Add comments to gdbarch_address_class_name_to_type_flags.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
534 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
535 # Return the adjusted address and kind to use for Z0/Z1 packets.
536 # KIND is usually the memory length of the breakpoint, but may have a
537 # different target-specific meaning.
538 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
539 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
540 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
542 v:CORE_ADDR:decr_pc_after_break:::0:::0
543
544 # A function can be addressed by either it's "pointer" (possibly a
545 # descriptor address) or "entry point" (first executable instruction).
546 # The method "convert_from_func_ptr_addr" converting the former to the
547 # latter. gdbarch_deprecated_function_start_offset is being used to implement
548 # a simplified subset of that functionality - the function's address
549 # corresponds to the "function pointer" and the function's start
550 # corresponds to the "function entry point" - and hence is redundant.
551
552 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
553
554 # Return the remote protocol register number associated with this
555 # register. Normally the identity mapping.
556 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
557
558 # Fetch the target specific address used to represent a load module.
559 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
560 #
561 v:CORE_ADDR:frame_args_skip:::0:::0
562 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
564 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565 # frame-base. Enable frame-base before frame-unwind.
566 F:int:frame_num_args:struct frame_info *frame:frame
567 #
568 M:CORE_ADDR:frame_align:CORE_ADDR address:address
569 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570 v:int:frame_red_zone_size
571 #
572 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
573 # On some machines there are bits in addresses which are not really
574 # part of the address, but are used by the kernel, the hardware, etc.
575 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
576 # we get a "real" address such as one would find in a symbol table.
577 # This is used only for addresses of instructions, and even then I'm
578 # not sure it's used in all contexts. It exists to deal with there
579 # being a few stray bits in the PC which would mislead us, not as some
580 # sort of generic thing to handle alignment or segmentation (it's
581 # possible it should be in TARGET_READ_PC instead).
582 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
583
584 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
585 # indicates if the target needs software single step. An ISA method to
586 # implement it.
587 #
588 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589 # breakpoints using the breakpoint system instead of blatting memory directly
590 # (as with rs6000).
591 #
592 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593 # target can single step. If not, then implement single step using breakpoints.
594 #
595 # A return value of 1 means that the software_single_step breakpoints
596 # were inserted; 0 means they were not.
597 F:int:software_single_step:struct frame_info *frame:frame
598
599 # Return non-zero if the processor is executing a delay slot and a
600 # further single-step is needed before the instruction finishes.
601 M:int:single_step_through_delay:struct frame_info *frame:frame
602 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
603 # disassembler. Perhaps objdump can handle it?
604 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
606
607
608 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
609 # evaluates non-zero, this is the address where the debugger will place
610 # a step-resume breakpoint to get us past the dynamic linker.
611 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
612 # Some systems also have trampoline code for returning from shared libs.
613 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
614
615 # A target might have problems with watchpoints as soon as the stack
616 # frame of the current function has been destroyed. This mostly happens
617 # as the first action in a funtion's epilogue. in_function_epilogue_p()
618 # is defined to return a non-zero value if either the given addr is one
619 # instruction after the stack destroying instruction up to the trailing
620 # return instruction or if we can figure out that the stack frame has
621 # already been invalidated regardless of the value of addr. Targets
622 # which don't suffer from that problem could just let this functionality
623 # untouched.
624 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
625 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
627 v:int:cannot_step_breakpoint:::0:0::0
628 v:int:have_nonsteppable_watchpoint:::0:0::0
629 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631
632 # Return the appropriate type_flags for the supplied address class.
633 # This function should return 1 if the address class was recognized and
634 # type_flags was set, zero otherwise.
635 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
636 # Is a register in a group
637 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
638 # Fetch the pointer to the ith function argument.
639 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
640
641 # Return the appropriate register set for a core file section with
642 # name SECT_NAME and size SECT_SIZE.
643 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
644
645 # Supported register notes in a core file.
646 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
647
648 # Create core file notes
649 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
650
651 # The elfcore writer hook to use to write Linux prpsinfo notes to core
652 # files. Most Linux architectures use the same prpsinfo32 or
653 # prpsinfo64 layouts, and so won't need to provide this hook, as we
654 # call the Linux generic routines in bfd to write prpsinfo notes by
655 # default.
656 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
657
658 # Find core file memory regions
659 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
660
661 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
662 # core file into buffer READBUF with length LEN.
663 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
664
665 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
666 # libraries list from core file into buffer READBUF with length LEN.
667 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
668
669 # How the core target converts a PTID from a core file to a string.
670 M:char *:core_pid_to_str:ptid_t ptid:ptid
671
672 # BFD target to use when generating a core file.
673 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
674
675 # If the elements of C++ vtables are in-place function descriptors rather
676 # than normal function pointers (which may point to code or a descriptor),
677 # set this to one.
678 v:int:vtable_function_descriptors:::0:0::0
679
680 # Set if the least significant bit of the delta is used instead of the least
681 # significant bit of the pfn for pointers to virtual member functions.
682 v:int:vbit_in_delta:::0:0::0
683
684 # Advance PC to next instruction in order to skip a permanent breakpoint.
685 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
686
687 # The maximum length of an instruction on this architecture in bytes.
688 V:ULONGEST:max_insn_length:::0:0
689
690 # Copy the instruction at FROM to TO, and make any adjustments
691 # necessary to single-step it at that address.
692 #
693 # REGS holds the state the thread's registers will have before
694 # executing the copied instruction; the PC in REGS will refer to FROM,
695 # not the copy at TO. The caller should update it to point at TO later.
696 #
697 # Return a pointer to data of the architecture's choice to be passed
698 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
699 # the instruction's effects have been completely simulated, with the
700 # resulting state written back to REGS.
701 #
702 # For a general explanation of displaced stepping and how GDB uses it,
703 # see the comments in infrun.c.
704 #
705 # The TO area is only guaranteed to have space for
706 # gdbarch_max_insn_length (arch) bytes, so this function must not
707 # write more bytes than that to that area.
708 #
709 # If you do not provide this function, GDB assumes that the
710 # architecture does not support displaced stepping.
711 #
712 # If your architecture doesn't need to adjust instructions before
713 # single-stepping them, consider using simple_displaced_step_copy_insn
714 # here.
715 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
716
717 # Return true if GDB should use hardware single-stepping to execute
718 # the displaced instruction identified by CLOSURE. If false,
719 # GDB will simply restart execution at the displaced instruction
720 # location, and it is up to the target to ensure GDB will receive
721 # control again (e.g. by placing a software breakpoint instruction
722 # into the displaced instruction buffer).
723 #
724 # The default implementation returns false on all targets that
725 # provide a gdbarch_software_single_step routine, and true otherwise.
726 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
727
728 # Fix up the state resulting from successfully single-stepping a
729 # displaced instruction, to give the result we would have gotten from
730 # stepping the instruction in its original location.
731 #
732 # REGS is the register state resulting from single-stepping the
733 # displaced instruction.
734 #
735 # CLOSURE is the result from the matching call to
736 # gdbarch_displaced_step_copy_insn.
737 #
738 # If you provide gdbarch_displaced_step_copy_insn.but not this
739 # function, then GDB assumes that no fixup is needed after
740 # single-stepping the instruction.
741 #
742 # For a general explanation of displaced stepping and how GDB uses it,
743 # see the comments in infrun.c.
744 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
745
746 # Free a closure returned by gdbarch_displaced_step_copy_insn.
747 #
748 # If you provide gdbarch_displaced_step_copy_insn, you must provide
749 # this function as well.
750 #
751 # If your architecture uses closures that don't need to be freed, then
752 # you can use simple_displaced_step_free_closure here.
753 #
754 # For a general explanation of displaced stepping and how GDB uses it,
755 # see the comments in infrun.c.
756 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
757
758 # Return the address of an appropriate place to put displaced
759 # instructions while we step over them. There need only be one such
760 # place, since we're only stepping one thread over a breakpoint at a
761 # time.
762 #
763 # For a general explanation of displaced stepping and how GDB uses it,
764 # see the comments in infrun.c.
765 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
766
767 # Relocate an instruction to execute at a different address. OLDLOC
768 # is the address in the inferior memory where the instruction to
769 # relocate is currently at. On input, TO points to the destination
770 # where we want the instruction to be copied (and possibly adjusted)
771 # to. On output, it points to one past the end of the resulting
772 # instruction(s). The effect of executing the instruction at TO shall
773 # be the same as if executing it at FROM. For example, call
774 # instructions that implicitly push the return address on the stack
775 # should be adjusted to return to the instruction after OLDLOC;
776 # relative branches, and other PC-relative instructions need the
777 # offset adjusted; etc.
778 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
779
780 # Refresh overlay mapped state for section OSECT.
781 F:void:overlay_update:struct obj_section *osect:osect
782
783 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
784
785 # Handle special encoding of static variables in stabs debug info.
786 F:const char *:static_transform_name:const char *name:name
787 # Set if the address in N_SO or N_FUN stabs may be zero.
788 v:int:sofun_address_maybe_missing:::0:0::0
789
790 # Parse the instruction at ADDR storing in the record execution log
791 # the registers REGCACHE and memory ranges that will be affected when
792 # the instruction executes, along with their current values.
793 # Return -1 if something goes wrong, 0 otherwise.
794 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
795
796 # Save process state after a signal.
797 # Return -1 if something goes wrong, 0 otherwise.
798 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
799
800 # Signal translation: translate inferior's signal (target's) number
801 # into GDB's representation. The implementation of this method must
802 # be host independent. IOW, don't rely on symbols of the NAT_FILE
803 # header (the nm-*.h files), the host <signal.h> header, or similar
804 # headers. This is mainly used when cross-debugging core files ---
805 # "Live" targets hide the translation behind the target interface
806 # (target_wait, target_resume, etc.).
807 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
808
809 # Signal translation: translate the GDB's internal signal number into
810 # the inferior's signal (target's) representation. The implementation
811 # of this method must be host independent. IOW, don't rely on symbols
812 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
813 # header, or similar headers.
814 # Return the target signal number if found, or -1 if the GDB internal
815 # signal number is invalid.
816 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
817
818 # Extra signal info inspection.
819 #
820 # Return a type suitable to inspect extra signal information.
821 M:struct type *:get_siginfo_type:void:
822
823 # Record architecture-specific information from the symbol table.
824 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
825
826 # Function for the 'catch syscall' feature.
827
828 # Get architecture-specific system calls information from registers.
829 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
830
831 # SystemTap related fields and functions.
832
833 # A NULL-terminated array of prefixes used to mark an integer constant
834 # on the architecture's assembly.
835 # For example, on x86 integer constants are written as:
836 #
837 # \$10 ;; integer constant 10
838 #
839 # in this case, this prefix would be the character \`\$\'.
840 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
841
842 # A NULL-terminated array of suffixes used to mark an integer constant
843 # on the architecture's assembly.
844 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
845
846 # A NULL-terminated array of prefixes used to mark a register name on
847 # the architecture's assembly.
848 # For example, on x86 the register name is written as:
849 #
850 # \%eax ;; register eax
851 #
852 # in this case, this prefix would be the character \`\%\'.
853 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
854
855 # A NULL-terminated array of suffixes used to mark a register name on
856 # the architecture's assembly.
857 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
858
859 # A NULL-terminated array of prefixes used to mark a register
860 # indirection on the architecture's assembly.
861 # For example, on x86 the register indirection is written as:
862 #
863 # \(\%eax\) ;; indirecting eax
864 #
865 # in this case, this prefix would be the charater \`\(\'.
866 #
867 # Please note that we use the indirection prefix also for register
868 # displacement, e.g., \`4\(\%eax\)\' on x86.
869 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register
872 # indirection on the architecture's assembly.
873 # For example, on x86 the register indirection is written as:
874 #
875 # \(\%eax\) ;; indirecting eax
876 #
877 # in this case, this prefix would be the charater \`\)\'.
878 #
879 # Please note that we use the indirection suffix also for register
880 # displacement, e.g., \`4\(\%eax\)\' on x86.
881 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
882
883 # Prefix(es) used to name a register using GDB's nomenclature.
884 #
885 # For example, on PPC a register is represented by a number in the assembly
886 # language (e.g., \`10\' is the 10th general-purpose register). However,
887 # inside GDB this same register has an \`r\' appended to its name, so the 10th
888 # register would be represented as \`r10\' internally.
889 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
890
891 # Suffix used to name a register using GDB's nomenclature.
892 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
893
894 # Check if S is a single operand.
895 #
896 # Single operands can be:
897 # \- Literal integers, e.g. \`\$10\' on x86
898 # \- Register access, e.g. \`\%eax\' on x86
899 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
900 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
901 #
902 # This function should check for these patterns on the string
903 # and return 1 if some were found, or zero otherwise. Please try to match
904 # as much info as you can from the string, i.e., if you have to match
905 # something like \`\(\%\', do not match just the \`\(\'.
906 M:int:stap_is_single_operand:const char *s:s
907
908 # Function used to handle a "special case" in the parser.
909 #
910 # A "special case" is considered to be an unknown token, i.e., a token
911 # that the parser does not know how to parse. A good example of special
912 # case would be ARM's register displacement syntax:
913 #
914 # [R0, #4] ;; displacing R0 by 4
915 #
916 # Since the parser assumes that a register displacement is of the form:
917 #
918 # <number> <indirection_prefix> <register_name> <indirection_suffix>
919 #
920 # it means that it will not be able to recognize and parse this odd syntax.
921 # Therefore, we should add a special case function that will handle this token.
922 #
923 # This function should generate the proper expression form of the expression
924 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
925 # and so on). It should also return 1 if the parsing was successful, or zero
926 # if the token was not recognized as a special token (in this case, returning
927 # zero means that the special parser is deferring the parsing to the generic
928 # parser), and should advance the buffer pointer (p->arg).
929 M:int:stap_parse_special_token:struct stap_parse_info *p:p
930
931
932 # True if the list of shared libraries is one and only for all
933 # processes, as opposed to a list of shared libraries per inferior.
934 # This usually means that all processes, although may or may not share
935 # an address space, will see the same set of symbols at the same
936 # addresses.
937 v:int:has_global_solist:::0:0::0
938
939 # On some targets, even though each inferior has its own private
940 # address space, the debug interface takes care of making breakpoints
941 # visible to all address spaces automatically. For such cases,
942 # this property should be set to true.
943 v:int:has_global_breakpoints:::0:0::0
944
945 # True if inferiors share an address space (e.g., uClinux).
946 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
947
948 # True if a fast tracepoint can be set at an address.
949 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
950
951 # Return the "auto" target charset.
952 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
953 # Return the "auto" target wide charset.
954 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
955
956 # If non-empty, this is a file extension that will be opened in place
957 # of the file extension reported by the shared library list.
958 #
959 # This is most useful for toolchains that use a post-linker tool,
960 # where the names of the files run on the target differ in extension
961 # compared to the names of the files GDB should load for debug info.
962 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
963
964 # If true, the target OS has DOS-based file system semantics. That
965 # is, absolute paths include a drive name, and the backslash is
966 # considered a directory separator.
967 v:int:has_dos_based_file_system:::0:0::0
968
969 # Generate bytecodes to collect the return address in a frame.
970 # Since the bytecodes run on the target, possibly with GDB not even
971 # connected, the full unwinding machinery is not available, and
972 # typically this function will issue bytecodes for one or more likely
973 # places that the return address may be found.
974 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
975
976 # Implement the "info proc" command.
977 M:void:info_proc:char *args, enum info_proc_what what:args, what
978
979 # Implement the "info proc" command for core files. Noe that there
980 # are two "info_proc"-like methods on gdbarch -- one for core files,
981 # one for live targets.
982 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
983
984 # Iterate over all objfiles in the order that makes the most sense
985 # for the architecture to make global symbol searches.
986 #
987 # CB is a callback function where OBJFILE is the objfile to be searched,
988 # and CB_DATA a pointer to user-defined data (the same data that is passed
989 # when calling this gdbarch method). The iteration stops if this function
990 # returns nonzero.
991 #
992 # CB_DATA is a pointer to some user-defined data to be passed to
993 # the callback.
994 #
995 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
996 # inspected when the symbol search was requested.
997 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
998
999 # Ravenscar arch-dependent ops.
1000 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1001
1002 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1003 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1004
1005 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1006 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1007
1008 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1009 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1010 EOF
1011 }
1012
1013 #
1014 # The .log file
1015 #
1016 exec > new-gdbarch.log
1017 function_list | while do_read
1018 do
1019 cat <<EOF
1020 ${class} ${returntype} ${function} ($formal)
1021 EOF
1022 for r in ${read}
1023 do
1024 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1025 done
1026 if class_is_predicate_p && fallback_default_p
1027 then
1028 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1029 kill $$
1030 exit 1
1031 fi
1032 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1033 then
1034 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1035 kill $$
1036 exit 1
1037 fi
1038 if class_is_multiarch_p
1039 then
1040 if class_is_predicate_p ; then :
1041 elif test "x${predefault}" = "x"
1042 then
1043 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1044 kill $$
1045 exit 1
1046 fi
1047 fi
1048 echo ""
1049 done
1050
1051 exec 1>&2
1052 compare_new gdbarch.log
1053
1054
1055 copyright ()
1056 {
1057 cat <<EOF
1058 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1059 /* vi:set ro: */
1060
1061 /* Dynamic architecture support for GDB, the GNU debugger.
1062
1063 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1064
1065 This file is part of GDB.
1066
1067 This program is free software; you can redistribute it and/or modify
1068 it under the terms of the GNU General Public License as published by
1069 the Free Software Foundation; either version 3 of the License, or
1070 (at your option) any later version.
1071
1072 This program is distributed in the hope that it will be useful,
1073 but WITHOUT ANY WARRANTY; without even the implied warranty of
1074 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1075 GNU General Public License for more details.
1076
1077 You should have received a copy of the GNU General Public License
1078 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1079
1080 /* This file was created with the aid of \`\`gdbarch.sh''.
1081
1082 The Bourne shell script \`\`gdbarch.sh'' creates the files
1083 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1084 against the existing \`\`gdbarch.[hc]''. Any differences found
1085 being reported.
1086
1087 If editing this file, please also run gdbarch.sh and merge any
1088 changes into that script. Conversely, when making sweeping changes
1089 to this file, modifying gdbarch.sh and using its output may prove
1090 easier. */
1091
1092 EOF
1093 }
1094
1095 #
1096 # The .h file
1097 #
1098
1099 exec > new-gdbarch.h
1100 copyright
1101 cat <<EOF
1102 #ifndef GDBARCH_H
1103 #define GDBARCH_H
1104
1105 struct floatformat;
1106 struct ui_file;
1107 struct frame_info;
1108 struct value;
1109 struct objfile;
1110 struct obj_section;
1111 struct minimal_symbol;
1112 struct regcache;
1113 struct reggroup;
1114 struct regset;
1115 struct disassemble_info;
1116 struct target_ops;
1117 struct obstack;
1118 struct bp_target_info;
1119 struct target_desc;
1120 struct displaced_step_closure;
1121 struct core_regset_section;
1122 struct syscall;
1123 struct agent_expr;
1124 struct axs_value;
1125 struct stap_parse_info;
1126 struct ravenscar_arch_ops;
1127 struct elf_internal_linux_prpsinfo;
1128
1129 /* The architecture associated with the inferior through the
1130 connection to the target.
1131
1132 The architecture vector provides some information that is really a
1133 property of the inferior, accessed through a particular target:
1134 ptrace operations; the layout of certain RSP packets; the solib_ops
1135 vector; etc. To differentiate architecture accesses to
1136 per-inferior/target properties from
1137 per-thread/per-frame/per-objfile properties, accesses to
1138 per-inferior/target properties should be made through this
1139 gdbarch. */
1140
1141 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1142 extern struct gdbarch *target_gdbarch (void);
1143
1144 /* The initial, default architecture. It uses host values (for want of a better
1145 choice). */
1146 extern struct gdbarch startup_gdbarch;
1147
1148
1149 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1150 gdbarch method. */
1151
1152 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1153 (struct objfile *objfile, void *cb_data);
1154 EOF
1155
1156 # function typedef's
1157 printf "\n"
1158 printf "\n"
1159 printf "/* The following are pre-initialized by GDBARCH. */\n"
1160 function_list | while do_read
1161 do
1162 if class_is_info_p
1163 then
1164 printf "\n"
1165 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1166 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1167 fi
1168 done
1169
1170 # function typedef's
1171 printf "\n"
1172 printf "\n"
1173 printf "/* The following are initialized by the target dependent code. */\n"
1174 function_list | while do_read
1175 do
1176 if [ -n "${comment}" ]
1177 then
1178 echo "${comment}" | sed \
1179 -e '2 s,#,/*,' \
1180 -e '3,$ s,#, ,' \
1181 -e '$ s,$, */,'
1182 fi
1183
1184 if class_is_predicate_p
1185 then
1186 printf "\n"
1187 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1188 fi
1189 if class_is_variable_p
1190 then
1191 printf "\n"
1192 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1193 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1194 fi
1195 if class_is_function_p
1196 then
1197 printf "\n"
1198 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1199 then
1200 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1201 elif class_is_multiarch_p
1202 then
1203 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1204 else
1205 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1206 fi
1207 if [ "x${formal}" = "xvoid" ]
1208 then
1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1210 else
1211 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1212 fi
1213 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1214 fi
1215 done
1216
1217 # close it off
1218 cat <<EOF
1219
1220 /* Definition for an unknown syscall, used basically in error-cases. */
1221 #define UNKNOWN_SYSCALL (-1)
1222
1223 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1224
1225
1226 /* Mechanism for co-ordinating the selection of a specific
1227 architecture.
1228
1229 GDB targets (*-tdep.c) can register an interest in a specific
1230 architecture. Other GDB components can register a need to maintain
1231 per-architecture data.
1232
1233 The mechanisms below ensures that there is only a loose connection
1234 between the set-architecture command and the various GDB
1235 components. Each component can independently register their need
1236 to maintain architecture specific data with gdbarch.
1237
1238 Pragmatics:
1239
1240 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1241 didn't scale.
1242
1243 The more traditional mega-struct containing architecture specific
1244 data for all the various GDB components was also considered. Since
1245 GDB is built from a variable number of (fairly independent)
1246 components it was determined that the global aproach was not
1247 applicable. */
1248
1249
1250 /* Register a new architectural family with GDB.
1251
1252 Register support for the specified ARCHITECTURE with GDB. When
1253 gdbarch determines that the specified architecture has been
1254 selected, the corresponding INIT function is called.
1255
1256 --
1257
1258 The INIT function takes two parameters: INFO which contains the
1259 information available to gdbarch about the (possibly new)
1260 architecture; ARCHES which is a list of the previously created
1261 \`\`struct gdbarch'' for this architecture.
1262
1263 The INFO parameter is, as far as possible, be pre-initialized with
1264 information obtained from INFO.ABFD or the global defaults.
1265
1266 The ARCHES parameter is a linked list (sorted most recently used)
1267 of all the previously created architures for this architecture
1268 family. The (possibly NULL) ARCHES->gdbarch can used to access
1269 values from the previously selected architecture for this
1270 architecture family.
1271
1272 The INIT function shall return any of: NULL - indicating that it
1273 doesn't recognize the selected architecture; an existing \`\`struct
1274 gdbarch'' from the ARCHES list - indicating that the new
1275 architecture is just a synonym for an earlier architecture (see
1276 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1277 - that describes the selected architecture (see gdbarch_alloc()).
1278
1279 The DUMP_TDEP function shall print out all target specific values.
1280 Care should be taken to ensure that the function works in both the
1281 multi-arch and non- multi-arch cases. */
1282
1283 struct gdbarch_list
1284 {
1285 struct gdbarch *gdbarch;
1286 struct gdbarch_list *next;
1287 };
1288
1289 struct gdbarch_info
1290 {
1291 /* Use default: NULL (ZERO). */
1292 const struct bfd_arch_info *bfd_arch_info;
1293
1294 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1295 enum bfd_endian byte_order;
1296
1297 enum bfd_endian byte_order_for_code;
1298
1299 /* Use default: NULL (ZERO). */
1300 bfd *abfd;
1301
1302 /* Use default: NULL (ZERO). */
1303 struct gdbarch_tdep_info *tdep_info;
1304
1305 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1306 enum gdb_osabi osabi;
1307
1308 /* Use default: NULL (ZERO). */
1309 const struct target_desc *target_desc;
1310 };
1311
1312 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1313 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1314
1315 /* DEPRECATED - use gdbarch_register() */
1316 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1317
1318 extern void gdbarch_register (enum bfd_architecture architecture,
1319 gdbarch_init_ftype *,
1320 gdbarch_dump_tdep_ftype *);
1321
1322
1323 /* Return a freshly allocated, NULL terminated, array of the valid
1324 architecture names. Since architectures are registered during the
1325 _initialize phase this function only returns useful information
1326 once initialization has been completed. */
1327
1328 extern const char **gdbarch_printable_names (void);
1329
1330
1331 /* Helper function. Search the list of ARCHES for a GDBARCH that
1332 matches the information provided by INFO. */
1333
1334 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1335
1336
1337 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1338 basic initialization using values obtained from the INFO and TDEP
1339 parameters. set_gdbarch_*() functions are called to complete the
1340 initialization of the object. */
1341
1342 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1343
1344
1345 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1346 It is assumed that the caller freeds the \`\`struct
1347 gdbarch_tdep''. */
1348
1349 extern void gdbarch_free (struct gdbarch *);
1350
1351
1352 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1353 obstack. The memory is freed when the corresponding architecture
1354 is also freed. */
1355
1356 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1357 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1358 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1359
1360
1361 /* Helper function. Force an update of the current architecture.
1362
1363 The actual architecture selected is determined by INFO, \`\`(gdb) set
1364 architecture'' et.al., the existing architecture and BFD's default
1365 architecture. INFO should be initialized to zero and then selected
1366 fields should be updated.
1367
1368 Returns non-zero if the update succeeds. */
1369
1370 extern int gdbarch_update_p (struct gdbarch_info info);
1371
1372
1373 /* Helper function. Find an architecture matching info.
1374
1375 INFO should be initialized using gdbarch_info_init, relevant fields
1376 set, and then finished using gdbarch_info_fill.
1377
1378 Returns the corresponding architecture, or NULL if no matching
1379 architecture was found. */
1380
1381 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1382
1383
1384 /* Helper function. Set the target gdbarch to "gdbarch". */
1385
1386 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1387
1388
1389 /* Register per-architecture data-pointer.
1390
1391 Reserve space for a per-architecture data-pointer. An identifier
1392 for the reserved data-pointer is returned. That identifer should
1393 be saved in a local static variable.
1394
1395 Memory for the per-architecture data shall be allocated using
1396 gdbarch_obstack_zalloc. That memory will be deleted when the
1397 corresponding architecture object is deleted.
1398
1399 When a previously created architecture is re-selected, the
1400 per-architecture data-pointer for that previous architecture is
1401 restored. INIT() is not re-called.
1402
1403 Multiple registrarants for any architecture are allowed (and
1404 strongly encouraged). */
1405
1406 struct gdbarch_data;
1407
1408 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1409 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1410 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1411 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1412 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1413 struct gdbarch_data *data,
1414 void *pointer);
1415
1416 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1417
1418
1419 /* Set the dynamic target-system-dependent parameters (architecture,
1420 byte-order, ...) using information found in the BFD. */
1421
1422 extern void set_gdbarch_from_file (bfd *);
1423
1424
1425 /* Initialize the current architecture to the "first" one we find on
1426 our list. */
1427
1428 extern void initialize_current_architecture (void);
1429
1430 /* gdbarch trace variable */
1431 extern unsigned int gdbarch_debug;
1432
1433 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1434
1435 #endif
1436 EOF
1437 exec 1>&2
1438 #../move-if-change new-gdbarch.h gdbarch.h
1439 compare_new gdbarch.h
1440
1441
1442 #
1443 # C file
1444 #
1445
1446 exec > new-gdbarch.c
1447 copyright
1448 cat <<EOF
1449
1450 #include "defs.h"
1451 #include "arch-utils.h"
1452
1453 #include "gdbcmd.h"
1454 #include "inferior.h"
1455 #include "symcat.h"
1456
1457 #include "floatformat.h"
1458
1459 #include "gdb_assert.h"
1460 #include <string.h>
1461 #include "reggroups.h"
1462 #include "osabi.h"
1463 #include "gdb_obstack.h"
1464 #include "observer.h"
1465 #include "regcache.h"
1466 #include "objfiles.h"
1467
1468 /* Static function declarations */
1469
1470 static void alloc_gdbarch_data (struct gdbarch *);
1471
1472 /* Non-zero if we want to trace architecture code. */
1473
1474 #ifndef GDBARCH_DEBUG
1475 #define GDBARCH_DEBUG 0
1476 #endif
1477 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1478 static void
1479 show_gdbarch_debug (struct ui_file *file, int from_tty,
1480 struct cmd_list_element *c, const char *value)
1481 {
1482 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1483 }
1484
1485 static const char *
1486 pformat (const struct floatformat **format)
1487 {
1488 if (format == NULL)
1489 return "(null)";
1490 else
1491 /* Just print out one of them - this is only for diagnostics. */
1492 return format[0]->name;
1493 }
1494
1495 static const char *
1496 pstring (const char *string)
1497 {
1498 if (string == NULL)
1499 return "(null)";
1500 return string;
1501 }
1502
1503 /* Helper function to print a list of strings, represented as "const
1504 char *const *". The list is printed comma-separated. */
1505
1506 static char *
1507 pstring_list (const char *const *list)
1508 {
1509 static char ret[100];
1510 const char *const *p;
1511 size_t offset = 0;
1512
1513 if (list == NULL)
1514 return "(null)";
1515
1516 ret[0] = '\0';
1517 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1518 {
1519 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1520 offset += 2 + s;
1521 }
1522
1523 if (offset > 0)
1524 {
1525 gdb_assert (offset - 2 < sizeof (ret));
1526 ret[offset - 2] = '\0';
1527 }
1528
1529 return ret;
1530 }
1531
1532 EOF
1533
1534 # gdbarch open the gdbarch object
1535 printf "\n"
1536 printf "/* Maintain the struct gdbarch object. */\n"
1537 printf "\n"
1538 printf "struct gdbarch\n"
1539 printf "{\n"
1540 printf " /* Has this architecture been fully initialized? */\n"
1541 printf " int initialized_p;\n"
1542 printf "\n"
1543 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1544 printf " struct obstack *obstack;\n"
1545 printf "\n"
1546 printf " /* basic architectural information. */\n"
1547 function_list | while do_read
1548 do
1549 if class_is_info_p
1550 then
1551 printf " ${returntype} ${function};\n"
1552 fi
1553 done
1554 printf "\n"
1555 printf " /* target specific vector. */\n"
1556 printf " struct gdbarch_tdep *tdep;\n"
1557 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1558 printf "\n"
1559 printf " /* per-architecture data-pointers. */\n"
1560 printf " unsigned nr_data;\n"
1561 printf " void **data;\n"
1562 printf "\n"
1563 cat <<EOF
1564 /* Multi-arch values.
1565
1566 When extending this structure you must:
1567
1568 Add the field below.
1569
1570 Declare set/get functions and define the corresponding
1571 macro in gdbarch.h.
1572
1573 gdbarch_alloc(): If zero/NULL is not a suitable default,
1574 initialize the new field.
1575
1576 verify_gdbarch(): Confirm that the target updated the field
1577 correctly.
1578
1579 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1580 field is dumped out
1581
1582 \`\`startup_gdbarch()'': Append an initial value to the static
1583 variable (base values on the host's c-type system).
1584
1585 get_gdbarch(): Implement the set/get functions (probably using
1586 the macro's as shortcuts).
1587
1588 */
1589
1590 EOF
1591 function_list | while do_read
1592 do
1593 if class_is_variable_p
1594 then
1595 printf " ${returntype} ${function};\n"
1596 elif class_is_function_p
1597 then
1598 printf " gdbarch_${function}_ftype *${function};\n"
1599 fi
1600 done
1601 printf "};\n"
1602
1603 # A pre-initialized vector
1604 printf "\n"
1605 printf "\n"
1606 cat <<EOF
1607 /* The default architecture uses host values (for want of a better
1608 choice). */
1609 EOF
1610 printf "\n"
1611 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1612 printf "\n"
1613 printf "struct gdbarch startup_gdbarch =\n"
1614 printf "{\n"
1615 printf " 1, /* Always initialized. */\n"
1616 printf " NULL, /* The obstack. */\n"
1617 printf " /* basic architecture information. */\n"
1618 function_list | while do_read
1619 do
1620 if class_is_info_p
1621 then
1622 printf " ${staticdefault}, /* ${function} */\n"
1623 fi
1624 done
1625 cat <<EOF
1626 /* target specific vector and its dump routine. */
1627 NULL, NULL,
1628 /*per-architecture data-pointers. */
1629 0, NULL,
1630 /* Multi-arch values */
1631 EOF
1632 function_list | while do_read
1633 do
1634 if class_is_function_p || class_is_variable_p
1635 then
1636 printf " ${staticdefault}, /* ${function} */\n"
1637 fi
1638 done
1639 cat <<EOF
1640 /* startup_gdbarch() */
1641 };
1642
1643 EOF
1644
1645 # Create a new gdbarch struct
1646 cat <<EOF
1647
1648 /* Create a new \`\`struct gdbarch'' based on information provided by
1649 \`\`struct gdbarch_info''. */
1650 EOF
1651 printf "\n"
1652 cat <<EOF
1653 struct gdbarch *
1654 gdbarch_alloc (const struct gdbarch_info *info,
1655 struct gdbarch_tdep *tdep)
1656 {
1657 struct gdbarch *gdbarch;
1658
1659 /* Create an obstack for allocating all the per-architecture memory,
1660 then use that to allocate the architecture vector. */
1661 struct obstack *obstack = XNEW (struct obstack);
1662 obstack_init (obstack);
1663 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1664 memset (gdbarch, 0, sizeof (*gdbarch));
1665 gdbarch->obstack = obstack;
1666
1667 alloc_gdbarch_data (gdbarch);
1668
1669 gdbarch->tdep = tdep;
1670 EOF
1671 printf "\n"
1672 function_list | while do_read
1673 do
1674 if class_is_info_p
1675 then
1676 printf " gdbarch->${function} = info->${function};\n"
1677 fi
1678 done
1679 printf "\n"
1680 printf " /* Force the explicit initialization of these. */\n"
1681 function_list | while do_read
1682 do
1683 if class_is_function_p || class_is_variable_p
1684 then
1685 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1686 then
1687 printf " gdbarch->${function} = ${predefault};\n"
1688 fi
1689 fi
1690 done
1691 cat <<EOF
1692 /* gdbarch_alloc() */
1693
1694 return gdbarch;
1695 }
1696 EOF
1697
1698 # Free a gdbarch struct.
1699 printf "\n"
1700 printf "\n"
1701 cat <<EOF
1702 /* Allocate extra space using the per-architecture obstack. */
1703
1704 void *
1705 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1706 {
1707 void *data = obstack_alloc (arch->obstack, size);
1708
1709 memset (data, 0, size);
1710 return data;
1711 }
1712
1713
1714 /* Free a gdbarch struct. This should never happen in normal
1715 operation --- once you've created a gdbarch, you keep it around.
1716 However, if an architecture's init function encounters an error
1717 building the structure, it may need to clean up a partially
1718 constructed gdbarch. */
1719
1720 void
1721 gdbarch_free (struct gdbarch *arch)
1722 {
1723 struct obstack *obstack;
1724
1725 gdb_assert (arch != NULL);
1726 gdb_assert (!arch->initialized_p);
1727 obstack = arch->obstack;
1728 obstack_free (obstack, 0); /* Includes the ARCH. */
1729 xfree (obstack);
1730 }
1731 EOF
1732
1733 # verify a new architecture
1734 cat <<EOF
1735
1736
1737 /* Ensure that all values in a GDBARCH are reasonable. */
1738
1739 static void
1740 verify_gdbarch (struct gdbarch *gdbarch)
1741 {
1742 struct ui_file *log;
1743 struct cleanup *cleanups;
1744 long length;
1745 char *buf;
1746
1747 log = mem_fileopen ();
1748 cleanups = make_cleanup_ui_file_delete (log);
1749 /* fundamental */
1750 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1751 fprintf_unfiltered (log, "\n\tbyte-order");
1752 if (gdbarch->bfd_arch_info == NULL)
1753 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1754 /* Check those that need to be defined for the given multi-arch level. */
1755 EOF
1756 function_list | while do_read
1757 do
1758 if class_is_function_p || class_is_variable_p
1759 then
1760 if [ "x${invalid_p}" = "x0" ]
1761 then
1762 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1763 elif class_is_predicate_p
1764 then
1765 printf " /* Skip verify of ${function}, has predicate. */\n"
1766 # FIXME: See do_read for potential simplification
1767 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1768 then
1769 printf " if (${invalid_p})\n"
1770 printf " gdbarch->${function} = ${postdefault};\n"
1771 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1772 then
1773 printf " if (gdbarch->${function} == ${predefault})\n"
1774 printf " gdbarch->${function} = ${postdefault};\n"
1775 elif [ -n "${postdefault}" ]
1776 then
1777 printf " if (gdbarch->${function} == 0)\n"
1778 printf " gdbarch->${function} = ${postdefault};\n"
1779 elif [ -n "${invalid_p}" ]
1780 then
1781 printf " if (${invalid_p})\n"
1782 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1783 elif [ -n "${predefault}" ]
1784 then
1785 printf " if (gdbarch->${function} == ${predefault})\n"
1786 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1787 fi
1788 fi
1789 done
1790 cat <<EOF
1791 buf = ui_file_xstrdup (log, &length);
1792 make_cleanup (xfree, buf);
1793 if (length > 0)
1794 internal_error (__FILE__, __LINE__,
1795 _("verify_gdbarch: the following are invalid ...%s"),
1796 buf);
1797 do_cleanups (cleanups);
1798 }
1799 EOF
1800
1801 # dump the structure
1802 printf "\n"
1803 printf "\n"
1804 cat <<EOF
1805 /* Print out the details of the current architecture. */
1806
1807 void
1808 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1809 {
1810 const char *gdb_nm_file = "<not-defined>";
1811
1812 #if defined (GDB_NM_FILE)
1813 gdb_nm_file = GDB_NM_FILE;
1814 #endif
1815 fprintf_unfiltered (file,
1816 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1817 gdb_nm_file);
1818 EOF
1819 function_list | sort -t: -k 3 | while do_read
1820 do
1821 # First the predicate
1822 if class_is_predicate_p
1823 then
1824 printf " fprintf_unfiltered (file,\n"
1825 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1826 printf " gdbarch_${function}_p (gdbarch));\n"
1827 fi
1828 # Print the corresponding value.
1829 if class_is_function_p
1830 then
1831 printf " fprintf_unfiltered (file,\n"
1832 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1833 printf " host_address_to_string (gdbarch->${function}));\n"
1834 else
1835 # It is a variable
1836 case "${print}:${returntype}" in
1837 :CORE_ADDR )
1838 fmt="%s"
1839 print="core_addr_to_string_nz (gdbarch->${function})"
1840 ;;
1841 :* )
1842 fmt="%s"
1843 print="plongest (gdbarch->${function})"
1844 ;;
1845 * )
1846 fmt="%s"
1847 ;;
1848 esac
1849 printf " fprintf_unfiltered (file,\n"
1850 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1851 printf " ${print});\n"
1852 fi
1853 done
1854 cat <<EOF
1855 if (gdbarch->dump_tdep != NULL)
1856 gdbarch->dump_tdep (gdbarch, file);
1857 }
1858 EOF
1859
1860
1861 # GET/SET
1862 printf "\n"
1863 cat <<EOF
1864 struct gdbarch_tdep *
1865 gdbarch_tdep (struct gdbarch *gdbarch)
1866 {
1867 if (gdbarch_debug >= 2)
1868 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1869 return gdbarch->tdep;
1870 }
1871 EOF
1872 printf "\n"
1873 function_list | while do_read
1874 do
1875 if class_is_predicate_p
1876 then
1877 printf "\n"
1878 printf "int\n"
1879 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1880 printf "{\n"
1881 printf " gdb_assert (gdbarch != NULL);\n"
1882 printf " return ${predicate};\n"
1883 printf "}\n"
1884 fi
1885 if class_is_function_p
1886 then
1887 printf "\n"
1888 printf "${returntype}\n"
1889 if [ "x${formal}" = "xvoid" ]
1890 then
1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 else
1893 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1894 fi
1895 printf "{\n"
1896 printf " gdb_assert (gdbarch != NULL);\n"
1897 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1898 if class_is_predicate_p && test -n "${predefault}"
1899 then
1900 # Allow a call to a function with a predicate.
1901 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1902 fi
1903 printf " if (gdbarch_debug >= 2)\n"
1904 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1905 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1906 then
1907 if class_is_multiarch_p
1908 then
1909 params="gdbarch"
1910 else
1911 params=""
1912 fi
1913 else
1914 if class_is_multiarch_p
1915 then
1916 params="gdbarch, ${actual}"
1917 else
1918 params="${actual}"
1919 fi
1920 fi
1921 if [ "x${returntype}" = "xvoid" ]
1922 then
1923 printf " gdbarch->${function} (${params});\n"
1924 else
1925 printf " return gdbarch->${function} (${params});\n"
1926 fi
1927 printf "}\n"
1928 printf "\n"
1929 printf "void\n"
1930 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1931 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1932 printf "{\n"
1933 printf " gdbarch->${function} = ${function};\n"
1934 printf "}\n"
1935 elif class_is_variable_p
1936 then
1937 printf "\n"
1938 printf "${returntype}\n"
1939 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1940 printf "{\n"
1941 printf " gdb_assert (gdbarch != NULL);\n"
1942 if [ "x${invalid_p}" = "x0" ]
1943 then
1944 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1945 elif [ -n "${invalid_p}" ]
1946 then
1947 printf " /* Check variable is valid. */\n"
1948 printf " gdb_assert (!(${invalid_p}));\n"
1949 elif [ -n "${predefault}" ]
1950 then
1951 printf " /* Check variable changed from pre-default. */\n"
1952 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1953 fi
1954 printf " if (gdbarch_debug >= 2)\n"
1955 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1956 printf " return gdbarch->${function};\n"
1957 printf "}\n"
1958 printf "\n"
1959 printf "void\n"
1960 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1961 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1962 printf "{\n"
1963 printf " gdbarch->${function} = ${function};\n"
1964 printf "}\n"
1965 elif class_is_info_p
1966 then
1967 printf "\n"
1968 printf "${returntype}\n"
1969 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1970 printf "{\n"
1971 printf " gdb_assert (gdbarch != NULL);\n"
1972 printf " if (gdbarch_debug >= 2)\n"
1973 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1974 printf " return gdbarch->${function};\n"
1975 printf "}\n"
1976 fi
1977 done
1978
1979 # All the trailing guff
1980 cat <<EOF
1981
1982
1983 /* Keep a registry of per-architecture data-pointers required by GDB
1984 modules. */
1985
1986 struct gdbarch_data
1987 {
1988 unsigned index;
1989 int init_p;
1990 gdbarch_data_pre_init_ftype *pre_init;
1991 gdbarch_data_post_init_ftype *post_init;
1992 };
1993
1994 struct gdbarch_data_registration
1995 {
1996 struct gdbarch_data *data;
1997 struct gdbarch_data_registration *next;
1998 };
1999
2000 struct gdbarch_data_registry
2001 {
2002 unsigned nr;
2003 struct gdbarch_data_registration *registrations;
2004 };
2005
2006 struct gdbarch_data_registry gdbarch_data_registry =
2007 {
2008 0, NULL,
2009 };
2010
2011 static struct gdbarch_data *
2012 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2013 gdbarch_data_post_init_ftype *post_init)
2014 {
2015 struct gdbarch_data_registration **curr;
2016
2017 /* Append the new registration. */
2018 for (curr = &gdbarch_data_registry.registrations;
2019 (*curr) != NULL;
2020 curr = &(*curr)->next);
2021 (*curr) = XNEW (struct gdbarch_data_registration);
2022 (*curr)->next = NULL;
2023 (*curr)->data = XNEW (struct gdbarch_data);
2024 (*curr)->data->index = gdbarch_data_registry.nr++;
2025 (*curr)->data->pre_init = pre_init;
2026 (*curr)->data->post_init = post_init;
2027 (*curr)->data->init_p = 1;
2028 return (*curr)->data;
2029 }
2030
2031 struct gdbarch_data *
2032 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2033 {
2034 return gdbarch_data_register (pre_init, NULL);
2035 }
2036
2037 struct gdbarch_data *
2038 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2039 {
2040 return gdbarch_data_register (NULL, post_init);
2041 }
2042
2043 /* Create/delete the gdbarch data vector. */
2044
2045 static void
2046 alloc_gdbarch_data (struct gdbarch *gdbarch)
2047 {
2048 gdb_assert (gdbarch->data == NULL);
2049 gdbarch->nr_data = gdbarch_data_registry.nr;
2050 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2051 }
2052
2053 /* Initialize the current value of the specified per-architecture
2054 data-pointer. */
2055
2056 void
2057 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2058 struct gdbarch_data *data,
2059 void *pointer)
2060 {
2061 gdb_assert (data->index < gdbarch->nr_data);
2062 gdb_assert (gdbarch->data[data->index] == NULL);
2063 gdb_assert (data->pre_init == NULL);
2064 gdbarch->data[data->index] = pointer;
2065 }
2066
2067 /* Return the current value of the specified per-architecture
2068 data-pointer. */
2069
2070 void *
2071 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2072 {
2073 gdb_assert (data->index < gdbarch->nr_data);
2074 if (gdbarch->data[data->index] == NULL)
2075 {
2076 /* The data-pointer isn't initialized, call init() to get a
2077 value. */
2078 if (data->pre_init != NULL)
2079 /* Mid architecture creation: pass just the obstack, and not
2080 the entire architecture, as that way it isn't possible for
2081 pre-init code to refer to undefined architecture
2082 fields. */
2083 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2084 else if (gdbarch->initialized_p
2085 && data->post_init != NULL)
2086 /* Post architecture creation: pass the entire architecture
2087 (as all fields are valid), but be careful to also detect
2088 recursive references. */
2089 {
2090 gdb_assert (data->init_p);
2091 data->init_p = 0;
2092 gdbarch->data[data->index] = data->post_init (gdbarch);
2093 data->init_p = 1;
2094 }
2095 else
2096 /* The architecture initialization hasn't completed - punt -
2097 hope that the caller knows what they are doing. Once
2098 deprecated_set_gdbarch_data has been initialized, this can be
2099 changed to an internal error. */
2100 return NULL;
2101 gdb_assert (gdbarch->data[data->index] != NULL);
2102 }
2103 return gdbarch->data[data->index];
2104 }
2105
2106
2107 /* Keep a registry of the architectures known by GDB. */
2108
2109 struct gdbarch_registration
2110 {
2111 enum bfd_architecture bfd_architecture;
2112 gdbarch_init_ftype *init;
2113 gdbarch_dump_tdep_ftype *dump_tdep;
2114 struct gdbarch_list *arches;
2115 struct gdbarch_registration *next;
2116 };
2117
2118 static struct gdbarch_registration *gdbarch_registry = NULL;
2119
2120 static void
2121 append_name (const char ***buf, int *nr, const char *name)
2122 {
2123 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2124 (*buf)[*nr] = name;
2125 *nr += 1;
2126 }
2127
2128 const char **
2129 gdbarch_printable_names (void)
2130 {
2131 /* Accumulate a list of names based on the registed list of
2132 architectures. */
2133 int nr_arches = 0;
2134 const char **arches = NULL;
2135 struct gdbarch_registration *rego;
2136
2137 for (rego = gdbarch_registry;
2138 rego != NULL;
2139 rego = rego->next)
2140 {
2141 const struct bfd_arch_info *ap;
2142 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2143 if (ap == NULL)
2144 internal_error (__FILE__, __LINE__,
2145 _("gdbarch_architecture_names: multi-arch unknown"));
2146 do
2147 {
2148 append_name (&arches, &nr_arches, ap->printable_name);
2149 ap = ap->next;
2150 }
2151 while (ap != NULL);
2152 }
2153 append_name (&arches, &nr_arches, NULL);
2154 return arches;
2155 }
2156
2157
2158 void
2159 gdbarch_register (enum bfd_architecture bfd_architecture,
2160 gdbarch_init_ftype *init,
2161 gdbarch_dump_tdep_ftype *dump_tdep)
2162 {
2163 struct gdbarch_registration **curr;
2164 const struct bfd_arch_info *bfd_arch_info;
2165
2166 /* Check that BFD recognizes this architecture */
2167 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2168 if (bfd_arch_info == NULL)
2169 {
2170 internal_error (__FILE__, __LINE__,
2171 _("gdbarch: Attempt to register "
2172 "unknown architecture (%d)"),
2173 bfd_architecture);
2174 }
2175 /* Check that we haven't seen this architecture before. */
2176 for (curr = &gdbarch_registry;
2177 (*curr) != NULL;
2178 curr = &(*curr)->next)
2179 {
2180 if (bfd_architecture == (*curr)->bfd_architecture)
2181 internal_error (__FILE__, __LINE__,
2182 _("gdbarch: Duplicate registration "
2183 "of architecture (%s)"),
2184 bfd_arch_info->printable_name);
2185 }
2186 /* log it */
2187 if (gdbarch_debug)
2188 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2189 bfd_arch_info->printable_name,
2190 host_address_to_string (init));
2191 /* Append it */
2192 (*curr) = XNEW (struct gdbarch_registration);
2193 (*curr)->bfd_architecture = bfd_architecture;
2194 (*curr)->init = init;
2195 (*curr)->dump_tdep = dump_tdep;
2196 (*curr)->arches = NULL;
2197 (*curr)->next = NULL;
2198 }
2199
2200 void
2201 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2202 gdbarch_init_ftype *init)
2203 {
2204 gdbarch_register (bfd_architecture, init, NULL);
2205 }
2206
2207
2208 /* Look for an architecture using gdbarch_info. */
2209
2210 struct gdbarch_list *
2211 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2212 const struct gdbarch_info *info)
2213 {
2214 for (; arches != NULL; arches = arches->next)
2215 {
2216 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2217 continue;
2218 if (info->byte_order != arches->gdbarch->byte_order)
2219 continue;
2220 if (info->osabi != arches->gdbarch->osabi)
2221 continue;
2222 if (info->target_desc != arches->gdbarch->target_desc)
2223 continue;
2224 return arches;
2225 }
2226 return NULL;
2227 }
2228
2229
2230 /* Find an architecture that matches the specified INFO. Create a new
2231 architecture if needed. Return that new architecture. */
2232
2233 struct gdbarch *
2234 gdbarch_find_by_info (struct gdbarch_info info)
2235 {
2236 struct gdbarch *new_gdbarch;
2237 struct gdbarch_registration *rego;
2238
2239 /* Fill in missing parts of the INFO struct using a number of
2240 sources: "set ..."; INFOabfd supplied; and the global
2241 defaults. */
2242 gdbarch_info_fill (&info);
2243
2244 /* Must have found some sort of architecture. */
2245 gdb_assert (info.bfd_arch_info != NULL);
2246
2247 if (gdbarch_debug)
2248 {
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2251 (info.bfd_arch_info != NULL
2252 ? info.bfd_arch_info->printable_name
2253 : "(null)"));
2254 fprintf_unfiltered (gdb_stdlog,
2255 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2256 info.byte_order,
2257 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2258 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2259 : "default"));
2260 fprintf_unfiltered (gdb_stdlog,
2261 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2262 info.osabi, gdbarch_osabi_name (info.osabi));
2263 fprintf_unfiltered (gdb_stdlog,
2264 "gdbarch_find_by_info: info.abfd %s\n",
2265 host_address_to_string (info.abfd));
2266 fprintf_unfiltered (gdb_stdlog,
2267 "gdbarch_find_by_info: info.tdep_info %s\n",
2268 host_address_to_string (info.tdep_info));
2269 }
2270
2271 /* Find the tdep code that knows about this architecture. */
2272 for (rego = gdbarch_registry;
2273 rego != NULL;
2274 rego = rego->next)
2275 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2276 break;
2277 if (rego == NULL)
2278 {
2279 if (gdbarch_debug)
2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2281 "No matching architecture\n");
2282 return 0;
2283 }
2284
2285 /* Ask the tdep code for an architecture that matches "info". */
2286 new_gdbarch = rego->init (info, rego->arches);
2287
2288 /* Did the tdep code like it? No. Reject the change and revert to
2289 the old architecture. */
2290 if (new_gdbarch == NULL)
2291 {
2292 if (gdbarch_debug)
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2294 "Target rejected architecture\n");
2295 return NULL;
2296 }
2297
2298 /* Is this a pre-existing architecture (as determined by already
2299 being initialized)? Move it to the front of the architecture
2300 list (keeping the list sorted Most Recently Used). */
2301 if (new_gdbarch->initialized_p)
2302 {
2303 struct gdbarch_list **list;
2304 struct gdbarch_list *this;
2305 if (gdbarch_debug)
2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2307 "Previous architecture %s (%s) selected\n",
2308 host_address_to_string (new_gdbarch),
2309 new_gdbarch->bfd_arch_info->printable_name);
2310 /* Find the existing arch in the list. */
2311 for (list = &rego->arches;
2312 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2313 list = &(*list)->next);
2314 /* It had better be in the list of architectures. */
2315 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2316 /* Unlink THIS. */
2317 this = (*list);
2318 (*list) = this->next;
2319 /* Insert THIS at the front. */
2320 this->next = rego->arches;
2321 rego->arches = this;
2322 /* Return it. */
2323 return new_gdbarch;
2324 }
2325
2326 /* It's a new architecture. */
2327 if (gdbarch_debug)
2328 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2329 "New architecture %s (%s) selected\n",
2330 host_address_to_string (new_gdbarch),
2331 new_gdbarch->bfd_arch_info->printable_name);
2332
2333 /* Insert the new architecture into the front of the architecture
2334 list (keep the list sorted Most Recently Used). */
2335 {
2336 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2337 this->next = rego->arches;
2338 this->gdbarch = new_gdbarch;
2339 rego->arches = this;
2340 }
2341
2342 /* Check that the newly installed architecture is valid. Plug in
2343 any post init values. */
2344 new_gdbarch->dump_tdep = rego->dump_tdep;
2345 verify_gdbarch (new_gdbarch);
2346 new_gdbarch->initialized_p = 1;
2347
2348 if (gdbarch_debug)
2349 gdbarch_dump (new_gdbarch, gdb_stdlog);
2350
2351 return new_gdbarch;
2352 }
2353
2354 /* Make the specified architecture current. */
2355
2356 void
2357 set_target_gdbarch (struct gdbarch *new_gdbarch)
2358 {
2359 gdb_assert (new_gdbarch != NULL);
2360 gdb_assert (new_gdbarch->initialized_p);
2361 current_inferior ()->gdbarch = new_gdbarch;
2362 observer_notify_architecture_changed (new_gdbarch);
2363 registers_changed ();
2364 }
2365
2366 /* Return the current inferior's arch. */
2367
2368 struct gdbarch *
2369 target_gdbarch (void)
2370 {
2371 return current_inferior ()->gdbarch;
2372 }
2373
2374 extern void _initialize_gdbarch (void);
2375
2376 void
2377 _initialize_gdbarch (void)
2378 {
2379 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2380 Set architecture debugging."), _("\\
2381 Show architecture debugging."), _("\\
2382 When non-zero, architecture debugging is enabled."),
2383 NULL,
2384 show_gdbarch_debug,
2385 &setdebuglist, &showdebuglist);
2386 }
2387 EOF
2388
2389 # close things off
2390 exec 1>&2
2391 #../move-if-change new-gdbarch.c gdbarch.c
2392 compare_new gdbarch.c
This page took 0.085473 seconds and 4 git commands to generate.