Scrub remnants of IN_SOLIB_DYNSYM_RESOLVE_CODE.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Convert from an sdb register number to an internal gdb register number.
425 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
426 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
427 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
428 m:const char *:register_name:int regnr:regnr::0
429
430 # Return the type of a register specified by the architecture. Only
431 # the register cache should call this function directly; others should
432 # use "register_type".
433 M:struct type *:register_type:int reg_nr:reg_nr
434
435 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
436 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
437 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
438 # deprecated_fp_regnum.
439 v:int:deprecated_fp_regnum:::-1:-1::0
440
441 # See gdbint.texinfo. See infcall.c.
442 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
443 v:int:call_dummy_location::::AT_ENTRY_POINT::0
444 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
445
446 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
447 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
448 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 # MAP a GDB RAW register number onto a simulator register number. See
450 # also include/...-sim.h.
451 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
452 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
453 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
454 # setjmp/longjmp support.
455 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
456 #
457 v:int:believe_pcc_promotion:::::::
458 #
459 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
460 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
461 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
462 # Construct a value representing the contents of register REGNUM in
463 # frame FRAME, interpreted as type TYPE. The routine needs to
464 # allocate and return a struct value with all value attributes
465 # (but not the value contents) filled in.
466 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
467 #
468 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
469 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
470 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
471
472 # Return the return-value convention that will be used by FUNCTYPE
473 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
474 # case the return convention is computed based only on VALTYPE.
475 #
476 # If READBUF is not NULL, extract the return value and save it in this buffer.
477 #
478 # If WRITEBUF is not NULL, it contains a return value which will be
479 # stored into the appropriate register. This can be used when we want
480 # to force the value returned by a function (see the "return" command
481 # for instance).
482 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
483
484 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
485 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
486 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
487 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
488 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
489 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
490 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
491 v:CORE_ADDR:decr_pc_after_break:::0:::0
492
493 # A function can be addressed by either it's "pointer" (possibly a
494 # descriptor address) or "entry point" (first executable instruction).
495 # The method "convert_from_func_ptr_addr" converting the former to the
496 # latter. gdbarch_deprecated_function_start_offset is being used to implement
497 # a simplified subset of that functionality - the function's address
498 # corresponds to the "function pointer" and the function's start
499 # corresponds to the "function entry point" - and hence is redundant.
500
501 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
502
503 # Return the remote protocol register number associated with this
504 # register. Normally the identity mapping.
505 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
506
507 # Fetch the target specific address used to represent a load module.
508 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
509 #
510 v:CORE_ADDR:frame_args_skip:::0:::0
511 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
512 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
513 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
514 # frame-base. Enable frame-base before frame-unwind.
515 F:int:frame_num_args:struct frame_info *frame:frame
516 #
517 M:CORE_ADDR:frame_align:CORE_ADDR address:address
518 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
519 v:int:frame_red_zone_size
520 #
521 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
522 # On some machines there are bits in addresses which are not really
523 # part of the address, but are used by the kernel, the hardware, etc.
524 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
525 # we get a "real" address such as one would find in a symbol table.
526 # This is used only for addresses of instructions, and even then I'm
527 # not sure it's used in all contexts. It exists to deal with there
528 # being a few stray bits in the PC which would mislead us, not as some
529 # sort of generic thing to handle alignment or segmentation (it's
530 # possible it should be in TARGET_READ_PC instead).
531 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
532 # It is not at all clear why gdbarch_smash_text_address is not folded into
533 # gdbarch_addr_bits_remove.
534 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
535
536 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
537 # indicates if the target needs software single step. An ISA method to
538 # implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
541 # breakpoints using the breakpoint system instead of blatting memory directly
542 # (as with rs6000).
543 #
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
545 # target can single step. If not, then implement single step using breakpoints.
546 #
547 # A return value of 1 means that the software_single_step breakpoints
548 # were inserted; 0 means they were not.
549 F:int:software_single_step:struct frame_info *frame:frame
550
551 # Return non-zero if the processor is executing a delay slot and a
552 # further single-step is needed before the instruction finishes.
553 M:int:single_step_through_delay:struct frame_info *frame:frame
554 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
555 # disassembler. Perhaps objdump can handle it?
556 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
557 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
558
559
560 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
561 # evaluates non-zero, this is the address where the debugger will place
562 # a step-resume breakpoint to get us past the dynamic linker.
563 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
564 # Some systems also have trampoline code for returning from shared libs.
565 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
566
567 # A target might have problems with watchpoints as soon as the stack
568 # frame of the current function has been destroyed. This mostly happens
569 # as the first action in a funtion's epilogue. in_function_epilogue_p()
570 # is defined to return a non-zero value if either the given addr is one
571 # instruction after the stack destroying instruction up to the trailing
572 # return instruction or if we can figure out that the stack frame has
573 # already been invalidated regardless of the value of addr. Targets
574 # which don't suffer from that problem could just let this functionality
575 # untouched.
576 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
577 # Given a vector of command-line arguments, return a newly allocated
578 # string which, when passed to the create_inferior function, will be
579 # parsed (on Unix systems, by the shell) to yield the same vector.
580 # This function should call error() if the argument vector is not
581 # representable for this target or if this target does not support
582 # command-line arguments.
583 # ARGC is the number of elements in the vector.
584 # ARGV is an array of strings, one per argument.
585 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
586 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
587 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
588 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Supported register notes in a core file.
604 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
606 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607 # core file into buffer READBUF with length LEN.
608 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
609
610 # If the elements of C++ vtables are in-place function descriptors rather
611 # than normal function pointers (which may point to code or a descriptor),
612 # set this to one.
613 v:int:vtable_function_descriptors:::0:0::0
614
615 # Set if the least significant bit of the delta is used instead of the least
616 # significant bit of the pfn for pointers to virtual member functions.
617 v:int:vbit_in_delta:::0:0::0
618
619 # Advance PC to next instruction in order to skip a permanent breakpoint.
620 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
621
622 # The maximum length of an instruction on this architecture.
623 V:ULONGEST:max_insn_length:::0:0
624
625 # Copy the instruction at FROM to TO, and make any adjustments
626 # necessary to single-step it at that address.
627 #
628 # REGS holds the state the thread's registers will have before
629 # executing the copied instruction; the PC in REGS will refer to FROM,
630 # not the copy at TO. The caller should update it to point at TO later.
631 #
632 # Return a pointer to data of the architecture's choice to be passed
633 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634 # the instruction's effects have been completely simulated, with the
635 # resulting state written back to REGS.
636 #
637 # For a general explanation of displaced stepping and how GDB uses it,
638 # see the comments in infrun.c.
639 #
640 # The TO area is only guaranteed to have space for
641 # gdbarch_max_insn_length (arch) bytes, so this function must not
642 # write more bytes than that to that area.
643 #
644 # If you do not provide this function, GDB assumes that the
645 # architecture does not support displaced stepping.
646 #
647 # If your architecture doesn't need to adjust instructions before
648 # single-stepping them, consider using simple_displaced_step_copy_insn
649 # here.
650 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652 # Fix up the state resulting from successfully single-stepping a
653 # displaced instruction, to give the result we would have gotten from
654 # stepping the instruction in its original location.
655 #
656 # REGS is the register state resulting from single-stepping the
657 # displaced instruction.
658 #
659 # CLOSURE is the result from the matching call to
660 # gdbarch_displaced_step_copy_insn.
661 #
662 # If you provide gdbarch_displaced_step_copy_insn.but not this
663 # function, then GDB assumes that no fixup is needed after
664 # single-stepping the instruction.
665 #
666 # For a general explanation of displaced stepping and how GDB uses it,
667 # see the comments in infrun.c.
668 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670 # Free a closure returned by gdbarch_displaced_step_copy_insn.
671 #
672 # If you provide gdbarch_displaced_step_copy_insn, you must provide
673 # this function as well.
674 #
675 # If your architecture uses closures that don't need to be freed, then
676 # you can use simple_displaced_step_free_closure here.
677 #
678 # For a general explanation of displaced stepping and how GDB uses it,
679 # see the comments in infrun.c.
680 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682 # Return the address of an appropriate place to put displaced
683 # instructions while we step over them. There need only be one such
684 # place, since we're only stepping one thread over a breakpoint at a
685 # time.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
691 # Refresh overlay mapped state for section OSECT.
692 F:void:overlay_update:struct obj_section *osect:osect
693
694 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
695
696 # Handle special encoding of static variables in stabs debug info.
697 F:char *:static_transform_name:char *name:name
698 # Set if the address in N_SO or N_FUN stabs may be zero.
699 v:int:sofun_address_maybe_missing:::0:0::0
700
701 # Signal translation: translate inferior's signal (host's) number into
702 # GDB's representation.
703 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704 # Signal translation: translate GDB's signal number into inferior's host
705 # signal number.
706 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
707
708 # Record architecture-specific information from the symbol table.
709 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
710 EOF
711 }
712
713 #
714 # The .log file
715 #
716 exec > new-gdbarch.log
717 function_list | while do_read
718 do
719 cat <<EOF
720 ${class} ${returntype} ${function} ($formal)
721 EOF
722 for r in ${read}
723 do
724 eval echo \"\ \ \ \ ${r}=\${${r}}\"
725 done
726 if class_is_predicate_p && fallback_default_p
727 then
728 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
729 kill $$
730 exit 1
731 fi
732 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
733 then
734 echo "Error: postdefault is useless when invalid_p=0" 1>&2
735 kill $$
736 exit 1
737 fi
738 if class_is_multiarch_p
739 then
740 if class_is_predicate_p ; then :
741 elif test "x${predefault}" = "x"
742 then
743 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
744 kill $$
745 exit 1
746 fi
747 fi
748 echo ""
749 done
750
751 exec 1>&2
752 compare_new gdbarch.log
753
754
755 copyright ()
756 {
757 cat <<EOF
758 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
759
760 /* Dynamic architecture support for GDB, the GNU debugger.
761
762 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
763 Free Software Foundation, Inc.
764
765 This file is part of GDB.
766
767 This program is free software; you can redistribute it and/or modify
768 it under the terms of the GNU General Public License as published by
769 the Free Software Foundation; either version 3 of the License, or
770 (at your option) any later version.
771
772 This program is distributed in the hope that it will be useful,
773 but WITHOUT ANY WARRANTY; without even the implied warranty of
774 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
775 GNU General Public License for more details.
776
777 You should have received a copy of the GNU General Public License
778 along with this program. If not, see <http://www.gnu.org/licenses/>. */
779
780 /* This file was created with the aid of \`\`gdbarch.sh''.
781
782 The Bourne shell script \`\`gdbarch.sh'' creates the files
783 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
784 against the existing \`\`gdbarch.[hc]''. Any differences found
785 being reported.
786
787 If editing this file, please also run gdbarch.sh and merge any
788 changes into that script. Conversely, when making sweeping changes
789 to this file, modifying gdbarch.sh and using its output may prove
790 easier. */
791
792 EOF
793 }
794
795 #
796 # The .h file
797 #
798
799 exec > new-gdbarch.h
800 copyright
801 cat <<EOF
802 #ifndef GDBARCH_H
803 #define GDBARCH_H
804
805 struct floatformat;
806 struct ui_file;
807 struct frame_info;
808 struct value;
809 struct objfile;
810 struct obj_section;
811 struct minimal_symbol;
812 struct regcache;
813 struct reggroup;
814 struct regset;
815 struct disassemble_info;
816 struct target_ops;
817 struct obstack;
818 struct bp_target_info;
819 struct target_desc;
820 struct displaced_step_closure;
821 struct core_regset_section;
822
823 extern struct gdbarch *current_gdbarch;
824 EOF
825
826 # function typedef's
827 printf "\n"
828 printf "\n"
829 printf "/* The following are pre-initialized by GDBARCH. */\n"
830 function_list | while do_read
831 do
832 if class_is_info_p
833 then
834 printf "\n"
835 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
836 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
837 fi
838 done
839
840 # function typedef's
841 printf "\n"
842 printf "\n"
843 printf "/* The following are initialized by the target dependent code. */\n"
844 function_list | while do_read
845 do
846 if [ -n "${comment}" ]
847 then
848 echo "${comment}" | sed \
849 -e '2 s,#,/*,' \
850 -e '3,$ s,#, ,' \
851 -e '$ s,$, */,'
852 fi
853
854 if class_is_predicate_p
855 then
856 printf "\n"
857 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
858 fi
859 if class_is_variable_p
860 then
861 printf "\n"
862 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
863 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
864 fi
865 if class_is_function_p
866 then
867 printf "\n"
868 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
869 then
870 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
871 elif class_is_multiarch_p
872 then
873 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
874 else
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
876 fi
877 if [ "x${formal}" = "xvoid" ]
878 then
879 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
880 else
881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
882 fi
883 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
884 fi
885 done
886
887 # close it off
888 cat <<EOF
889
890 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
891
892
893 /* Mechanism for co-ordinating the selection of a specific
894 architecture.
895
896 GDB targets (*-tdep.c) can register an interest in a specific
897 architecture. Other GDB components can register a need to maintain
898 per-architecture data.
899
900 The mechanisms below ensures that there is only a loose connection
901 between the set-architecture command and the various GDB
902 components. Each component can independently register their need
903 to maintain architecture specific data with gdbarch.
904
905 Pragmatics:
906
907 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
908 didn't scale.
909
910 The more traditional mega-struct containing architecture specific
911 data for all the various GDB components was also considered. Since
912 GDB is built from a variable number of (fairly independent)
913 components it was determined that the global aproach was not
914 applicable. */
915
916
917 /* Register a new architectural family with GDB.
918
919 Register support for the specified ARCHITECTURE with GDB. When
920 gdbarch determines that the specified architecture has been
921 selected, the corresponding INIT function is called.
922
923 --
924
925 The INIT function takes two parameters: INFO which contains the
926 information available to gdbarch about the (possibly new)
927 architecture; ARCHES which is a list of the previously created
928 \`\`struct gdbarch'' for this architecture.
929
930 The INFO parameter is, as far as possible, be pre-initialized with
931 information obtained from INFO.ABFD or the global defaults.
932
933 The ARCHES parameter is a linked list (sorted most recently used)
934 of all the previously created architures for this architecture
935 family. The (possibly NULL) ARCHES->gdbarch can used to access
936 values from the previously selected architecture for this
937 architecture family. The global \`\`current_gdbarch'' shall not be
938 used.
939
940 The INIT function shall return any of: NULL - indicating that it
941 doesn't recognize the selected architecture; an existing \`\`struct
942 gdbarch'' from the ARCHES list - indicating that the new
943 architecture is just a synonym for an earlier architecture (see
944 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
945 - that describes the selected architecture (see gdbarch_alloc()).
946
947 The DUMP_TDEP function shall print out all target specific values.
948 Care should be taken to ensure that the function works in both the
949 multi-arch and non- multi-arch cases. */
950
951 struct gdbarch_list
952 {
953 struct gdbarch *gdbarch;
954 struct gdbarch_list *next;
955 };
956
957 struct gdbarch_info
958 {
959 /* Use default: NULL (ZERO). */
960 const struct bfd_arch_info *bfd_arch_info;
961
962 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
963 int byte_order;
964
965 /* Use default: NULL (ZERO). */
966 bfd *abfd;
967
968 /* Use default: NULL (ZERO). */
969 struct gdbarch_tdep_info *tdep_info;
970
971 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
972 enum gdb_osabi osabi;
973
974 /* Use default: NULL (ZERO). */
975 const struct target_desc *target_desc;
976 };
977
978 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
979 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
980
981 /* DEPRECATED - use gdbarch_register() */
982 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
983
984 extern void gdbarch_register (enum bfd_architecture architecture,
985 gdbarch_init_ftype *,
986 gdbarch_dump_tdep_ftype *);
987
988
989 /* Return a freshly allocated, NULL terminated, array of the valid
990 architecture names. Since architectures are registered during the
991 _initialize phase this function only returns useful information
992 once initialization has been completed. */
993
994 extern const char **gdbarch_printable_names (void);
995
996
997 /* Helper function. Search the list of ARCHES for a GDBARCH that
998 matches the information provided by INFO. */
999
1000 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1001
1002
1003 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1004 basic initialization using values obtained from the INFO and TDEP
1005 parameters. set_gdbarch_*() functions are called to complete the
1006 initialization of the object. */
1007
1008 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1009
1010
1011 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1012 It is assumed that the caller freeds the \`\`struct
1013 gdbarch_tdep''. */
1014
1015 extern void gdbarch_free (struct gdbarch *);
1016
1017
1018 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1019 obstack. The memory is freed when the corresponding architecture
1020 is also freed. */
1021
1022 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1023 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1024 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1025
1026
1027 /* Helper function. Force an update of the current architecture.
1028
1029 The actual architecture selected is determined by INFO, \`\`(gdb) set
1030 architecture'' et.al., the existing architecture and BFD's default
1031 architecture. INFO should be initialized to zero and then selected
1032 fields should be updated.
1033
1034 Returns non-zero if the update succeeds */
1035
1036 extern int gdbarch_update_p (struct gdbarch_info info);
1037
1038
1039 /* Helper function. Find an architecture matching info.
1040
1041 INFO should be initialized using gdbarch_info_init, relevant fields
1042 set, and then finished using gdbarch_info_fill.
1043
1044 Returns the corresponding architecture, or NULL if no matching
1045 architecture was found. "current_gdbarch" is not updated. */
1046
1047 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1048
1049
1050 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1051
1052 FIXME: kettenis/20031124: Of the functions that follow, only
1053 gdbarch_from_bfd is supposed to survive. The others will
1054 dissappear since in the future GDB will (hopefully) be truly
1055 multi-arch. However, for now we're still stuck with the concept of
1056 a single active architecture. */
1057
1058 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1059
1060
1061 /* Register per-architecture data-pointer.
1062
1063 Reserve space for a per-architecture data-pointer. An identifier
1064 for the reserved data-pointer is returned. That identifer should
1065 be saved in a local static variable.
1066
1067 Memory for the per-architecture data shall be allocated using
1068 gdbarch_obstack_zalloc. That memory will be deleted when the
1069 corresponding architecture object is deleted.
1070
1071 When a previously created architecture is re-selected, the
1072 per-architecture data-pointer for that previous architecture is
1073 restored. INIT() is not re-called.
1074
1075 Multiple registrarants for any architecture are allowed (and
1076 strongly encouraged). */
1077
1078 struct gdbarch_data;
1079
1080 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1081 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1082 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1083 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1084 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1085 struct gdbarch_data *data,
1086 void *pointer);
1087
1088 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1089
1090
1091 /* Set the dynamic target-system-dependent parameters (architecture,
1092 byte-order, ...) using information found in the BFD */
1093
1094 extern void set_gdbarch_from_file (bfd *);
1095
1096
1097 /* Initialize the current architecture to the "first" one we find on
1098 our list. */
1099
1100 extern void initialize_current_architecture (void);
1101
1102 /* gdbarch trace variable */
1103 extern int gdbarch_debug;
1104
1105 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1106
1107 #endif
1108 EOF
1109 exec 1>&2
1110 #../move-if-change new-gdbarch.h gdbarch.h
1111 compare_new gdbarch.h
1112
1113
1114 #
1115 # C file
1116 #
1117
1118 exec > new-gdbarch.c
1119 copyright
1120 cat <<EOF
1121
1122 #include "defs.h"
1123 #include "arch-utils.h"
1124
1125 #include "gdbcmd.h"
1126 #include "inferior.h"
1127 #include "symcat.h"
1128
1129 #include "floatformat.h"
1130
1131 #include "gdb_assert.h"
1132 #include "gdb_string.h"
1133 #include "gdb-events.h"
1134 #include "reggroups.h"
1135 #include "osabi.h"
1136 #include "gdb_obstack.h"
1137
1138 /* Static function declarations */
1139
1140 static void alloc_gdbarch_data (struct gdbarch *);
1141
1142 /* Non-zero if we want to trace architecture code. */
1143
1144 #ifndef GDBARCH_DEBUG
1145 #define GDBARCH_DEBUG 0
1146 #endif
1147 int gdbarch_debug = GDBARCH_DEBUG;
1148 static void
1149 show_gdbarch_debug (struct ui_file *file, int from_tty,
1150 struct cmd_list_element *c, const char *value)
1151 {
1152 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1153 }
1154
1155 static const char *
1156 pformat (const struct floatformat **format)
1157 {
1158 if (format == NULL)
1159 return "(null)";
1160 else
1161 /* Just print out one of them - this is only for diagnostics. */
1162 return format[0]->name;
1163 }
1164
1165 EOF
1166
1167 # gdbarch open the gdbarch object
1168 printf "\n"
1169 printf "/* Maintain the struct gdbarch object */\n"
1170 printf "\n"
1171 printf "struct gdbarch\n"
1172 printf "{\n"
1173 printf " /* Has this architecture been fully initialized? */\n"
1174 printf " int initialized_p;\n"
1175 printf "\n"
1176 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1177 printf " struct obstack *obstack;\n"
1178 printf "\n"
1179 printf " /* basic architectural information */\n"
1180 function_list | while do_read
1181 do
1182 if class_is_info_p
1183 then
1184 printf " ${returntype} ${function};\n"
1185 fi
1186 done
1187 printf "\n"
1188 printf " /* target specific vector. */\n"
1189 printf " struct gdbarch_tdep *tdep;\n"
1190 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1191 printf "\n"
1192 printf " /* per-architecture data-pointers */\n"
1193 printf " unsigned nr_data;\n"
1194 printf " void **data;\n"
1195 printf "\n"
1196 printf " /* per-architecture swap-regions */\n"
1197 printf " struct gdbarch_swap *swap;\n"
1198 printf "\n"
1199 cat <<EOF
1200 /* Multi-arch values.
1201
1202 When extending this structure you must:
1203
1204 Add the field below.
1205
1206 Declare set/get functions and define the corresponding
1207 macro in gdbarch.h.
1208
1209 gdbarch_alloc(): If zero/NULL is not a suitable default,
1210 initialize the new field.
1211
1212 verify_gdbarch(): Confirm that the target updated the field
1213 correctly.
1214
1215 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1216 field is dumped out
1217
1218 \`\`startup_gdbarch()'': Append an initial value to the static
1219 variable (base values on the host's c-type system).
1220
1221 get_gdbarch(): Implement the set/get functions (probably using
1222 the macro's as shortcuts).
1223
1224 */
1225
1226 EOF
1227 function_list | while do_read
1228 do
1229 if class_is_variable_p
1230 then
1231 printf " ${returntype} ${function};\n"
1232 elif class_is_function_p
1233 then
1234 printf " gdbarch_${function}_ftype *${function};\n"
1235 fi
1236 done
1237 printf "};\n"
1238
1239 # A pre-initialized vector
1240 printf "\n"
1241 printf "\n"
1242 cat <<EOF
1243 /* The default architecture uses host values (for want of a better
1244 choice). */
1245 EOF
1246 printf "\n"
1247 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1248 printf "\n"
1249 printf "struct gdbarch startup_gdbarch =\n"
1250 printf "{\n"
1251 printf " 1, /* Always initialized. */\n"
1252 printf " NULL, /* The obstack. */\n"
1253 printf " /* basic architecture information */\n"
1254 function_list | while do_read
1255 do
1256 if class_is_info_p
1257 then
1258 printf " ${staticdefault}, /* ${function} */\n"
1259 fi
1260 done
1261 cat <<EOF
1262 /* target specific vector and its dump routine */
1263 NULL, NULL,
1264 /*per-architecture data-pointers and swap regions */
1265 0, NULL, NULL,
1266 /* Multi-arch values */
1267 EOF
1268 function_list | while do_read
1269 do
1270 if class_is_function_p || class_is_variable_p
1271 then
1272 printf " ${staticdefault}, /* ${function} */\n"
1273 fi
1274 done
1275 cat <<EOF
1276 /* startup_gdbarch() */
1277 };
1278
1279 struct gdbarch *current_gdbarch = &startup_gdbarch;
1280 EOF
1281
1282 # Create a new gdbarch struct
1283 cat <<EOF
1284
1285 /* Create a new \`\`struct gdbarch'' based on information provided by
1286 \`\`struct gdbarch_info''. */
1287 EOF
1288 printf "\n"
1289 cat <<EOF
1290 struct gdbarch *
1291 gdbarch_alloc (const struct gdbarch_info *info,
1292 struct gdbarch_tdep *tdep)
1293 {
1294 struct gdbarch *gdbarch;
1295
1296 /* Create an obstack for allocating all the per-architecture memory,
1297 then use that to allocate the architecture vector. */
1298 struct obstack *obstack = XMALLOC (struct obstack);
1299 obstack_init (obstack);
1300 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1301 memset (gdbarch, 0, sizeof (*gdbarch));
1302 gdbarch->obstack = obstack;
1303
1304 alloc_gdbarch_data (gdbarch);
1305
1306 gdbarch->tdep = tdep;
1307 EOF
1308 printf "\n"
1309 function_list | while do_read
1310 do
1311 if class_is_info_p
1312 then
1313 printf " gdbarch->${function} = info->${function};\n"
1314 fi
1315 done
1316 printf "\n"
1317 printf " /* Force the explicit initialization of these. */\n"
1318 function_list | while do_read
1319 do
1320 if class_is_function_p || class_is_variable_p
1321 then
1322 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1323 then
1324 printf " gdbarch->${function} = ${predefault};\n"
1325 fi
1326 fi
1327 done
1328 cat <<EOF
1329 /* gdbarch_alloc() */
1330
1331 return gdbarch;
1332 }
1333 EOF
1334
1335 # Free a gdbarch struct.
1336 printf "\n"
1337 printf "\n"
1338 cat <<EOF
1339 /* Allocate extra space using the per-architecture obstack. */
1340
1341 void *
1342 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1343 {
1344 void *data = obstack_alloc (arch->obstack, size);
1345 memset (data, 0, size);
1346 return data;
1347 }
1348
1349
1350 /* Free a gdbarch struct. This should never happen in normal
1351 operation --- once you've created a gdbarch, you keep it around.
1352 However, if an architecture's init function encounters an error
1353 building the structure, it may need to clean up a partially
1354 constructed gdbarch. */
1355
1356 void
1357 gdbarch_free (struct gdbarch *arch)
1358 {
1359 struct obstack *obstack;
1360 gdb_assert (arch != NULL);
1361 gdb_assert (!arch->initialized_p);
1362 obstack = arch->obstack;
1363 obstack_free (obstack, 0); /* Includes the ARCH. */
1364 xfree (obstack);
1365 }
1366 EOF
1367
1368 # verify a new architecture
1369 cat <<EOF
1370
1371
1372 /* Ensure that all values in a GDBARCH are reasonable. */
1373
1374 static void
1375 verify_gdbarch (struct gdbarch *gdbarch)
1376 {
1377 struct ui_file *log;
1378 struct cleanup *cleanups;
1379 long dummy;
1380 char *buf;
1381 log = mem_fileopen ();
1382 cleanups = make_cleanup_ui_file_delete (log);
1383 /* fundamental */
1384 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1385 fprintf_unfiltered (log, "\n\tbyte-order");
1386 if (gdbarch->bfd_arch_info == NULL)
1387 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1388 /* Check those that need to be defined for the given multi-arch level. */
1389 EOF
1390 function_list | while do_read
1391 do
1392 if class_is_function_p || class_is_variable_p
1393 then
1394 if [ "x${invalid_p}" = "x0" ]
1395 then
1396 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1397 elif class_is_predicate_p
1398 then
1399 printf " /* Skip verify of ${function}, has predicate */\n"
1400 # FIXME: See do_read for potential simplification
1401 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1402 then
1403 printf " if (${invalid_p})\n"
1404 printf " gdbarch->${function} = ${postdefault};\n"
1405 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1406 then
1407 printf " if (gdbarch->${function} == ${predefault})\n"
1408 printf " gdbarch->${function} = ${postdefault};\n"
1409 elif [ -n "${postdefault}" ]
1410 then
1411 printf " if (gdbarch->${function} == 0)\n"
1412 printf " gdbarch->${function} = ${postdefault};\n"
1413 elif [ -n "${invalid_p}" ]
1414 then
1415 printf " if (${invalid_p})\n"
1416 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1417 elif [ -n "${predefault}" ]
1418 then
1419 printf " if (gdbarch->${function} == ${predefault})\n"
1420 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1421 fi
1422 fi
1423 done
1424 cat <<EOF
1425 buf = ui_file_xstrdup (log, &dummy);
1426 make_cleanup (xfree, buf);
1427 if (strlen (buf) > 0)
1428 internal_error (__FILE__, __LINE__,
1429 _("verify_gdbarch: the following are invalid ...%s"),
1430 buf);
1431 do_cleanups (cleanups);
1432 }
1433 EOF
1434
1435 # dump the structure
1436 printf "\n"
1437 printf "\n"
1438 cat <<EOF
1439 /* Print out the details of the current architecture. */
1440
1441 void
1442 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1443 {
1444 const char *gdb_nm_file = "<not-defined>";
1445 #if defined (GDB_NM_FILE)
1446 gdb_nm_file = GDB_NM_FILE;
1447 #endif
1448 fprintf_unfiltered (file,
1449 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1450 gdb_nm_file);
1451 EOF
1452 function_list | sort -t: -k 3 | while do_read
1453 do
1454 # First the predicate
1455 if class_is_predicate_p
1456 then
1457 printf " fprintf_unfiltered (file,\n"
1458 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1459 printf " gdbarch_${function}_p (gdbarch));\n"
1460 fi
1461 # Print the corresponding value.
1462 if class_is_function_p
1463 then
1464 printf " fprintf_unfiltered (file,\n"
1465 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1466 printf " (long) gdbarch->${function});\n"
1467 else
1468 # It is a variable
1469 case "${print}:${returntype}" in
1470 :CORE_ADDR )
1471 fmt="0x%s"
1472 print="paddr_nz (gdbarch->${function})"
1473 ;;
1474 :* )
1475 fmt="%s"
1476 print="paddr_d (gdbarch->${function})"
1477 ;;
1478 * )
1479 fmt="%s"
1480 ;;
1481 esac
1482 printf " fprintf_unfiltered (file,\n"
1483 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1484 printf " ${print});\n"
1485 fi
1486 done
1487 cat <<EOF
1488 if (gdbarch->dump_tdep != NULL)
1489 gdbarch->dump_tdep (gdbarch, file);
1490 }
1491 EOF
1492
1493
1494 # GET/SET
1495 printf "\n"
1496 cat <<EOF
1497 struct gdbarch_tdep *
1498 gdbarch_tdep (struct gdbarch *gdbarch)
1499 {
1500 if (gdbarch_debug >= 2)
1501 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1502 return gdbarch->tdep;
1503 }
1504 EOF
1505 printf "\n"
1506 function_list | while do_read
1507 do
1508 if class_is_predicate_p
1509 then
1510 printf "\n"
1511 printf "int\n"
1512 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1513 printf "{\n"
1514 printf " gdb_assert (gdbarch != NULL);\n"
1515 printf " return ${predicate};\n"
1516 printf "}\n"
1517 fi
1518 if class_is_function_p
1519 then
1520 printf "\n"
1521 printf "${returntype}\n"
1522 if [ "x${formal}" = "xvoid" ]
1523 then
1524 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1525 else
1526 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1527 fi
1528 printf "{\n"
1529 printf " gdb_assert (gdbarch != NULL);\n"
1530 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1531 if class_is_predicate_p && test -n "${predefault}"
1532 then
1533 # Allow a call to a function with a predicate.
1534 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1535 fi
1536 printf " if (gdbarch_debug >= 2)\n"
1537 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1538 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1539 then
1540 if class_is_multiarch_p
1541 then
1542 params="gdbarch"
1543 else
1544 params=""
1545 fi
1546 else
1547 if class_is_multiarch_p
1548 then
1549 params="gdbarch, ${actual}"
1550 else
1551 params="${actual}"
1552 fi
1553 fi
1554 if [ "x${returntype}" = "xvoid" ]
1555 then
1556 printf " gdbarch->${function} (${params});\n"
1557 else
1558 printf " return gdbarch->${function} (${params});\n"
1559 fi
1560 printf "}\n"
1561 printf "\n"
1562 printf "void\n"
1563 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1564 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1565 printf "{\n"
1566 printf " gdbarch->${function} = ${function};\n"
1567 printf "}\n"
1568 elif class_is_variable_p
1569 then
1570 printf "\n"
1571 printf "${returntype}\n"
1572 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1573 printf "{\n"
1574 printf " gdb_assert (gdbarch != NULL);\n"
1575 if [ "x${invalid_p}" = "x0" ]
1576 then
1577 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1578 elif [ -n "${invalid_p}" ]
1579 then
1580 printf " /* Check variable is valid. */\n"
1581 printf " gdb_assert (!(${invalid_p}));\n"
1582 elif [ -n "${predefault}" ]
1583 then
1584 printf " /* Check variable changed from pre-default. */\n"
1585 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1586 fi
1587 printf " if (gdbarch_debug >= 2)\n"
1588 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1589 printf " return gdbarch->${function};\n"
1590 printf "}\n"
1591 printf "\n"
1592 printf "void\n"
1593 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1594 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1595 printf "{\n"
1596 printf " gdbarch->${function} = ${function};\n"
1597 printf "}\n"
1598 elif class_is_info_p
1599 then
1600 printf "\n"
1601 printf "${returntype}\n"
1602 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1603 printf "{\n"
1604 printf " gdb_assert (gdbarch != NULL);\n"
1605 printf " if (gdbarch_debug >= 2)\n"
1606 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1607 printf " return gdbarch->${function};\n"
1608 printf "}\n"
1609 fi
1610 done
1611
1612 # All the trailing guff
1613 cat <<EOF
1614
1615
1616 /* Keep a registry of per-architecture data-pointers required by GDB
1617 modules. */
1618
1619 struct gdbarch_data
1620 {
1621 unsigned index;
1622 int init_p;
1623 gdbarch_data_pre_init_ftype *pre_init;
1624 gdbarch_data_post_init_ftype *post_init;
1625 };
1626
1627 struct gdbarch_data_registration
1628 {
1629 struct gdbarch_data *data;
1630 struct gdbarch_data_registration *next;
1631 };
1632
1633 struct gdbarch_data_registry
1634 {
1635 unsigned nr;
1636 struct gdbarch_data_registration *registrations;
1637 };
1638
1639 struct gdbarch_data_registry gdbarch_data_registry =
1640 {
1641 0, NULL,
1642 };
1643
1644 static struct gdbarch_data *
1645 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1646 gdbarch_data_post_init_ftype *post_init)
1647 {
1648 struct gdbarch_data_registration **curr;
1649 /* Append the new registraration. */
1650 for (curr = &gdbarch_data_registry.registrations;
1651 (*curr) != NULL;
1652 curr = &(*curr)->next);
1653 (*curr) = XMALLOC (struct gdbarch_data_registration);
1654 (*curr)->next = NULL;
1655 (*curr)->data = XMALLOC (struct gdbarch_data);
1656 (*curr)->data->index = gdbarch_data_registry.nr++;
1657 (*curr)->data->pre_init = pre_init;
1658 (*curr)->data->post_init = post_init;
1659 (*curr)->data->init_p = 1;
1660 return (*curr)->data;
1661 }
1662
1663 struct gdbarch_data *
1664 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1665 {
1666 return gdbarch_data_register (pre_init, NULL);
1667 }
1668
1669 struct gdbarch_data *
1670 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1671 {
1672 return gdbarch_data_register (NULL, post_init);
1673 }
1674
1675 /* Create/delete the gdbarch data vector. */
1676
1677 static void
1678 alloc_gdbarch_data (struct gdbarch *gdbarch)
1679 {
1680 gdb_assert (gdbarch->data == NULL);
1681 gdbarch->nr_data = gdbarch_data_registry.nr;
1682 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1683 }
1684
1685 /* Initialize the current value of the specified per-architecture
1686 data-pointer. */
1687
1688 void
1689 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1690 struct gdbarch_data *data,
1691 void *pointer)
1692 {
1693 gdb_assert (data->index < gdbarch->nr_data);
1694 gdb_assert (gdbarch->data[data->index] == NULL);
1695 gdb_assert (data->pre_init == NULL);
1696 gdbarch->data[data->index] = pointer;
1697 }
1698
1699 /* Return the current value of the specified per-architecture
1700 data-pointer. */
1701
1702 void *
1703 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1704 {
1705 gdb_assert (data->index < gdbarch->nr_data);
1706 if (gdbarch->data[data->index] == NULL)
1707 {
1708 /* The data-pointer isn't initialized, call init() to get a
1709 value. */
1710 if (data->pre_init != NULL)
1711 /* Mid architecture creation: pass just the obstack, and not
1712 the entire architecture, as that way it isn't possible for
1713 pre-init code to refer to undefined architecture
1714 fields. */
1715 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1716 else if (gdbarch->initialized_p
1717 && data->post_init != NULL)
1718 /* Post architecture creation: pass the entire architecture
1719 (as all fields are valid), but be careful to also detect
1720 recursive references. */
1721 {
1722 gdb_assert (data->init_p);
1723 data->init_p = 0;
1724 gdbarch->data[data->index] = data->post_init (gdbarch);
1725 data->init_p = 1;
1726 }
1727 else
1728 /* The architecture initialization hasn't completed - punt -
1729 hope that the caller knows what they are doing. Once
1730 deprecated_set_gdbarch_data has been initialized, this can be
1731 changed to an internal error. */
1732 return NULL;
1733 gdb_assert (gdbarch->data[data->index] != NULL);
1734 }
1735 return gdbarch->data[data->index];
1736 }
1737
1738
1739 /* Keep a registry of the architectures known by GDB. */
1740
1741 struct gdbarch_registration
1742 {
1743 enum bfd_architecture bfd_architecture;
1744 gdbarch_init_ftype *init;
1745 gdbarch_dump_tdep_ftype *dump_tdep;
1746 struct gdbarch_list *arches;
1747 struct gdbarch_registration *next;
1748 };
1749
1750 static struct gdbarch_registration *gdbarch_registry = NULL;
1751
1752 static void
1753 append_name (const char ***buf, int *nr, const char *name)
1754 {
1755 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1756 (*buf)[*nr] = name;
1757 *nr += 1;
1758 }
1759
1760 const char **
1761 gdbarch_printable_names (void)
1762 {
1763 /* Accumulate a list of names based on the registed list of
1764 architectures. */
1765 enum bfd_architecture a;
1766 int nr_arches = 0;
1767 const char **arches = NULL;
1768 struct gdbarch_registration *rego;
1769 for (rego = gdbarch_registry;
1770 rego != NULL;
1771 rego = rego->next)
1772 {
1773 const struct bfd_arch_info *ap;
1774 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1775 if (ap == NULL)
1776 internal_error (__FILE__, __LINE__,
1777 _("gdbarch_architecture_names: multi-arch unknown"));
1778 do
1779 {
1780 append_name (&arches, &nr_arches, ap->printable_name);
1781 ap = ap->next;
1782 }
1783 while (ap != NULL);
1784 }
1785 append_name (&arches, &nr_arches, NULL);
1786 return arches;
1787 }
1788
1789
1790 void
1791 gdbarch_register (enum bfd_architecture bfd_architecture,
1792 gdbarch_init_ftype *init,
1793 gdbarch_dump_tdep_ftype *dump_tdep)
1794 {
1795 struct gdbarch_registration **curr;
1796 const struct bfd_arch_info *bfd_arch_info;
1797 /* Check that BFD recognizes this architecture */
1798 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1799 if (bfd_arch_info == NULL)
1800 {
1801 internal_error (__FILE__, __LINE__,
1802 _("gdbarch: Attempt to register unknown architecture (%d)"),
1803 bfd_architecture);
1804 }
1805 /* Check that we haven't seen this architecture before */
1806 for (curr = &gdbarch_registry;
1807 (*curr) != NULL;
1808 curr = &(*curr)->next)
1809 {
1810 if (bfd_architecture == (*curr)->bfd_architecture)
1811 internal_error (__FILE__, __LINE__,
1812 _("gdbarch: Duplicate registraration of architecture (%s)"),
1813 bfd_arch_info->printable_name);
1814 }
1815 /* log it */
1816 if (gdbarch_debug)
1817 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1818 bfd_arch_info->printable_name,
1819 (long) init);
1820 /* Append it */
1821 (*curr) = XMALLOC (struct gdbarch_registration);
1822 (*curr)->bfd_architecture = bfd_architecture;
1823 (*curr)->init = init;
1824 (*curr)->dump_tdep = dump_tdep;
1825 (*curr)->arches = NULL;
1826 (*curr)->next = NULL;
1827 }
1828
1829 void
1830 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1831 gdbarch_init_ftype *init)
1832 {
1833 gdbarch_register (bfd_architecture, init, NULL);
1834 }
1835
1836
1837 /* Look for an architecture using gdbarch_info. */
1838
1839 struct gdbarch_list *
1840 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1841 const struct gdbarch_info *info)
1842 {
1843 for (; arches != NULL; arches = arches->next)
1844 {
1845 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1846 continue;
1847 if (info->byte_order != arches->gdbarch->byte_order)
1848 continue;
1849 if (info->osabi != arches->gdbarch->osabi)
1850 continue;
1851 if (info->target_desc != arches->gdbarch->target_desc)
1852 continue;
1853 return arches;
1854 }
1855 return NULL;
1856 }
1857
1858
1859 /* Find an architecture that matches the specified INFO. Create a new
1860 architecture if needed. Return that new architecture. Assumes
1861 that there is no current architecture. */
1862
1863 static struct gdbarch *
1864 find_arch_by_info (struct gdbarch_info info)
1865 {
1866 struct gdbarch *new_gdbarch;
1867 struct gdbarch_registration *rego;
1868
1869 /* The existing architecture has been swapped out - all this code
1870 works from a clean slate. */
1871 gdb_assert (current_gdbarch == NULL);
1872
1873 /* Fill in missing parts of the INFO struct using a number of
1874 sources: "set ..."; INFOabfd supplied; and the global
1875 defaults. */
1876 gdbarch_info_fill (&info);
1877
1878 /* Must have found some sort of architecture. */
1879 gdb_assert (info.bfd_arch_info != NULL);
1880
1881 if (gdbarch_debug)
1882 {
1883 fprintf_unfiltered (gdb_stdlog,
1884 "find_arch_by_info: info.bfd_arch_info %s\n",
1885 (info.bfd_arch_info != NULL
1886 ? info.bfd_arch_info->printable_name
1887 : "(null)"));
1888 fprintf_unfiltered (gdb_stdlog,
1889 "find_arch_by_info: info.byte_order %d (%s)\n",
1890 info.byte_order,
1891 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1892 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1893 : "default"));
1894 fprintf_unfiltered (gdb_stdlog,
1895 "find_arch_by_info: info.osabi %d (%s)\n",
1896 info.osabi, gdbarch_osabi_name (info.osabi));
1897 fprintf_unfiltered (gdb_stdlog,
1898 "find_arch_by_info: info.abfd 0x%lx\n",
1899 (long) info.abfd);
1900 fprintf_unfiltered (gdb_stdlog,
1901 "find_arch_by_info: info.tdep_info 0x%lx\n",
1902 (long) info.tdep_info);
1903 }
1904
1905 /* Find the tdep code that knows about this architecture. */
1906 for (rego = gdbarch_registry;
1907 rego != NULL;
1908 rego = rego->next)
1909 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1910 break;
1911 if (rego == NULL)
1912 {
1913 if (gdbarch_debug)
1914 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1915 "No matching architecture\n");
1916 return 0;
1917 }
1918
1919 /* Ask the tdep code for an architecture that matches "info". */
1920 new_gdbarch = rego->init (info, rego->arches);
1921
1922 /* Did the tdep code like it? No. Reject the change and revert to
1923 the old architecture. */
1924 if (new_gdbarch == NULL)
1925 {
1926 if (gdbarch_debug)
1927 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1928 "Target rejected architecture\n");
1929 return NULL;
1930 }
1931
1932 /* Is this a pre-existing architecture (as determined by already
1933 being initialized)? Move it to the front of the architecture
1934 list (keeping the list sorted Most Recently Used). */
1935 if (new_gdbarch->initialized_p)
1936 {
1937 struct gdbarch_list **list;
1938 struct gdbarch_list *this;
1939 if (gdbarch_debug)
1940 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1941 "Previous architecture 0x%08lx (%s) selected\n",
1942 (long) new_gdbarch,
1943 new_gdbarch->bfd_arch_info->printable_name);
1944 /* Find the existing arch in the list. */
1945 for (list = &rego->arches;
1946 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1947 list = &(*list)->next);
1948 /* It had better be in the list of architectures. */
1949 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1950 /* Unlink THIS. */
1951 this = (*list);
1952 (*list) = this->next;
1953 /* Insert THIS at the front. */
1954 this->next = rego->arches;
1955 rego->arches = this;
1956 /* Return it. */
1957 return new_gdbarch;
1958 }
1959
1960 /* It's a new architecture. */
1961 if (gdbarch_debug)
1962 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1963 "New architecture 0x%08lx (%s) selected\n",
1964 (long) new_gdbarch,
1965 new_gdbarch->bfd_arch_info->printable_name);
1966
1967 /* Insert the new architecture into the front of the architecture
1968 list (keep the list sorted Most Recently Used). */
1969 {
1970 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1971 this->next = rego->arches;
1972 this->gdbarch = new_gdbarch;
1973 rego->arches = this;
1974 }
1975
1976 /* Check that the newly installed architecture is valid. Plug in
1977 any post init values. */
1978 new_gdbarch->dump_tdep = rego->dump_tdep;
1979 verify_gdbarch (new_gdbarch);
1980 new_gdbarch->initialized_p = 1;
1981
1982 if (gdbarch_debug)
1983 gdbarch_dump (new_gdbarch, gdb_stdlog);
1984
1985 return new_gdbarch;
1986 }
1987
1988 struct gdbarch *
1989 gdbarch_find_by_info (struct gdbarch_info info)
1990 {
1991 struct gdbarch *new_gdbarch;
1992
1993 /* Save the previously selected architecture, setting the global to
1994 NULL. This stops things like gdbarch->init() trying to use the
1995 previous architecture's configuration. The previous architecture
1996 may not even be of the same architecture family. The most recent
1997 architecture of the same family is found at the head of the
1998 rego->arches list. */
1999 struct gdbarch *old_gdbarch = current_gdbarch;
2000 current_gdbarch = NULL;
2001
2002 /* Find the specified architecture. */
2003 new_gdbarch = find_arch_by_info (info);
2004
2005 /* Restore the existing architecture. */
2006 gdb_assert (current_gdbarch == NULL);
2007 current_gdbarch = old_gdbarch;
2008
2009 return new_gdbarch;
2010 }
2011
2012 /* Make the specified architecture current. */
2013
2014 void
2015 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2016 {
2017 gdb_assert (new_gdbarch != NULL);
2018 gdb_assert (current_gdbarch != NULL);
2019 gdb_assert (new_gdbarch->initialized_p);
2020 current_gdbarch = new_gdbarch;
2021 architecture_changed_event ();
2022 reinit_frame_cache ();
2023 }
2024
2025 extern void _initialize_gdbarch (void);
2026
2027 void
2028 _initialize_gdbarch (void)
2029 {
2030 struct cmd_list_element *c;
2031
2032 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2033 Set architecture debugging."), _("\\
2034 Show architecture debugging."), _("\\
2035 When non-zero, architecture debugging is enabled."),
2036 NULL,
2037 show_gdbarch_debug,
2038 &setdebuglist, &showdebuglist);
2039 }
2040 EOF
2041
2042 # close things off
2043 exec 1>&2
2044 #../move-if-change new-gdbarch.c gdbarch.c
2045 compare_new gdbarch.c
This page took 0.086187 seconds and 4 git commands to generate.