28851675c517149d9dedefece728f7bc50dc4e4c
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 # Return the adjusted address and kind to use for Z0/Z1 packets.
490 # KIND is usually the memory length of the breakpoint, but may have a
491 # different target-specific meaning.
492 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496 v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498 # A function can be addressed by either it's "pointer" (possibly a
499 # descriptor address) or "entry point" (first executable instruction).
500 # The method "convert_from_func_ptr_addr" converting the former to the
501 # latter. gdbarch_deprecated_function_start_offset is being used to implement
502 # a simplified subset of that functionality - the function's address
503 # corresponds to the "function pointer" and the function's start
504 # corresponds to the "function entry point" - and hence is redundant.
505
506 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508 # Return the remote protocol register number associated with this
509 # register. Normally the identity mapping.
510 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512 # Fetch the target specific address used to represent a load module.
513 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514 #
515 v:CORE_ADDR:frame_args_skip:::0:::0
516 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519 # frame-base. Enable frame-base before frame-unwind.
520 F:int:frame_num_args:struct frame_info *frame:frame
521 #
522 M:CORE_ADDR:frame_align:CORE_ADDR address:address
523 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524 v:int:frame_red_zone_size
525 #
526 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537 # It is not at all clear why gdbarch_smash_text_address is not folded into
538 # gdbarch_addr_bits_remove.
539 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
542 # indicates if the target needs software single step. An ISA method to
543 # implement it.
544 #
545 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546 # breakpoints using the breakpoint system instead of blatting memory directly
547 # (as with rs6000).
548 #
549 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550 # target can single step. If not, then implement single step using breakpoints.
551 #
552 # A return value of 1 means that the software_single_step breakpoints
553 # were inserted; 0 means they were not.
554 F:int:software_single_step:struct frame_info *frame:frame
555
556 # Return non-zero if the processor is executing a delay slot and a
557 # further single-step is needed before the instruction finishes.
558 M:int:single_step_through_delay:struct frame_info *frame:frame
559 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560 # disassembler. Perhaps objdump can handle it?
561 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566 # evaluates non-zero, this is the address where the debugger will place
567 # a step-resume breakpoint to get us past the dynamic linker.
568 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569 # Some systems also have trampoline code for returning from shared libs.
570 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572 # A target might have problems with watchpoints as soon as the stack
573 # frame of the current function has been destroyed. This mostly happens
574 # as the first action in a funtion's epilogue. in_function_epilogue_p()
575 # is defined to return a non-zero value if either the given addr is one
576 # instruction after the stack destroying instruction up to the trailing
577 # return instruction or if we can figure out that the stack frame has
578 # already been invalidated regardless of the value of addr. Targets
579 # which don't suffer from that problem could just let this functionality
580 # untouched.
581 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584 v:int:cannot_step_breakpoint:::0:0::0
585 v:int:have_nonsteppable_watchpoint:::0:0::0
586 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589 # Is a register in a group
590 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591 # Fetch the pointer to the ith function argument.
592 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594 # Return the appropriate register set for a core file section with
595 # name SECT_NAME and size SECT_SIZE.
596 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598 # When creating core dumps, some systems encode the PID in addition
599 # to the LWP id in core file register section names. In those cases, the
600 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601 # is set to true for such architectures; false if "XXX" represents an LWP
602 # or thread id with no special encoding.
603 v:int:core_reg_section_encodes_pid:::0:0::0
604
605 # Supported register notes in a core file.
606 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609 # core file into buffer READBUF with length LEN.
610 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612 # How the core_stratum layer converts a PTID from a core file to a
613 # string.
614 M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616 # BFD target to use when generating a core file.
617 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619 # If the elements of C++ vtables are in-place function descriptors rather
620 # than normal function pointers (which may point to code or a descriptor),
621 # set this to one.
622 v:int:vtable_function_descriptors:::0:0::0
623
624 # Set if the least significant bit of the delta is used instead of the least
625 # significant bit of the pfn for pointers to virtual member functions.
626 v:int:vbit_in_delta:::0:0::0
627
628 # Advance PC to next instruction in order to skip a permanent breakpoint.
629 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631 # The maximum length of an instruction on this architecture.
632 V:ULONGEST:max_insn_length:::0:0
633
634 # Copy the instruction at FROM to TO, and make any adjustments
635 # necessary to single-step it at that address.
636 #
637 # REGS holds the state the thread's registers will have before
638 # executing the copied instruction; the PC in REGS will refer to FROM,
639 # not the copy at TO. The caller should update it to point at TO later.
640 #
641 # Return a pointer to data of the architecture's choice to be passed
642 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643 # the instruction's effects have been completely simulated, with the
644 # resulting state written back to REGS.
645 #
646 # For a general explanation of displaced stepping and how GDB uses it,
647 # see the comments in infrun.c.
648 #
649 # The TO area is only guaranteed to have space for
650 # gdbarch_max_insn_length (arch) bytes, so this function must not
651 # write more bytes than that to that area.
652 #
653 # If you do not provide this function, GDB assumes that the
654 # architecture does not support displaced stepping.
655 #
656 # If your architecture doesn't need to adjust instructions before
657 # single-stepping them, consider using simple_displaced_step_copy_insn
658 # here.
659 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661 # Return true if GDB should use hardware single-stepping to execute
662 # the displaced instruction identified by CLOSURE. If false,
663 # GDB will simply restart execution at the displaced instruction
664 # location, and it is up to the target to ensure GDB will receive
665 # control again (e.g. by placing a software breakpoint instruction
666 # into the displaced instruction buffer).
667 #
668 # The default implementation returns false on all targets that
669 # provide a gdbarch_software_single_step routine, and true otherwise.
670 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672 # Fix up the state resulting from successfully single-stepping a
673 # displaced instruction, to give the result we would have gotten from
674 # stepping the instruction in its original location.
675 #
676 # REGS is the register state resulting from single-stepping the
677 # displaced instruction.
678 #
679 # CLOSURE is the result from the matching call to
680 # gdbarch_displaced_step_copy_insn.
681 #
682 # If you provide gdbarch_displaced_step_copy_insn.but not this
683 # function, then GDB assumes that no fixup is needed after
684 # single-stepping the instruction.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690 # Free a closure returned by gdbarch_displaced_step_copy_insn.
691 #
692 # If you provide gdbarch_displaced_step_copy_insn, you must provide
693 # this function as well.
694 #
695 # If your architecture uses closures that don't need to be freed, then
696 # you can use simple_displaced_step_free_closure here.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702 # Return the address of an appropriate place to put displaced
703 # instructions while we step over them. There need only be one such
704 # place, since we're only stepping one thread over a breakpoint at a
705 # time.
706 #
707 # For a general explanation of displaced stepping and how GDB uses it,
708 # see the comments in infrun.c.
709 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711 # Refresh overlay mapped state for section OSECT.
712 F:void:overlay_update:struct obj_section *osect:osect
713
714 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716 # Handle special encoding of static variables in stabs debug info.
717 F:char *:static_transform_name:char *name:name
718 # Set if the address in N_SO or N_FUN stabs may be zero.
719 v:int:sofun_address_maybe_missing:::0:0::0
720
721 # Parse the instruction at ADDR storing in the record execution log
722 # the registers REGCACHE and memory ranges that will be affected when
723 # the instruction executes, along with their current values.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727 # Save process state after a signal.
728 # Return -1 if something goes wrong, 0 otherwise.
729 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731 # Signal translation: translate inferior's signal (host's) number into
732 # GDB's representation.
733 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734 # Signal translation: translate GDB's signal number into inferior's host
735 # signal number.
736 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738 # Extra signal info inspection.
739 #
740 # Return a type suitable to inspect extra signal information.
741 M:struct type *:get_siginfo_type:void:
742
743 # Record architecture-specific information from the symbol table.
744 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746 # Function for the 'catch syscall' feature.
747
748 # Get architecture-specific system calls information from registers.
749 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751 # True if the list of shared libraries is one and only for all
752 # processes, as opposed to a list of shared libraries per inferior.
753 # This usually means that all processes, although may or may not share
754 # an address space, will see the same set of symbols at the same
755 # addresses.
756 v:int:has_global_solist:::0:0::0
757
758 # On some targets, even though each inferior has its own private
759 # address space, the debug interface takes care of making breakpoints
760 # visible to all address spaces automatically. For such cases,
761 # this property should be set to true.
762 v:int:has_global_breakpoints:::0:0::0
763
764 # True if inferiors share an address space (e.g., uClinux).
765 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767 # True if a fast tracepoint can be set at an address.
768 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769
770 # Not NULL if a target has additonal field for qSupported.
771 v:const char *:qsupported:::0:0::0:gdbarch->qsupported
772
773 # Return the "auto" target charset.
774 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
775 # Return the "auto" target wide charset.
776 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
777
778 # If non-empty, this is a file extension that will be opened in place
779 # of the file extension reported by the shared library list.
780 #
781 # This is most useful for toolchains that use a post-linker tool,
782 # where the names of the files run on the target differ in extension
783 # compared to the names of the files GDB should load for debug info.
784 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
785 EOF
786 }
787
788 #
789 # The .log file
790 #
791 exec > new-gdbarch.log
792 function_list | while do_read
793 do
794 cat <<EOF
795 ${class} ${returntype} ${function} ($formal)
796 EOF
797 for r in ${read}
798 do
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
800 done
801 if class_is_predicate_p && fallback_default_p
802 then
803 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
804 kill $$
805 exit 1
806 fi
807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
808 then
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
810 kill $$
811 exit 1
812 fi
813 if class_is_multiarch_p
814 then
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
817 then
818 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
819 kill $$
820 exit 1
821 fi
822 fi
823 echo ""
824 done
825
826 exec 1>&2
827 compare_new gdbarch.log
828
829
830 copyright ()
831 {
832 cat <<EOF
833 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
834
835 /* Dynamic architecture support for GDB, the GNU debugger.
836
837 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
838 2007, 2008, 2009 Free Software Foundation, Inc.
839
840 This file is part of GDB.
841
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
844 the Free Software Foundation; either version 3 of the License, or
845 (at your option) any later version.
846
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
851
852 You should have received a copy of the GNU General Public License
853 along with this program. If not, see <http://www.gnu.org/licenses/>. */
854
855 /* This file was created with the aid of \`\`gdbarch.sh''.
856
857 The Bourne shell script \`\`gdbarch.sh'' creates the files
858 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
859 against the existing \`\`gdbarch.[hc]''. Any differences found
860 being reported.
861
862 If editing this file, please also run gdbarch.sh and merge any
863 changes into that script. Conversely, when making sweeping changes
864 to this file, modifying gdbarch.sh and using its output may prove
865 easier. */
866
867 EOF
868 }
869
870 #
871 # The .h file
872 #
873
874 exec > new-gdbarch.h
875 copyright
876 cat <<EOF
877 #ifndef GDBARCH_H
878 #define GDBARCH_H
879
880 struct floatformat;
881 struct ui_file;
882 struct frame_info;
883 struct value;
884 struct objfile;
885 struct obj_section;
886 struct minimal_symbol;
887 struct regcache;
888 struct reggroup;
889 struct regset;
890 struct disassemble_info;
891 struct target_ops;
892 struct obstack;
893 struct bp_target_info;
894 struct target_desc;
895 struct displaced_step_closure;
896 struct core_regset_section;
897 struct syscall;
898
899 /* The architecture associated with the connection to the target.
900
901 The architecture vector provides some information that is really
902 a property of the target: The layout of certain packets, for instance;
903 or the solib_ops vector. Etc. To differentiate architecture accesses
904 to per-target properties from per-thread/per-frame/per-objfile properties,
905 accesses to per-target properties should be made through target_gdbarch.
906
907 Eventually, when support for multiple targets is implemented in
908 GDB, this global should be made target-specific. */
909 extern struct gdbarch *target_gdbarch;
910 EOF
911
912 # function typedef's
913 printf "\n"
914 printf "\n"
915 printf "/* The following are pre-initialized by GDBARCH. */\n"
916 function_list | while do_read
917 do
918 if class_is_info_p
919 then
920 printf "\n"
921 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
922 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
923 fi
924 done
925
926 # function typedef's
927 printf "\n"
928 printf "\n"
929 printf "/* The following are initialized by the target dependent code. */\n"
930 function_list | while do_read
931 do
932 if [ -n "${comment}" ]
933 then
934 echo "${comment}" | sed \
935 -e '2 s,#,/*,' \
936 -e '3,$ s,#, ,' \
937 -e '$ s,$, */,'
938 fi
939
940 if class_is_predicate_p
941 then
942 printf "\n"
943 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
944 fi
945 if class_is_variable_p
946 then
947 printf "\n"
948 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
949 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
950 fi
951 if class_is_function_p
952 then
953 printf "\n"
954 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
955 then
956 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
957 elif class_is_multiarch_p
958 then
959 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
960 else
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
962 fi
963 if [ "x${formal}" = "xvoid" ]
964 then
965 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
966 else
967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
968 fi
969 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
970 fi
971 done
972
973 # close it off
974 cat <<EOF
975
976 /* Definition for an unknown syscall, used basically in error-cases. */
977 #define UNKNOWN_SYSCALL (-1)
978
979 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
980
981
982 /* Mechanism for co-ordinating the selection of a specific
983 architecture.
984
985 GDB targets (*-tdep.c) can register an interest in a specific
986 architecture. Other GDB components can register a need to maintain
987 per-architecture data.
988
989 The mechanisms below ensures that there is only a loose connection
990 between the set-architecture command and the various GDB
991 components. Each component can independently register their need
992 to maintain architecture specific data with gdbarch.
993
994 Pragmatics:
995
996 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
997 didn't scale.
998
999 The more traditional mega-struct containing architecture specific
1000 data for all the various GDB components was also considered. Since
1001 GDB is built from a variable number of (fairly independent)
1002 components it was determined that the global aproach was not
1003 applicable. */
1004
1005
1006 /* Register a new architectural family with GDB.
1007
1008 Register support for the specified ARCHITECTURE with GDB. When
1009 gdbarch determines that the specified architecture has been
1010 selected, the corresponding INIT function is called.
1011
1012 --
1013
1014 The INIT function takes two parameters: INFO which contains the
1015 information available to gdbarch about the (possibly new)
1016 architecture; ARCHES which is a list of the previously created
1017 \`\`struct gdbarch'' for this architecture.
1018
1019 The INFO parameter is, as far as possible, be pre-initialized with
1020 information obtained from INFO.ABFD or the global defaults.
1021
1022 The ARCHES parameter is a linked list (sorted most recently used)
1023 of all the previously created architures for this architecture
1024 family. The (possibly NULL) ARCHES->gdbarch can used to access
1025 values from the previously selected architecture for this
1026 architecture family.
1027
1028 The INIT function shall return any of: NULL - indicating that it
1029 doesn't recognize the selected architecture; an existing \`\`struct
1030 gdbarch'' from the ARCHES list - indicating that the new
1031 architecture is just a synonym for an earlier architecture (see
1032 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1033 - that describes the selected architecture (see gdbarch_alloc()).
1034
1035 The DUMP_TDEP function shall print out all target specific values.
1036 Care should be taken to ensure that the function works in both the
1037 multi-arch and non- multi-arch cases. */
1038
1039 struct gdbarch_list
1040 {
1041 struct gdbarch *gdbarch;
1042 struct gdbarch_list *next;
1043 };
1044
1045 struct gdbarch_info
1046 {
1047 /* Use default: NULL (ZERO). */
1048 const struct bfd_arch_info *bfd_arch_info;
1049
1050 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1051 int byte_order;
1052
1053 int byte_order_for_code;
1054
1055 /* Use default: NULL (ZERO). */
1056 bfd *abfd;
1057
1058 /* Use default: NULL (ZERO). */
1059 struct gdbarch_tdep_info *tdep_info;
1060
1061 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1062 enum gdb_osabi osabi;
1063
1064 /* Use default: NULL (ZERO). */
1065 const struct target_desc *target_desc;
1066 };
1067
1068 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1069 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1070
1071 /* DEPRECATED - use gdbarch_register() */
1072 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1073
1074 extern void gdbarch_register (enum bfd_architecture architecture,
1075 gdbarch_init_ftype *,
1076 gdbarch_dump_tdep_ftype *);
1077
1078
1079 /* Return a freshly allocated, NULL terminated, array of the valid
1080 architecture names. Since architectures are registered during the
1081 _initialize phase this function only returns useful information
1082 once initialization has been completed. */
1083
1084 extern const char **gdbarch_printable_names (void);
1085
1086
1087 /* Helper function. Search the list of ARCHES for a GDBARCH that
1088 matches the information provided by INFO. */
1089
1090 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1091
1092
1093 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1094 basic initialization using values obtained from the INFO and TDEP
1095 parameters. set_gdbarch_*() functions are called to complete the
1096 initialization of the object. */
1097
1098 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1099
1100
1101 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1102 It is assumed that the caller freeds the \`\`struct
1103 gdbarch_tdep''. */
1104
1105 extern void gdbarch_free (struct gdbarch *);
1106
1107
1108 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1109 obstack. The memory is freed when the corresponding architecture
1110 is also freed. */
1111
1112 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1113 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1114 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1115
1116
1117 /* Helper function. Force an update of the current architecture.
1118
1119 The actual architecture selected is determined by INFO, \`\`(gdb) set
1120 architecture'' et.al., the existing architecture and BFD's default
1121 architecture. INFO should be initialized to zero and then selected
1122 fields should be updated.
1123
1124 Returns non-zero if the update succeeds */
1125
1126 extern int gdbarch_update_p (struct gdbarch_info info);
1127
1128
1129 /* Helper function. Find an architecture matching info.
1130
1131 INFO should be initialized using gdbarch_info_init, relevant fields
1132 set, and then finished using gdbarch_info_fill.
1133
1134 Returns the corresponding architecture, or NULL if no matching
1135 architecture was found. */
1136
1137 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1138
1139
1140 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1141
1142 FIXME: kettenis/20031124: Of the functions that follow, only
1143 gdbarch_from_bfd is supposed to survive. The others will
1144 dissappear since in the future GDB will (hopefully) be truly
1145 multi-arch. However, for now we're still stuck with the concept of
1146 a single active architecture. */
1147
1148 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1149
1150
1151 /* Register per-architecture data-pointer.
1152
1153 Reserve space for a per-architecture data-pointer. An identifier
1154 for the reserved data-pointer is returned. That identifer should
1155 be saved in a local static variable.
1156
1157 Memory for the per-architecture data shall be allocated using
1158 gdbarch_obstack_zalloc. That memory will be deleted when the
1159 corresponding architecture object is deleted.
1160
1161 When a previously created architecture is re-selected, the
1162 per-architecture data-pointer for that previous architecture is
1163 restored. INIT() is not re-called.
1164
1165 Multiple registrarants for any architecture are allowed (and
1166 strongly encouraged). */
1167
1168 struct gdbarch_data;
1169
1170 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1171 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1172 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1173 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1174 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1175 struct gdbarch_data *data,
1176 void *pointer);
1177
1178 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1179
1180
1181 /* Set the dynamic target-system-dependent parameters (architecture,
1182 byte-order, ...) using information found in the BFD */
1183
1184 extern void set_gdbarch_from_file (bfd *);
1185
1186
1187 /* Initialize the current architecture to the "first" one we find on
1188 our list. */
1189
1190 extern void initialize_current_architecture (void);
1191
1192 /* gdbarch trace variable */
1193 extern int gdbarch_debug;
1194
1195 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1196
1197 #endif
1198 EOF
1199 exec 1>&2
1200 #../move-if-change new-gdbarch.h gdbarch.h
1201 compare_new gdbarch.h
1202
1203
1204 #
1205 # C file
1206 #
1207
1208 exec > new-gdbarch.c
1209 copyright
1210 cat <<EOF
1211
1212 #include "defs.h"
1213 #include "arch-utils.h"
1214
1215 #include "gdbcmd.h"
1216 #include "inferior.h"
1217 #include "symcat.h"
1218
1219 #include "floatformat.h"
1220
1221 #include "gdb_assert.h"
1222 #include "gdb_string.h"
1223 #include "reggroups.h"
1224 #include "osabi.h"
1225 #include "gdb_obstack.h"
1226 #include "observer.h"
1227 #include "regcache.h"
1228
1229 /* Static function declarations */
1230
1231 static void alloc_gdbarch_data (struct gdbarch *);
1232
1233 /* Non-zero if we want to trace architecture code. */
1234
1235 #ifndef GDBARCH_DEBUG
1236 #define GDBARCH_DEBUG 0
1237 #endif
1238 int gdbarch_debug = GDBARCH_DEBUG;
1239 static void
1240 show_gdbarch_debug (struct ui_file *file, int from_tty,
1241 struct cmd_list_element *c, const char *value)
1242 {
1243 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1244 }
1245
1246 static const char *
1247 pformat (const struct floatformat **format)
1248 {
1249 if (format == NULL)
1250 return "(null)";
1251 else
1252 /* Just print out one of them - this is only for diagnostics. */
1253 return format[0]->name;
1254 }
1255
1256 static const char *
1257 pstring (const char *string)
1258 {
1259 if (string == NULL)
1260 return "(null)";
1261 return string;
1262 }
1263
1264 EOF
1265
1266 # gdbarch open the gdbarch object
1267 printf "\n"
1268 printf "/* Maintain the struct gdbarch object */\n"
1269 printf "\n"
1270 printf "struct gdbarch\n"
1271 printf "{\n"
1272 printf " /* Has this architecture been fully initialized? */\n"
1273 printf " int initialized_p;\n"
1274 printf "\n"
1275 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1276 printf " struct obstack *obstack;\n"
1277 printf "\n"
1278 printf " /* basic architectural information */\n"
1279 function_list | while do_read
1280 do
1281 if class_is_info_p
1282 then
1283 printf " ${returntype} ${function};\n"
1284 fi
1285 done
1286 printf "\n"
1287 printf " /* target specific vector. */\n"
1288 printf " struct gdbarch_tdep *tdep;\n"
1289 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1290 printf "\n"
1291 printf " /* per-architecture data-pointers */\n"
1292 printf " unsigned nr_data;\n"
1293 printf " void **data;\n"
1294 printf "\n"
1295 printf " /* per-architecture swap-regions */\n"
1296 printf " struct gdbarch_swap *swap;\n"
1297 printf "\n"
1298 cat <<EOF
1299 /* Multi-arch values.
1300
1301 When extending this structure you must:
1302
1303 Add the field below.
1304
1305 Declare set/get functions and define the corresponding
1306 macro in gdbarch.h.
1307
1308 gdbarch_alloc(): If zero/NULL is not a suitable default,
1309 initialize the new field.
1310
1311 verify_gdbarch(): Confirm that the target updated the field
1312 correctly.
1313
1314 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1315 field is dumped out
1316
1317 \`\`startup_gdbarch()'': Append an initial value to the static
1318 variable (base values on the host's c-type system).
1319
1320 get_gdbarch(): Implement the set/get functions (probably using
1321 the macro's as shortcuts).
1322
1323 */
1324
1325 EOF
1326 function_list | while do_read
1327 do
1328 if class_is_variable_p
1329 then
1330 printf " ${returntype} ${function};\n"
1331 elif class_is_function_p
1332 then
1333 printf " gdbarch_${function}_ftype *${function};\n"
1334 fi
1335 done
1336 printf "};\n"
1337
1338 # A pre-initialized vector
1339 printf "\n"
1340 printf "\n"
1341 cat <<EOF
1342 /* The default architecture uses host values (for want of a better
1343 choice). */
1344 EOF
1345 printf "\n"
1346 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1347 printf "\n"
1348 printf "struct gdbarch startup_gdbarch =\n"
1349 printf "{\n"
1350 printf " 1, /* Always initialized. */\n"
1351 printf " NULL, /* The obstack. */\n"
1352 printf " /* basic architecture information */\n"
1353 function_list | while do_read
1354 do
1355 if class_is_info_p
1356 then
1357 printf " ${staticdefault}, /* ${function} */\n"
1358 fi
1359 done
1360 cat <<EOF
1361 /* target specific vector and its dump routine */
1362 NULL, NULL,
1363 /*per-architecture data-pointers and swap regions */
1364 0, NULL, NULL,
1365 /* Multi-arch values */
1366 EOF
1367 function_list | while do_read
1368 do
1369 if class_is_function_p || class_is_variable_p
1370 then
1371 printf " ${staticdefault}, /* ${function} */\n"
1372 fi
1373 done
1374 cat <<EOF
1375 /* startup_gdbarch() */
1376 };
1377
1378 struct gdbarch *target_gdbarch = &startup_gdbarch;
1379 EOF
1380
1381 # Create a new gdbarch struct
1382 cat <<EOF
1383
1384 /* Create a new \`\`struct gdbarch'' based on information provided by
1385 \`\`struct gdbarch_info''. */
1386 EOF
1387 printf "\n"
1388 cat <<EOF
1389 struct gdbarch *
1390 gdbarch_alloc (const struct gdbarch_info *info,
1391 struct gdbarch_tdep *tdep)
1392 {
1393 struct gdbarch *gdbarch;
1394
1395 /* Create an obstack for allocating all the per-architecture memory,
1396 then use that to allocate the architecture vector. */
1397 struct obstack *obstack = XMALLOC (struct obstack);
1398 obstack_init (obstack);
1399 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1400 memset (gdbarch, 0, sizeof (*gdbarch));
1401 gdbarch->obstack = obstack;
1402
1403 alloc_gdbarch_data (gdbarch);
1404
1405 gdbarch->tdep = tdep;
1406 EOF
1407 printf "\n"
1408 function_list | while do_read
1409 do
1410 if class_is_info_p
1411 then
1412 printf " gdbarch->${function} = info->${function};\n"
1413 fi
1414 done
1415 printf "\n"
1416 printf " /* Force the explicit initialization of these. */\n"
1417 function_list | while do_read
1418 do
1419 if class_is_function_p || class_is_variable_p
1420 then
1421 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1422 then
1423 printf " gdbarch->${function} = ${predefault};\n"
1424 fi
1425 fi
1426 done
1427 cat <<EOF
1428 /* gdbarch_alloc() */
1429
1430 return gdbarch;
1431 }
1432 EOF
1433
1434 # Free a gdbarch struct.
1435 printf "\n"
1436 printf "\n"
1437 cat <<EOF
1438 /* Allocate extra space using the per-architecture obstack. */
1439
1440 void *
1441 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1442 {
1443 void *data = obstack_alloc (arch->obstack, size);
1444 memset (data, 0, size);
1445 return data;
1446 }
1447
1448
1449 /* Free a gdbarch struct. This should never happen in normal
1450 operation --- once you've created a gdbarch, you keep it around.
1451 However, if an architecture's init function encounters an error
1452 building the structure, it may need to clean up a partially
1453 constructed gdbarch. */
1454
1455 void
1456 gdbarch_free (struct gdbarch *arch)
1457 {
1458 struct obstack *obstack;
1459 gdb_assert (arch != NULL);
1460 gdb_assert (!arch->initialized_p);
1461 obstack = arch->obstack;
1462 obstack_free (obstack, 0); /* Includes the ARCH. */
1463 xfree (obstack);
1464 }
1465 EOF
1466
1467 # verify a new architecture
1468 cat <<EOF
1469
1470
1471 /* Ensure that all values in a GDBARCH are reasonable. */
1472
1473 static void
1474 verify_gdbarch (struct gdbarch *gdbarch)
1475 {
1476 struct ui_file *log;
1477 struct cleanup *cleanups;
1478 long length;
1479 char *buf;
1480 log = mem_fileopen ();
1481 cleanups = make_cleanup_ui_file_delete (log);
1482 /* fundamental */
1483 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1484 fprintf_unfiltered (log, "\n\tbyte-order");
1485 if (gdbarch->bfd_arch_info == NULL)
1486 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1487 /* Check those that need to be defined for the given multi-arch level. */
1488 EOF
1489 function_list | while do_read
1490 do
1491 if class_is_function_p || class_is_variable_p
1492 then
1493 if [ "x${invalid_p}" = "x0" ]
1494 then
1495 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1496 elif class_is_predicate_p
1497 then
1498 printf " /* Skip verify of ${function}, has predicate */\n"
1499 # FIXME: See do_read for potential simplification
1500 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1501 then
1502 printf " if (${invalid_p})\n"
1503 printf " gdbarch->${function} = ${postdefault};\n"
1504 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1505 then
1506 printf " if (gdbarch->${function} == ${predefault})\n"
1507 printf " gdbarch->${function} = ${postdefault};\n"
1508 elif [ -n "${postdefault}" ]
1509 then
1510 printf " if (gdbarch->${function} == 0)\n"
1511 printf " gdbarch->${function} = ${postdefault};\n"
1512 elif [ -n "${invalid_p}" ]
1513 then
1514 printf " if (${invalid_p})\n"
1515 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1516 elif [ -n "${predefault}" ]
1517 then
1518 printf " if (gdbarch->${function} == ${predefault})\n"
1519 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1520 fi
1521 fi
1522 done
1523 cat <<EOF
1524 buf = ui_file_xstrdup (log, &length);
1525 make_cleanup (xfree, buf);
1526 if (length > 0)
1527 internal_error (__FILE__, __LINE__,
1528 _("verify_gdbarch: the following are invalid ...%s"),
1529 buf);
1530 do_cleanups (cleanups);
1531 }
1532 EOF
1533
1534 # dump the structure
1535 printf "\n"
1536 printf "\n"
1537 cat <<EOF
1538 /* Print out the details of the current architecture. */
1539
1540 void
1541 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1542 {
1543 const char *gdb_nm_file = "<not-defined>";
1544 #if defined (GDB_NM_FILE)
1545 gdb_nm_file = GDB_NM_FILE;
1546 #endif
1547 fprintf_unfiltered (file,
1548 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1549 gdb_nm_file);
1550 EOF
1551 function_list | sort -t: -k 3 | while do_read
1552 do
1553 # First the predicate
1554 if class_is_predicate_p
1555 then
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1558 printf " gdbarch_${function}_p (gdbarch));\n"
1559 fi
1560 # Print the corresponding value.
1561 if class_is_function_p
1562 then
1563 printf " fprintf_unfiltered (file,\n"
1564 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1565 printf " host_address_to_string (gdbarch->${function}));\n"
1566 else
1567 # It is a variable
1568 case "${print}:${returntype}" in
1569 :CORE_ADDR )
1570 fmt="%s"
1571 print="core_addr_to_string_nz (gdbarch->${function})"
1572 ;;
1573 :* )
1574 fmt="%s"
1575 print="plongest (gdbarch->${function})"
1576 ;;
1577 * )
1578 fmt="%s"
1579 ;;
1580 esac
1581 printf " fprintf_unfiltered (file,\n"
1582 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1583 printf " ${print});\n"
1584 fi
1585 done
1586 cat <<EOF
1587 if (gdbarch->dump_tdep != NULL)
1588 gdbarch->dump_tdep (gdbarch, file);
1589 }
1590 EOF
1591
1592
1593 # GET/SET
1594 printf "\n"
1595 cat <<EOF
1596 struct gdbarch_tdep *
1597 gdbarch_tdep (struct gdbarch *gdbarch)
1598 {
1599 if (gdbarch_debug >= 2)
1600 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1601 return gdbarch->tdep;
1602 }
1603 EOF
1604 printf "\n"
1605 function_list | while do_read
1606 do
1607 if class_is_predicate_p
1608 then
1609 printf "\n"
1610 printf "int\n"
1611 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1612 printf "{\n"
1613 printf " gdb_assert (gdbarch != NULL);\n"
1614 printf " return ${predicate};\n"
1615 printf "}\n"
1616 fi
1617 if class_is_function_p
1618 then
1619 printf "\n"
1620 printf "${returntype}\n"
1621 if [ "x${formal}" = "xvoid" ]
1622 then
1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1624 else
1625 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1626 fi
1627 printf "{\n"
1628 printf " gdb_assert (gdbarch != NULL);\n"
1629 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1630 if class_is_predicate_p && test -n "${predefault}"
1631 then
1632 # Allow a call to a function with a predicate.
1633 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1634 fi
1635 printf " if (gdbarch_debug >= 2)\n"
1636 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1637 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1638 then
1639 if class_is_multiarch_p
1640 then
1641 params="gdbarch"
1642 else
1643 params=""
1644 fi
1645 else
1646 if class_is_multiarch_p
1647 then
1648 params="gdbarch, ${actual}"
1649 else
1650 params="${actual}"
1651 fi
1652 fi
1653 if [ "x${returntype}" = "xvoid" ]
1654 then
1655 printf " gdbarch->${function} (${params});\n"
1656 else
1657 printf " return gdbarch->${function} (${params});\n"
1658 fi
1659 printf "}\n"
1660 printf "\n"
1661 printf "void\n"
1662 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1663 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1664 printf "{\n"
1665 printf " gdbarch->${function} = ${function};\n"
1666 printf "}\n"
1667 elif class_is_variable_p
1668 then
1669 printf "\n"
1670 printf "${returntype}\n"
1671 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1672 printf "{\n"
1673 printf " gdb_assert (gdbarch != NULL);\n"
1674 if [ "x${invalid_p}" = "x0" ]
1675 then
1676 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1677 elif [ -n "${invalid_p}" ]
1678 then
1679 printf " /* Check variable is valid. */\n"
1680 printf " gdb_assert (!(${invalid_p}));\n"
1681 elif [ -n "${predefault}" ]
1682 then
1683 printf " /* Check variable changed from pre-default. */\n"
1684 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1685 fi
1686 printf " if (gdbarch_debug >= 2)\n"
1687 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1688 printf " return gdbarch->${function};\n"
1689 printf "}\n"
1690 printf "\n"
1691 printf "void\n"
1692 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1693 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1694 printf "{\n"
1695 printf " gdbarch->${function} = ${function};\n"
1696 printf "}\n"
1697 elif class_is_info_p
1698 then
1699 printf "\n"
1700 printf "${returntype}\n"
1701 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1702 printf "{\n"
1703 printf " gdb_assert (gdbarch != NULL);\n"
1704 printf " if (gdbarch_debug >= 2)\n"
1705 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1706 printf " return gdbarch->${function};\n"
1707 printf "}\n"
1708 fi
1709 done
1710
1711 # All the trailing guff
1712 cat <<EOF
1713
1714
1715 /* Keep a registry of per-architecture data-pointers required by GDB
1716 modules. */
1717
1718 struct gdbarch_data
1719 {
1720 unsigned index;
1721 int init_p;
1722 gdbarch_data_pre_init_ftype *pre_init;
1723 gdbarch_data_post_init_ftype *post_init;
1724 };
1725
1726 struct gdbarch_data_registration
1727 {
1728 struct gdbarch_data *data;
1729 struct gdbarch_data_registration *next;
1730 };
1731
1732 struct gdbarch_data_registry
1733 {
1734 unsigned nr;
1735 struct gdbarch_data_registration *registrations;
1736 };
1737
1738 struct gdbarch_data_registry gdbarch_data_registry =
1739 {
1740 0, NULL,
1741 };
1742
1743 static struct gdbarch_data *
1744 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1745 gdbarch_data_post_init_ftype *post_init)
1746 {
1747 struct gdbarch_data_registration **curr;
1748 /* Append the new registraration. */
1749 for (curr = &gdbarch_data_registry.registrations;
1750 (*curr) != NULL;
1751 curr = &(*curr)->next);
1752 (*curr) = XMALLOC (struct gdbarch_data_registration);
1753 (*curr)->next = NULL;
1754 (*curr)->data = XMALLOC (struct gdbarch_data);
1755 (*curr)->data->index = gdbarch_data_registry.nr++;
1756 (*curr)->data->pre_init = pre_init;
1757 (*curr)->data->post_init = post_init;
1758 (*curr)->data->init_p = 1;
1759 return (*curr)->data;
1760 }
1761
1762 struct gdbarch_data *
1763 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1764 {
1765 return gdbarch_data_register (pre_init, NULL);
1766 }
1767
1768 struct gdbarch_data *
1769 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1770 {
1771 return gdbarch_data_register (NULL, post_init);
1772 }
1773
1774 /* Create/delete the gdbarch data vector. */
1775
1776 static void
1777 alloc_gdbarch_data (struct gdbarch *gdbarch)
1778 {
1779 gdb_assert (gdbarch->data == NULL);
1780 gdbarch->nr_data = gdbarch_data_registry.nr;
1781 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1782 }
1783
1784 /* Initialize the current value of the specified per-architecture
1785 data-pointer. */
1786
1787 void
1788 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1789 struct gdbarch_data *data,
1790 void *pointer)
1791 {
1792 gdb_assert (data->index < gdbarch->nr_data);
1793 gdb_assert (gdbarch->data[data->index] == NULL);
1794 gdb_assert (data->pre_init == NULL);
1795 gdbarch->data[data->index] = pointer;
1796 }
1797
1798 /* Return the current value of the specified per-architecture
1799 data-pointer. */
1800
1801 void *
1802 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1803 {
1804 gdb_assert (data->index < gdbarch->nr_data);
1805 if (gdbarch->data[data->index] == NULL)
1806 {
1807 /* The data-pointer isn't initialized, call init() to get a
1808 value. */
1809 if (data->pre_init != NULL)
1810 /* Mid architecture creation: pass just the obstack, and not
1811 the entire architecture, as that way it isn't possible for
1812 pre-init code to refer to undefined architecture
1813 fields. */
1814 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1815 else if (gdbarch->initialized_p
1816 && data->post_init != NULL)
1817 /* Post architecture creation: pass the entire architecture
1818 (as all fields are valid), but be careful to also detect
1819 recursive references. */
1820 {
1821 gdb_assert (data->init_p);
1822 data->init_p = 0;
1823 gdbarch->data[data->index] = data->post_init (gdbarch);
1824 data->init_p = 1;
1825 }
1826 else
1827 /* The architecture initialization hasn't completed - punt -
1828 hope that the caller knows what they are doing. Once
1829 deprecated_set_gdbarch_data has been initialized, this can be
1830 changed to an internal error. */
1831 return NULL;
1832 gdb_assert (gdbarch->data[data->index] != NULL);
1833 }
1834 return gdbarch->data[data->index];
1835 }
1836
1837
1838 /* Keep a registry of the architectures known by GDB. */
1839
1840 struct gdbarch_registration
1841 {
1842 enum bfd_architecture bfd_architecture;
1843 gdbarch_init_ftype *init;
1844 gdbarch_dump_tdep_ftype *dump_tdep;
1845 struct gdbarch_list *arches;
1846 struct gdbarch_registration *next;
1847 };
1848
1849 static struct gdbarch_registration *gdbarch_registry = NULL;
1850
1851 static void
1852 append_name (const char ***buf, int *nr, const char *name)
1853 {
1854 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1855 (*buf)[*nr] = name;
1856 *nr += 1;
1857 }
1858
1859 const char **
1860 gdbarch_printable_names (void)
1861 {
1862 /* Accumulate a list of names based on the registed list of
1863 architectures. */
1864 enum bfd_architecture a;
1865 int nr_arches = 0;
1866 const char **arches = NULL;
1867 struct gdbarch_registration *rego;
1868 for (rego = gdbarch_registry;
1869 rego != NULL;
1870 rego = rego->next)
1871 {
1872 const struct bfd_arch_info *ap;
1873 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1874 if (ap == NULL)
1875 internal_error (__FILE__, __LINE__,
1876 _("gdbarch_architecture_names: multi-arch unknown"));
1877 do
1878 {
1879 append_name (&arches, &nr_arches, ap->printable_name);
1880 ap = ap->next;
1881 }
1882 while (ap != NULL);
1883 }
1884 append_name (&arches, &nr_arches, NULL);
1885 return arches;
1886 }
1887
1888
1889 void
1890 gdbarch_register (enum bfd_architecture bfd_architecture,
1891 gdbarch_init_ftype *init,
1892 gdbarch_dump_tdep_ftype *dump_tdep)
1893 {
1894 struct gdbarch_registration **curr;
1895 const struct bfd_arch_info *bfd_arch_info;
1896 /* Check that BFD recognizes this architecture */
1897 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1898 if (bfd_arch_info == NULL)
1899 {
1900 internal_error (__FILE__, __LINE__,
1901 _("gdbarch: Attempt to register unknown architecture (%d)"),
1902 bfd_architecture);
1903 }
1904 /* Check that we haven't seen this architecture before */
1905 for (curr = &gdbarch_registry;
1906 (*curr) != NULL;
1907 curr = &(*curr)->next)
1908 {
1909 if (bfd_architecture == (*curr)->bfd_architecture)
1910 internal_error (__FILE__, __LINE__,
1911 _("gdbarch: Duplicate registraration of architecture (%s)"),
1912 bfd_arch_info->printable_name);
1913 }
1914 /* log it */
1915 if (gdbarch_debug)
1916 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1917 bfd_arch_info->printable_name,
1918 host_address_to_string (init));
1919 /* Append it */
1920 (*curr) = XMALLOC (struct gdbarch_registration);
1921 (*curr)->bfd_architecture = bfd_architecture;
1922 (*curr)->init = init;
1923 (*curr)->dump_tdep = dump_tdep;
1924 (*curr)->arches = NULL;
1925 (*curr)->next = NULL;
1926 }
1927
1928 void
1929 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1930 gdbarch_init_ftype *init)
1931 {
1932 gdbarch_register (bfd_architecture, init, NULL);
1933 }
1934
1935
1936 /* Look for an architecture using gdbarch_info. */
1937
1938 struct gdbarch_list *
1939 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1940 const struct gdbarch_info *info)
1941 {
1942 for (; arches != NULL; arches = arches->next)
1943 {
1944 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1945 continue;
1946 if (info->byte_order != arches->gdbarch->byte_order)
1947 continue;
1948 if (info->osabi != arches->gdbarch->osabi)
1949 continue;
1950 if (info->target_desc != arches->gdbarch->target_desc)
1951 continue;
1952 return arches;
1953 }
1954 return NULL;
1955 }
1956
1957
1958 /* Find an architecture that matches the specified INFO. Create a new
1959 architecture if needed. Return that new architecture. */
1960
1961 struct gdbarch *
1962 gdbarch_find_by_info (struct gdbarch_info info)
1963 {
1964 struct gdbarch *new_gdbarch;
1965 struct gdbarch_registration *rego;
1966
1967 /* Fill in missing parts of the INFO struct using a number of
1968 sources: "set ..."; INFOabfd supplied; and the global
1969 defaults. */
1970 gdbarch_info_fill (&info);
1971
1972 /* Must have found some sort of architecture. */
1973 gdb_assert (info.bfd_arch_info != NULL);
1974
1975 if (gdbarch_debug)
1976 {
1977 fprintf_unfiltered (gdb_stdlog,
1978 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1979 (info.bfd_arch_info != NULL
1980 ? info.bfd_arch_info->printable_name
1981 : "(null)"));
1982 fprintf_unfiltered (gdb_stdlog,
1983 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1984 info.byte_order,
1985 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1986 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1987 : "default"));
1988 fprintf_unfiltered (gdb_stdlog,
1989 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1990 info.osabi, gdbarch_osabi_name (info.osabi));
1991 fprintf_unfiltered (gdb_stdlog,
1992 "gdbarch_find_by_info: info.abfd %s\n",
1993 host_address_to_string (info.abfd));
1994 fprintf_unfiltered (gdb_stdlog,
1995 "gdbarch_find_by_info: info.tdep_info %s\n",
1996 host_address_to_string (info.tdep_info));
1997 }
1998
1999 /* Find the tdep code that knows about this architecture. */
2000 for (rego = gdbarch_registry;
2001 rego != NULL;
2002 rego = rego->next)
2003 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2004 break;
2005 if (rego == NULL)
2006 {
2007 if (gdbarch_debug)
2008 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2009 "No matching architecture\n");
2010 return 0;
2011 }
2012
2013 /* Ask the tdep code for an architecture that matches "info". */
2014 new_gdbarch = rego->init (info, rego->arches);
2015
2016 /* Did the tdep code like it? No. Reject the change and revert to
2017 the old architecture. */
2018 if (new_gdbarch == NULL)
2019 {
2020 if (gdbarch_debug)
2021 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2022 "Target rejected architecture\n");
2023 return NULL;
2024 }
2025
2026 /* Is this a pre-existing architecture (as determined by already
2027 being initialized)? Move it to the front of the architecture
2028 list (keeping the list sorted Most Recently Used). */
2029 if (new_gdbarch->initialized_p)
2030 {
2031 struct gdbarch_list **list;
2032 struct gdbarch_list *this;
2033 if (gdbarch_debug)
2034 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2035 "Previous architecture %s (%s) selected\n",
2036 host_address_to_string (new_gdbarch),
2037 new_gdbarch->bfd_arch_info->printable_name);
2038 /* Find the existing arch in the list. */
2039 for (list = &rego->arches;
2040 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2041 list = &(*list)->next);
2042 /* It had better be in the list of architectures. */
2043 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2044 /* Unlink THIS. */
2045 this = (*list);
2046 (*list) = this->next;
2047 /* Insert THIS at the front. */
2048 this->next = rego->arches;
2049 rego->arches = this;
2050 /* Return it. */
2051 return new_gdbarch;
2052 }
2053
2054 /* It's a new architecture. */
2055 if (gdbarch_debug)
2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2057 "New architecture %s (%s) selected\n",
2058 host_address_to_string (new_gdbarch),
2059 new_gdbarch->bfd_arch_info->printable_name);
2060
2061 /* Insert the new architecture into the front of the architecture
2062 list (keep the list sorted Most Recently Used). */
2063 {
2064 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2065 this->next = rego->arches;
2066 this->gdbarch = new_gdbarch;
2067 rego->arches = this;
2068 }
2069
2070 /* Check that the newly installed architecture is valid. Plug in
2071 any post init values. */
2072 new_gdbarch->dump_tdep = rego->dump_tdep;
2073 verify_gdbarch (new_gdbarch);
2074 new_gdbarch->initialized_p = 1;
2075
2076 if (gdbarch_debug)
2077 gdbarch_dump (new_gdbarch, gdb_stdlog);
2078
2079 return new_gdbarch;
2080 }
2081
2082 /* Make the specified architecture current. */
2083
2084 void
2085 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2086 {
2087 gdb_assert (new_gdbarch != NULL);
2088 gdb_assert (new_gdbarch->initialized_p);
2089 target_gdbarch = new_gdbarch;
2090 observer_notify_architecture_changed (new_gdbarch);
2091 registers_changed ();
2092 }
2093
2094 extern void _initialize_gdbarch (void);
2095
2096 void
2097 _initialize_gdbarch (void)
2098 {
2099 struct cmd_list_element *c;
2100
2101 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2102 Set architecture debugging."), _("\\
2103 Show architecture debugging."), _("\\
2104 When non-zero, architecture debugging is enabled."),
2105 NULL,
2106 show_gdbarch_debug,
2107 &setdebuglist, &showdebuglist);
2108 }
2109 EOF
2110
2111 # close things off
2112 exec 1>&2
2113 #../move-if-change new-gdbarch.c gdbarch.c
2114 compare_new gdbarch.c
This page took 0.099589 seconds and 3 git commands to generate.