2856396d6d7140861b93e0632f04f11cdb8688ae
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
590 v:int:cannot_step_breakpoint:::0:0::0
591 v:int:have_nonsteppable_watchpoint:::0:0::0
592 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
593 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
594 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
595 # Is a register in a group
596 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
597 # Fetch the pointer to the ith function argument.
598 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
599
600 # Return the appropriate register set for a core file section with
601 # name SECT_NAME and size SECT_SIZE.
602 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
603
604 # Supported register notes in a core file.
605 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
606
607 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
608 # core file into buffer READBUF with length LEN.
609 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
610
611 # If the elements of C++ vtables are in-place function descriptors rather
612 # than normal function pointers (which may point to code or a descriptor),
613 # set this to one.
614 v:int:vtable_function_descriptors:::0:0::0
615
616 # Set if the least significant bit of the delta is used instead of the least
617 # significant bit of the pfn for pointers to virtual member functions.
618 v:int:vbit_in_delta:::0:0::0
619
620 # Advance PC to next instruction in order to skip a permanent breakpoint.
621 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
622
623 # The maximum length of an instruction on this architecture.
624 V:ULONGEST:max_insn_length:::0:0
625
626 # Copy the instruction at FROM to TO, and make any adjustments
627 # necessary to single-step it at that address.
628 #
629 # REGS holds the state the thread's registers will have before
630 # executing the copied instruction; the PC in REGS will refer to FROM,
631 # not the copy at TO. The caller should update it to point at TO later.
632 #
633 # Return a pointer to data of the architecture's choice to be passed
634 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
635 # the instruction's effects have been completely simulated, with the
636 # resulting state written back to REGS.
637 #
638 # For a general explanation of displaced stepping and how GDB uses it,
639 # see the comments in infrun.c.
640 #
641 # The TO area is only guaranteed to have space for
642 # gdbarch_max_insn_length (arch) bytes, so this function must not
643 # write more bytes than that to that area.
644 #
645 # If you do not provide this function, GDB assumes that the
646 # architecture does not support displaced stepping.
647 #
648 # If your architecture doesn't need to adjust instructions before
649 # single-stepping them, consider using simple_displaced_step_copy_insn
650 # here.
651 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
652
653 # Fix up the state resulting from successfully single-stepping a
654 # displaced instruction, to give the result we would have gotten from
655 # stepping the instruction in its original location.
656 #
657 # REGS is the register state resulting from single-stepping the
658 # displaced instruction.
659 #
660 # CLOSURE is the result from the matching call to
661 # gdbarch_displaced_step_copy_insn.
662 #
663 # If you provide gdbarch_displaced_step_copy_insn.but not this
664 # function, then GDB assumes that no fixup is needed after
665 # single-stepping the instruction.
666 #
667 # For a general explanation of displaced stepping and how GDB uses it,
668 # see the comments in infrun.c.
669 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
670
671 # Free a closure returned by gdbarch_displaced_step_copy_insn.
672 #
673 # If you provide gdbarch_displaced_step_copy_insn, you must provide
674 # this function as well.
675 #
676 # If your architecture uses closures that don't need to be freed, then
677 # you can use simple_displaced_step_free_closure here.
678 #
679 # For a general explanation of displaced stepping and how GDB uses it,
680 # see the comments in infrun.c.
681 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
682
683 # Return the address of an appropriate place to put displaced
684 # instructions while we step over them. There need only be one such
685 # place, since we're only stepping one thread over a breakpoint at a
686 # time.
687 #
688 # For a general explanation of displaced stepping and how GDB uses it,
689 # see the comments in infrun.c.
690 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
691
692 # Refresh overlay mapped state for section OSECT.
693 F:void:overlay_update:struct obj_section *osect:osect
694
695 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
696
697 # Handle special encoding of static variables in stabs debug info.
698 F:char *:static_transform_name:char *name:name
699 # Set if the address in N_SO or N_FUN stabs may be zero.
700 v:int:sofun_address_maybe_missing:::0:0::0
701
702 # Signal translation: translate inferior's signal (host's) number into
703 # GDB's representation.
704 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
705 # Signal translation: translate GDB's signal number into inferior's host
706 # signal number.
707 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
708
709 # Record architecture-specific information from the symbol table.
710 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
711 EOF
712 }
713
714 #
715 # The .log file
716 #
717 exec > new-gdbarch.log
718 function_list | while do_read
719 do
720 cat <<EOF
721 ${class} ${returntype} ${function} ($formal)
722 EOF
723 for r in ${read}
724 do
725 eval echo \"\ \ \ \ ${r}=\${${r}}\"
726 done
727 if class_is_predicate_p && fallback_default_p
728 then
729 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
730 kill $$
731 exit 1
732 fi
733 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
734 then
735 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 kill $$
737 exit 1
738 fi
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p ; then :
742 elif test "x${predefault}" = "x"
743 then
744 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
745 kill $$
746 exit 1
747 fi
748 fi
749 echo ""
750 done
751
752 exec 1>&2
753 compare_new gdbarch.log
754
755
756 copyright ()
757 {
758 cat <<EOF
759 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
760
761 /* Dynamic architecture support for GDB, the GNU debugger.
762
763 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
764 Free Software Foundation, Inc.
765
766 This file is part of GDB.
767
768 This program is free software; you can redistribute it and/or modify
769 it under the terms of the GNU General Public License as published by
770 the Free Software Foundation; either version 3 of the License, or
771 (at your option) any later version.
772
773 This program is distributed in the hope that it will be useful,
774 but WITHOUT ANY WARRANTY; without even the implied warranty of
775 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
776 GNU General Public License for more details.
777
778 You should have received a copy of the GNU General Public License
779 along with this program. If not, see <http://www.gnu.org/licenses/>. */
780
781 /* This file was created with the aid of \`\`gdbarch.sh''.
782
783 The Bourne shell script \`\`gdbarch.sh'' creates the files
784 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
785 against the existing \`\`gdbarch.[hc]''. Any differences found
786 being reported.
787
788 If editing this file, please also run gdbarch.sh and merge any
789 changes into that script. Conversely, when making sweeping changes
790 to this file, modifying gdbarch.sh and using its output may prove
791 easier. */
792
793 EOF
794 }
795
796 #
797 # The .h file
798 #
799
800 exec > new-gdbarch.h
801 copyright
802 cat <<EOF
803 #ifndef GDBARCH_H
804 #define GDBARCH_H
805
806 struct floatformat;
807 struct ui_file;
808 struct frame_info;
809 struct value;
810 struct objfile;
811 struct obj_section;
812 struct minimal_symbol;
813 struct regcache;
814 struct reggroup;
815 struct regset;
816 struct disassemble_info;
817 struct target_ops;
818 struct obstack;
819 struct bp_target_info;
820 struct target_desc;
821 struct displaced_step_closure;
822 struct core_regset_section;
823
824 extern struct gdbarch *current_gdbarch;
825 extern struct gdbarch *target_gdbarch;
826 EOF
827
828 # function typedef's
829 printf "\n"
830 printf "\n"
831 printf "/* The following are pre-initialized by GDBARCH. */\n"
832 function_list | while do_read
833 do
834 if class_is_info_p
835 then
836 printf "\n"
837 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
838 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
839 fi
840 done
841
842 # function typedef's
843 printf "\n"
844 printf "\n"
845 printf "/* The following are initialized by the target dependent code. */\n"
846 function_list | while do_read
847 do
848 if [ -n "${comment}" ]
849 then
850 echo "${comment}" | sed \
851 -e '2 s,#,/*,' \
852 -e '3,$ s,#, ,' \
853 -e '$ s,$, */,'
854 fi
855
856 if class_is_predicate_p
857 then
858 printf "\n"
859 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
860 fi
861 if class_is_variable_p
862 then
863 printf "\n"
864 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
865 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
866 fi
867 if class_is_function_p
868 then
869 printf "\n"
870 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
871 then
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
873 elif class_is_multiarch_p
874 then
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
876 else
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
878 fi
879 if [ "x${formal}" = "xvoid" ]
880 then
881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
882 else
883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
884 fi
885 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
886 fi
887 done
888
889 # close it off
890 cat <<EOF
891
892 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
893
894
895 /* Mechanism for co-ordinating the selection of a specific
896 architecture.
897
898 GDB targets (*-tdep.c) can register an interest in a specific
899 architecture. Other GDB components can register a need to maintain
900 per-architecture data.
901
902 The mechanisms below ensures that there is only a loose connection
903 between the set-architecture command and the various GDB
904 components. Each component can independently register their need
905 to maintain architecture specific data with gdbarch.
906
907 Pragmatics:
908
909 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
910 didn't scale.
911
912 The more traditional mega-struct containing architecture specific
913 data for all the various GDB components was also considered. Since
914 GDB is built from a variable number of (fairly independent)
915 components it was determined that the global aproach was not
916 applicable. */
917
918
919 /* Register a new architectural family with GDB.
920
921 Register support for the specified ARCHITECTURE with GDB. When
922 gdbarch determines that the specified architecture has been
923 selected, the corresponding INIT function is called.
924
925 --
926
927 The INIT function takes two parameters: INFO which contains the
928 information available to gdbarch about the (possibly new)
929 architecture; ARCHES which is a list of the previously created
930 \`\`struct gdbarch'' for this architecture.
931
932 The INFO parameter is, as far as possible, be pre-initialized with
933 information obtained from INFO.ABFD or the global defaults.
934
935 The ARCHES parameter is a linked list (sorted most recently used)
936 of all the previously created architures for this architecture
937 family. The (possibly NULL) ARCHES->gdbarch can used to access
938 values from the previously selected architecture for this
939 architecture family. The global \`\`current_gdbarch'' shall not be
940 used.
941
942 The INIT function shall return any of: NULL - indicating that it
943 doesn't recognize the selected architecture; an existing \`\`struct
944 gdbarch'' from the ARCHES list - indicating that the new
945 architecture is just a synonym for an earlier architecture (see
946 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
947 - that describes the selected architecture (see gdbarch_alloc()).
948
949 The DUMP_TDEP function shall print out all target specific values.
950 Care should be taken to ensure that the function works in both the
951 multi-arch and non- multi-arch cases. */
952
953 struct gdbarch_list
954 {
955 struct gdbarch *gdbarch;
956 struct gdbarch_list *next;
957 };
958
959 struct gdbarch_info
960 {
961 /* Use default: NULL (ZERO). */
962 const struct bfd_arch_info *bfd_arch_info;
963
964 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
965 int byte_order;
966
967 int byte_order_for_code;
968
969 /* Use default: NULL (ZERO). */
970 bfd *abfd;
971
972 /* Use default: NULL (ZERO). */
973 struct gdbarch_tdep_info *tdep_info;
974
975 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
976 enum gdb_osabi osabi;
977
978 /* Use default: NULL (ZERO). */
979 const struct target_desc *target_desc;
980 };
981
982 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
983 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
984
985 /* DEPRECATED - use gdbarch_register() */
986 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
987
988 extern void gdbarch_register (enum bfd_architecture architecture,
989 gdbarch_init_ftype *,
990 gdbarch_dump_tdep_ftype *);
991
992
993 /* Return a freshly allocated, NULL terminated, array of the valid
994 architecture names. Since architectures are registered during the
995 _initialize phase this function only returns useful information
996 once initialization has been completed. */
997
998 extern const char **gdbarch_printable_names (void);
999
1000
1001 /* Helper function. Search the list of ARCHES for a GDBARCH that
1002 matches the information provided by INFO. */
1003
1004 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1005
1006
1007 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1008 basic initialization using values obtained from the INFO and TDEP
1009 parameters. set_gdbarch_*() functions are called to complete the
1010 initialization of the object. */
1011
1012 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1013
1014
1015 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1016 It is assumed that the caller freeds the \`\`struct
1017 gdbarch_tdep''. */
1018
1019 extern void gdbarch_free (struct gdbarch *);
1020
1021
1022 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1023 obstack. The memory is freed when the corresponding architecture
1024 is also freed. */
1025
1026 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1027 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1028 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1029
1030
1031 /* Helper function. Force an update of the current architecture.
1032
1033 The actual architecture selected is determined by INFO, \`\`(gdb) set
1034 architecture'' et.al., the existing architecture and BFD's default
1035 architecture. INFO should be initialized to zero and then selected
1036 fields should be updated.
1037
1038 Returns non-zero if the update succeeds */
1039
1040 extern int gdbarch_update_p (struct gdbarch_info info);
1041
1042
1043 /* Helper function. Find an architecture matching info.
1044
1045 INFO should be initialized using gdbarch_info_init, relevant fields
1046 set, and then finished using gdbarch_info_fill.
1047
1048 Returns the corresponding architecture, or NULL if no matching
1049 architecture was found. "current_gdbarch" is not updated. */
1050
1051 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1052
1053
1054 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1055
1056 FIXME: kettenis/20031124: Of the functions that follow, only
1057 gdbarch_from_bfd is supposed to survive. The others will
1058 dissappear since in the future GDB will (hopefully) be truly
1059 multi-arch. However, for now we're still stuck with the concept of
1060 a single active architecture. */
1061
1062 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1063
1064
1065 /* Register per-architecture data-pointer.
1066
1067 Reserve space for a per-architecture data-pointer. An identifier
1068 for the reserved data-pointer is returned. That identifer should
1069 be saved in a local static variable.
1070
1071 Memory for the per-architecture data shall be allocated using
1072 gdbarch_obstack_zalloc. That memory will be deleted when the
1073 corresponding architecture object is deleted.
1074
1075 When a previously created architecture is re-selected, the
1076 per-architecture data-pointer for that previous architecture is
1077 restored. INIT() is not re-called.
1078
1079 Multiple registrarants for any architecture are allowed (and
1080 strongly encouraged). */
1081
1082 struct gdbarch_data;
1083
1084 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1085 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1086 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1087 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1088 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1089 struct gdbarch_data *data,
1090 void *pointer);
1091
1092 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1093
1094
1095 /* Set the dynamic target-system-dependent parameters (architecture,
1096 byte-order, ...) using information found in the BFD */
1097
1098 extern void set_gdbarch_from_file (bfd *);
1099
1100
1101 /* Initialize the current architecture to the "first" one we find on
1102 our list. */
1103
1104 extern void initialize_current_architecture (void);
1105
1106 /* gdbarch trace variable */
1107 extern int gdbarch_debug;
1108
1109 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1110
1111 #endif
1112 EOF
1113 exec 1>&2
1114 #../move-if-change new-gdbarch.h gdbarch.h
1115 compare_new gdbarch.h
1116
1117
1118 #
1119 # C file
1120 #
1121
1122 exec > new-gdbarch.c
1123 copyright
1124 cat <<EOF
1125
1126 #include "defs.h"
1127 #include "arch-utils.h"
1128
1129 #include "gdbcmd.h"
1130 #include "inferior.h"
1131 #include "symcat.h"
1132
1133 #include "floatformat.h"
1134
1135 #include "gdb_assert.h"
1136 #include "gdb_string.h"
1137 #include "reggroups.h"
1138 #include "osabi.h"
1139 #include "gdb_obstack.h"
1140 #include "observer.h"
1141 #include "regcache.h"
1142
1143 /* Static function declarations */
1144
1145 static void alloc_gdbarch_data (struct gdbarch *);
1146
1147 /* Non-zero if we want to trace architecture code. */
1148
1149 #ifndef GDBARCH_DEBUG
1150 #define GDBARCH_DEBUG 0
1151 #endif
1152 int gdbarch_debug = GDBARCH_DEBUG;
1153 static void
1154 show_gdbarch_debug (struct ui_file *file, int from_tty,
1155 struct cmd_list_element *c, const char *value)
1156 {
1157 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1158 }
1159
1160 static const char *
1161 pformat (const struct floatformat **format)
1162 {
1163 if (format == NULL)
1164 return "(null)";
1165 else
1166 /* Just print out one of them - this is only for diagnostics. */
1167 return format[0]->name;
1168 }
1169
1170 EOF
1171
1172 # gdbarch open the gdbarch object
1173 printf "\n"
1174 printf "/* Maintain the struct gdbarch object */\n"
1175 printf "\n"
1176 printf "struct gdbarch\n"
1177 printf "{\n"
1178 printf " /* Has this architecture been fully initialized? */\n"
1179 printf " int initialized_p;\n"
1180 printf "\n"
1181 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1182 printf " struct obstack *obstack;\n"
1183 printf "\n"
1184 printf " /* basic architectural information */\n"
1185 function_list | while do_read
1186 do
1187 if class_is_info_p
1188 then
1189 printf " ${returntype} ${function};\n"
1190 fi
1191 done
1192 printf "\n"
1193 printf " /* target specific vector. */\n"
1194 printf " struct gdbarch_tdep *tdep;\n"
1195 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1196 printf "\n"
1197 printf " /* per-architecture data-pointers */\n"
1198 printf " unsigned nr_data;\n"
1199 printf " void **data;\n"
1200 printf "\n"
1201 printf " /* per-architecture swap-regions */\n"
1202 printf " struct gdbarch_swap *swap;\n"
1203 printf "\n"
1204 cat <<EOF
1205 /* Multi-arch values.
1206
1207 When extending this structure you must:
1208
1209 Add the field below.
1210
1211 Declare set/get functions and define the corresponding
1212 macro in gdbarch.h.
1213
1214 gdbarch_alloc(): If zero/NULL is not a suitable default,
1215 initialize the new field.
1216
1217 verify_gdbarch(): Confirm that the target updated the field
1218 correctly.
1219
1220 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1221 field is dumped out
1222
1223 \`\`startup_gdbarch()'': Append an initial value to the static
1224 variable (base values on the host's c-type system).
1225
1226 get_gdbarch(): Implement the set/get functions (probably using
1227 the macro's as shortcuts).
1228
1229 */
1230
1231 EOF
1232 function_list | while do_read
1233 do
1234 if class_is_variable_p
1235 then
1236 printf " ${returntype} ${function};\n"
1237 elif class_is_function_p
1238 then
1239 printf " gdbarch_${function}_ftype *${function};\n"
1240 fi
1241 done
1242 printf "};\n"
1243
1244 # A pre-initialized vector
1245 printf "\n"
1246 printf "\n"
1247 cat <<EOF
1248 /* The default architecture uses host values (for want of a better
1249 choice). */
1250 EOF
1251 printf "\n"
1252 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1253 printf "\n"
1254 printf "struct gdbarch startup_gdbarch =\n"
1255 printf "{\n"
1256 printf " 1, /* Always initialized. */\n"
1257 printf " NULL, /* The obstack. */\n"
1258 printf " /* basic architecture information */\n"
1259 function_list | while do_read
1260 do
1261 if class_is_info_p
1262 then
1263 printf " ${staticdefault}, /* ${function} */\n"
1264 fi
1265 done
1266 cat <<EOF
1267 /* target specific vector and its dump routine */
1268 NULL, NULL,
1269 /*per-architecture data-pointers and swap regions */
1270 0, NULL, NULL,
1271 /* Multi-arch values */
1272 EOF
1273 function_list | while do_read
1274 do
1275 if class_is_function_p || class_is_variable_p
1276 then
1277 printf " ${staticdefault}, /* ${function} */\n"
1278 fi
1279 done
1280 cat <<EOF
1281 /* startup_gdbarch() */
1282 };
1283
1284 struct gdbarch *current_gdbarch = &startup_gdbarch;
1285 struct gdbarch *target_gdbarch = &startup_gdbarch;
1286 EOF
1287
1288 # Create a new gdbarch struct
1289 cat <<EOF
1290
1291 /* Create a new \`\`struct gdbarch'' based on information provided by
1292 \`\`struct gdbarch_info''. */
1293 EOF
1294 printf "\n"
1295 cat <<EOF
1296 struct gdbarch *
1297 gdbarch_alloc (const struct gdbarch_info *info,
1298 struct gdbarch_tdep *tdep)
1299 {
1300 struct gdbarch *gdbarch;
1301
1302 /* Create an obstack for allocating all the per-architecture memory,
1303 then use that to allocate the architecture vector. */
1304 struct obstack *obstack = XMALLOC (struct obstack);
1305 obstack_init (obstack);
1306 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1307 memset (gdbarch, 0, sizeof (*gdbarch));
1308 gdbarch->obstack = obstack;
1309
1310 alloc_gdbarch_data (gdbarch);
1311
1312 gdbarch->tdep = tdep;
1313 EOF
1314 printf "\n"
1315 function_list | while do_read
1316 do
1317 if class_is_info_p
1318 then
1319 printf " gdbarch->${function} = info->${function};\n"
1320 fi
1321 done
1322 printf "\n"
1323 printf " /* Force the explicit initialization of these. */\n"
1324 function_list | while do_read
1325 do
1326 if class_is_function_p || class_is_variable_p
1327 then
1328 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1329 then
1330 printf " gdbarch->${function} = ${predefault};\n"
1331 fi
1332 fi
1333 done
1334 cat <<EOF
1335 /* gdbarch_alloc() */
1336
1337 return gdbarch;
1338 }
1339 EOF
1340
1341 # Free a gdbarch struct.
1342 printf "\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* Allocate extra space using the per-architecture obstack. */
1346
1347 void *
1348 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1349 {
1350 void *data = obstack_alloc (arch->obstack, size);
1351 memset (data, 0, size);
1352 return data;
1353 }
1354
1355
1356 /* Free a gdbarch struct. This should never happen in normal
1357 operation --- once you've created a gdbarch, you keep it around.
1358 However, if an architecture's init function encounters an error
1359 building the structure, it may need to clean up a partially
1360 constructed gdbarch. */
1361
1362 void
1363 gdbarch_free (struct gdbarch *arch)
1364 {
1365 struct obstack *obstack;
1366 gdb_assert (arch != NULL);
1367 gdb_assert (!arch->initialized_p);
1368 obstack = arch->obstack;
1369 obstack_free (obstack, 0); /* Includes the ARCH. */
1370 xfree (obstack);
1371 }
1372 EOF
1373
1374 # verify a new architecture
1375 cat <<EOF
1376
1377
1378 /* Ensure that all values in a GDBARCH are reasonable. */
1379
1380 static void
1381 verify_gdbarch (struct gdbarch *gdbarch)
1382 {
1383 struct ui_file *log;
1384 struct cleanup *cleanups;
1385 long dummy;
1386 char *buf;
1387 log = mem_fileopen ();
1388 cleanups = make_cleanup_ui_file_delete (log);
1389 /* fundamental */
1390 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1391 fprintf_unfiltered (log, "\n\tbyte-order");
1392 if (gdbarch->bfd_arch_info == NULL)
1393 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1394 /* Check those that need to be defined for the given multi-arch level. */
1395 EOF
1396 function_list | while do_read
1397 do
1398 if class_is_function_p || class_is_variable_p
1399 then
1400 if [ "x${invalid_p}" = "x0" ]
1401 then
1402 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1403 elif class_is_predicate_p
1404 then
1405 printf " /* Skip verify of ${function}, has predicate */\n"
1406 # FIXME: See do_read for potential simplification
1407 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1408 then
1409 printf " if (${invalid_p})\n"
1410 printf " gdbarch->${function} = ${postdefault};\n"
1411 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1412 then
1413 printf " if (gdbarch->${function} == ${predefault})\n"
1414 printf " gdbarch->${function} = ${postdefault};\n"
1415 elif [ -n "${postdefault}" ]
1416 then
1417 printf " if (gdbarch->${function} == 0)\n"
1418 printf " gdbarch->${function} = ${postdefault};\n"
1419 elif [ -n "${invalid_p}" ]
1420 then
1421 printf " if (${invalid_p})\n"
1422 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1423 elif [ -n "${predefault}" ]
1424 then
1425 printf " if (gdbarch->${function} == ${predefault})\n"
1426 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1427 fi
1428 fi
1429 done
1430 cat <<EOF
1431 buf = ui_file_xstrdup (log, &dummy);
1432 make_cleanup (xfree, buf);
1433 if (strlen (buf) > 0)
1434 internal_error (__FILE__, __LINE__,
1435 _("verify_gdbarch: the following are invalid ...%s"),
1436 buf);
1437 do_cleanups (cleanups);
1438 }
1439 EOF
1440
1441 # dump the structure
1442 printf "\n"
1443 printf "\n"
1444 cat <<EOF
1445 /* Print out the details of the current architecture. */
1446
1447 void
1448 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1449 {
1450 const char *gdb_nm_file = "<not-defined>";
1451 #if defined (GDB_NM_FILE)
1452 gdb_nm_file = GDB_NM_FILE;
1453 #endif
1454 fprintf_unfiltered (file,
1455 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1456 gdb_nm_file);
1457 EOF
1458 function_list | sort -t: -k 3 | while do_read
1459 do
1460 # First the predicate
1461 if class_is_predicate_p
1462 then
1463 printf " fprintf_unfiltered (file,\n"
1464 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1465 printf " gdbarch_${function}_p (gdbarch));\n"
1466 fi
1467 # Print the corresponding value.
1468 if class_is_function_p
1469 then
1470 printf " fprintf_unfiltered (file,\n"
1471 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1472 printf " (long) gdbarch->${function});\n"
1473 else
1474 # It is a variable
1475 case "${print}:${returntype}" in
1476 :CORE_ADDR )
1477 fmt="%s"
1478 print="core_addr_to_string_nz (gdbarch->${function})"
1479 ;;
1480 :* )
1481 fmt="%s"
1482 print="plongest (gdbarch->${function})"
1483 ;;
1484 * )
1485 fmt="%s"
1486 ;;
1487 esac
1488 printf " fprintf_unfiltered (file,\n"
1489 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1490 printf " ${print});\n"
1491 fi
1492 done
1493 cat <<EOF
1494 if (gdbarch->dump_tdep != NULL)
1495 gdbarch->dump_tdep (gdbarch, file);
1496 }
1497 EOF
1498
1499
1500 # GET/SET
1501 printf "\n"
1502 cat <<EOF
1503 struct gdbarch_tdep *
1504 gdbarch_tdep (struct gdbarch *gdbarch)
1505 {
1506 if (gdbarch_debug >= 2)
1507 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1508 return gdbarch->tdep;
1509 }
1510 EOF
1511 printf "\n"
1512 function_list | while do_read
1513 do
1514 if class_is_predicate_p
1515 then
1516 printf "\n"
1517 printf "int\n"
1518 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1519 printf "{\n"
1520 printf " gdb_assert (gdbarch != NULL);\n"
1521 printf " return ${predicate};\n"
1522 printf "}\n"
1523 fi
1524 if class_is_function_p
1525 then
1526 printf "\n"
1527 printf "${returntype}\n"
1528 if [ "x${formal}" = "xvoid" ]
1529 then
1530 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1531 else
1532 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1533 fi
1534 printf "{\n"
1535 printf " gdb_assert (gdbarch != NULL);\n"
1536 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1537 if class_is_predicate_p && test -n "${predefault}"
1538 then
1539 # Allow a call to a function with a predicate.
1540 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1541 fi
1542 printf " if (gdbarch_debug >= 2)\n"
1543 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1544 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1545 then
1546 if class_is_multiarch_p
1547 then
1548 params="gdbarch"
1549 else
1550 params=""
1551 fi
1552 else
1553 if class_is_multiarch_p
1554 then
1555 params="gdbarch, ${actual}"
1556 else
1557 params="${actual}"
1558 fi
1559 fi
1560 if [ "x${returntype}" = "xvoid" ]
1561 then
1562 printf " gdbarch->${function} (${params});\n"
1563 else
1564 printf " return gdbarch->${function} (${params});\n"
1565 fi
1566 printf "}\n"
1567 printf "\n"
1568 printf "void\n"
1569 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1570 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1571 printf "{\n"
1572 printf " gdbarch->${function} = ${function};\n"
1573 printf "}\n"
1574 elif class_is_variable_p
1575 then
1576 printf "\n"
1577 printf "${returntype}\n"
1578 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1579 printf "{\n"
1580 printf " gdb_assert (gdbarch != NULL);\n"
1581 if [ "x${invalid_p}" = "x0" ]
1582 then
1583 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1584 elif [ -n "${invalid_p}" ]
1585 then
1586 printf " /* Check variable is valid. */\n"
1587 printf " gdb_assert (!(${invalid_p}));\n"
1588 elif [ -n "${predefault}" ]
1589 then
1590 printf " /* Check variable changed from pre-default. */\n"
1591 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1592 fi
1593 printf " if (gdbarch_debug >= 2)\n"
1594 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1595 printf " return gdbarch->${function};\n"
1596 printf "}\n"
1597 printf "\n"
1598 printf "void\n"
1599 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1600 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1601 printf "{\n"
1602 printf " gdbarch->${function} = ${function};\n"
1603 printf "}\n"
1604 elif class_is_info_p
1605 then
1606 printf "\n"
1607 printf "${returntype}\n"
1608 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1609 printf "{\n"
1610 printf " gdb_assert (gdbarch != NULL);\n"
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 printf " return gdbarch->${function};\n"
1614 printf "}\n"
1615 fi
1616 done
1617
1618 # All the trailing guff
1619 cat <<EOF
1620
1621
1622 /* Keep a registry of per-architecture data-pointers required by GDB
1623 modules. */
1624
1625 struct gdbarch_data
1626 {
1627 unsigned index;
1628 int init_p;
1629 gdbarch_data_pre_init_ftype *pre_init;
1630 gdbarch_data_post_init_ftype *post_init;
1631 };
1632
1633 struct gdbarch_data_registration
1634 {
1635 struct gdbarch_data *data;
1636 struct gdbarch_data_registration *next;
1637 };
1638
1639 struct gdbarch_data_registry
1640 {
1641 unsigned nr;
1642 struct gdbarch_data_registration *registrations;
1643 };
1644
1645 struct gdbarch_data_registry gdbarch_data_registry =
1646 {
1647 0, NULL,
1648 };
1649
1650 static struct gdbarch_data *
1651 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1652 gdbarch_data_post_init_ftype *post_init)
1653 {
1654 struct gdbarch_data_registration **curr;
1655 /* Append the new registraration. */
1656 for (curr = &gdbarch_data_registry.registrations;
1657 (*curr) != NULL;
1658 curr = &(*curr)->next);
1659 (*curr) = XMALLOC (struct gdbarch_data_registration);
1660 (*curr)->next = NULL;
1661 (*curr)->data = XMALLOC (struct gdbarch_data);
1662 (*curr)->data->index = gdbarch_data_registry.nr++;
1663 (*curr)->data->pre_init = pre_init;
1664 (*curr)->data->post_init = post_init;
1665 (*curr)->data->init_p = 1;
1666 return (*curr)->data;
1667 }
1668
1669 struct gdbarch_data *
1670 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1671 {
1672 return gdbarch_data_register (pre_init, NULL);
1673 }
1674
1675 struct gdbarch_data *
1676 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1677 {
1678 return gdbarch_data_register (NULL, post_init);
1679 }
1680
1681 /* Create/delete the gdbarch data vector. */
1682
1683 static void
1684 alloc_gdbarch_data (struct gdbarch *gdbarch)
1685 {
1686 gdb_assert (gdbarch->data == NULL);
1687 gdbarch->nr_data = gdbarch_data_registry.nr;
1688 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1689 }
1690
1691 /* Initialize the current value of the specified per-architecture
1692 data-pointer. */
1693
1694 void
1695 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1696 struct gdbarch_data *data,
1697 void *pointer)
1698 {
1699 gdb_assert (data->index < gdbarch->nr_data);
1700 gdb_assert (gdbarch->data[data->index] == NULL);
1701 gdb_assert (data->pre_init == NULL);
1702 gdbarch->data[data->index] = pointer;
1703 }
1704
1705 /* Return the current value of the specified per-architecture
1706 data-pointer. */
1707
1708 void *
1709 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1710 {
1711 gdb_assert (data->index < gdbarch->nr_data);
1712 if (gdbarch->data[data->index] == NULL)
1713 {
1714 /* The data-pointer isn't initialized, call init() to get a
1715 value. */
1716 if (data->pre_init != NULL)
1717 /* Mid architecture creation: pass just the obstack, and not
1718 the entire architecture, as that way it isn't possible for
1719 pre-init code to refer to undefined architecture
1720 fields. */
1721 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1722 else if (gdbarch->initialized_p
1723 && data->post_init != NULL)
1724 /* Post architecture creation: pass the entire architecture
1725 (as all fields are valid), but be careful to also detect
1726 recursive references. */
1727 {
1728 gdb_assert (data->init_p);
1729 data->init_p = 0;
1730 gdbarch->data[data->index] = data->post_init (gdbarch);
1731 data->init_p = 1;
1732 }
1733 else
1734 /* The architecture initialization hasn't completed - punt -
1735 hope that the caller knows what they are doing. Once
1736 deprecated_set_gdbarch_data has been initialized, this can be
1737 changed to an internal error. */
1738 return NULL;
1739 gdb_assert (gdbarch->data[data->index] != NULL);
1740 }
1741 return gdbarch->data[data->index];
1742 }
1743
1744
1745 /* Keep a registry of the architectures known by GDB. */
1746
1747 struct gdbarch_registration
1748 {
1749 enum bfd_architecture bfd_architecture;
1750 gdbarch_init_ftype *init;
1751 gdbarch_dump_tdep_ftype *dump_tdep;
1752 struct gdbarch_list *arches;
1753 struct gdbarch_registration *next;
1754 };
1755
1756 static struct gdbarch_registration *gdbarch_registry = NULL;
1757
1758 static void
1759 append_name (const char ***buf, int *nr, const char *name)
1760 {
1761 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1762 (*buf)[*nr] = name;
1763 *nr += 1;
1764 }
1765
1766 const char **
1767 gdbarch_printable_names (void)
1768 {
1769 /* Accumulate a list of names based on the registed list of
1770 architectures. */
1771 enum bfd_architecture a;
1772 int nr_arches = 0;
1773 const char **arches = NULL;
1774 struct gdbarch_registration *rego;
1775 for (rego = gdbarch_registry;
1776 rego != NULL;
1777 rego = rego->next)
1778 {
1779 const struct bfd_arch_info *ap;
1780 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1781 if (ap == NULL)
1782 internal_error (__FILE__, __LINE__,
1783 _("gdbarch_architecture_names: multi-arch unknown"));
1784 do
1785 {
1786 append_name (&arches, &nr_arches, ap->printable_name);
1787 ap = ap->next;
1788 }
1789 while (ap != NULL);
1790 }
1791 append_name (&arches, &nr_arches, NULL);
1792 return arches;
1793 }
1794
1795
1796 void
1797 gdbarch_register (enum bfd_architecture bfd_architecture,
1798 gdbarch_init_ftype *init,
1799 gdbarch_dump_tdep_ftype *dump_tdep)
1800 {
1801 struct gdbarch_registration **curr;
1802 const struct bfd_arch_info *bfd_arch_info;
1803 /* Check that BFD recognizes this architecture */
1804 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1805 if (bfd_arch_info == NULL)
1806 {
1807 internal_error (__FILE__, __LINE__,
1808 _("gdbarch: Attempt to register unknown architecture (%d)"),
1809 bfd_architecture);
1810 }
1811 /* Check that we haven't seen this architecture before */
1812 for (curr = &gdbarch_registry;
1813 (*curr) != NULL;
1814 curr = &(*curr)->next)
1815 {
1816 if (bfd_architecture == (*curr)->bfd_architecture)
1817 internal_error (__FILE__, __LINE__,
1818 _("gdbarch: Duplicate registraration of architecture (%s)"),
1819 bfd_arch_info->printable_name);
1820 }
1821 /* log it */
1822 if (gdbarch_debug)
1823 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1824 bfd_arch_info->printable_name,
1825 (long) init);
1826 /* Append it */
1827 (*curr) = XMALLOC (struct gdbarch_registration);
1828 (*curr)->bfd_architecture = bfd_architecture;
1829 (*curr)->init = init;
1830 (*curr)->dump_tdep = dump_tdep;
1831 (*curr)->arches = NULL;
1832 (*curr)->next = NULL;
1833 }
1834
1835 void
1836 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1837 gdbarch_init_ftype *init)
1838 {
1839 gdbarch_register (bfd_architecture, init, NULL);
1840 }
1841
1842
1843 /* Look for an architecture using gdbarch_info. */
1844
1845 struct gdbarch_list *
1846 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1847 const struct gdbarch_info *info)
1848 {
1849 for (; arches != NULL; arches = arches->next)
1850 {
1851 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1852 continue;
1853 if (info->byte_order != arches->gdbarch->byte_order)
1854 continue;
1855 if (info->osabi != arches->gdbarch->osabi)
1856 continue;
1857 if (info->target_desc != arches->gdbarch->target_desc)
1858 continue;
1859 return arches;
1860 }
1861 return NULL;
1862 }
1863
1864
1865 /* Find an architecture that matches the specified INFO. Create a new
1866 architecture if needed. Return that new architecture. Assumes
1867 that there is no current architecture. */
1868
1869 static struct gdbarch *
1870 find_arch_by_info (struct gdbarch_info info)
1871 {
1872 struct gdbarch *new_gdbarch;
1873 struct gdbarch_registration *rego;
1874
1875 /* The existing architecture has been swapped out - all this code
1876 works from a clean slate. */
1877 gdb_assert (current_gdbarch == NULL);
1878
1879 /* Fill in missing parts of the INFO struct using a number of
1880 sources: "set ..."; INFOabfd supplied; and the global
1881 defaults. */
1882 gdbarch_info_fill (&info);
1883
1884 /* Must have found some sort of architecture. */
1885 gdb_assert (info.bfd_arch_info != NULL);
1886
1887 if (gdbarch_debug)
1888 {
1889 fprintf_unfiltered (gdb_stdlog,
1890 "find_arch_by_info: info.bfd_arch_info %s\n",
1891 (info.bfd_arch_info != NULL
1892 ? info.bfd_arch_info->printable_name
1893 : "(null)"));
1894 fprintf_unfiltered (gdb_stdlog,
1895 "find_arch_by_info: info.byte_order %d (%s)\n",
1896 info.byte_order,
1897 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1898 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1899 : "default"));
1900 fprintf_unfiltered (gdb_stdlog,
1901 "find_arch_by_info: info.osabi %d (%s)\n",
1902 info.osabi, gdbarch_osabi_name (info.osabi));
1903 fprintf_unfiltered (gdb_stdlog,
1904 "find_arch_by_info: info.abfd 0x%lx\n",
1905 (long) info.abfd);
1906 fprintf_unfiltered (gdb_stdlog,
1907 "find_arch_by_info: info.tdep_info 0x%lx\n",
1908 (long) info.tdep_info);
1909 }
1910
1911 /* Find the tdep code that knows about this architecture. */
1912 for (rego = gdbarch_registry;
1913 rego != NULL;
1914 rego = rego->next)
1915 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1916 break;
1917 if (rego == NULL)
1918 {
1919 if (gdbarch_debug)
1920 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1921 "No matching architecture\n");
1922 return 0;
1923 }
1924
1925 /* Ask the tdep code for an architecture that matches "info". */
1926 new_gdbarch = rego->init (info, rego->arches);
1927
1928 /* Did the tdep code like it? No. Reject the change and revert to
1929 the old architecture. */
1930 if (new_gdbarch == NULL)
1931 {
1932 if (gdbarch_debug)
1933 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1934 "Target rejected architecture\n");
1935 return NULL;
1936 }
1937
1938 /* Is this a pre-existing architecture (as determined by already
1939 being initialized)? Move it to the front of the architecture
1940 list (keeping the list sorted Most Recently Used). */
1941 if (new_gdbarch->initialized_p)
1942 {
1943 struct gdbarch_list **list;
1944 struct gdbarch_list *this;
1945 if (gdbarch_debug)
1946 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1947 "Previous architecture 0x%08lx (%s) selected\n",
1948 (long) new_gdbarch,
1949 new_gdbarch->bfd_arch_info->printable_name);
1950 /* Find the existing arch in the list. */
1951 for (list = &rego->arches;
1952 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1953 list = &(*list)->next);
1954 /* It had better be in the list of architectures. */
1955 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1956 /* Unlink THIS. */
1957 this = (*list);
1958 (*list) = this->next;
1959 /* Insert THIS at the front. */
1960 this->next = rego->arches;
1961 rego->arches = this;
1962 /* Return it. */
1963 return new_gdbarch;
1964 }
1965
1966 /* It's a new architecture. */
1967 if (gdbarch_debug)
1968 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1969 "New architecture 0x%08lx (%s) selected\n",
1970 (long) new_gdbarch,
1971 new_gdbarch->bfd_arch_info->printable_name);
1972
1973 /* Insert the new architecture into the front of the architecture
1974 list (keep the list sorted Most Recently Used). */
1975 {
1976 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1977 this->next = rego->arches;
1978 this->gdbarch = new_gdbarch;
1979 rego->arches = this;
1980 }
1981
1982 /* Check that the newly installed architecture is valid. Plug in
1983 any post init values. */
1984 new_gdbarch->dump_tdep = rego->dump_tdep;
1985 verify_gdbarch (new_gdbarch);
1986 new_gdbarch->initialized_p = 1;
1987
1988 if (gdbarch_debug)
1989 gdbarch_dump (new_gdbarch, gdb_stdlog);
1990
1991 return new_gdbarch;
1992 }
1993
1994 struct gdbarch *
1995 gdbarch_find_by_info (struct gdbarch_info info)
1996 {
1997 struct gdbarch *new_gdbarch;
1998
1999 /* Save the previously selected architecture, setting the global to
2000 NULL. This stops things like gdbarch->init() trying to use the
2001 previous architecture's configuration. The previous architecture
2002 may not even be of the same architecture family. The most recent
2003 architecture of the same family is found at the head of the
2004 rego->arches list. */
2005 struct gdbarch *old_gdbarch = current_gdbarch;
2006 current_gdbarch = NULL;
2007
2008 /* Find the specified architecture. */
2009 new_gdbarch = find_arch_by_info (info);
2010
2011 /* Restore the existing architecture. */
2012 gdb_assert (current_gdbarch == NULL);
2013 current_gdbarch = old_gdbarch;
2014
2015 return new_gdbarch;
2016 }
2017
2018 /* Make the specified architecture current. */
2019
2020 void
2021 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2022 {
2023 gdb_assert (new_gdbarch != NULL);
2024 gdb_assert (current_gdbarch != NULL);
2025 gdb_assert (new_gdbarch->initialized_p);
2026 current_gdbarch = new_gdbarch;
2027 target_gdbarch = new_gdbarch;
2028 observer_notify_architecture_changed (new_gdbarch);
2029 registers_changed ();
2030 }
2031
2032 extern void _initialize_gdbarch (void);
2033
2034 void
2035 _initialize_gdbarch (void)
2036 {
2037 struct cmd_list_element *c;
2038
2039 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2040 Set architecture debugging."), _("\\
2041 Show architecture debugging."), _("\\
2042 When non-zero, architecture debugging is enabled."),
2043 NULL,
2044 show_gdbarch_debug,
2045 &setdebuglist, &showdebuglist);
2046 }
2047 EOF
2048
2049 # close things off
2050 exec 1>&2
2051 #../move-if-change new-gdbarch.c gdbarch.c
2052 compare_new gdbarch.c
This page took 0.130659 seconds and 4 git commands to generate.