daily update
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
646 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
647 v:2:PARM_BOUNDARY:int:parm_boundary
648 #
649 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
650 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
651 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
652 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
653 # On some machines there are bits in addresses which are not really
654 # part of the address, but are used by the kernel, the hardware, etc.
655 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
656 # we get a "real" address such as one would find in a symbol table.
657 # This is used only for addresses of instructions, and even then I'm
658 # not sure it's used in all contexts. It exists to deal with there
659 # being a few stray bits in the PC which would mislead us, not as some
660 # sort of generic thing to handle alignment or segmentation (it's
661 # possible it should be in TARGET_READ_PC instead).
662 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
663 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
664 # ADDR_BITS_REMOVE.
665 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
666 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
667 # the target needs software single step. An ISA method to implement it.
668 #
669 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
670 # using the breakpoint system instead of blatting memory directly (as with rs6000).
671 #
672 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
673 # single step. If not, then implement single step using breakpoints.
674 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
675 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
676 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
677
678
679 # For SVR4 shared libraries, each call goes through a small piece of
680 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
681 # to nonzero if we are currently stopped in one of these.
682 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
683
684 # Some systems also have trampoline code for returning from shared libs.
685 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
686
687 # Sigtramp is a routine that the kernel calls (which then calls the
688 # signal handler). On most machines it is a library routine that is
689 # linked into the executable.
690 #
691 # This macro, given a program counter value and the name of the
692 # function in which that PC resides (which can be null if the name is
693 # not known), returns nonzero if the PC and name show that we are in
694 # sigtramp.
695 #
696 # On most machines just see if the name is sigtramp (and if we have
697 # no name, assume we are not in sigtramp).
698 #
699 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
700 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
701 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
702 # own local NAME lookup.
703 #
704 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
705 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
706 # does not.
707 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
708 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
709 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
710 # A target might have problems with watchpoints as soon as the stack
711 # frame of the current function has been destroyed. This mostly happens
712 # as the first action in a funtion's epilogue. in_function_epilogue_p()
713 # is defined to return a non-zero value if either the given addr is one
714 # instruction after the stack destroying instruction up to the trailing
715 # return instruction or if we can figure out that the stack frame has
716 # already been invalidated regardless of the value of addr. Targets
717 # which don't suffer from that problem could just let this functionality
718 # untouched.
719 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
720 # Given a vector of command-line arguments, return a newly allocated
721 # string which, when passed to the create_inferior function, will be
722 # parsed (on Unix systems, by the shell) to yield the same vector.
723 # This function should call error() if the argument vector is not
724 # representable for this target or if this target does not support
725 # command-line arguments.
726 # ARGC is the number of elements in the vector.
727 # ARGV is an array of strings, one per argument.
728 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
729 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
730 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
731 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
732 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
733 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
734 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
735 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
736 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
737 # Is a register in a group
738 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
739 # Fetch the pointer to the ith function argument.
740 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
741 EOF
742 }
743
744 #
745 # The .log file
746 #
747 exec > new-gdbarch.log
748 function_list | while do_read
749 do
750 cat <<EOF
751 ${class} ${macro}(${actual})
752 ${returntype} ${function} ($formal)${attrib}
753 EOF
754 for r in ${read}
755 do
756 eval echo \"\ \ \ \ ${r}=\${${r}}\"
757 done
758 if class_is_predicate_p && fallback_default_p
759 then
760 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
761 kill $$
762 exit 1
763 fi
764 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
765 then
766 echo "Error: postdefault is useless when invalid_p=0" 1>&2
767 kill $$
768 exit 1
769 fi
770 if class_is_multiarch_p
771 then
772 if class_is_predicate_p ; then :
773 elif test "x${predefault}" = "x"
774 then
775 echo "Error: pure multi-arch function must have a predefault" 1>&2
776 kill $$
777 exit 1
778 fi
779 fi
780 echo ""
781 done
782
783 exec 1>&2
784 compare_new gdbarch.log
785
786
787 copyright ()
788 {
789 cat <<EOF
790 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
791
792 /* Dynamic architecture support for GDB, the GNU debugger.
793 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
794
795 This file is part of GDB.
796
797 This program is free software; you can redistribute it and/or modify
798 it under the terms of the GNU General Public License as published by
799 the Free Software Foundation; either version 2 of the License, or
800 (at your option) any later version.
801
802 This program is distributed in the hope that it will be useful,
803 but WITHOUT ANY WARRANTY; without even the implied warranty of
804 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
805 GNU General Public License for more details.
806
807 You should have received a copy of the GNU General Public License
808 along with this program; if not, write to the Free Software
809 Foundation, Inc., 59 Temple Place - Suite 330,
810 Boston, MA 02111-1307, USA. */
811
812 /* This file was created with the aid of \`\`gdbarch.sh''.
813
814 The Bourne shell script \`\`gdbarch.sh'' creates the files
815 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
816 against the existing \`\`gdbarch.[hc]''. Any differences found
817 being reported.
818
819 If editing this file, please also run gdbarch.sh and merge any
820 changes into that script. Conversely, when making sweeping changes
821 to this file, modifying gdbarch.sh and using its output may prove
822 easier. */
823
824 EOF
825 }
826
827 #
828 # The .h file
829 #
830
831 exec > new-gdbarch.h
832 copyright
833 cat <<EOF
834 #ifndef GDBARCH_H
835 #define GDBARCH_H
836
837 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
838
839 struct floatformat;
840 struct ui_file;
841 struct frame_info;
842 struct value;
843 struct objfile;
844 struct minimal_symbol;
845 struct regcache;
846 struct reggroup;
847
848 extern struct gdbarch *current_gdbarch;
849
850
851 /* If any of the following are defined, the target wasn't correctly
852 converted. */
853
854 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
855 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
856 #endif
857 EOF
858
859 # function typedef's
860 printf "\n"
861 printf "\n"
862 printf "/* The following are pre-initialized by GDBARCH. */\n"
863 function_list | while do_read
864 do
865 if class_is_info_p
866 then
867 printf "\n"
868 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
869 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
870 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
871 printf "#error \"Non multi-arch definition of ${macro}\"\n"
872 printf "#endif\n"
873 printf "#if !defined (${macro})\n"
874 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
875 printf "#endif\n"
876 fi
877 done
878
879 # function typedef's
880 printf "\n"
881 printf "\n"
882 printf "/* The following are initialized by the target dependent code. */\n"
883 function_list | while do_read
884 do
885 if [ -n "${comment}" ]
886 then
887 echo "${comment}" | sed \
888 -e '2 s,#,/*,' \
889 -e '3,$ s,#, ,' \
890 -e '$ s,$, */,'
891 fi
892 if class_is_multiarch_p
893 then
894 if class_is_predicate_p
895 then
896 printf "\n"
897 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
898 fi
899 else
900 if class_is_predicate_p
901 then
902 printf "\n"
903 printf "#if defined (${macro})\n"
904 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
905 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
906 printf "#if !defined (${macro}_P)\n"
907 printf "#define ${macro}_P() (1)\n"
908 printf "#endif\n"
909 printf "#endif\n"
910 printf "\n"
911 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
912 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
913 printf "#error \"Non multi-arch definition of ${macro}\"\n"
914 printf "#endif\n"
915 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
916 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
917 printf "#endif\n"
918 fi
919 fi
920 if class_is_variable_p
921 then
922 printf "\n"
923 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
924 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
926 printf "#error \"Non multi-arch definition of ${macro}\"\n"
927 printf "#endif\n"
928 printf "#if !defined (${macro})\n"
929 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
930 printf "#endif\n"
931 fi
932 if class_is_function_p
933 then
934 printf "\n"
935 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
936 then
937 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
938 elif class_is_multiarch_p
939 then
940 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
941 else
942 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
943 fi
944 if [ "x${formal}" = "xvoid" ]
945 then
946 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
947 else
948 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
949 fi
950 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
951 if class_is_multiarch_p ; then :
952 else
953 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
954 printf "#error \"Non multi-arch definition of ${macro}\"\n"
955 printf "#endif\n"
956 if [ "x${actual}" = "x" ]
957 then
958 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
959 elif [ "x${actual}" = "x-" ]
960 then
961 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
962 else
963 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
964 fi
965 printf "#if !defined (${macro})\n"
966 if [ "x${actual}" = "x" ]
967 then
968 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
969 elif [ "x${actual}" = "x-" ]
970 then
971 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
972 else
973 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
974 fi
975 printf "#endif\n"
976 fi
977 fi
978 done
979
980 # close it off
981 cat <<EOF
982
983 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
984
985
986 /* Mechanism for co-ordinating the selection of a specific
987 architecture.
988
989 GDB targets (*-tdep.c) can register an interest in a specific
990 architecture. Other GDB components can register a need to maintain
991 per-architecture data.
992
993 The mechanisms below ensures that there is only a loose connection
994 between the set-architecture command and the various GDB
995 components. Each component can independently register their need
996 to maintain architecture specific data with gdbarch.
997
998 Pragmatics:
999
1000 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1001 didn't scale.
1002
1003 The more traditional mega-struct containing architecture specific
1004 data for all the various GDB components was also considered. Since
1005 GDB is built from a variable number of (fairly independent)
1006 components it was determined that the global aproach was not
1007 applicable. */
1008
1009
1010 /* Register a new architectural family with GDB.
1011
1012 Register support for the specified ARCHITECTURE with GDB. When
1013 gdbarch determines that the specified architecture has been
1014 selected, the corresponding INIT function is called.
1015
1016 --
1017
1018 The INIT function takes two parameters: INFO which contains the
1019 information available to gdbarch about the (possibly new)
1020 architecture; ARCHES which is a list of the previously created
1021 \`\`struct gdbarch'' for this architecture.
1022
1023 The INFO parameter is, as far as possible, be pre-initialized with
1024 information obtained from INFO.ABFD or the previously selected
1025 architecture.
1026
1027 The ARCHES parameter is a linked list (sorted most recently used)
1028 of all the previously created architures for this architecture
1029 family. The (possibly NULL) ARCHES->gdbarch can used to access
1030 values from the previously selected architecture for this
1031 architecture family. The global \`\`current_gdbarch'' shall not be
1032 used.
1033
1034 The INIT function shall return any of: NULL - indicating that it
1035 doesn't recognize the selected architecture; an existing \`\`struct
1036 gdbarch'' from the ARCHES list - indicating that the new
1037 architecture is just a synonym for an earlier architecture (see
1038 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1039 - that describes the selected architecture (see gdbarch_alloc()).
1040
1041 The DUMP_TDEP function shall print out all target specific values.
1042 Care should be taken to ensure that the function works in both the
1043 multi-arch and non- multi-arch cases. */
1044
1045 struct gdbarch_list
1046 {
1047 struct gdbarch *gdbarch;
1048 struct gdbarch_list *next;
1049 };
1050
1051 struct gdbarch_info
1052 {
1053 /* Use default: NULL (ZERO). */
1054 const struct bfd_arch_info *bfd_arch_info;
1055
1056 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1057 int byte_order;
1058
1059 /* Use default: NULL (ZERO). */
1060 bfd *abfd;
1061
1062 /* Use default: NULL (ZERO). */
1063 struct gdbarch_tdep_info *tdep_info;
1064
1065 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1066 enum gdb_osabi osabi;
1067 };
1068
1069 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1070 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1071
1072 /* DEPRECATED - use gdbarch_register() */
1073 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1074
1075 extern void gdbarch_register (enum bfd_architecture architecture,
1076 gdbarch_init_ftype *,
1077 gdbarch_dump_tdep_ftype *);
1078
1079
1080 /* Return a freshly allocated, NULL terminated, array of the valid
1081 architecture names. Since architectures are registered during the
1082 _initialize phase this function only returns useful information
1083 once initialization has been completed. */
1084
1085 extern const char **gdbarch_printable_names (void);
1086
1087
1088 /* Helper function. Search the list of ARCHES for a GDBARCH that
1089 matches the information provided by INFO. */
1090
1091 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1092
1093
1094 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1095 basic initialization using values obtained from the INFO andTDEP
1096 parameters. set_gdbarch_*() functions are called to complete the
1097 initialization of the object. */
1098
1099 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1100
1101
1102 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1103 It is assumed that the caller freeds the \`\`struct
1104 gdbarch_tdep''. */
1105
1106 extern void gdbarch_free (struct gdbarch *);
1107
1108
1109 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1110 obstack. The memory is freed when the corresponding architecture
1111 is also freed. */
1112
1113 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1114 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1115 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1116
1117
1118 /* Helper function. Force an update of the current architecture.
1119
1120 The actual architecture selected is determined by INFO, \`\`(gdb) set
1121 architecture'' et.al., the existing architecture and BFD's default
1122 architecture. INFO should be initialized to zero and then selected
1123 fields should be updated.
1124
1125 Returns non-zero if the update succeeds */
1126
1127 extern int gdbarch_update_p (struct gdbarch_info info);
1128
1129
1130
1131 /* Register per-architecture data-pointer.
1132
1133 Reserve space for a per-architecture data-pointer. An identifier
1134 for the reserved data-pointer is returned. That identifer should
1135 be saved in a local static variable.
1136
1137 The per-architecture data-pointer is either initialized explicitly
1138 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1139 gdbarch_data()).
1140
1141 Memory for the per-architecture data shall be allocated using
1142 gdbarch_obstack_zalloc. That memory will be deleted when the
1143 corresponding architecture object is deleted.
1144
1145 When a previously created architecture is re-selected, the
1146 per-architecture data-pointer for that previous architecture is
1147 restored. INIT() is not re-called.
1148
1149 Multiple registrarants for any architecture are allowed (and
1150 strongly encouraged). */
1151
1152 struct gdbarch_data;
1153
1154 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1155 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1156 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1157 struct gdbarch_data *data,
1158 void *pointer);
1159
1160 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1161
1162
1163 /* Register per-architecture memory region.
1164
1165 Provide a memory-region swap mechanism. Per-architecture memory
1166 region are created. These memory regions are swapped whenever the
1167 architecture is changed. For a new architecture, the memory region
1168 is initialized with zero (0) and the INIT function is called.
1169
1170 Memory regions are swapped / initialized in the order that they are
1171 registered. NULL DATA and/or INIT values can be specified.
1172
1173 New code should use register_gdbarch_data(). */
1174
1175 typedef void (gdbarch_swap_ftype) (void);
1176 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1177 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1178
1179
1180
1181 /* The target-system-dependent byte order is dynamic */
1182
1183 extern int target_byte_order;
1184 #ifndef TARGET_BYTE_ORDER
1185 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1186 #endif
1187
1188 extern int target_byte_order_auto;
1189 #ifndef TARGET_BYTE_ORDER_AUTO
1190 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1191 #endif
1192
1193
1194
1195 /* The target-system-dependent BFD architecture is dynamic */
1196
1197 extern int target_architecture_auto;
1198 #ifndef TARGET_ARCHITECTURE_AUTO
1199 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1200 #endif
1201
1202 extern const struct bfd_arch_info *target_architecture;
1203 #ifndef TARGET_ARCHITECTURE
1204 #define TARGET_ARCHITECTURE (target_architecture + 0)
1205 #endif
1206
1207
1208 /* The target-system-dependent disassembler is semi-dynamic */
1209
1210 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1211 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1212
1213 /* Use set_gdbarch_print_insn instead. */
1214 extern disassemble_info deprecated_tm_print_insn_info;
1215
1216 /* Set the dynamic target-system-dependent parameters (architecture,
1217 byte-order, ...) using information found in the BFD */
1218
1219 extern void set_gdbarch_from_file (bfd *);
1220
1221
1222 /* Initialize the current architecture to the "first" one we find on
1223 our list. */
1224
1225 extern void initialize_current_architecture (void);
1226
1227 /* For non-multiarched targets, do any initialization of the default
1228 gdbarch object necessary after the _initialize_MODULE functions
1229 have run. */
1230 extern void initialize_non_multiarch (void);
1231
1232 /* gdbarch trace variable */
1233 extern int gdbarch_debug;
1234
1235 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1236
1237 #endif
1238 EOF
1239 exec 1>&2
1240 #../move-if-change new-gdbarch.h gdbarch.h
1241 compare_new gdbarch.h
1242
1243
1244 #
1245 # C file
1246 #
1247
1248 exec > new-gdbarch.c
1249 copyright
1250 cat <<EOF
1251
1252 #include "defs.h"
1253 #include "arch-utils.h"
1254
1255 #include "gdbcmd.h"
1256 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1257 #include "symcat.h"
1258
1259 #include "floatformat.h"
1260
1261 #include "gdb_assert.h"
1262 #include "gdb_string.h"
1263 #include "gdb-events.h"
1264 #include "reggroups.h"
1265 #include "osabi.h"
1266 #include "symfile.h" /* For entry_point_address. */
1267 #include "gdb_obstack.h"
1268
1269 /* Static function declarations */
1270
1271 static void verify_gdbarch (struct gdbarch *gdbarch);
1272 static void alloc_gdbarch_data (struct gdbarch *);
1273 static void init_gdbarch_swap (struct gdbarch *);
1274 static void clear_gdbarch_swap (struct gdbarch *);
1275 static void swapout_gdbarch_swap (struct gdbarch *);
1276 static void swapin_gdbarch_swap (struct gdbarch *);
1277
1278 /* Non-zero if we want to trace architecture code. */
1279
1280 #ifndef GDBARCH_DEBUG
1281 #define GDBARCH_DEBUG 0
1282 #endif
1283 int gdbarch_debug = GDBARCH_DEBUG;
1284
1285 EOF
1286
1287 # gdbarch open the gdbarch object
1288 printf "\n"
1289 printf "/* Maintain the struct gdbarch object */\n"
1290 printf "\n"
1291 printf "struct gdbarch\n"
1292 printf "{\n"
1293 printf " /* Has this architecture been fully initialized? */\n"
1294 printf " int initialized_p;\n"
1295 printf "\n"
1296 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1297 printf " struct obstack *obstack;\n"
1298 printf "\n"
1299 printf " /* basic architectural information */\n"
1300 function_list | while do_read
1301 do
1302 if class_is_info_p
1303 then
1304 printf " ${returntype} ${function};\n"
1305 fi
1306 done
1307 printf "\n"
1308 printf " /* target specific vector. */\n"
1309 printf " struct gdbarch_tdep *tdep;\n"
1310 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1311 printf "\n"
1312 printf " /* per-architecture data-pointers */\n"
1313 printf " unsigned nr_data;\n"
1314 printf " void **data;\n"
1315 printf "\n"
1316 printf " /* per-architecture swap-regions */\n"
1317 printf " struct gdbarch_swap *swap;\n"
1318 printf "\n"
1319 cat <<EOF
1320 /* Multi-arch values.
1321
1322 When extending this structure you must:
1323
1324 Add the field below.
1325
1326 Declare set/get functions and define the corresponding
1327 macro in gdbarch.h.
1328
1329 gdbarch_alloc(): If zero/NULL is not a suitable default,
1330 initialize the new field.
1331
1332 verify_gdbarch(): Confirm that the target updated the field
1333 correctly.
1334
1335 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1336 field is dumped out
1337
1338 \`\`startup_gdbarch()'': Append an initial value to the static
1339 variable (base values on the host's c-type system).
1340
1341 get_gdbarch(): Implement the set/get functions (probably using
1342 the macro's as shortcuts).
1343
1344 */
1345
1346 EOF
1347 function_list | while do_read
1348 do
1349 if class_is_variable_p
1350 then
1351 printf " ${returntype} ${function};\n"
1352 elif class_is_function_p
1353 then
1354 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1355 fi
1356 done
1357 printf "};\n"
1358
1359 # A pre-initialized vector
1360 printf "\n"
1361 printf "\n"
1362 cat <<EOF
1363 /* The default architecture uses host values (for want of a better
1364 choice). */
1365 EOF
1366 printf "\n"
1367 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1368 printf "\n"
1369 printf "struct gdbarch startup_gdbarch =\n"
1370 printf "{\n"
1371 printf " 1, /* Always initialized. */\n"
1372 printf " NULL, /* The obstack. */\n"
1373 printf " /* basic architecture information */\n"
1374 function_list | while do_read
1375 do
1376 if class_is_info_p
1377 then
1378 printf " ${staticdefault}, /* ${function} */\n"
1379 fi
1380 done
1381 cat <<EOF
1382 /* target specific vector and its dump routine */
1383 NULL, NULL,
1384 /*per-architecture data-pointers and swap regions */
1385 0, NULL, NULL,
1386 /* Multi-arch values */
1387 EOF
1388 function_list | while do_read
1389 do
1390 if class_is_function_p || class_is_variable_p
1391 then
1392 printf " ${staticdefault}, /* ${function} */\n"
1393 fi
1394 done
1395 cat <<EOF
1396 /* startup_gdbarch() */
1397 };
1398
1399 struct gdbarch *current_gdbarch = &startup_gdbarch;
1400
1401 /* Do any initialization needed for a non-multiarch configuration
1402 after the _initialize_MODULE functions have been run. */
1403 void
1404 initialize_non_multiarch (void)
1405 {
1406 alloc_gdbarch_data (&startup_gdbarch);
1407 /* Ensure that all swap areas are zeroed so that they again think
1408 they are starting from scratch. */
1409 clear_gdbarch_swap (&startup_gdbarch);
1410 init_gdbarch_swap (&startup_gdbarch);
1411 }
1412 EOF
1413
1414 # Create a new gdbarch struct
1415 printf "\n"
1416 printf "\n"
1417 cat <<EOF
1418 /* Create a new \`\`struct gdbarch'' based on information provided by
1419 \`\`struct gdbarch_info''. */
1420 EOF
1421 printf "\n"
1422 cat <<EOF
1423 struct gdbarch *
1424 gdbarch_alloc (const struct gdbarch_info *info,
1425 struct gdbarch_tdep *tdep)
1426 {
1427 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1428 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1429 the current local architecture and not the previous global
1430 architecture. This ensures that the new architectures initial
1431 values are not influenced by the previous architecture. Once
1432 everything is parameterised with gdbarch, this will go away. */
1433 struct gdbarch *current_gdbarch;
1434
1435 /* Create an obstack for allocating all the per-architecture memory,
1436 then use that to allocate the architecture vector. */
1437 struct obstack *obstack = XMALLOC (struct obstack);
1438 obstack_init (obstack);
1439 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1440 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1441 current_gdbarch->obstack = obstack;
1442
1443 alloc_gdbarch_data (current_gdbarch);
1444
1445 current_gdbarch->tdep = tdep;
1446 EOF
1447 printf "\n"
1448 function_list | while do_read
1449 do
1450 if class_is_info_p
1451 then
1452 printf " current_gdbarch->${function} = info->${function};\n"
1453 fi
1454 done
1455 printf "\n"
1456 printf " /* Force the explicit initialization of these. */\n"
1457 function_list | while do_read
1458 do
1459 if class_is_function_p || class_is_variable_p
1460 then
1461 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1462 then
1463 printf " current_gdbarch->${function} = ${predefault};\n"
1464 fi
1465 fi
1466 done
1467 cat <<EOF
1468 /* gdbarch_alloc() */
1469
1470 return current_gdbarch;
1471 }
1472 EOF
1473
1474 # Free a gdbarch struct.
1475 printf "\n"
1476 printf "\n"
1477 cat <<EOF
1478 /* Allocate extra space using the per-architecture obstack. */
1479
1480 void *
1481 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1482 {
1483 void *data = obstack_alloc (arch->obstack, size);
1484 memset (data, 0, size);
1485 return data;
1486 }
1487
1488
1489 /* Free a gdbarch struct. This should never happen in normal
1490 operation --- once you've created a gdbarch, you keep it around.
1491 However, if an architecture's init function encounters an error
1492 building the structure, it may need to clean up a partially
1493 constructed gdbarch. */
1494
1495 void
1496 gdbarch_free (struct gdbarch *arch)
1497 {
1498 struct obstack *obstack;
1499 gdb_assert (arch != NULL);
1500 gdb_assert (!arch->initialized_p);
1501 obstack = arch->obstack;
1502 obstack_free (obstack, 0); /* Includes the ARCH. */
1503 xfree (obstack);
1504 }
1505 EOF
1506
1507 # verify a new architecture
1508 printf "\n"
1509 printf "\n"
1510 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1511 printf "\n"
1512 cat <<EOF
1513 static void
1514 verify_gdbarch (struct gdbarch *gdbarch)
1515 {
1516 struct ui_file *log;
1517 struct cleanup *cleanups;
1518 long dummy;
1519 char *buf;
1520 log = mem_fileopen ();
1521 cleanups = make_cleanup_ui_file_delete (log);
1522 /* fundamental */
1523 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1524 fprintf_unfiltered (log, "\n\tbyte-order");
1525 if (gdbarch->bfd_arch_info == NULL)
1526 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1527 /* Check those that need to be defined for the given multi-arch level. */
1528 EOF
1529 function_list | while do_read
1530 do
1531 if class_is_function_p || class_is_variable_p
1532 then
1533 if [ "x${invalid_p}" = "x0" ]
1534 then
1535 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1536 elif class_is_predicate_p
1537 then
1538 printf " /* Skip verify of ${function}, has predicate */\n"
1539 # FIXME: See do_read for potential simplification
1540 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1541 then
1542 printf " if (${invalid_p})\n"
1543 printf " gdbarch->${function} = ${postdefault};\n"
1544 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1545 then
1546 printf " if (gdbarch->${function} == ${predefault})\n"
1547 printf " gdbarch->${function} = ${postdefault};\n"
1548 elif [ -n "${postdefault}" ]
1549 then
1550 printf " if (gdbarch->${function} == 0)\n"
1551 printf " gdbarch->${function} = ${postdefault};\n"
1552 elif [ -n "${invalid_p}" ]
1553 then
1554 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1555 printf " && (${invalid_p}))\n"
1556 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1557 elif [ -n "${predefault}" ]
1558 then
1559 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1560 printf " && (gdbarch->${function} == ${predefault}))\n"
1561 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1562 fi
1563 fi
1564 done
1565 cat <<EOF
1566 buf = ui_file_xstrdup (log, &dummy);
1567 make_cleanup (xfree, buf);
1568 if (strlen (buf) > 0)
1569 internal_error (__FILE__, __LINE__,
1570 "verify_gdbarch: the following are invalid ...%s",
1571 buf);
1572 do_cleanups (cleanups);
1573 }
1574 EOF
1575
1576 # dump the structure
1577 printf "\n"
1578 printf "\n"
1579 cat <<EOF
1580 /* Print out the details of the current architecture. */
1581
1582 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1583 just happens to match the global variable \`\`current_gdbarch''. That
1584 way macros refering to that variable get the local and not the global
1585 version - ulgh. Once everything is parameterised with gdbarch, this
1586 will go away. */
1587
1588 void
1589 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1590 {
1591 fprintf_unfiltered (file,
1592 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1593 GDB_MULTI_ARCH);
1594 EOF
1595 function_list | sort -t: -k 3 | while do_read
1596 do
1597 # First the predicate
1598 if class_is_predicate_p
1599 then
1600 if class_is_multiarch_p
1601 then
1602 printf " fprintf_unfiltered (file,\n"
1603 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1604 printf " gdbarch_${function}_p (current_gdbarch));\n"
1605 else
1606 printf "#ifdef ${macro}_P\n"
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1609 printf " \"${macro}_P()\",\n"
1610 printf " XSTRING (${macro}_P ()));\n"
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1613 printf " ${macro}_P ());\n"
1614 printf "#endif\n"
1615 fi
1616 fi
1617 # multiarch functions don't have macros.
1618 if class_is_multiarch_p
1619 then
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1622 printf " (long) current_gdbarch->${function});\n"
1623 continue
1624 fi
1625 # Print the macro definition.
1626 printf "#ifdef ${macro}\n"
1627 if class_is_function_p
1628 then
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1631 printf " \"${macro}(${actual})\",\n"
1632 printf " XSTRING (${macro} (${actual})));\n"
1633 else
1634 printf " fprintf_unfiltered (file,\n"
1635 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1636 printf " XSTRING (${macro}));\n"
1637 fi
1638 if [ "x${print_p}" = "x()" ]
1639 then
1640 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1641 elif [ "x${print_p}" = "x0" ]
1642 then
1643 printf " /* skip print of ${macro}, print_p == 0. */\n"
1644 elif [ -n "${print_p}" ]
1645 then
1646 printf " if (${print_p})\n"
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1649 printf " ${print});\n"
1650 elif class_is_function_p
1651 then
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1654 printf " (long) current_gdbarch->${function}\n"
1655 printf " /*${macro} ()*/);\n"
1656 else
1657 printf " fprintf_unfiltered (file,\n"
1658 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1659 printf " ${print});\n"
1660 fi
1661 printf "#endif\n"
1662 done
1663 cat <<EOF
1664 if (current_gdbarch->dump_tdep != NULL)
1665 current_gdbarch->dump_tdep (current_gdbarch, file);
1666 }
1667 EOF
1668
1669
1670 # GET/SET
1671 printf "\n"
1672 cat <<EOF
1673 struct gdbarch_tdep *
1674 gdbarch_tdep (struct gdbarch *gdbarch)
1675 {
1676 if (gdbarch_debug >= 2)
1677 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1678 return gdbarch->tdep;
1679 }
1680 EOF
1681 printf "\n"
1682 function_list | while do_read
1683 do
1684 if class_is_predicate_p
1685 then
1686 printf "\n"
1687 printf "int\n"
1688 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1689 printf "{\n"
1690 printf " gdb_assert (gdbarch != NULL);\n"
1691 printf " return ${predicate};\n"
1692 printf "}\n"
1693 fi
1694 if class_is_function_p
1695 then
1696 printf "\n"
1697 printf "${returntype}\n"
1698 if [ "x${formal}" = "xvoid" ]
1699 then
1700 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1701 else
1702 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1703 fi
1704 printf "{\n"
1705 printf " gdb_assert (gdbarch != NULL);\n"
1706 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1707 if class_is_predicate_p && test -n "${predefault}"
1708 then
1709 # Allow a call to a function with a predicate.
1710 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1711 fi
1712 printf " if (gdbarch_debug >= 2)\n"
1713 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1714 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1715 then
1716 if class_is_multiarch_p
1717 then
1718 params="gdbarch"
1719 else
1720 params=""
1721 fi
1722 else
1723 if class_is_multiarch_p
1724 then
1725 params="gdbarch, ${actual}"
1726 else
1727 params="${actual}"
1728 fi
1729 fi
1730 if [ "x${returntype}" = "xvoid" ]
1731 then
1732 printf " gdbarch->${function} (${params});\n"
1733 else
1734 printf " return gdbarch->${function} (${params});\n"
1735 fi
1736 printf "}\n"
1737 printf "\n"
1738 printf "void\n"
1739 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1740 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1741 printf "{\n"
1742 printf " gdbarch->${function} = ${function};\n"
1743 printf "}\n"
1744 elif class_is_variable_p
1745 then
1746 printf "\n"
1747 printf "${returntype}\n"
1748 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1749 printf "{\n"
1750 printf " gdb_assert (gdbarch != NULL);\n"
1751 if [ "x${invalid_p}" = "x0" ]
1752 then
1753 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1754 elif [ -n "${invalid_p}" ]
1755 then
1756 printf " /* Check variable is valid. */\n"
1757 printf " gdb_assert (!(${invalid_p}));\n"
1758 elif [ -n "${predefault}" ]
1759 then
1760 printf " /* Check variable changed from pre-default. */\n"
1761 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1762 fi
1763 printf " if (gdbarch_debug >= 2)\n"
1764 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1765 printf " return gdbarch->${function};\n"
1766 printf "}\n"
1767 printf "\n"
1768 printf "void\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1771 printf "{\n"
1772 printf " gdbarch->${function} = ${function};\n"
1773 printf "}\n"
1774 elif class_is_info_p
1775 then
1776 printf "\n"
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf "{\n"
1780 printf " gdb_assert (gdbarch != NULL);\n"
1781 printf " if (gdbarch_debug >= 2)\n"
1782 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1783 printf " return gdbarch->${function};\n"
1784 printf "}\n"
1785 fi
1786 done
1787
1788 # All the trailing guff
1789 cat <<EOF
1790
1791
1792 /* Keep a registry of per-architecture data-pointers required by GDB
1793 modules. */
1794
1795 struct gdbarch_data
1796 {
1797 unsigned index;
1798 int init_p;
1799 gdbarch_data_init_ftype *init;
1800 };
1801
1802 struct gdbarch_data_registration
1803 {
1804 struct gdbarch_data *data;
1805 struct gdbarch_data_registration *next;
1806 };
1807
1808 struct gdbarch_data_registry
1809 {
1810 unsigned nr;
1811 struct gdbarch_data_registration *registrations;
1812 };
1813
1814 struct gdbarch_data_registry gdbarch_data_registry =
1815 {
1816 0, NULL,
1817 };
1818
1819 struct gdbarch_data *
1820 register_gdbarch_data (gdbarch_data_init_ftype *init)
1821 {
1822 struct gdbarch_data_registration **curr;
1823 /* Append the new registraration. */
1824 for (curr = &gdbarch_data_registry.registrations;
1825 (*curr) != NULL;
1826 curr = &(*curr)->next);
1827 (*curr) = XMALLOC (struct gdbarch_data_registration);
1828 (*curr)->next = NULL;
1829 (*curr)->data = XMALLOC (struct gdbarch_data);
1830 (*curr)->data->index = gdbarch_data_registry.nr++;
1831 (*curr)->data->init = init;
1832 (*curr)->data->init_p = 1;
1833 return (*curr)->data;
1834 }
1835
1836
1837 /* Create/delete the gdbarch data vector. */
1838
1839 static void
1840 alloc_gdbarch_data (struct gdbarch *gdbarch)
1841 {
1842 gdb_assert (gdbarch->data == NULL);
1843 gdbarch->nr_data = gdbarch_data_registry.nr;
1844 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1845 }
1846
1847 /* Initialize the current value of the specified per-architecture
1848 data-pointer. */
1849
1850 void
1851 set_gdbarch_data (struct gdbarch *gdbarch,
1852 struct gdbarch_data *data,
1853 void *pointer)
1854 {
1855 gdb_assert (data->index < gdbarch->nr_data);
1856 gdb_assert (gdbarch->data[data->index] == NULL);
1857 gdbarch->data[data->index] = pointer;
1858 }
1859
1860 /* Return the current value of the specified per-architecture
1861 data-pointer. */
1862
1863 void *
1864 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1865 {
1866 gdb_assert (data->index < gdbarch->nr_data);
1867 /* The data-pointer isn't initialized, call init() to get a value but
1868 only if the architecture initializaiton has completed. Otherwise
1869 punt - hope that the caller knows what they are doing. */
1870 if (gdbarch->data[data->index] == NULL
1871 && gdbarch->initialized_p)
1872 {
1873 /* Be careful to detect an initialization cycle. */
1874 gdb_assert (data->init_p);
1875 data->init_p = 0;
1876 gdb_assert (data->init != NULL);
1877 gdbarch->data[data->index] = data->init (gdbarch);
1878 data->init_p = 1;
1879 gdb_assert (gdbarch->data[data->index] != NULL);
1880 }
1881 return gdbarch->data[data->index];
1882 }
1883
1884
1885
1886 /* Keep a registry of swapped data required by GDB modules. */
1887
1888 struct gdbarch_swap
1889 {
1890 void *swap;
1891 struct gdbarch_swap_registration *source;
1892 struct gdbarch_swap *next;
1893 };
1894
1895 struct gdbarch_swap_registration
1896 {
1897 void *data;
1898 unsigned long sizeof_data;
1899 gdbarch_swap_ftype *init;
1900 struct gdbarch_swap_registration *next;
1901 };
1902
1903 struct gdbarch_swap_registry
1904 {
1905 int nr;
1906 struct gdbarch_swap_registration *registrations;
1907 };
1908
1909 struct gdbarch_swap_registry gdbarch_swap_registry =
1910 {
1911 0, NULL,
1912 };
1913
1914 void
1915 register_gdbarch_swap (void *data,
1916 unsigned long sizeof_data,
1917 gdbarch_swap_ftype *init)
1918 {
1919 struct gdbarch_swap_registration **rego;
1920 for (rego = &gdbarch_swap_registry.registrations;
1921 (*rego) != NULL;
1922 rego = &(*rego)->next);
1923 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1924 (*rego)->next = NULL;
1925 (*rego)->init = init;
1926 (*rego)->data = data;
1927 (*rego)->sizeof_data = sizeof_data;
1928 }
1929
1930 static void
1931 clear_gdbarch_swap (struct gdbarch *gdbarch)
1932 {
1933 struct gdbarch_swap *curr;
1934 for (curr = gdbarch->swap;
1935 curr != NULL;
1936 curr = curr->next)
1937 {
1938 memset (curr->source->data, 0, curr->source->sizeof_data);
1939 }
1940 }
1941
1942 static void
1943 init_gdbarch_swap (struct gdbarch *gdbarch)
1944 {
1945 struct gdbarch_swap_registration *rego;
1946 struct gdbarch_swap **curr = &gdbarch->swap;
1947 for (rego = gdbarch_swap_registry.registrations;
1948 rego != NULL;
1949 rego = rego->next)
1950 {
1951 if (rego->data != NULL)
1952 {
1953 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1954 (*curr)->source = rego;
1955 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1956 (*curr)->next = NULL;
1957 curr = &(*curr)->next;
1958 }
1959 if (rego->init != NULL)
1960 rego->init ();
1961 }
1962 }
1963
1964 static void
1965 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1966 {
1967 struct gdbarch_swap *curr;
1968 for (curr = gdbarch->swap;
1969 curr != NULL;
1970 curr = curr->next)
1971 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1972 }
1973
1974 static void
1975 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1976 {
1977 struct gdbarch_swap *curr;
1978 for (curr = gdbarch->swap;
1979 curr != NULL;
1980 curr = curr->next)
1981 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1982 }
1983
1984
1985 /* Keep a registry of the architectures known by GDB. */
1986
1987 struct gdbarch_registration
1988 {
1989 enum bfd_architecture bfd_architecture;
1990 gdbarch_init_ftype *init;
1991 gdbarch_dump_tdep_ftype *dump_tdep;
1992 struct gdbarch_list *arches;
1993 struct gdbarch_registration *next;
1994 };
1995
1996 static struct gdbarch_registration *gdbarch_registry = NULL;
1997
1998 static void
1999 append_name (const char ***buf, int *nr, const char *name)
2000 {
2001 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2002 (*buf)[*nr] = name;
2003 *nr += 1;
2004 }
2005
2006 const char **
2007 gdbarch_printable_names (void)
2008 {
2009 /* Accumulate a list of names based on the registed list of
2010 architectures. */
2011 enum bfd_architecture a;
2012 int nr_arches = 0;
2013 const char **arches = NULL;
2014 struct gdbarch_registration *rego;
2015 for (rego = gdbarch_registry;
2016 rego != NULL;
2017 rego = rego->next)
2018 {
2019 const struct bfd_arch_info *ap;
2020 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2021 if (ap == NULL)
2022 internal_error (__FILE__, __LINE__,
2023 "gdbarch_architecture_names: multi-arch unknown");
2024 do
2025 {
2026 append_name (&arches, &nr_arches, ap->printable_name);
2027 ap = ap->next;
2028 }
2029 while (ap != NULL);
2030 }
2031 append_name (&arches, &nr_arches, NULL);
2032 return arches;
2033 }
2034
2035
2036 void
2037 gdbarch_register (enum bfd_architecture bfd_architecture,
2038 gdbarch_init_ftype *init,
2039 gdbarch_dump_tdep_ftype *dump_tdep)
2040 {
2041 struct gdbarch_registration **curr;
2042 const struct bfd_arch_info *bfd_arch_info;
2043 /* Check that BFD recognizes this architecture */
2044 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2045 if (bfd_arch_info == NULL)
2046 {
2047 internal_error (__FILE__, __LINE__,
2048 "gdbarch: Attempt to register unknown architecture (%d)",
2049 bfd_architecture);
2050 }
2051 /* Check that we haven't seen this architecture before */
2052 for (curr = &gdbarch_registry;
2053 (*curr) != NULL;
2054 curr = &(*curr)->next)
2055 {
2056 if (bfd_architecture == (*curr)->bfd_architecture)
2057 internal_error (__FILE__, __LINE__,
2058 "gdbarch: Duplicate registraration of architecture (%s)",
2059 bfd_arch_info->printable_name);
2060 }
2061 /* log it */
2062 if (gdbarch_debug)
2063 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2064 bfd_arch_info->printable_name,
2065 (long) init);
2066 /* Append it */
2067 (*curr) = XMALLOC (struct gdbarch_registration);
2068 (*curr)->bfd_architecture = bfd_architecture;
2069 (*curr)->init = init;
2070 (*curr)->dump_tdep = dump_tdep;
2071 (*curr)->arches = NULL;
2072 (*curr)->next = NULL;
2073 }
2074
2075 void
2076 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2077 gdbarch_init_ftype *init)
2078 {
2079 gdbarch_register (bfd_architecture, init, NULL);
2080 }
2081
2082
2083 /* Look for an architecture using gdbarch_info. Base search on only
2084 BFD_ARCH_INFO and BYTE_ORDER. */
2085
2086 struct gdbarch_list *
2087 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2088 const struct gdbarch_info *info)
2089 {
2090 for (; arches != NULL; arches = arches->next)
2091 {
2092 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2093 continue;
2094 if (info->byte_order != arches->gdbarch->byte_order)
2095 continue;
2096 if (info->osabi != arches->gdbarch->osabi)
2097 continue;
2098 return arches;
2099 }
2100 return NULL;
2101 }
2102
2103
2104 /* Update the current architecture. Return ZERO if the update request
2105 failed. */
2106
2107 int
2108 gdbarch_update_p (struct gdbarch_info info)
2109 {
2110 struct gdbarch *new_gdbarch;
2111 struct gdbarch *old_gdbarch;
2112 struct gdbarch_registration *rego;
2113
2114 /* Fill in missing parts of the INFO struct using a number of
2115 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2116
2117 /* \`\`(gdb) set architecture ...'' */
2118 if (info.bfd_arch_info == NULL
2119 && !TARGET_ARCHITECTURE_AUTO)
2120 info.bfd_arch_info = TARGET_ARCHITECTURE;
2121 if (info.bfd_arch_info == NULL
2122 && info.abfd != NULL
2123 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2124 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2125 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2126 if (info.bfd_arch_info == NULL)
2127 info.bfd_arch_info = TARGET_ARCHITECTURE;
2128
2129 /* \`\`(gdb) set byte-order ...'' */
2130 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2131 && !TARGET_BYTE_ORDER_AUTO)
2132 info.byte_order = TARGET_BYTE_ORDER;
2133 /* From the INFO struct. */
2134 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2135 && info.abfd != NULL)
2136 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2137 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2138 : BFD_ENDIAN_UNKNOWN);
2139 /* From the current target. */
2140 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2141 info.byte_order = TARGET_BYTE_ORDER;
2142
2143 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2144 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2145 info.osabi = gdbarch_lookup_osabi (info.abfd);
2146 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2147 info.osabi = current_gdbarch->osabi;
2148
2149 /* Must have found some sort of architecture. */
2150 gdb_assert (info.bfd_arch_info != NULL);
2151
2152 if (gdbarch_debug)
2153 {
2154 fprintf_unfiltered (gdb_stdlog,
2155 "gdbarch_update: info.bfd_arch_info %s\n",
2156 (info.bfd_arch_info != NULL
2157 ? info.bfd_arch_info->printable_name
2158 : "(null)"));
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_update: info.byte_order %d (%s)\n",
2161 info.byte_order,
2162 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2163 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2164 : "default"));
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.osabi %d (%s)\n",
2167 info.osabi, gdbarch_osabi_name (info.osabi));
2168 fprintf_unfiltered (gdb_stdlog,
2169 "gdbarch_update: info.abfd 0x%lx\n",
2170 (long) info.abfd);
2171 fprintf_unfiltered (gdb_stdlog,
2172 "gdbarch_update: info.tdep_info 0x%lx\n",
2173 (long) info.tdep_info);
2174 }
2175
2176 /* Find the target that knows about this architecture. */
2177 for (rego = gdbarch_registry;
2178 rego != NULL;
2179 rego = rego->next)
2180 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2181 break;
2182 if (rego == NULL)
2183 {
2184 if (gdbarch_debug)
2185 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2186 return 0;
2187 }
2188
2189 /* Swap the data belonging to the old target out setting the
2190 installed data to zero. This stops the ->init() function trying
2191 to refer to the previous architecture's global data structures. */
2192 swapout_gdbarch_swap (current_gdbarch);
2193 clear_gdbarch_swap (current_gdbarch);
2194
2195 /* Save the previously selected architecture, setting the global to
2196 NULL. This stops ->init() trying to use the previous
2197 architecture's configuration. The previous architecture may not
2198 even be of the same architecture family. The most recent
2199 architecture of the same family is found at the head of the
2200 rego->arches list. */
2201 old_gdbarch = current_gdbarch;
2202 current_gdbarch = NULL;
2203
2204 /* Ask the target for a replacement architecture. */
2205 new_gdbarch = rego->init (info, rego->arches);
2206
2207 /* Did the target like it? No. Reject the change and revert to the
2208 old architecture. */
2209 if (new_gdbarch == NULL)
2210 {
2211 if (gdbarch_debug)
2212 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2213 swapin_gdbarch_swap (old_gdbarch);
2214 current_gdbarch = old_gdbarch;
2215 return 0;
2216 }
2217
2218 /* Did the architecture change? No. Oops, put the old architecture
2219 back. */
2220 if (old_gdbarch == new_gdbarch)
2221 {
2222 if (gdbarch_debug)
2223 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2224 (long) new_gdbarch,
2225 new_gdbarch->bfd_arch_info->printable_name);
2226 swapin_gdbarch_swap (old_gdbarch);
2227 current_gdbarch = old_gdbarch;
2228 return 1;
2229 }
2230
2231 /* Is this a pre-existing architecture? Yes. Move it to the front
2232 of the list of architectures (keeping the list sorted Most
2233 Recently Used) and then copy it in. */
2234 {
2235 struct gdbarch_list **list;
2236 for (list = &rego->arches;
2237 (*list) != NULL;
2238 list = &(*list)->next)
2239 {
2240 if ((*list)->gdbarch == new_gdbarch)
2241 {
2242 struct gdbarch_list *this;
2243 if (gdbarch_debug)
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2246 (long) new_gdbarch,
2247 new_gdbarch->bfd_arch_info->printable_name);
2248 /* Unlink this. */
2249 this = (*list);
2250 (*list) = this->next;
2251 /* Insert in the front. */
2252 this->next = rego->arches;
2253 rego->arches = this;
2254 /* Copy the new architecture in. */
2255 current_gdbarch = new_gdbarch;
2256 swapin_gdbarch_swap (new_gdbarch);
2257 architecture_changed_event ();
2258 return 1;
2259 }
2260 }
2261 }
2262
2263 /* Prepend this new architecture to the architecture list (keep the
2264 list sorted Most Recently Used). */
2265 {
2266 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2267 this->next = rego->arches;
2268 this->gdbarch = new_gdbarch;
2269 rego->arches = this;
2270 }
2271
2272 /* Switch to this new architecture marking it initialized. */
2273 current_gdbarch = new_gdbarch;
2274 current_gdbarch->initialized_p = 1;
2275 if (gdbarch_debug)
2276 {
2277 fprintf_unfiltered (gdb_stdlog,
2278 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2279 (long) new_gdbarch,
2280 new_gdbarch->bfd_arch_info->printable_name);
2281 }
2282
2283 /* Check that the newly installed architecture is valid. Plug in
2284 any post init values. */
2285 new_gdbarch->dump_tdep = rego->dump_tdep;
2286 verify_gdbarch (new_gdbarch);
2287
2288 /* Initialize the per-architecture memory (swap) areas.
2289 CURRENT_GDBARCH must be update before these modules are
2290 called. */
2291 init_gdbarch_swap (new_gdbarch);
2292
2293 /* Initialize the per-architecture data. CURRENT_GDBARCH
2294 must be updated before these modules are called. */
2295 architecture_changed_event ();
2296
2297 if (gdbarch_debug)
2298 gdbarch_dump (current_gdbarch, gdb_stdlog);
2299
2300 return 1;
2301 }
2302
2303
2304 /* Disassembler */
2305
2306 /* Pointer to the target-dependent disassembly function. */
2307 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2308
2309 extern void _initialize_gdbarch (void);
2310
2311 void
2312 _initialize_gdbarch (void)
2313 {
2314 struct cmd_list_element *c;
2315
2316 add_show_from_set (add_set_cmd ("arch",
2317 class_maintenance,
2318 var_zinteger,
2319 (char *)&gdbarch_debug,
2320 "Set architecture debugging.\\n\\
2321 When non-zero, architecture debugging is enabled.", &setdebuglist),
2322 &showdebuglist);
2323 c = add_set_cmd ("archdebug",
2324 class_maintenance,
2325 var_zinteger,
2326 (char *)&gdbarch_debug,
2327 "Set architecture debugging.\\n\\
2328 When non-zero, architecture debugging is enabled.", &setlist);
2329
2330 deprecate_cmd (c, "set debug arch");
2331 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2332 }
2333 EOF
2334
2335 # close things off
2336 exec 1>&2
2337 #../move-if-change new-gdbarch.c gdbarch.c
2338 compare_new gdbarch.c
This page took 0.153898 seconds and 4 git commands to generate.