* gdbarch.sh (gdbarch_data): Add gdbarch parameter.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:register_read:int regnum, char *buf:regnum, buf:
432 M:::void:register_write:int regnum, char *buf:regnum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
451 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
454 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
456 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457 # Convert from an sdb register number to an internal gdb register number.
458 # This should be defined in tm.h, if REGISTER_NAMES is not set up
459 # to map one to one onto the sdb register numbers.
460 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
461 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
462 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
463 v:2:REGISTER_SIZE:int:register_size::::0:-1
464 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
465 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
466 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
467 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
468 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
469 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
470 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
471 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
472 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
473 # MAP a GDB RAW register number onto a simulator register number. See
474 # also include/...-sim.h.
475 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
476 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
477 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
478 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
479 # setjmp/longjmp support.
480 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
481 #
482 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
483 # much better but at least they are vaguely consistent). The headers
484 # and body contain convoluted #if/#else sequences for determine how
485 # things should be compiled. Instead of trying to mimic that
486 # behaviour here (and hence entrench it further) gdbarch simply
487 # reqires that these methods be set up from the word go. This also
488 # avoids any potential problems with moving beyond multi-arch partial.
489 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
490 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
491 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
492 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
493 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
494 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
495 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
496 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
497 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
498 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
499 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
500 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
502 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
503 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
504 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
505 #
506 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
507 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
508 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
509 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
510 # old code has strange #ifdef interaction. So far no one has found
511 # that default_get_saved_register() is the default they are after.
512 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
513 #
514 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
515 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
516 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
517 # This function is called when the value of a pseudo-register needs to
518 # be updated. Typically it will be defined on a per-architecture
519 # basis.
520 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
521 # This function is called when the value of a pseudo-register needs to
522 # be set or stored. Typically it will be defined on a
523 # per-architecture basis.
524 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
525 #
526 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
527 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
528 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
529 #
530 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
531 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
532 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
533 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
534 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
535 f:2:POP_FRAME:void:pop_frame:void:-:::0
536 #
537 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
538 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
539 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578 v:2:PARM_BOUNDARY:int:parm_boundary
579 #
580 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584 # On some machines there are bits in addresses which are not really
585 # part of the address, but are used by the kernel, the hardware, etc.
586 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587 # we get a "real" address such as one would find in a symbol table.
588 # This is used only for addresses of instructions, and even then I'm
589 # not sure it's used in all contexts. It exists to deal with there
590 # being a few stray bits in the PC which would mislead us, not as some
591 # sort of generic thing to handle alignment or segmentation (it's
592 # possible it should be in TARGET_READ_PC instead).
593 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595 # ADDR_BITS_REMOVE.
596 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598 # the target needs software single step. An ISA method to implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601 # using the breakpoint system instead of blatting memory directly (as with rs6000).
602 #
603 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604 # single step. If not, then implement single step using breakpoints.
605 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608 # For SVR4 shared libraries, each call goes through a small piece of
609 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
610 # to nonzero if we are current stopped in one of these.
611 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
612 # Sigtramp is a routine that the kernel calls (which then calls the
613 # signal handler). On most machines it is a library routine that is
614 # linked into the executable.
615 #
616 # This macro, given a program counter value and the name of the
617 # function in which that PC resides (which can be null if the name is
618 # not known), returns nonzero if the PC and name show that we are in
619 # sigtramp.
620 #
621 # On most machines just see if the name is sigtramp (and if we have
622 # no name, assume we are not in sigtramp).
623 #
624 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
625 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
626 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
627 # own local NAME lookup.
628 #
629 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
630 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
631 # does not.
632 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
633 # A target might have problems with watchpoints as soon as the stack
634 # frame of the current function has been destroyed. This mostly happens
635 # as the first action in a funtion's epilogue. in_function_epilogue_p()
636 # is defined to return a non-zero value if either the given addr is one
637 # instruction after the stack destroying instruction up to the trailing
638 # return instruction or if we can figure out that the stack frame has
639 # already been invalidated regardless of the value of addr. Targets
640 # which don't suffer from that problem could just let this functionality
641 # untouched.
642 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
643 # Given a vector of command-line arguments, return a newly allocated
644 # string which, when passed to the create_inferior function, will be
645 # parsed (on Unix systems, by the shell) to yield the same vector.
646 # This function should call error() if the argument vector is not
647 # representable for this target or if this target does not support
648 # command-line arguments.
649 # ARGC is the number of elements in the vector.
650 # ARGV is an array of strings, one per argument.
651 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
652 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
653 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
654 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
655 EOF
656 }
657
658 #
659 # The .log file
660 #
661 exec > new-gdbarch.log
662 function_list | while do_read
663 do
664 cat <<EOF
665 ${class} ${macro}(${actual})
666 ${returntype} ${function} ($formal)${attrib}
667 EOF
668 for r in ${read}
669 do
670 eval echo \"\ \ \ \ ${r}=\${${r}}\"
671 done
672 # #fallbackdefault=${fallbackdefault}
673 # #valid_p=${valid_p}
674 #EOF
675 if class_is_predicate_p && fallback_default_p
676 then
677 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
678 kill $$
679 exit 1
680 fi
681 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
682 then
683 echo "Error: postdefault is useless when invalid_p=0" 1>&2
684 kill $$
685 exit 1
686 fi
687 if class_is_multiarch_p
688 then
689 if class_is_predicate_p ; then :
690 elif test "x${predefault}" = "x"
691 then
692 echo "Error: pure multi-arch function must have a predefault" 1>&2
693 kill $$
694 exit 1
695 fi
696 fi
697 echo ""
698 done
699
700 exec 1>&2
701 compare_new gdbarch.log
702
703
704 copyright ()
705 {
706 cat <<EOF
707 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
708
709 /* Dynamic architecture support for GDB, the GNU debugger.
710 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
711
712 This file is part of GDB.
713
714 This program is free software; you can redistribute it and/or modify
715 it under the terms of the GNU General Public License as published by
716 the Free Software Foundation; either version 2 of the License, or
717 (at your option) any later version.
718
719 This program is distributed in the hope that it will be useful,
720 but WITHOUT ANY WARRANTY; without even the implied warranty of
721 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
722 GNU General Public License for more details.
723
724 You should have received a copy of the GNU General Public License
725 along with this program; if not, write to the Free Software
726 Foundation, Inc., 59 Temple Place - Suite 330,
727 Boston, MA 02111-1307, USA. */
728
729 /* This file was created with the aid of \`\`gdbarch.sh''.
730
731 The Bourne shell script \`\`gdbarch.sh'' creates the files
732 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
733 against the existing \`\`gdbarch.[hc]''. Any differences found
734 being reported.
735
736 If editing this file, please also run gdbarch.sh and merge any
737 changes into that script. Conversely, when making sweeping changes
738 to this file, modifying gdbarch.sh and using its output may prove
739 easier. */
740
741 EOF
742 }
743
744 #
745 # The .h file
746 #
747
748 exec > new-gdbarch.h
749 copyright
750 cat <<EOF
751 #ifndef GDBARCH_H
752 #define GDBARCH_H
753
754 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
755 #if !GDB_MULTI_ARCH
756 /* Pull in function declarations refered to, indirectly, via macros. */
757 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
758 #include "inferior.h" /* For unsigned_address_to_pointer(). */
759 #endif
760
761 struct frame_info;
762 struct value;
763 struct objfile;
764 struct minimal_symbol;
765
766 extern struct gdbarch *current_gdbarch;
767
768
769 /* If any of the following are defined, the target wasn't correctly
770 converted. */
771
772 #if GDB_MULTI_ARCH
773 #if defined (EXTRA_FRAME_INFO)
774 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
775 #endif
776 #endif
777
778 #if GDB_MULTI_ARCH
779 #if defined (FRAME_FIND_SAVED_REGS)
780 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
781 #endif
782 #endif
783
784 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
785 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
786 #endif
787 EOF
788
789 # function typedef's
790 printf "\n"
791 printf "\n"
792 printf "/* The following are pre-initialized by GDBARCH. */\n"
793 function_list | while do_read
794 do
795 if class_is_info_p
796 then
797 printf "\n"
798 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
799 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
800 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
801 printf "#error \"Non multi-arch definition of ${macro}\"\n"
802 printf "#endif\n"
803 printf "#if GDB_MULTI_ARCH\n"
804 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
805 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "#endif\n"
807 printf "#endif\n"
808 fi
809 done
810
811 # function typedef's
812 printf "\n"
813 printf "\n"
814 printf "/* The following are initialized by the target dependent code. */\n"
815 function_list | while do_read
816 do
817 if [ -n "${comment}" ]
818 then
819 echo "${comment}" | sed \
820 -e '2 s,#,/*,' \
821 -e '3,$ s,#, ,' \
822 -e '$ s,$, */,'
823 fi
824 if class_is_multiarch_p
825 then
826 if class_is_predicate_p
827 then
828 printf "\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 fi
831 else
832 if class_is_predicate_p
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
838 printf "#if !defined (${macro}_P)\n"
839 printf "#define ${macro}_P() (1)\n"
840 printf "#endif\n"
841 printf "#endif\n"
842 printf "\n"
843 printf "/* Default predicate for non- multi-arch targets. */\n"
844 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
845 printf "#define ${macro}_P() (0)\n"
846 printf "#endif\n"
847 printf "\n"
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
853 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
854 printf "#endif\n"
855 fi
856 fi
857 if class_is_variable_p
858 then
859 if fallback_default_p || class_is_predicate_p
860 then
861 printf "\n"
862 printf "/* Default (value) for non- multi-arch platforms. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
864 echo "#define ${macro} (${fallbackdefault})" \
865 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
866 printf "#endif\n"
867 fi
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
874 printf "#if GDB_MULTI_ARCH\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 printf "#endif\n"
879 fi
880 if class_is_function_p
881 then
882 if class_is_multiarch_p ; then :
883 elif fallback_default_p || class_is_predicate_p
884 then
885 printf "\n"
886 printf "/* Default (function) for non- multi-arch platforms. */\n"
887 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
888 if [ "x${fallbackdefault}" = "x0" ]
889 then
890 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
891 else
892 # FIXME: Should be passing current_gdbarch through!
893 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
894 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
895 fi
896 printf "#endif\n"
897 fi
898 printf "\n"
899 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
900 then
901 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
902 elif class_is_multiarch_p
903 then
904 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
905 else
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
907 fi
908 if [ "x${formal}" = "xvoid" ]
909 then
910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
911 else
912 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
913 fi
914 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
915 if class_is_multiarch_p ; then :
916 else
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 printf "#if GDB_MULTI_ARCH\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
922 if [ "x${actual}" = "x" ]
923 then
924 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
925 elif [ "x${actual}" = "x-" ]
926 then
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 else
929 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
930 fi
931 printf "#endif\n"
932 printf "#endif\n"
933 fi
934 fi
935 done
936
937 # close it off
938 cat <<EOF
939
940 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
941
942
943 /* Mechanism for co-ordinating the selection of a specific
944 architecture.
945
946 GDB targets (*-tdep.c) can register an interest in a specific
947 architecture. Other GDB components can register a need to maintain
948 per-architecture data.
949
950 The mechanisms below ensures that there is only a loose connection
951 between the set-architecture command and the various GDB
952 components. Each component can independently register their need
953 to maintain architecture specific data with gdbarch.
954
955 Pragmatics:
956
957 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
958 didn't scale.
959
960 The more traditional mega-struct containing architecture specific
961 data for all the various GDB components was also considered. Since
962 GDB is built from a variable number of (fairly independent)
963 components it was determined that the global aproach was not
964 applicable. */
965
966
967 /* Register a new architectural family with GDB.
968
969 Register support for the specified ARCHITECTURE with GDB. When
970 gdbarch determines that the specified architecture has been
971 selected, the corresponding INIT function is called.
972
973 --
974
975 The INIT function takes two parameters: INFO which contains the
976 information available to gdbarch about the (possibly new)
977 architecture; ARCHES which is a list of the previously created
978 \`\`struct gdbarch'' for this architecture.
979
980 The INFO parameter is, as far as possible, be pre-initialized with
981 information obtained from INFO.ABFD or the previously selected
982 architecture.
983
984 The ARCHES parameter is a linked list (sorted most recently used)
985 of all the previously created architures for this architecture
986 family. The (possibly NULL) ARCHES->gdbarch can used to access
987 values from the previously selected architecture for this
988 architecture family. The global \`\`current_gdbarch'' shall not be
989 used.
990
991 The INIT function shall return any of: NULL - indicating that it
992 doesn't recognize the selected architecture; an existing \`\`struct
993 gdbarch'' from the ARCHES list - indicating that the new
994 architecture is just a synonym for an earlier architecture (see
995 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
996 - that describes the selected architecture (see gdbarch_alloc()).
997
998 The DUMP_TDEP function shall print out all target specific values.
999 Care should be taken to ensure that the function works in both the
1000 multi-arch and non- multi-arch cases. */
1001
1002 struct gdbarch_list
1003 {
1004 struct gdbarch *gdbarch;
1005 struct gdbarch_list *next;
1006 };
1007
1008 struct gdbarch_info
1009 {
1010 /* Use default: NULL (ZERO). */
1011 const struct bfd_arch_info *bfd_arch_info;
1012
1013 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1014 int byte_order;
1015
1016 /* Use default: NULL (ZERO). */
1017 bfd *abfd;
1018
1019 /* Use default: NULL (ZERO). */
1020 struct gdbarch_tdep_info *tdep_info;
1021 };
1022
1023 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1024 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1025
1026 /* DEPRECATED - use gdbarch_register() */
1027 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1028
1029 extern void gdbarch_register (enum bfd_architecture architecture,
1030 gdbarch_init_ftype *,
1031 gdbarch_dump_tdep_ftype *);
1032
1033
1034 /* Return a freshly allocated, NULL terminated, array of the valid
1035 architecture names. Since architectures are registered during the
1036 _initialize phase this function only returns useful information
1037 once initialization has been completed. */
1038
1039 extern const char **gdbarch_printable_names (void);
1040
1041
1042 /* Helper function. Search the list of ARCHES for a GDBARCH that
1043 matches the information provided by INFO. */
1044
1045 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046
1047
1048 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1049 basic initialization using values obtained from the INFO andTDEP
1050 parameters. set_gdbarch_*() functions are called to complete the
1051 initialization of the object. */
1052
1053 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054
1055
1056 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1057 It is assumed that the caller freeds the \`\`struct
1058 gdbarch_tdep''. */
1059
1060 extern void gdbarch_free (struct gdbarch *);
1061
1062
1063 /* Helper function. Force an update of the current architecture.
1064
1065 The actual architecture selected is determined by INFO, \`\`(gdb) set
1066 architecture'' et.al., the existing architecture and BFD's default
1067 architecture. INFO should be initialized to zero and then selected
1068 fields should be updated.
1069
1070 Returns non-zero if the update succeeds */
1071
1072 extern int gdbarch_update_p (struct gdbarch_info info);
1073
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 The per-architecture data-pointer can be initialized in one of two
1083 ways: The value can be set explicitly using a call to
1084 set_gdbarch_data(); the value can be set implicitly using the value
1085 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1086 called after the basic architecture vector has been created.
1087
1088 When a previously created architecture is re-selected, the
1089 per-architecture data-pointer for that previous architecture is
1090 restored. INIT() is not called.
1091
1092 During initialization, multiple assignments of the data-pointer are
1093 allowed, non-NULL values are deleted by calling FREE(). If the
1094 architecture is deleted using gdbarch_free() all non-NULL data
1095 pointers are also deleted using FREE().
1096
1097 Multiple registrarants for any architecture are allowed (and
1098 strongly encouraged). */
1099
1100 struct gdbarch_data;
1101
1102 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1103 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1104 void *pointer);
1105 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1106 gdbarch_data_free_ftype *free);
1107 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1108 struct gdbarch_data *data,
1109 void *pointer);
1110
1111 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1112
1113
1114 /* Register per-architecture memory region.
1115
1116 Provide a memory-region swap mechanism. Per-architecture memory
1117 region are created. These memory regions are swapped whenever the
1118 architecture is changed. For a new architecture, the memory region
1119 is initialized with zero (0) and the INIT function is called.
1120
1121 Memory regions are swapped / initialized in the order that they are
1122 registered. NULL DATA and/or INIT values can be specified.
1123
1124 New code should use register_gdbarch_data(). */
1125
1126 typedef void (gdbarch_swap_ftype) (void);
1127 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1128 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1129
1130
1131
1132 /* The target-system-dependent byte order is dynamic */
1133
1134 extern int target_byte_order;
1135 #ifndef TARGET_BYTE_ORDER
1136 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1137 #endif
1138
1139 extern int target_byte_order_auto;
1140 #ifndef TARGET_BYTE_ORDER_AUTO
1141 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1142 #endif
1143
1144
1145
1146 /* The target-system-dependent BFD architecture is dynamic */
1147
1148 extern int target_architecture_auto;
1149 #ifndef TARGET_ARCHITECTURE_AUTO
1150 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1151 #endif
1152
1153 extern const struct bfd_arch_info *target_architecture;
1154 #ifndef TARGET_ARCHITECTURE
1155 #define TARGET_ARCHITECTURE (target_architecture + 0)
1156 #endif
1157
1158
1159 /* The target-system-dependent disassembler is semi-dynamic */
1160
1161 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1162 unsigned int len, disassemble_info *info);
1163
1164 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1165 disassemble_info *info);
1166
1167 extern void dis_asm_print_address (bfd_vma addr,
1168 disassemble_info *info);
1169
1170 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1171 extern disassemble_info tm_print_insn_info;
1172 #ifndef TARGET_PRINT_INSN_INFO
1173 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1174 #endif
1175
1176
1177
1178 /* Set the dynamic target-system-dependent parameters (architecture,
1179 byte-order, ...) using information found in the BFD */
1180
1181 extern void set_gdbarch_from_file (bfd *);
1182
1183
1184 /* Initialize the current architecture to the "first" one we find on
1185 our list. */
1186
1187 extern void initialize_current_architecture (void);
1188
1189 /* For non-multiarched targets, do any initialization of the default
1190 gdbarch object necessary after the _initialize_MODULE functions
1191 have run. */
1192 extern void initialize_non_multiarch ();
1193
1194 /* gdbarch trace variable */
1195 extern int gdbarch_debug;
1196
1197 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1198
1199 #endif
1200 EOF
1201 exec 1>&2
1202 #../move-if-change new-gdbarch.h gdbarch.h
1203 compare_new gdbarch.h
1204
1205
1206 #
1207 # C file
1208 #
1209
1210 exec > new-gdbarch.c
1211 copyright
1212 cat <<EOF
1213
1214 #include "defs.h"
1215 #include "arch-utils.h"
1216
1217 #if GDB_MULTI_ARCH
1218 #include "gdbcmd.h"
1219 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1220 #else
1221 /* Just include everything in sight so that the every old definition
1222 of macro is visible. */
1223 #include "gdb_string.h"
1224 #include <ctype.h>
1225 #include "symtab.h"
1226 #include "frame.h"
1227 #include "inferior.h"
1228 #include "breakpoint.h"
1229 #include "gdb_wait.h"
1230 #include "gdbcore.h"
1231 #include "gdbcmd.h"
1232 #include "target.h"
1233 #include "gdbthread.h"
1234 #include "annotate.h"
1235 #include "symfile.h" /* for overlay functions */
1236 #include "value.h" /* For old tm.h/nm.h macros. */
1237 #endif
1238 #include "symcat.h"
1239
1240 #include "floatformat.h"
1241
1242 #include "gdb_assert.h"
1243 #include "gdb-events.h"
1244
1245 /* Static function declarations */
1246
1247 static void verify_gdbarch (struct gdbarch *gdbarch);
1248 static void alloc_gdbarch_data (struct gdbarch *);
1249 static void init_gdbarch_data (struct gdbarch *);
1250 static void free_gdbarch_data (struct gdbarch *);
1251 static void init_gdbarch_swap (struct gdbarch *);
1252 static void clear_gdbarch_swap (struct gdbarch *);
1253 static void swapout_gdbarch_swap (struct gdbarch *);
1254 static void swapin_gdbarch_swap (struct gdbarch *);
1255
1256 /* Non-zero if we want to trace architecture code. */
1257
1258 #ifndef GDBARCH_DEBUG
1259 #define GDBARCH_DEBUG 0
1260 #endif
1261 int gdbarch_debug = GDBARCH_DEBUG;
1262
1263 EOF
1264
1265 # gdbarch open the gdbarch object
1266 printf "\n"
1267 printf "/* Maintain the struct gdbarch object */\n"
1268 printf "\n"
1269 printf "struct gdbarch\n"
1270 printf "{\n"
1271 printf " /* basic architectural information */\n"
1272 function_list | while do_read
1273 do
1274 if class_is_info_p
1275 then
1276 printf " ${returntype} ${function};\n"
1277 fi
1278 done
1279 printf "\n"
1280 printf " /* target specific vector. */\n"
1281 printf " struct gdbarch_tdep *tdep;\n"
1282 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1283 printf "\n"
1284 printf " /* per-architecture data-pointers */\n"
1285 printf " unsigned nr_data;\n"
1286 printf " void **data;\n"
1287 printf "\n"
1288 printf " /* per-architecture swap-regions */\n"
1289 printf " struct gdbarch_swap *swap;\n"
1290 printf "\n"
1291 cat <<EOF
1292 /* Multi-arch values.
1293
1294 When extending this structure you must:
1295
1296 Add the field below.
1297
1298 Declare set/get functions and define the corresponding
1299 macro in gdbarch.h.
1300
1301 gdbarch_alloc(): If zero/NULL is not a suitable default,
1302 initialize the new field.
1303
1304 verify_gdbarch(): Confirm that the target updated the field
1305 correctly.
1306
1307 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1308 field is dumped out
1309
1310 \`\`startup_gdbarch()'': Append an initial value to the static
1311 variable (base values on the host's c-type system).
1312
1313 get_gdbarch(): Implement the set/get functions (probably using
1314 the macro's as shortcuts).
1315
1316 */
1317
1318 EOF
1319 function_list | while do_read
1320 do
1321 if class_is_variable_p
1322 then
1323 printf " ${returntype} ${function};\n"
1324 elif class_is_function_p
1325 then
1326 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1327 fi
1328 done
1329 printf "};\n"
1330
1331 # A pre-initialized vector
1332 printf "\n"
1333 printf "\n"
1334 cat <<EOF
1335 /* The default architecture uses host values (for want of a better
1336 choice). */
1337 EOF
1338 printf "\n"
1339 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1340 printf "\n"
1341 printf "struct gdbarch startup_gdbarch =\n"
1342 printf "{\n"
1343 printf " /* basic architecture information */\n"
1344 function_list | while do_read
1345 do
1346 if class_is_info_p
1347 then
1348 printf " ${staticdefault},\n"
1349 fi
1350 done
1351 cat <<EOF
1352 /* target specific vector and its dump routine */
1353 NULL, NULL,
1354 /*per-architecture data-pointers and swap regions */
1355 0, NULL, NULL,
1356 /* Multi-arch values */
1357 EOF
1358 function_list | while do_read
1359 do
1360 if class_is_function_p || class_is_variable_p
1361 then
1362 printf " ${staticdefault},\n"
1363 fi
1364 done
1365 cat <<EOF
1366 /* startup_gdbarch() */
1367 };
1368
1369 struct gdbarch *current_gdbarch = &startup_gdbarch;
1370
1371 /* Do any initialization needed for a non-multiarch configuration
1372 after the _initialize_MODULE functions have been run. */
1373 void
1374 initialize_non_multiarch ()
1375 {
1376 alloc_gdbarch_data (&startup_gdbarch);
1377 /* Ensure that all swap areas are zeroed so that they again think
1378 they are starting from scratch. */
1379 clear_gdbarch_swap (&startup_gdbarch);
1380 init_gdbarch_swap (&startup_gdbarch);
1381 init_gdbarch_data (&startup_gdbarch);
1382 }
1383 EOF
1384
1385 # Create a new gdbarch struct
1386 printf "\n"
1387 printf "\n"
1388 cat <<EOF
1389 /* Create a new \`\`struct gdbarch'' based on information provided by
1390 \`\`struct gdbarch_info''. */
1391 EOF
1392 printf "\n"
1393 cat <<EOF
1394 struct gdbarch *
1395 gdbarch_alloc (const struct gdbarch_info *info,
1396 struct gdbarch_tdep *tdep)
1397 {
1398 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1399 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1400 the current local architecture and not the previous global
1401 architecture. This ensures that the new architectures initial
1402 values are not influenced by the previous architecture. Once
1403 everything is parameterised with gdbarch, this will go away. */
1404 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1405 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1406
1407 alloc_gdbarch_data (current_gdbarch);
1408
1409 current_gdbarch->tdep = tdep;
1410 EOF
1411 printf "\n"
1412 function_list | while do_read
1413 do
1414 if class_is_info_p
1415 then
1416 printf " current_gdbarch->${function} = info->${function};\n"
1417 fi
1418 done
1419 printf "\n"
1420 printf " /* Force the explicit initialization of these. */\n"
1421 function_list | while do_read
1422 do
1423 if class_is_function_p || class_is_variable_p
1424 then
1425 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1426 then
1427 printf " current_gdbarch->${function} = ${predefault};\n"
1428 fi
1429 fi
1430 done
1431 cat <<EOF
1432 /* gdbarch_alloc() */
1433
1434 return current_gdbarch;
1435 }
1436 EOF
1437
1438 # Free a gdbarch struct.
1439 printf "\n"
1440 printf "\n"
1441 cat <<EOF
1442 /* Free a gdbarch struct. This should never happen in normal
1443 operation --- once you've created a gdbarch, you keep it around.
1444 However, if an architecture's init function encounters an error
1445 building the structure, it may need to clean up a partially
1446 constructed gdbarch. */
1447
1448 void
1449 gdbarch_free (struct gdbarch *arch)
1450 {
1451 gdb_assert (arch != NULL);
1452 free_gdbarch_data (arch);
1453 xfree (arch);
1454 }
1455 EOF
1456
1457 # verify a new architecture
1458 printf "\n"
1459 printf "\n"
1460 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1461 printf "\n"
1462 cat <<EOF
1463 static void
1464 verify_gdbarch (struct gdbarch *gdbarch)
1465 {
1466 struct ui_file *log;
1467 struct cleanup *cleanups;
1468 long dummy;
1469 char *buf;
1470 /* Only perform sanity checks on a multi-arch target. */
1471 if (!GDB_MULTI_ARCH)
1472 return;
1473 log = mem_fileopen ();
1474 cleanups = make_cleanup_ui_file_delete (log);
1475 /* fundamental */
1476 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1477 fprintf_unfiltered (log, "\n\tbyte-order");
1478 if (gdbarch->bfd_arch_info == NULL)
1479 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1480 /* Check those that need to be defined for the given multi-arch level. */
1481 EOF
1482 function_list | while do_read
1483 do
1484 if class_is_function_p || class_is_variable_p
1485 then
1486 if [ "x${invalid_p}" = "x0" ]
1487 then
1488 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1489 elif class_is_predicate_p
1490 then
1491 printf " /* Skip verify of ${function}, has predicate */\n"
1492 # FIXME: See do_read for potential simplification
1493 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1494 then
1495 printf " if (${invalid_p})\n"
1496 printf " gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1498 then
1499 printf " if (gdbarch->${function} == ${predefault})\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
1501 elif [ -n "${postdefault}" ]
1502 then
1503 printf " if (gdbarch->${function} == 0)\n"
1504 printf " gdbarch->${function} = ${postdefault};\n"
1505 elif [ -n "${invalid_p}" ]
1506 then
1507 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1508 printf " && (${invalid_p}))\n"
1509 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1510 elif [ -n "${predefault}" ]
1511 then
1512 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1513 printf " && (gdbarch->${function} == ${predefault}))\n"
1514 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1515 fi
1516 fi
1517 done
1518 cat <<EOF
1519 buf = ui_file_xstrdup (log, &dummy);
1520 make_cleanup (xfree, buf);
1521 if (strlen (buf) > 0)
1522 internal_error (__FILE__, __LINE__,
1523 "verify_gdbarch: the following are invalid ...%s",
1524 buf);
1525 do_cleanups (cleanups);
1526 }
1527 EOF
1528
1529 # dump the structure
1530 printf "\n"
1531 printf "\n"
1532 cat <<EOF
1533 /* Print out the details of the current architecture. */
1534
1535 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536 just happens to match the global variable \`\`current_gdbarch''. That
1537 way macros refering to that variable get the local and not the global
1538 version - ulgh. Once everything is parameterised with gdbarch, this
1539 will go away. */
1540
1541 void
1542 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1543 {
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1546 GDB_MULTI_ARCH);
1547 EOF
1548 function_list | sort -t: +2 | while do_read
1549 do
1550 # multiarch functions don't have macros.
1551 if class_is_multiarch_p
1552 then
1553 printf " if (GDB_MULTI_ARCH)\n"
1554 printf " fprintf_unfiltered (file,\n"
1555 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1556 printf " (long) current_gdbarch->${function});\n"
1557 continue
1558 fi
1559 # Print the macro definition.
1560 printf "#ifdef ${macro}\n"
1561 if [ "x${returntype}" = "xvoid" ]
1562 then
1563 printf "#if GDB_MULTI_ARCH\n"
1564 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1565 fi
1566 if class_is_function_p
1567 then
1568 printf " fprintf_unfiltered (file,\n"
1569 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1570 printf " \"${macro}(${actual})\",\n"
1571 printf " XSTRING (${macro} (${actual})));\n"
1572 else
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1575 printf " XSTRING (${macro}));\n"
1576 fi
1577 # Print the architecture vector value
1578 if [ "x${returntype}" = "xvoid" ]
1579 then
1580 printf "#endif\n"
1581 fi
1582 if [ "x${print_p}" = "x()" ]
1583 then
1584 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1585 elif [ "x${print_p}" = "x0" ]
1586 then
1587 printf " /* skip print of ${macro}, print_p == 0. */\n"
1588 elif [ -n "${print_p}" ]
1589 then
1590 printf " if (${print_p})\n"
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1593 printf " ${print});\n"
1594 elif class_is_function_p
1595 then
1596 printf " if (GDB_MULTI_ARCH)\n"
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1599 printf " (long) current_gdbarch->${function}\n"
1600 printf " /*${macro} ()*/);\n"
1601 else
1602 printf " fprintf_unfiltered (file,\n"
1603 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1604 printf " ${print});\n"
1605 fi
1606 printf "#endif\n"
1607 done
1608 cat <<EOF
1609 if (current_gdbarch->dump_tdep != NULL)
1610 current_gdbarch->dump_tdep (current_gdbarch, file);
1611 }
1612 EOF
1613
1614
1615 # GET/SET
1616 printf "\n"
1617 cat <<EOF
1618 struct gdbarch_tdep *
1619 gdbarch_tdep (struct gdbarch *gdbarch)
1620 {
1621 if (gdbarch_debug >= 2)
1622 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1623 return gdbarch->tdep;
1624 }
1625 EOF
1626 printf "\n"
1627 function_list | while do_read
1628 do
1629 if class_is_predicate_p
1630 then
1631 printf "\n"
1632 printf "int\n"
1633 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1634 printf "{\n"
1635 printf " gdb_assert (gdbarch != NULL);\n"
1636 if [ -n "${valid_p}" ]
1637 then
1638 printf " return ${valid_p};\n"
1639 else
1640 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1641 fi
1642 printf "}\n"
1643 fi
1644 if class_is_function_p
1645 then
1646 printf "\n"
1647 printf "${returntype}\n"
1648 if [ "x${formal}" = "xvoid" ]
1649 then
1650 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1651 else
1652 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1653 fi
1654 printf "{\n"
1655 printf " gdb_assert (gdbarch != NULL);\n"
1656 printf " if (gdbarch->${function} == 0)\n"
1657 printf " internal_error (__FILE__, __LINE__,\n"
1658 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1662 then
1663 if class_is_multiarch_p
1664 then
1665 params="gdbarch"
1666 else
1667 params=""
1668 fi
1669 else
1670 if class_is_multiarch_p
1671 then
1672 params="gdbarch, ${actual}"
1673 else
1674 params="${actual}"
1675 fi
1676 fi
1677 if [ "x${returntype}" = "xvoid" ]
1678 then
1679 printf " gdbarch->${function} (${params});\n"
1680 else
1681 printf " return gdbarch->${function} (${params});\n"
1682 fi
1683 printf "}\n"
1684 printf "\n"
1685 printf "void\n"
1686 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1687 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1688 printf "{\n"
1689 printf " gdbarch->${function} = ${function};\n"
1690 printf "}\n"
1691 elif class_is_variable_p
1692 then
1693 printf "\n"
1694 printf "${returntype}\n"
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1696 printf "{\n"
1697 printf " gdb_assert (gdbarch != NULL);\n"
1698 if [ "x${invalid_p}" = "x0" ]
1699 then
1700 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1701 elif [ -n "${invalid_p}" ]
1702 then
1703 printf " if (${invalid_p})\n"
1704 printf " internal_error (__FILE__, __LINE__,\n"
1705 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1706 elif [ -n "${predefault}" ]
1707 then
1708 printf " if (gdbarch->${function} == ${predefault})\n"
1709 printf " internal_error (__FILE__, __LINE__,\n"
1710 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1711 fi
1712 printf " if (gdbarch_debug >= 2)\n"
1713 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1714 printf " return gdbarch->${function};\n"
1715 printf "}\n"
1716 printf "\n"
1717 printf "void\n"
1718 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1719 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1720 printf "{\n"
1721 printf " gdbarch->${function} = ${function};\n"
1722 printf "}\n"
1723 elif class_is_info_p
1724 then
1725 printf "\n"
1726 printf "${returntype}\n"
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1728 printf "{\n"
1729 printf " gdb_assert (gdbarch != NULL);\n"
1730 printf " if (gdbarch_debug >= 2)\n"
1731 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1732 printf " return gdbarch->${function};\n"
1733 printf "}\n"
1734 fi
1735 done
1736
1737 # All the trailing guff
1738 cat <<EOF
1739
1740
1741 /* Keep a registry of per-architecture data-pointers required by GDB
1742 modules. */
1743
1744 struct gdbarch_data
1745 {
1746 unsigned index;
1747 gdbarch_data_init_ftype *init;
1748 gdbarch_data_free_ftype *free;
1749 };
1750
1751 struct gdbarch_data_registration
1752 {
1753 struct gdbarch_data *data;
1754 struct gdbarch_data_registration *next;
1755 };
1756
1757 struct gdbarch_data_registry
1758 {
1759 unsigned nr;
1760 struct gdbarch_data_registration *registrations;
1761 };
1762
1763 struct gdbarch_data_registry gdbarch_data_registry =
1764 {
1765 0, NULL,
1766 };
1767
1768 struct gdbarch_data *
1769 register_gdbarch_data (gdbarch_data_init_ftype *init,
1770 gdbarch_data_free_ftype *free)
1771 {
1772 struct gdbarch_data_registration **curr;
1773 for (curr = &gdbarch_data_registry.registrations;
1774 (*curr) != NULL;
1775 curr = &(*curr)->next);
1776 (*curr) = XMALLOC (struct gdbarch_data_registration);
1777 (*curr)->next = NULL;
1778 (*curr)->data = XMALLOC (struct gdbarch_data);
1779 (*curr)->data->index = gdbarch_data_registry.nr++;
1780 (*curr)->data->init = init;
1781 (*curr)->data->free = free;
1782 return (*curr)->data;
1783 }
1784
1785
1786 /* Walk through all the registered users initializing each in turn. */
1787
1788 static void
1789 init_gdbarch_data (struct gdbarch *gdbarch)
1790 {
1791 struct gdbarch_data_registration *rego;
1792 for (rego = gdbarch_data_registry.registrations;
1793 rego != NULL;
1794 rego = rego->next)
1795 {
1796 struct gdbarch_data *data = rego->data;
1797 gdb_assert (data->index < gdbarch->nr_data);
1798 if (data->init != NULL)
1799 {
1800 void *pointer = data->init (gdbarch);
1801 set_gdbarch_data (gdbarch, data, pointer);
1802 }
1803 }
1804 }
1805
1806 /* Create/delete the gdbarch data vector. */
1807
1808 static void
1809 alloc_gdbarch_data (struct gdbarch *gdbarch)
1810 {
1811 gdb_assert (gdbarch->data == NULL);
1812 gdbarch->nr_data = gdbarch_data_registry.nr;
1813 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1814 }
1815
1816 static void
1817 free_gdbarch_data (struct gdbarch *gdbarch)
1818 {
1819 struct gdbarch_data_registration *rego;
1820 gdb_assert (gdbarch->data != NULL);
1821 for (rego = gdbarch_data_registry.registrations;
1822 rego != NULL;
1823 rego = rego->next)
1824 {
1825 struct gdbarch_data *data = rego->data;
1826 gdb_assert (data->index < gdbarch->nr_data);
1827 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1828 {
1829 data->free (gdbarch, gdbarch->data[data->index]);
1830 gdbarch->data[data->index] = NULL;
1831 }
1832 }
1833 xfree (gdbarch->data);
1834 gdbarch->data = NULL;
1835 }
1836
1837
1838 /* Initialize the current value of thee specified per-architecture
1839 data-pointer. */
1840
1841 void
1842 set_gdbarch_data (struct gdbarch *gdbarch,
1843 struct gdbarch_data *data,
1844 void *pointer)
1845 {
1846 gdb_assert (data->index < gdbarch->nr_data);
1847 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1848 data->free (gdbarch, gdbarch->data[data->index]);
1849 gdbarch->data[data->index] = pointer;
1850 }
1851
1852 /* Return the current value of the specified per-architecture
1853 data-pointer. */
1854
1855 void *
1856 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1857 {
1858 gdb_assert (data->index < gdbarch->nr_data);
1859 return gdbarch->data[data->index];
1860 }
1861
1862
1863
1864 /* Keep a registry of swapped data required by GDB modules. */
1865
1866 struct gdbarch_swap
1867 {
1868 void *swap;
1869 struct gdbarch_swap_registration *source;
1870 struct gdbarch_swap *next;
1871 };
1872
1873 struct gdbarch_swap_registration
1874 {
1875 void *data;
1876 unsigned long sizeof_data;
1877 gdbarch_swap_ftype *init;
1878 struct gdbarch_swap_registration *next;
1879 };
1880
1881 struct gdbarch_swap_registry
1882 {
1883 int nr;
1884 struct gdbarch_swap_registration *registrations;
1885 };
1886
1887 struct gdbarch_swap_registry gdbarch_swap_registry =
1888 {
1889 0, NULL,
1890 };
1891
1892 void
1893 register_gdbarch_swap (void *data,
1894 unsigned long sizeof_data,
1895 gdbarch_swap_ftype *init)
1896 {
1897 struct gdbarch_swap_registration **rego;
1898 for (rego = &gdbarch_swap_registry.registrations;
1899 (*rego) != NULL;
1900 rego = &(*rego)->next);
1901 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1902 (*rego)->next = NULL;
1903 (*rego)->init = init;
1904 (*rego)->data = data;
1905 (*rego)->sizeof_data = sizeof_data;
1906 }
1907
1908 static void
1909 clear_gdbarch_swap (struct gdbarch *gdbarch)
1910 {
1911 struct gdbarch_swap *curr;
1912 for (curr = gdbarch->swap;
1913 curr != NULL;
1914 curr = curr->next)
1915 {
1916 memset (curr->source->data, 0, curr->source->sizeof_data);
1917 }
1918 }
1919
1920 static void
1921 init_gdbarch_swap (struct gdbarch *gdbarch)
1922 {
1923 struct gdbarch_swap_registration *rego;
1924 struct gdbarch_swap **curr = &gdbarch->swap;
1925 for (rego = gdbarch_swap_registry.registrations;
1926 rego != NULL;
1927 rego = rego->next)
1928 {
1929 if (rego->data != NULL)
1930 {
1931 (*curr) = XMALLOC (struct gdbarch_swap);
1932 (*curr)->source = rego;
1933 (*curr)->swap = xmalloc (rego->sizeof_data);
1934 (*curr)->next = NULL;
1935 curr = &(*curr)->next;
1936 }
1937 if (rego->init != NULL)
1938 rego->init ();
1939 }
1940 }
1941
1942 static void
1943 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1944 {
1945 struct gdbarch_swap *curr;
1946 for (curr = gdbarch->swap;
1947 curr != NULL;
1948 curr = curr->next)
1949 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1950 }
1951
1952 static void
1953 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1954 {
1955 struct gdbarch_swap *curr;
1956 for (curr = gdbarch->swap;
1957 curr != NULL;
1958 curr = curr->next)
1959 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1960 }
1961
1962
1963 /* Keep a registry of the architectures known by GDB. */
1964
1965 struct gdbarch_registration
1966 {
1967 enum bfd_architecture bfd_architecture;
1968 gdbarch_init_ftype *init;
1969 gdbarch_dump_tdep_ftype *dump_tdep;
1970 struct gdbarch_list *arches;
1971 struct gdbarch_registration *next;
1972 };
1973
1974 static struct gdbarch_registration *gdbarch_registry = NULL;
1975
1976 static void
1977 append_name (const char ***buf, int *nr, const char *name)
1978 {
1979 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1980 (*buf)[*nr] = name;
1981 *nr += 1;
1982 }
1983
1984 const char **
1985 gdbarch_printable_names (void)
1986 {
1987 if (GDB_MULTI_ARCH)
1988 {
1989 /* Accumulate a list of names based on the registed list of
1990 architectures. */
1991 enum bfd_architecture a;
1992 int nr_arches = 0;
1993 const char **arches = NULL;
1994 struct gdbarch_registration *rego;
1995 for (rego = gdbarch_registry;
1996 rego != NULL;
1997 rego = rego->next)
1998 {
1999 const struct bfd_arch_info *ap;
2000 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2001 if (ap == NULL)
2002 internal_error (__FILE__, __LINE__,
2003 "gdbarch_architecture_names: multi-arch unknown");
2004 do
2005 {
2006 append_name (&arches, &nr_arches, ap->printable_name);
2007 ap = ap->next;
2008 }
2009 while (ap != NULL);
2010 }
2011 append_name (&arches, &nr_arches, NULL);
2012 return arches;
2013 }
2014 else
2015 /* Just return all the architectures that BFD knows. Assume that
2016 the legacy architecture framework supports them. */
2017 return bfd_arch_list ();
2018 }
2019
2020
2021 void
2022 gdbarch_register (enum bfd_architecture bfd_architecture,
2023 gdbarch_init_ftype *init,
2024 gdbarch_dump_tdep_ftype *dump_tdep)
2025 {
2026 struct gdbarch_registration **curr;
2027 const struct bfd_arch_info *bfd_arch_info;
2028 /* Check that BFD recognizes this architecture */
2029 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2030 if (bfd_arch_info == NULL)
2031 {
2032 internal_error (__FILE__, __LINE__,
2033 "gdbarch: Attempt to register unknown architecture (%d)",
2034 bfd_architecture);
2035 }
2036 /* Check that we haven't seen this architecture before */
2037 for (curr = &gdbarch_registry;
2038 (*curr) != NULL;
2039 curr = &(*curr)->next)
2040 {
2041 if (bfd_architecture == (*curr)->bfd_architecture)
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch: Duplicate registraration of architecture (%s)",
2044 bfd_arch_info->printable_name);
2045 }
2046 /* log it */
2047 if (gdbarch_debug)
2048 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2049 bfd_arch_info->printable_name,
2050 (long) init);
2051 /* Append it */
2052 (*curr) = XMALLOC (struct gdbarch_registration);
2053 (*curr)->bfd_architecture = bfd_architecture;
2054 (*curr)->init = init;
2055 (*curr)->dump_tdep = dump_tdep;
2056 (*curr)->arches = NULL;
2057 (*curr)->next = NULL;
2058 /* When non- multi-arch, install whatever target dump routine we've
2059 been provided - hopefully that routine has been written correctly
2060 and works regardless of multi-arch. */
2061 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2062 && startup_gdbarch.dump_tdep == NULL)
2063 startup_gdbarch.dump_tdep = dump_tdep;
2064 }
2065
2066 void
2067 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2068 gdbarch_init_ftype *init)
2069 {
2070 gdbarch_register (bfd_architecture, init, NULL);
2071 }
2072
2073
2074 /* Look for an architecture using gdbarch_info. Base search on only
2075 BFD_ARCH_INFO and BYTE_ORDER. */
2076
2077 struct gdbarch_list *
2078 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2079 const struct gdbarch_info *info)
2080 {
2081 for (; arches != NULL; arches = arches->next)
2082 {
2083 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2084 continue;
2085 if (info->byte_order != arches->gdbarch->byte_order)
2086 continue;
2087 return arches;
2088 }
2089 return NULL;
2090 }
2091
2092
2093 /* Update the current architecture. Return ZERO if the update request
2094 failed. */
2095
2096 int
2097 gdbarch_update_p (struct gdbarch_info info)
2098 {
2099 struct gdbarch *new_gdbarch;
2100 struct gdbarch *old_gdbarch;
2101 struct gdbarch_registration *rego;
2102
2103 /* Fill in missing parts of the INFO struct using a number of
2104 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2105
2106 /* \`\`(gdb) set architecture ...'' */
2107 if (info.bfd_arch_info == NULL
2108 && !TARGET_ARCHITECTURE_AUTO)
2109 info.bfd_arch_info = TARGET_ARCHITECTURE;
2110 if (info.bfd_arch_info == NULL
2111 && info.abfd != NULL
2112 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2113 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2114 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2115 if (info.bfd_arch_info == NULL)
2116 info.bfd_arch_info = TARGET_ARCHITECTURE;
2117
2118 /* \`\`(gdb) set byte-order ...'' */
2119 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2120 && !TARGET_BYTE_ORDER_AUTO)
2121 info.byte_order = TARGET_BYTE_ORDER;
2122 /* From the INFO struct. */
2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2124 && info.abfd != NULL)
2125 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2126 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2127 : BFD_ENDIAN_UNKNOWN);
2128 /* From the current target. */
2129 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2130 info.byte_order = TARGET_BYTE_ORDER;
2131
2132 /* Must have found some sort of architecture. */
2133 gdb_assert (info.bfd_arch_info != NULL);
2134
2135 if (gdbarch_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
2138 "gdbarch_update: info.bfd_arch_info %s\n",
2139 (info.bfd_arch_info != NULL
2140 ? info.bfd_arch_info->printable_name
2141 : "(null)"));
2142 fprintf_unfiltered (gdb_stdlog,
2143 "gdbarch_update: info.byte_order %d (%s)\n",
2144 info.byte_order,
2145 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2146 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2147 : "default"));
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_update: info.abfd 0x%lx\n",
2150 (long) info.abfd);
2151 fprintf_unfiltered (gdb_stdlog,
2152 "gdbarch_update: info.tdep_info 0x%lx\n",
2153 (long) info.tdep_info);
2154 }
2155
2156 /* Find the target that knows about this architecture. */
2157 for (rego = gdbarch_registry;
2158 rego != NULL;
2159 rego = rego->next)
2160 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2161 break;
2162 if (rego == NULL)
2163 {
2164 if (gdbarch_debug)
2165 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2166 return 0;
2167 }
2168
2169 /* Swap the data belonging to the old target out setting the
2170 installed data to zero. This stops the ->init() function trying
2171 to refer to the previous architecture's global data structures. */
2172 swapout_gdbarch_swap (current_gdbarch);
2173 clear_gdbarch_swap (current_gdbarch);
2174
2175 /* Save the previously selected architecture, setting the global to
2176 NULL. This stops ->init() trying to use the previous
2177 architecture's configuration. The previous architecture may not
2178 even be of the same architecture family. The most recent
2179 architecture of the same family is found at the head of the
2180 rego->arches list. */
2181 old_gdbarch = current_gdbarch;
2182 current_gdbarch = NULL;
2183
2184 /* Ask the target for a replacement architecture. */
2185 new_gdbarch = rego->init (info, rego->arches);
2186
2187 /* Did the target like it? No. Reject the change and revert to the
2188 old architecture. */
2189 if (new_gdbarch == NULL)
2190 {
2191 if (gdbarch_debug)
2192 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2193 swapin_gdbarch_swap (old_gdbarch);
2194 current_gdbarch = old_gdbarch;
2195 return 0;
2196 }
2197
2198 /* Did the architecture change? No. Oops, put the old architecture
2199 back. */
2200 if (old_gdbarch == new_gdbarch)
2201 {
2202 if (gdbarch_debug)
2203 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2204 (long) new_gdbarch,
2205 new_gdbarch->bfd_arch_info->printable_name);
2206 swapin_gdbarch_swap (old_gdbarch);
2207 current_gdbarch = old_gdbarch;
2208 return 1;
2209 }
2210
2211 /* Is this a pre-existing architecture? Yes. Move it to the front
2212 of the list of architectures (keeping the list sorted Most
2213 Recently Used) and then copy it in. */
2214 {
2215 struct gdbarch_list **list;
2216 for (list = &rego->arches;
2217 (*list) != NULL;
2218 list = &(*list)->next)
2219 {
2220 if ((*list)->gdbarch == new_gdbarch)
2221 {
2222 struct gdbarch_list *this;
2223 if (gdbarch_debug)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2226 (long) new_gdbarch,
2227 new_gdbarch->bfd_arch_info->printable_name);
2228 /* Unlink this. */
2229 this = (*list);
2230 (*list) = this->next;
2231 /* Insert in the front. */
2232 this->next = rego->arches;
2233 rego->arches = this;
2234 /* Copy the new architecture in. */
2235 current_gdbarch = new_gdbarch;
2236 swapin_gdbarch_swap (new_gdbarch);
2237 architecture_changed_event ();
2238 return 1;
2239 }
2240 }
2241 }
2242
2243 /* Prepend this new architecture to the architecture list (keep the
2244 list sorted Most Recently Used). */
2245 {
2246 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2247 this->next = rego->arches;
2248 this->gdbarch = new_gdbarch;
2249 rego->arches = this;
2250 }
2251
2252 /* Switch to this new architecture. Dump it out. */
2253 current_gdbarch = new_gdbarch;
2254 if (gdbarch_debug)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2258 (long) new_gdbarch,
2259 new_gdbarch->bfd_arch_info->printable_name);
2260 }
2261
2262 /* Check that the newly installed architecture is valid. Plug in
2263 any post init values. */
2264 new_gdbarch->dump_tdep = rego->dump_tdep;
2265 verify_gdbarch (new_gdbarch);
2266
2267 /* Initialize the per-architecture memory (swap) areas.
2268 CURRENT_GDBARCH must be update before these modules are
2269 called. */
2270 init_gdbarch_swap (new_gdbarch);
2271
2272 /* Initialize the per-architecture data-pointer of all parties that
2273 registered an interest in this architecture. CURRENT_GDBARCH
2274 must be updated before these modules are called. */
2275 init_gdbarch_data (new_gdbarch);
2276 architecture_changed_event ();
2277
2278 if (gdbarch_debug)
2279 gdbarch_dump (current_gdbarch, gdb_stdlog);
2280
2281 return 1;
2282 }
2283
2284
2285 /* Disassembler */
2286
2287 /* Pointer to the target-dependent disassembly function. */
2288 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2289 disassemble_info tm_print_insn_info;
2290
2291
2292 extern void _initialize_gdbarch (void);
2293
2294 void
2295 _initialize_gdbarch (void)
2296 {
2297 struct cmd_list_element *c;
2298
2299 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2300 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2301 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2302 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2303 tm_print_insn_info.print_address_func = dis_asm_print_address;
2304
2305 add_show_from_set (add_set_cmd ("arch",
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
2309 "Set architecture debugging.\\n\\
2310 When non-zero, architecture debugging is enabled.", &setdebuglist),
2311 &showdebuglist);
2312 c = add_set_cmd ("archdebug",
2313 class_maintenance,
2314 var_zinteger,
2315 (char *)&gdbarch_debug,
2316 "Set architecture debugging.\\n\\
2317 When non-zero, architecture debugging is enabled.", &setlist);
2318
2319 deprecate_cmd (c, "set debug arch");
2320 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2321 }
2322 EOF
2323
2324 # close things off
2325 exec 1>&2
2326 #../move-if-change new-gdbarch.c gdbarch.c
2327 compare_new gdbarch.c
This page took 0.129493 seconds and 4 git commands to generate.