Fix dwarf2loc.h::dwarf2_evaluate_property function description.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
679
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
687
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
690
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
693 # set this to one.
694 v:int:vtable_function_descriptors:::0:0::0
695
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
699
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
702
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
705
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
708 #
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
712 #
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
717 #
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
720 #
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
724 #
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
727 #
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
730 # here.
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
739 #
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
747 #
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
750 #
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
753 #
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
757 #
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
763 #
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
766 #
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
769 #
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
777 # time.
778 #
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
798
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
800
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
805
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
815
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
824
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
834 # Extra signal info inspection.
835 #
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
838
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
841
842 # Function for the 'catch syscall' feature.
843
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
847 # SystemTap related fields and functions.
848
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
852 #
853 # \$10 ;; integer constant 10
854 #
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
857
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
861
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
865 #
866 # \%eax ;; register eax
867 #
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
874
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
878 #
879 # \(\%eax\) ;; indirecting eax
880 #
881 # in this case, this prefix would be the charater \`\(\'.
882 #
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
886
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
890 #
891 # \(\%eax\) ;; indirecting eax
892 #
893 # in this case, this prefix would be the charater \`\)\'.
894 #
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
898
899 # Prefix(es) used to name a register using GDB's nomenclature.
900 #
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
906
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
909
910 # Check if S is a single operand.
911 #
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917 #
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
923
924 # Function used to handle a "special case" in the parser.
925 #
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
929 #
930 # [R0, #4] ;; displacing R0 by 4
931 #
932 # Since the parser assumes that a register displacement is of the form:
933 #
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
935 #
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
938 #
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
952 # addresses.
953 v:int:has_global_solist:::0:0::0
954
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
960
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
963
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
966
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
971
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
974 #
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
979
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
984
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
992 # Implement the "info proc" command.
993 M:void:info_proc:const char *args, enum info_proc_what what:args, what
994
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
999
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1002 #
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1006 # returns nonzero.
1007 #
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1009 # the callback.
1010 #
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1017
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1026
1027 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028 # Return 0 if *READPTR is already at the end of the buffer.
1029 # Return -1 if there is insufficient buffer for a whole entry.
1030 # Return 1 if an entry was read into *TYPEP and *VALP.
1031 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1032 EOF
1033 }
1034
1035 #
1036 # The .log file
1037 #
1038 exec > new-gdbarch.log
1039 function_list | while do_read
1040 do
1041 cat <<EOF
1042 ${class} ${returntype} ${function} ($formal)
1043 EOF
1044 for r in ${read}
1045 do
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1047 done
1048 if class_is_predicate_p && fallback_default_p
1049 then
1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1051 kill $$
1052 exit 1
1053 fi
1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1055 then
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1057 kill $$
1058 exit 1
1059 fi
1060 if class_is_multiarch_p
1061 then
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1064 then
1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1066 kill $$
1067 exit 1
1068 fi
1069 fi
1070 echo ""
1071 done
1072
1073 exec 1>&2
1074 compare_new gdbarch.log
1075
1076
1077 copyright ()
1078 {
1079 cat <<EOF
1080 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1081 /* vi:set ro: */
1082
1083 /* Dynamic architecture support for GDB, the GNU debugger.
1084
1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1086
1087 This file is part of GDB.
1088
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
1091 the Free Software Foundation; either version 3 of the License, or
1092 (at your option) any later version.
1093
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
1098
1099 You should have received a copy of the GNU General Public License
1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1101
1102 /* This file was created with the aid of \`\`gdbarch.sh''.
1103
1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1107 being reported.
1108
1109 If editing this file, please also run gdbarch.sh and merge any
1110 changes into that script. Conversely, when making sweeping changes
1111 to this file, modifying gdbarch.sh and using its output may prove
1112 easier. */
1113
1114 EOF
1115 }
1116
1117 #
1118 # The .h file
1119 #
1120
1121 exec > new-gdbarch.h
1122 copyright
1123 cat <<EOF
1124 #ifndef GDBARCH_H
1125 #define GDBARCH_H
1126
1127 #include "frame.h"
1128
1129 struct floatformat;
1130 struct ui_file;
1131 struct value;
1132 struct objfile;
1133 struct obj_section;
1134 struct minimal_symbol;
1135 struct regcache;
1136 struct reggroup;
1137 struct regset;
1138 struct disassemble_info;
1139 struct target_ops;
1140 struct obstack;
1141 struct bp_target_info;
1142 struct target_desc;
1143 struct displaced_step_closure;
1144 struct core_regset_section;
1145 struct syscall;
1146 struct agent_expr;
1147 struct axs_value;
1148 struct stap_parse_info;
1149 struct ravenscar_arch_ops;
1150 struct elf_internal_linux_prpsinfo;
1151
1152 /* The architecture associated with the inferior through the
1153 connection to the target.
1154
1155 The architecture vector provides some information that is really a
1156 property of the inferior, accessed through a particular target:
1157 ptrace operations; the layout of certain RSP packets; the solib_ops
1158 vector; etc. To differentiate architecture accesses to
1159 per-inferior/target properties from
1160 per-thread/per-frame/per-objfile properties, accesses to
1161 per-inferior/target properties should be made through this
1162 gdbarch. */
1163
1164 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1165 extern struct gdbarch *target_gdbarch (void);
1166
1167 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1168 gdbarch method. */
1169
1170 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1171 (struct objfile *objfile, void *cb_data);
1172 EOF
1173
1174 # function typedef's
1175 printf "\n"
1176 printf "\n"
1177 printf "/* The following are pre-initialized by GDBARCH. */\n"
1178 function_list | while do_read
1179 do
1180 if class_is_info_p
1181 then
1182 printf "\n"
1183 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1184 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1185 fi
1186 done
1187
1188 # function typedef's
1189 printf "\n"
1190 printf "\n"
1191 printf "/* The following are initialized by the target dependent code. */\n"
1192 function_list | while do_read
1193 do
1194 if [ -n "${comment}" ]
1195 then
1196 echo "${comment}" | sed \
1197 -e '2 s,#,/*,' \
1198 -e '3,$ s,#, ,' \
1199 -e '$ s,$, */,'
1200 fi
1201
1202 if class_is_predicate_p
1203 then
1204 printf "\n"
1205 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1206 fi
1207 if class_is_variable_p
1208 then
1209 printf "\n"
1210 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1211 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1212 fi
1213 if class_is_function_p
1214 then
1215 printf "\n"
1216 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1217 then
1218 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1219 elif class_is_multiarch_p
1220 then
1221 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1222 else
1223 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1224 fi
1225 if [ "x${formal}" = "xvoid" ]
1226 then
1227 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1228 else
1229 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1230 fi
1231 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1232 fi
1233 done
1234
1235 # close it off
1236 cat <<EOF
1237
1238 /* Definition for an unknown syscall, used basically in error-cases. */
1239 #define UNKNOWN_SYSCALL (-1)
1240
1241 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1242
1243
1244 /* Mechanism for co-ordinating the selection of a specific
1245 architecture.
1246
1247 GDB targets (*-tdep.c) can register an interest in a specific
1248 architecture. Other GDB components can register a need to maintain
1249 per-architecture data.
1250
1251 The mechanisms below ensures that there is only a loose connection
1252 between the set-architecture command and the various GDB
1253 components. Each component can independently register their need
1254 to maintain architecture specific data with gdbarch.
1255
1256 Pragmatics:
1257
1258 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1259 didn't scale.
1260
1261 The more traditional mega-struct containing architecture specific
1262 data for all the various GDB components was also considered. Since
1263 GDB is built from a variable number of (fairly independent)
1264 components it was determined that the global aproach was not
1265 applicable. */
1266
1267
1268 /* Register a new architectural family with GDB.
1269
1270 Register support for the specified ARCHITECTURE with GDB. When
1271 gdbarch determines that the specified architecture has been
1272 selected, the corresponding INIT function is called.
1273
1274 --
1275
1276 The INIT function takes two parameters: INFO which contains the
1277 information available to gdbarch about the (possibly new)
1278 architecture; ARCHES which is a list of the previously created
1279 \`\`struct gdbarch'' for this architecture.
1280
1281 The INFO parameter is, as far as possible, be pre-initialized with
1282 information obtained from INFO.ABFD or the global defaults.
1283
1284 The ARCHES parameter is a linked list (sorted most recently used)
1285 of all the previously created architures for this architecture
1286 family. The (possibly NULL) ARCHES->gdbarch can used to access
1287 values from the previously selected architecture for this
1288 architecture family.
1289
1290 The INIT function shall return any of: NULL - indicating that it
1291 doesn't recognize the selected architecture; an existing \`\`struct
1292 gdbarch'' from the ARCHES list - indicating that the new
1293 architecture is just a synonym for an earlier architecture (see
1294 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1295 - that describes the selected architecture (see gdbarch_alloc()).
1296
1297 The DUMP_TDEP function shall print out all target specific values.
1298 Care should be taken to ensure that the function works in both the
1299 multi-arch and non- multi-arch cases. */
1300
1301 struct gdbarch_list
1302 {
1303 struct gdbarch *gdbarch;
1304 struct gdbarch_list *next;
1305 };
1306
1307 struct gdbarch_info
1308 {
1309 /* Use default: NULL (ZERO). */
1310 const struct bfd_arch_info *bfd_arch_info;
1311
1312 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1313 enum bfd_endian byte_order;
1314
1315 enum bfd_endian byte_order_for_code;
1316
1317 /* Use default: NULL (ZERO). */
1318 bfd *abfd;
1319
1320 /* Use default: NULL (ZERO). */
1321 struct gdbarch_tdep_info *tdep_info;
1322
1323 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1324 enum gdb_osabi osabi;
1325
1326 /* Use default: NULL (ZERO). */
1327 const struct target_desc *target_desc;
1328 };
1329
1330 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1331 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1332
1333 /* DEPRECATED - use gdbarch_register() */
1334 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1335
1336 extern void gdbarch_register (enum bfd_architecture architecture,
1337 gdbarch_init_ftype *,
1338 gdbarch_dump_tdep_ftype *);
1339
1340
1341 /* Return a freshly allocated, NULL terminated, array of the valid
1342 architecture names. Since architectures are registered during the
1343 _initialize phase this function only returns useful information
1344 once initialization has been completed. */
1345
1346 extern const char **gdbarch_printable_names (void);
1347
1348
1349 /* Helper function. Search the list of ARCHES for a GDBARCH that
1350 matches the information provided by INFO. */
1351
1352 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1353
1354
1355 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1356 basic initialization using values obtained from the INFO and TDEP
1357 parameters. set_gdbarch_*() functions are called to complete the
1358 initialization of the object. */
1359
1360 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1361
1362
1363 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1364 It is assumed that the caller freeds the \`\`struct
1365 gdbarch_tdep''. */
1366
1367 extern void gdbarch_free (struct gdbarch *);
1368
1369
1370 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1371 obstack. The memory is freed when the corresponding architecture
1372 is also freed. */
1373
1374 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1375 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1376 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1377
1378
1379 /* Helper function. Force an update of the current architecture.
1380
1381 The actual architecture selected is determined by INFO, \`\`(gdb) set
1382 architecture'' et.al., the existing architecture and BFD's default
1383 architecture. INFO should be initialized to zero and then selected
1384 fields should be updated.
1385
1386 Returns non-zero if the update succeeds. */
1387
1388 extern int gdbarch_update_p (struct gdbarch_info info);
1389
1390
1391 /* Helper function. Find an architecture matching info.
1392
1393 INFO should be initialized using gdbarch_info_init, relevant fields
1394 set, and then finished using gdbarch_info_fill.
1395
1396 Returns the corresponding architecture, or NULL if no matching
1397 architecture was found. */
1398
1399 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1400
1401
1402 /* Helper function. Set the target gdbarch to "gdbarch". */
1403
1404 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1405
1406
1407 /* Register per-architecture data-pointer.
1408
1409 Reserve space for a per-architecture data-pointer. An identifier
1410 for the reserved data-pointer is returned. That identifer should
1411 be saved in a local static variable.
1412
1413 Memory for the per-architecture data shall be allocated using
1414 gdbarch_obstack_zalloc. That memory will be deleted when the
1415 corresponding architecture object is deleted.
1416
1417 When a previously created architecture is re-selected, the
1418 per-architecture data-pointer for that previous architecture is
1419 restored. INIT() is not re-called.
1420
1421 Multiple registrarants for any architecture are allowed (and
1422 strongly encouraged). */
1423
1424 struct gdbarch_data;
1425
1426 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1427 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1428 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1429 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1430 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1431 struct gdbarch_data *data,
1432 void *pointer);
1433
1434 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1435
1436
1437 /* Set the dynamic target-system-dependent parameters (architecture,
1438 byte-order, ...) using information found in the BFD. */
1439
1440 extern void set_gdbarch_from_file (bfd *);
1441
1442
1443 /* Initialize the current architecture to the "first" one we find on
1444 our list. */
1445
1446 extern void initialize_current_architecture (void);
1447
1448 /* gdbarch trace variable */
1449 extern unsigned int gdbarch_debug;
1450
1451 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1452
1453 #endif
1454 EOF
1455 exec 1>&2
1456 #../move-if-change new-gdbarch.h gdbarch.h
1457 compare_new gdbarch.h
1458
1459
1460 #
1461 # C file
1462 #
1463
1464 exec > new-gdbarch.c
1465 copyright
1466 cat <<EOF
1467
1468 #include "defs.h"
1469 #include "arch-utils.h"
1470
1471 #include "gdbcmd.h"
1472 #include "inferior.h"
1473 #include "symcat.h"
1474
1475 #include "floatformat.h"
1476 #include "reggroups.h"
1477 #include "osabi.h"
1478 #include "gdb_obstack.h"
1479 #include "observer.h"
1480 #include "regcache.h"
1481 #include "objfiles.h"
1482
1483 /* Static function declarations */
1484
1485 static void alloc_gdbarch_data (struct gdbarch *);
1486
1487 /* Non-zero if we want to trace architecture code. */
1488
1489 #ifndef GDBARCH_DEBUG
1490 #define GDBARCH_DEBUG 0
1491 #endif
1492 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1493 static void
1494 show_gdbarch_debug (struct ui_file *file, int from_tty,
1495 struct cmd_list_element *c, const char *value)
1496 {
1497 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1498 }
1499
1500 static const char *
1501 pformat (const struct floatformat **format)
1502 {
1503 if (format == NULL)
1504 return "(null)";
1505 else
1506 /* Just print out one of them - this is only for diagnostics. */
1507 return format[0]->name;
1508 }
1509
1510 static const char *
1511 pstring (const char *string)
1512 {
1513 if (string == NULL)
1514 return "(null)";
1515 return string;
1516 }
1517
1518 /* Helper function to print a list of strings, represented as "const
1519 char *const *". The list is printed comma-separated. */
1520
1521 static char *
1522 pstring_list (const char *const *list)
1523 {
1524 static char ret[100];
1525 const char *const *p;
1526 size_t offset = 0;
1527
1528 if (list == NULL)
1529 return "(null)";
1530
1531 ret[0] = '\0';
1532 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1533 {
1534 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1535 offset += 2 + s;
1536 }
1537
1538 if (offset > 0)
1539 {
1540 gdb_assert (offset - 2 < sizeof (ret));
1541 ret[offset - 2] = '\0';
1542 }
1543
1544 return ret;
1545 }
1546
1547 EOF
1548
1549 # gdbarch open the gdbarch object
1550 printf "\n"
1551 printf "/* Maintain the struct gdbarch object. */\n"
1552 printf "\n"
1553 printf "struct gdbarch\n"
1554 printf "{\n"
1555 printf " /* Has this architecture been fully initialized? */\n"
1556 printf " int initialized_p;\n"
1557 printf "\n"
1558 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1559 printf " struct obstack *obstack;\n"
1560 printf "\n"
1561 printf " /* basic architectural information. */\n"
1562 function_list | while do_read
1563 do
1564 if class_is_info_p
1565 then
1566 printf " ${returntype} ${function};\n"
1567 fi
1568 done
1569 printf "\n"
1570 printf " /* target specific vector. */\n"
1571 printf " struct gdbarch_tdep *tdep;\n"
1572 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1573 printf "\n"
1574 printf " /* per-architecture data-pointers. */\n"
1575 printf " unsigned nr_data;\n"
1576 printf " void **data;\n"
1577 printf "\n"
1578 cat <<EOF
1579 /* Multi-arch values.
1580
1581 When extending this structure you must:
1582
1583 Add the field below.
1584
1585 Declare set/get functions and define the corresponding
1586 macro in gdbarch.h.
1587
1588 gdbarch_alloc(): If zero/NULL is not a suitable default,
1589 initialize the new field.
1590
1591 verify_gdbarch(): Confirm that the target updated the field
1592 correctly.
1593
1594 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1595 field is dumped out
1596
1597 get_gdbarch(): Implement the set/get functions (probably using
1598 the macro's as shortcuts).
1599
1600 */
1601
1602 EOF
1603 function_list | while do_read
1604 do
1605 if class_is_variable_p
1606 then
1607 printf " ${returntype} ${function};\n"
1608 elif class_is_function_p
1609 then
1610 printf " gdbarch_${function}_ftype *${function};\n"
1611 fi
1612 done
1613 printf "};\n"
1614
1615 # Create a new gdbarch struct
1616 cat <<EOF
1617
1618 /* Create a new \`\`struct gdbarch'' based on information provided by
1619 \`\`struct gdbarch_info''. */
1620 EOF
1621 printf "\n"
1622 cat <<EOF
1623 struct gdbarch *
1624 gdbarch_alloc (const struct gdbarch_info *info,
1625 struct gdbarch_tdep *tdep)
1626 {
1627 struct gdbarch *gdbarch;
1628
1629 /* Create an obstack for allocating all the per-architecture memory,
1630 then use that to allocate the architecture vector. */
1631 struct obstack *obstack = XNEW (struct obstack);
1632 obstack_init (obstack);
1633 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1634 memset (gdbarch, 0, sizeof (*gdbarch));
1635 gdbarch->obstack = obstack;
1636
1637 alloc_gdbarch_data (gdbarch);
1638
1639 gdbarch->tdep = tdep;
1640 EOF
1641 printf "\n"
1642 function_list | while do_read
1643 do
1644 if class_is_info_p
1645 then
1646 printf " gdbarch->${function} = info->${function};\n"
1647 fi
1648 done
1649 printf "\n"
1650 printf " /* Force the explicit initialization of these. */\n"
1651 function_list | while do_read
1652 do
1653 if class_is_function_p || class_is_variable_p
1654 then
1655 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1656 then
1657 printf " gdbarch->${function} = ${predefault};\n"
1658 fi
1659 fi
1660 done
1661 cat <<EOF
1662 /* gdbarch_alloc() */
1663
1664 return gdbarch;
1665 }
1666 EOF
1667
1668 # Free a gdbarch struct.
1669 printf "\n"
1670 printf "\n"
1671 cat <<EOF
1672 /* Allocate extra space using the per-architecture obstack. */
1673
1674 void *
1675 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1676 {
1677 void *data = obstack_alloc (arch->obstack, size);
1678
1679 memset (data, 0, size);
1680 return data;
1681 }
1682
1683
1684 /* Free a gdbarch struct. This should never happen in normal
1685 operation --- once you've created a gdbarch, you keep it around.
1686 However, if an architecture's init function encounters an error
1687 building the structure, it may need to clean up a partially
1688 constructed gdbarch. */
1689
1690 void
1691 gdbarch_free (struct gdbarch *arch)
1692 {
1693 struct obstack *obstack;
1694
1695 gdb_assert (arch != NULL);
1696 gdb_assert (!arch->initialized_p);
1697 obstack = arch->obstack;
1698 obstack_free (obstack, 0); /* Includes the ARCH. */
1699 xfree (obstack);
1700 }
1701 EOF
1702
1703 # verify a new architecture
1704 cat <<EOF
1705
1706
1707 /* Ensure that all values in a GDBARCH are reasonable. */
1708
1709 static void
1710 verify_gdbarch (struct gdbarch *gdbarch)
1711 {
1712 struct ui_file *log;
1713 struct cleanup *cleanups;
1714 long length;
1715 char *buf;
1716
1717 log = mem_fileopen ();
1718 cleanups = make_cleanup_ui_file_delete (log);
1719 /* fundamental */
1720 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1721 fprintf_unfiltered (log, "\n\tbyte-order");
1722 if (gdbarch->bfd_arch_info == NULL)
1723 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1724 /* Check those that need to be defined for the given multi-arch level. */
1725 EOF
1726 function_list | while do_read
1727 do
1728 if class_is_function_p || class_is_variable_p
1729 then
1730 if [ "x${invalid_p}" = "x0" ]
1731 then
1732 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1733 elif class_is_predicate_p
1734 then
1735 printf " /* Skip verify of ${function}, has predicate. */\n"
1736 # FIXME: See do_read for potential simplification
1737 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1738 then
1739 printf " if (${invalid_p})\n"
1740 printf " gdbarch->${function} = ${postdefault};\n"
1741 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1742 then
1743 printf " if (gdbarch->${function} == ${predefault})\n"
1744 printf " gdbarch->${function} = ${postdefault};\n"
1745 elif [ -n "${postdefault}" ]
1746 then
1747 printf " if (gdbarch->${function} == 0)\n"
1748 printf " gdbarch->${function} = ${postdefault};\n"
1749 elif [ -n "${invalid_p}" ]
1750 then
1751 printf " if (${invalid_p})\n"
1752 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1753 elif [ -n "${predefault}" ]
1754 then
1755 printf " if (gdbarch->${function} == ${predefault})\n"
1756 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1757 fi
1758 fi
1759 done
1760 cat <<EOF
1761 buf = ui_file_xstrdup (log, &length);
1762 make_cleanup (xfree, buf);
1763 if (length > 0)
1764 internal_error (__FILE__, __LINE__,
1765 _("verify_gdbarch: the following are invalid ...%s"),
1766 buf);
1767 do_cleanups (cleanups);
1768 }
1769 EOF
1770
1771 # dump the structure
1772 printf "\n"
1773 printf "\n"
1774 cat <<EOF
1775 /* Print out the details of the current architecture. */
1776
1777 void
1778 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1779 {
1780 const char *gdb_nm_file = "<not-defined>";
1781
1782 #if defined (GDB_NM_FILE)
1783 gdb_nm_file = GDB_NM_FILE;
1784 #endif
1785 fprintf_unfiltered (file,
1786 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1787 gdb_nm_file);
1788 EOF
1789 function_list | sort -t: -k 3 | while do_read
1790 do
1791 # First the predicate
1792 if class_is_predicate_p
1793 then
1794 printf " fprintf_unfiltered (file,\n"
1795 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1796 printf " gdbarch_${function}_p (gdbarch));\n"
1797 fi
1798 # Print the corresponding value.
1799 if class_is_function_p
1800 then
1801 printf " fprintf_unfiltered (file,\n"
1802 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1803 printf " host_address_to_string (gdbarch->${function}));\n"
1804 else
1805 # It is a variable
1806 case "${print}:${returntype}" in
1807 :CORE_ADDR )
1808 fmt="%s"
1809 print="core_addr_to_string_nz (gdbarch->${function})"
1810 ;;
1811 :* )
1812 fmt="%s"
1813 print="plongest (gdbarch->${function})"
1814 ;;
1815 * )
1816 fmt="%s"
1817 ;;
1818 esac
1819 printf " fprintf_unfiltered (file,\n"
1820 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1821 printf " ${print});\n"
1822 fi
1823 done
1824 cat <<EOF
1825 if (gdbarch->dump_tdep != NULL)
1826 gdbarch->dump_tdep (gdbarch, file);
1827 }
1828 EOF
1829
1830
1831 # GET/SET
1832 printf "\n"
1833 cat <<EOF
1834 struct gdbarch_tdep *
1835 gdbarch_tdep (struct gdbarch *gdbarch)
1836 {
1837 if (gdbarch_debug >= 2)
1838 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1839 return gdbarch->tdep;
1840 }
1841 EOF
1842 printf "\n"
1843 function_list | while do_read
1844 do
1845 if class_is_predicate_p
1846 then
1847 printf "\n"
1848 printf "int\n"
1849 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1850 printf "{\n"
1851 printf " gdb_assert (gdbarch != NULL);\n"
1852 printf " return ${predicate};\n"
1853 printf "}\n"
1854 fi
1855 if class_is_function_p
1856 then
1857 printf "\n"
1858 printf "${returntype}\n"
1859 if [ "x${formal}" = "xvoid" ]
1860 then
1861 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1862 else
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1864 fi
1865 printf "{\n"
1866 printf " gdb_assert (gdbarch != NULL);\n"
1867 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1868 if class_is_predicate_p && test -n "${predefault}"
1869 then
1870 # Allow a call to a function with a predicate.
1871 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1872 fi
1873 printf " if (gdbarch_debug >= 2)\n"
1874 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1875 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1876 then
1877 if class_is_multiarch_p
1878 then
1879 params="gdbarch"
1880 else
1881 params=""
1882 fi
1883 else
1884 if class_is_multiarch_p
1885 then
1886 params="gdbarch, ${actual}"
1887 else
1888 params="${actual}"
1889 fi
1890 fi
1891 if [ "x${returntype}" = "xvoid" ]
1892 then
1893 printf " gdbarch->${function} (${params});\n"
1894 else
1895 printf " return gdbarch->${function} (${params});\n"
1896 fi
1897 printf "}\n"
1898 printf "\n"
1899 printf "void\n"
1900 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1901 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1902 printf "{\n"
1903 printf " gdbarch->${function} = ${function};\n"
1904 printf "}\n"
1905 elif class_is_variable_p
1906 then
1907 printf "\n"
1908 printf "${returntype}\n"
1909 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1910 printf "{\n"
1911 printf " gdb_assert (gdbarch != NULL);\n"
1912 if [ "x${invalid_p}" = "x0" ]
1913 then
1914 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1915 elif [ -n "${invalid_p}" ]
1916 then
1917 printf " /* Check variable is valid. */\n"
1918 printf " gdb_assert (!(${invalid_p}));\n"
1919 elif [ -n "${predefault}" ]
1920 then
1921 printf " /* Check variable changed from pre-default. */\n"
1922 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1923 fi
1924 printf " if (gdbarch_debug >= 2)\n"
1925 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1926 printf " return gdbarch->${function};\n"
1927 printf "}\n"
1928 printf "\n"
1929 printf "void\n"
1930 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1931 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1932 printf "{\n"
1933 printf " gdbarch->${function} = ${function};\n"
1934 printf "}\n"
1935 elif class_is_info_p
1936 then
1937 printf "\n"
1938 printf "${returntype}\n"
1939 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1940 printf "{\n"
1941 printf " gdb_assert (gdbarch != NULL);\n"
1942 printf " if (gdbarch_debug >= 2)\n"
1943 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1944 printf " return gdbarch->${function};\n"
1945 printf "}\n"
1946 fi
1947 done
1948
1949 # All the trailing guff
1950 cat <<EOF
1951
1952
1953 /* Keep a registry of per-architecture data-pointers required by GDB
1954 modules. */
1955
1956 struct gdbarch_data
1957 {
1958 unsigned index;
1959 int init_p;
1960 gdbarch_data_pre_init_ftype *pre_init;
1961 gdbarch_data_post_init_ftype *post_init;
1962 };
1963
1964 struct gdbarch_data_registration
1965 {
1966 struct gdbarch_data *data;
1967 struct gdbarch_data_registration *next;
1968 };
1969
1970 struct gdbarch_data_registry
1971 {
1972 unsigned nr;
1973 struct gdbarch_data_registration *registrations;
1974 };
1975
1976 struct gdbarch_data_registry gdbarch_data_registry =
1977 {
1978 0, NULL,
1979 };
1980
1981 static struct gdbarch_data *
1982 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1983 gdbarch_data_post_init_ftype *post_init)
1984 {
1985 struct gdbarch_data_registration **curr;
1986
1987 /* Append the new registration. */
1988 for (curr = &gdbarch_data_registry.registrations;
1989 (*curr) != NULL;
1990 curr = &(*curr)->next);
1991 (*curr) = XNEW (struct gdbarch_data_registration);
1992 (*curr)->next = NULL;
1993 (*curr)->data = XNEW (struct gdbarch_data);
1994 (*curr)->data->index = gdbarch_data_registry.nr++;
1995 (*curr)->data->pre_init = pre_init;
1996 (*curr)->data->post_init = post_init;
1997 (*curr)->data->init_p = 1;
1998 return (*curr)->data;
1999 }
2000
2001 struct gdbarch_data *
2002 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2003 {
2004 return gdbarch_data_register (pre_init, NULL);
2005 }
2006
2007 struct gdbarch_data *
2008 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2009 {
2010 return gdbarch_data_register (NULL, post_init);
2011 }
2012
2013 /* Create/delete the gdbarch data vector. */
2014
2015 static void
2016 alloc_gdbarch_data (struct gdbarch *gdbarch)
2017 {
2018 gdb_assert (gdbarch->data == NULL);
2019 gdbarch->nr_data = gdbarch_data_registry.nr;
2020 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2021 }
2022
2023 /* Initialize the current value of the specified per-architecture
2024 data-pointer. */
2025
2026 void
2027 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2028 struct gdbarch_data *data,
2029 void *pointer)
2030 {
2031 gdb_assert (data->index < gdbarch->nr_data);
2032 gdb_assert (gdbarch->data[data->index] == NULL);
2033 gdb_assert (data->pre_init == NULL);
2034 gdbarch->data[data->index] = pointer;
2035 }
2036
2037 /* Return the current value of the specified per-architecture
2038 data-pointer. */
2039
2040 void *
2041 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2042 {
2043 gdb_assert (data->index < gdbarch->nr_data);
2044 if (gdbarch->data[data->index] == NULL)
2045 {
2046 /* The data-pointer isn't initialized, call init() to get a
2047 value. */
2048 if (data->pre_init != NULL)
2049 /* Mid architecture creation: pass just the obstack, and not
2050 the entire architecture, as that way it isn't possible for
2051 pre-init code to refer to undefined architecture
2052 fields. */
2053 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2054 else if (gdbarch->initialized_p
2055 && data->post_init != NULL)
2056 /* Post architecture creation: pass the entire architecture
2057 (as all fields are valid), but be careful to also detect
2058 recursive references. */
2059 {
2060 gdb_assert (data->init_p);
2061 data->init_p = 0;
2062 gdbarch->data[data->index] = data->post_init (gdbarch);
2063 data->init_p = 1;
2064 }
2065 else
2066 /* The architecture initialization hasn't completed - punt -
2067 hope that the caller knows what they are doing. Once
2068 deprecated_set_gdbarch_data has been initialized, this can be
2069 changed to an internal error. */
2070 return NULL;
2071 gdb_assert (gdbarch->data[data->index] != NULL);
2072 }
2073 return gdbarch->data[data->index];
2074 }
2075
2076
2077 /* Keep a registry of the architectures known by GDB. */
2078
2079 struct gdbarch_registration
2080 {
2081 enum bfd_architecture bfd_architecture;
2082 gdbarch_init_ftype *init;
2083 gdbarch_dump_tdep_ftype *dump_tdep;
2084 struct gdbarch_list *arches;
2085 struct gdbarch_registration *next;
2086 };
2087
2088 static struct gdbarch_registration *gdbarch_registry = NULL;
2089
2090 static void
2091 append_name (const char ***buf, int *nr, const char *name)
2092 {
2093 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2094 (*buf)[*nr] = name;
2095 *nr += 1;
2096 }
2097
2098 const char **
2099 gdbarch_printable_names (void)
2100 {
2101 /* Accumulate a list of names based on the registed list of
2102 architectures. */
2103 int nr_arches = 0;
2104 const char **arches = NULL;
2105 struct gdbarch_registration *rego;
2106
2107 for (rego = gdbarch_registry;
2108 rego != NULL;
2109 rego = rego->next)
2110 {
2111 const struct bfd_arch_info *ap;
2112 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2113 if (ap == NULL)
2114 internal_error (__FILE__, __LINE__,
2115 _("gdbarch_architecture_names: multi-arch unknown"));
2116 do
2117 {
2118 append_name (&arches, &nr_arches, ap->printable_name);
2119 ap = ap->next;
2120 }
2121 while (ap != NULL);
2122 }
2123 append_name (&arches, &nr_arches, NULL);
2124 return arches;
2125 }
2126
2127
2128 void
2129 gdbarch_register (enum bfd_architecture bfd_architecture,
2130 gdbarch_init_ftype *init,
2131 gdbarch_dump_tdep_ftype *dump_tdep)
2132 {
2133 struct gdbarch_registration **curr;
2134 const struct bfd_arch_info *bfd_arch_info;
2135
2136 /* Check that BFD recognizes this architecture */
2137 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2138 if (bfd_arch_info == NULL)
2139 {
2140 internal_error (__FILE__, __LINE__,
2141 _("gdbarch: Attempt to register "
2142 "unknown architecture (%d)"),
2143 bfd_architecture);
2144 }
2145 /* Check that we haven't seen this architecture before. */
2146 for (curr = &gdbarch_registry;
2147 (*curr) != NULL;
2148 curr = &(*curr)->next)
2149 {
2150 if (bfd_architecture == (*curr)->bfd_architecture)
2151 internal_error (__FILE__, __LINE__,
2152 _("gdbarch: Duplicate registration "
2153 "of architecture (%s)"),
2154 bfd_arch_info->printable_name);
2155 }
2156 /* log it */
2157 if (gdbarch_debug)
2158 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2159 bfd_arch_info->printable_name,
2160 host_address_to_string (init));
2161 /* Append it */
2162 (*curr) = XNEW (struct gdbarch_registration);
2163 (*curr)->bfd_architecture = bfd_architecture;
2164 (*curr)->init = init;
2165 (*curr)->dump_tdep = dump_tdep;
2166 (*curr)->arches = NULL;
2167 (*curr)->next = NULL;
2168 }
2169
2170 void
2171 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2172 gdbarch_init_ftype *init)
2173 {
2174 gdbarch_register (bfd_architecture, init, NULL);
2175 }
2176
2177
2178 /* Look for an architecture using gdbarch_info. */
2179
2180 struct gdbarch_list *
2181 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2182 const struct gdbarch_info *info)
2183 {
2184 for (; arches != NULL; arches = arches->next)
2185 {
2186 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2187 continue;
2188 if (info->byte_order != arches->gdbarch->byte_order)
2189 continue;
2190 if (info->osabi != arches->gdbarch->osabi)
2191 continue;
2192 if (info->target_desc != arches->gdbarch->target_desc)
2193 continue;
2194 return arches;
2195 }
2196 return NULL;
2197 }
2198
2199
2200 /* Find an architecture that matches the specified INFO. Create a new
2201 architecture if needed. Return that new architecture. */
2202
2203 struct gdbarch *
2204 gdbarch_find_by_info (struct gdbarch_info info)
2205 {
2206 struct gdbarch *new_gdbarch;
2207 struct gdbarch_registration *rego;
2208
2209 /* Fill in missing parts of the INFO struct using a number of
2210 sources: "set ..."; INFOabfd supplied; and the global
2211 defaults. */
2212 gdbarch_info_fill (&info);
2213
2214 /* Must have found some sort of architecture. */
2215 gdb_assert (info.bfd_arch_info != NULL);
2216
2217 if (gdbarch_debug)
2218 {
2219 fprintf_unfiltered (gdb_stdlog,
2220 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2221 (info.bfd_arch_info != NULL
2222 ? info.bfd_arch_info->printable_name
2223 : "(null)"));
2224 fprintf_unfiltered (gdb_stdlog,
2225 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2226 info.byte_order,
2227 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2228 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2229 : "default"));
2230 fprintf_unfiltered (gdb_stdlog,
2231 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2232 info.osabi, gdbarch_osabi_name (info.osabi));
2233 fprintf_unfiltered (gdb_stdlog,
2234 "gdbarch_find_by_info: info.abfd %s\n",
2235 host_address_to_string (info.abfd));
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_find_by_info: info.tdep_info %s\n",
2238 host_address_to_string (info.tdep_info));
2239 }
2240
2241 /* Find the tdep code that knows about this architecture. */
2242 for (rego = gdbarch_registry;
2243 rego != NULL;
2244 rego = rego->next)
2245 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2246 break;
2247 if (rego == NULL)
2248 {
2249 if (gdbarch_debug)
2250 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2251 "No matching architecture\n");
2252 return 0;
2253 }
2254
2255 /* Ask the tdep code for an architecture that matches "info". */
2256 new_gdbarch = rego->init (info, rego->arches);
2257
2258 /* Did the tdep code like it? No. Reject the change and revert to
2259 the old architecture. */
2260 if (new_gdbarch == NULL)
2261 {
2262 if (gdbarch_debug)
2263 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2264 "Target rejected architecture\n");
2265 return NULL;
2266 }
2267
2268 /* Is this a pre-existing architecture (as determined by already
2269 being initialized)? Move it to the front of the architecture
2270 list (keeping the list sorted Most Recently Used). */
2271 if (new_gdbarch->initialized_p)
2272 {
2273 struct gdbarch_list **list;
2274 struct gdbarch_list *this;
2275 if (gdbarch_debug)
2276 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2277 "Previous architecture %s (%s) selected\n",
2278 host_address_to_string (new_gdbarch),
2279 new_gdbarch->bfd_arch_info->printable_name);
2280 /* Find the existing arch in the list. */
2281 for (list = &rego->arches;
2282 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2283 list = &(*list)->next);
2284 /* It had better be in the list of architectures. */
2285 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2286 /* Unlink THIS. */
2287 this = (*list);
2288 (*list) = this->next;
2289 /* Insert THIS at the front. */
2290 this->next = rego->arches;
2291 rego->arches = this;
2292 /* Return it. */
2293 return new_gdbarch;
2294 }
2295
2296 /* It's a new architecture. */
2297 if (gdbarch_debug)
2298 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2299 "New architecture %s (%s) selected\n",
2300 host_address_to_string (new_gdbarch),
2301 new_gdbarch->bfd_arch_info->printable_name);
2302
2303 /* Insert the new architecture into the front of the architecture
2304 list (keep the list sorted Most Recently Used). */
2305 {
2306 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2307 this->next = rego->arches;
2308 this->gdbarch = new_gdbarch;
2309 rego->arches = this;
2310 }
2311
2312 /* Check that the newly installed architecture is valid. Plug in
2313 any post init values. */
2314 new_gdbarch->dump_tdep = rego->dump_tdep;
2315 verify_gdbarch (new_gdbarch);
2316 new_gdbarch->initialized_p = 1;
2317
2318 if (gdbarch_debug)
2319 gdbarch_dump (new_gdbarch, gdb_stdlog);
2320
2321 return new_gdbarch;
2322 }
2323
2324 /* Make the specified architecture current. */
2325
2326 void
2327 set_target_gdbarch (struct gdbarch *new_gdbarch)
2328 {
2329 gdb_assert (new_gdbarch != NULL);
2330 gdb_assert (new_gdbarch->initialized_p);
2331 current_inferior ()->gdbarch = new_gdbarch;
2332 observer_notify_architecture_changed (new_gdbarch);
2333 registers_changed ();
2334 }
2335
2336 /* Return the current inferior's arch. */
2337
2338 struct gdbarch *
2339 target_gdbarch (void)
2340 {
2341 return current_inferior ()->gdbarch;
2342 }
2343
2344 extern void _initialize_gdbarch (void);
2345
2346 void
2347 _initialize_gdbarch (void)
2348 {
2349 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2350 Set architecture debugging."), _("\\
2351 Show architecture debugging."), _("\\
2352 When non-zero, architecture debugging is enabled."),
2353 NULL,
2354 show_gdbarch_debug,
2355 &setdebuglist, &showdebuglist);
2356 }
2357 EOF
2358
2359 # close things off
2360 exec 1>&2
2361 #../move-if-change new-gdbarch.c gdbarch.c
2362 compare_new gdbarch.c
This page took 0.083435 seconds and 4 git commands to generate.