARCHITECTURE;
2130
2131 /* \`\`(gdb) set byte-order ...'' */
2132 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2133 && !TARGET_BYTE_ORDER_AUTO)
2134 info.byte_order = TARGET_BYTE_ORDER;
2135 /* From the INFO struct. */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2137 && info.abfd != NULL)
2138 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2139 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2140 : BFD_ENDIAN_UNKNOWN);
2141 /* From the current target. */
2142 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2143 info.byte_order = TARGET_BYTE_ORDER;
2144
2145 /* Must have found some sort of architecture. */
2146 gdb_assert (info.bfd_arch_info != NULL);
2147
2148 if (gdbarch_debug)
2149 {
2150 fprintf_unfiltered (gdb_stdlog,
2151 "gdbarch_update: info.bfd_arch_info %s\n",
2152 (info.bfd_arch_info != NULL
2153 ? info.bfd_arch_info->printable_name
2154 : "(null)"));
2155 fprintf_unfiltered (gdb_stdlog,
2156 "gdbarch_update: info.byte_order %d (%s)\n",
2157 info.byte_order,
2158 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2159 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2160 : "default"));
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: info.abfd 0x%lx\n",
2163 (long) info.abfd);
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_update: info.tdep_info 0x%lx\n",
2166 (long) info.tdep_info);
2167 }
2168
2169 /* Find the target that knows about this architecture. */
2170 for (rego = gdbarch_registry;
2171 rego != NULL;
2172 rego = rego->next)
2173 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2174 break;
2175 if (rego == NULL)
2176 {
2177 if (gdbarch_debug)
2178 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2179 return 0;
2180 }
2181
2182 /* Swap the data belonging to the old target out setting the
2183 installed data to zero. This stops the ->init() function trying
2184 to refer to the previous architecture's global data structures. */
2185 swapout_gdbarch_swap (current_gdbarch);
2186 clear_gdbarch_swap (current_gdbarch);
2187
2188 /* Save the previously selected architecture, setting the global to
2189 NULL. This stops ->init() trying to use the previous
2190 architecture's configuration. The previous architecture may not
2191 even be of the same architecture family. The most recent
2192 architecture of the same family is found at the head of the
2193 rego->arches list. */
2194 old_gdbarch = current_gdbarch;
2195 current_gdbarch = NULL;
2196
2197 /* Ask the target for a replacement architecture. */
2198 new_gdbarch = rego->init (info, rego->arches);
2199
2200 /* Did the target like it? No. Reject the change and revert to the
2201 old architecture. */
2202 if (new_gdbarch == NULL)
2203 {
2204 if (gdbarch_debug)
2205 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2206 swapin_gdbarch_swap (old_gdbarch);
2207 current_gdbarch = old_gdbarch;
2208 return 0;
2209 }
2210
2211 /* Did the architecture change? No. Oops, put the old architecture
2212 back. */
2213 if (old_gdbarch == new_gdbarch)
2214 {
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2217 (long) new_gdbarch,
2218 new_gdbarch->bfd_arch_info->printable_name);
2219 swapin_gdbarch_swap (old_gdbarch);
2220 current_gdbarch = old_gdbarch;
2221 return 1;
2222 }
2223
2224 /* Is this a pre-existing architecture? Yes. Move it to the front
2225 of the list of architectures (keeping the list sorted Most
2226 Recently Used) and then copy it in. */
2227 {
2228 struct gdbarch_list **list;
2229 for (list = &rego->arches;
2230 (*list) != NULL;
2231 list = &(*list)->next)
2232 {
2233 if ((*list)->gdbarch == new_gdbarch)
2234 {
2235 struct gdbarch_list *this;
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2239 (long) new_gdbarch,
2240 new_gdbarch->bfd_arch_info->printable_name);
2241 /* Unlink this. */
2242 this = (*list);
2243 (*list) = this->next;
2244 /* Insert in the front. */
2245 this->next = rego->arches;
2246 rego->arches = this;
2247 /* Copy the new architecture in. */
2248 current_gdbarch = new_gdbarch;
2249 swapin_gdbarch_swap (new_gdbarch);
2250 architecture_changed_event ();
2251 return 1;
2252 }
2253 }
2254 }
2255
2256 /* Prepend this new architecture to the architecture list (keep the
2257 list sorted Most Recently Used). */
2258 {
2259 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2260 this->next = rego->arches;
2261 this->gdbarch = new_gdbarch;
2262 rego->arches = this;
2263 }
2264
2265 /* Switch to this new architecture marking it initialized. */
2266 current_gdbarch = new_gdbarch;
2267 current_gdbarch->initialized_p = 1;
2268 if (gdbarch_debug)
2269 {
2270 fprintf_unfiltered (gdb_stdlog,
2271 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2272 (long) new_gdbarch,
2273 new_gdbarch->bfd_arch_info->printable_name);
2274 }
2275
2276 /* Check that the newly installed architecture is valid. Plug in
2277 any post init values. */
2278 new_gdbarch->dump_tdep = rego->dump_tdep;
2279 verify_gdbarch (new_gdbarch);
2280
2281 /* Initialize the per-architecture memory (swap) areas.
2282 CURRENT_GDBARCH must be update before these modules are
2283 called. */
2284 init_gdbarch_swap (new_gdbarch);
2285
2286 /* Initialize the per-architecture data. CURRENT_GDBARCH
2287 must be updated before these modules are called. */
2288 architecture_changed_event ();
2289
2290 if (gdbarch_debug)
2291 gdbarch_dump (current_gdbarch, gdb_stdlog);
2292
2293 return 1;
2294 }
2295
2296
2297 /* Disassembler */
2298
2299 /* Pointer to the target-dependent disassembly function. */
2300 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2301 disassemble_info tm_print_insn_info;
2302
2303
2304 extern void _initialize_gdbarch (void);
2305
2306 void
2307 _initialize_gdbarch (void)
2308 {
2309 struct cmd_list_element *c;
2310
2311 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2312 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2313 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2314 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2315 tm_print_insn_info.print_address_func = dis_asm_print_address;
2316
2317 add_show_from_set (add_set_cmd ("arch",
2318 class_maintenance,
2319 var_zinteger,
2320 (char *)&gdbarch_debug,
2321 "Set architecture debugging.\\n\\
2322 When non-zero, architecture debugging is enabled.", &setdebuglist),
2323 &showdebuglist);
2324 c = add_set_cmd ("archdebug",
2325 class_maintenance,
2326 var_zinteger,
2327 (char *)&gdbarch_debug,
2328 "Set architecture debugging.\\n\\
2329 When non-zero, architecture debugging is enabled.", &setlist);
2330
2331 deprecate_cmd (c, "set debug arch");
2332 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2333 }
2334 EOF
2335
2336 # close things off
2337 exec 1>&2
2338 #../move-if-change new-gdbarch.c gdbarch.c
2339 compare_new gdbarch.c
This page took 0.083408 seconds and 4 git commands to generate.