[ARC] Fix typo in extension instruction name.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v:int:sp_regnum:::-1:-1::0
460 v:int:pc_regnum:::-1:-1::0
461 v:int:ps_regnum:::-1:-1::0
462 v:int:fp0_regnum:::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
467 # Convert from an sdb register number to an internal gdb register number.
468 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
472 m:const char *:register_name:int regnr:regnr::0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M:struct type *:register_type:int reg_nr:reg_nr
478
479 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
481 # deprecated_fp_regnum.
482 v:int:deprecated_fp_regnum:::-1:-1::0
483
484 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485 v:int:call_dummy_location::::AT_ENTRY_POINT::0
486 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
487
488 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
489 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
490 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
491 # MAP a GDB RAW register number onto a simulator register number. See
492 # also include/...-sim.h.
493 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
494 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
496
497 # Determine the address where a longjmp will land and save this address
498 # in PC. Return nonzero on success.
499 #
500 # FRAME corresponds to the longjmp frame.
501 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
502
503 #
504 v:int:believe_pcc_promotion:::::::
505 #
506 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
507 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
508 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
509 # Construct a value representing the contents of register REGNUM in
510 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
511 # allocate and return a struct value with all value attributes
512 # (but not the value contents) filled in.
513 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
514 #
515 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
517 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
518
519 # Return the return-value convention that will be used by FUNCTION
520 # to return a value of type VALTYPE. FUNCTION may be NULL in which
521 # case the return convention is computed based only on VALTYPE.
522 #
523 # If READBUF is not NULL, extract the return value and save it in this buffer.
524 #
525 # If WRITEBUF is not NULL, it contains a return value which will be
526 # stored into the appropriate register. This can be used when we want
527 # to force the value returned by a function (see the "return" command
528 # for instance).
529 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
530
531 # Return true if the return value of function is stored in the first hidden
532 # parameter. In theory, this feature should be language-dependent, specified
533 # by language and its ABI, such as C++. Unfortunately, compiler may
534 # implement it to a target-dependent feature. So that we need such hook here
535 # to be aware of this in GDB.
536 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
538 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
539 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
540 # On some platforms, a single function may provide multiple entry points,
541 # e.g. one that is used for function-pointer calls and a different one
542 # that is used for direct function calls.
543 # In order to ensure that breakpoints set on the function will trigger
544 # no matter via which entry point the function is entered, a platform
545 # may provide the skip_entrypoint callback. It is called with IP set
546 # to the main entry point of a function (as determined by the symbol table),
547 # and should return the address of the innermost entry point, where the
548 # actual breakpoint needs to be set. Note that skip_entrypoint is used
549 # by GDB common code even when debugging optimized code, where skip_prologue
550 # is not used.
551 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
553 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
554 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
555 # Return the adjusted address and kind to use for Z0/Z1 packets.
556 # KIND is usually the memory length of the breakpoint, but may have a
557 # different target-specific meaning.
558 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
559 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
560 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
562 v:CORE_ADDR:decr_pc_after_break:::0:::0
563
564 # A function can be addressed by either it's "pointer" (possibly a
565 # descriptor address) or "entry point" (first executable instruction).
566 # The method "convert_from_func_ptr_addr" converting the former to the
567 # latter. gdbarch_deprecated_function_start_offset is being used to implement
568 # a simplified subset of that functionality - the function's address
569 # corresponds to the "function pointer" and the function's start
570 # corresponds to the "function entry point" - and hence is redundant.
571
572 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
573
574 # Return the remote protocol register number associated with this
575 # register. Normally the identity mapping.
576 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
577
578 # Fetch the target specific address used to represent a load module.
579 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
580 #
581 v:CORE_ADDR:frame_args_skip:::0:::0
582 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
584 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585 # frame-base. Enable frame-base before frame-unwind.
586 F:int:frame_num_args:struct frame_info *frame:frame
587 #
588 M:CORE_ADDR:frame_align:CORE_ADDR address:address
589 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590 v:int:frame_red_zone_size
591 #
592 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
593 # On some machines there are bits in addresses which are not really
594 # part of the address, but are used by the kernel, the hardware, etc.
595 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
596 # we get a "real" address such as one would find in a symbol table.
597 # This is used only for addresses of instructions, and even then I'm
598 # not sure it's used in all contexts. It exists to deal with there
599 # being a few stray bits in the PC which would mislead us, not as some
600 # sort of generic thing to handle alignment or segmentation (it's
601 # possible it should be in TARGET_READ_PC instead).
602 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
603
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
605 # indicates if the target needs software single step. An ISA method to
606 # implement it.
607 #
608 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
609 # target can single step. If not, then implement single step using breakpoints.
610 #
611 # A return value of 1 means that the software_single_step breakpoints
612 # were inserted; 0 means they were not.
613 F:int:software_single_step:struct frame_info *frame:frame
614
615 # Return non-zero if the processor is executing a delay slot and a
616 # further single-step is needed before the instruction finishes.
617 M:int:single_step_through_delay:struct frame_info *frame:frame
618 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
619 # disassembler. Perhaps objdump can handle it?
620 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
621 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
622
623
624 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
625 # evaluates non-zero, this is the address where the debugger will place
626 # a step-resume breakpoint to get us past the dynamic linker.
627 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
628 # Some systems also have trampoline code for returning from shared libs.
629 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
630
631 # A target might have problems with watchpoints as soon as the stack
632 # frame of the current function has been destroyed. This mostly happens
633 # as the first action in a function's epilogue. stack_frame_destroyed_p()
634 # is defined to return a non-zero value if either the given addr is one
635 # instruction after the stack destroying instruction up to the trailing
636 # return instruction or if we can figure out that the stack frame has
637 # already been invalidated regardless of the value of addr. Targets
638 # which don't suffer from that problem could just let this functionality
639 # untouched.
640 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
641 # Process an ELF symbol in the minimal symbol table in a backend-specific
642 # way. Normally this hook is supposed to do nothing, however if required,
643 # then this hook can be used to apply tranformations to symbols that are
644 # considered special in some way. For example the MIPS backend uses it
645 # to interpret \`st_other' information to mark compressed code symbols so
646 # that they can be treated in the appropriate manner in the processing of
647 # the main symbol table and DWARF-2 records.
648 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
649 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 # Process a symbol in the main symbol table in a backend-specific way.
651 # Normally this hook is supposed to do nothing, however if required,
652 # then this hook can be used to apply tranformations to symbols that
653 # are considered special in some way. This is currently used by the
654 # MIPS backend to make sure compressed code symbols have the ISA bit
655 # set. This in turn is needed for symbol values seen in GDB to match
656 # the values used at the runtime by the program itself, for function
657 # and label references.
658 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
659 # Adjust the address retrieved from a DWARF-2 record other than a line
660 # entry in a backend-specific way. Normally this hook is supposed to
661 # return the address passed unchanged, however if that is incorrect for
662 # any reason, then this hook can be used to fix the address up in the
663 # required manner. This is currently used by the MIPS backend to make
664 # sure addresses in FDE, range records, etc. referring to compressed
665 # code have the ISA bit set, matching line information and the symbol
666 # table.
667 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
668 # Adjust the address updated by a line entry in a backend-specific way.
669 # Normally this hook is supposed to return the address passed unchanged,
670 # however in the case of inconsistencies in these records, this hook can
671 # be used to fix them up in the required manner. This is currently used
672 # by the MIPS backend to make sure all line addresses in compressed code
673 # are presented with the ISA bit set, which is not always the case. This
674 # in turn ensures breakpoint addresses are correctly matched against the
675 # stop PC.
676 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
677 v:int:cannot_step_breakpoint:::0:0::0
678 v:int:have_nonsteppable_watchpoint:::0:0::0
679 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
680 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
681
682 # Return the appropriate type_flags for the supplied address class.
683 # This function should return 1 if the address class was recognized and
684 # type_flags was set, zero otherwise.
685 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
686 # Is a register in a group
687 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
688 # Fetch the pointer to the ith function argument.
689 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
690
691 # Iterate over all supported register notes in a core file. For each
692 # supported register note section, the iterator must call CB and pass
693 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
694 # the supported register note sections based on the current register
695 # values. Otherwise it should enumerate all supported register note
696 # sections.
697 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
698
699 # Create core file notes
700 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
701
702 # The elfcore writer hook to use to write Linux prpsinfo notes to core
703 # files. Most Linux architectures use the same prpsinfo32 or
704 # prpsinfo64 layouts, and so won't need to provide this hook, as we
705 # call the Linux generic routines in bfd to write prpsinfo notes by
706 # default.
707 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
708
709 # Find core file memory regions
710 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
711
712 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
713 # core file into buffer READBUF with length LEN. Return the number of bytes read
714 # (zero indicates failure).
715 # failed, otherwise, return the red length of READBUF.
716 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
717
718 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
719 # libraries list from core file into buffer READBUF with length LEN.
720 # Return the number of bytes read (zero indicates failure).
721 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
722
723 # How the core target converts a PTID from a core file to a string.
724 M:char *:core_pid_to_str:ptid_t ptid:ptid
725
726 # How the core target extracts the name of a thread from a core file.
727 M:const char *:core_thread_name:struct thread_info *thr:thr
728
729 # BFD target to use when generating a core file.
730 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
731
732 # If the elements of C++ vtables are in-place function descriptors rather
733 # than normal function pointers (which may point to code or a descriptor),
734 # set this to one.
735 v:int:vtable_function_descriptors:::0:0::0
736
737 # Set if the least significant bit of the delta is used instead of the least
738 # significant bit of the pfn for pointers to virtual member functions.
739 v:int:vbit_in_delta:::0:0::0
740
741 # Advance PC to next instruction in order to skip a permanent breakpoint.
742 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
743
744 # The maximum length of an instruction on this architecture in bytes.
745 V:ULONGEST:max_insn_length:::0:0
746
747 # Copy the instruction at FROM to TO, and make any adjustments
748 # necessary to single-step it at that address.
749 #
750 # REGS holds the state the thread's registers will have before
751 # executing the copied instruction; the PC in REGS will refer to FROM,
752 # not the copy at TO. The caller should update it to point at TO later.
753 #
754 # Return a pointer to data of the architecture's choice to be passed
755 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
756 # the instruction's effects have been completely simulated, with the
757 # resulting state written back to REGS.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 #
762 # The TO area is only guaranteed to have space for
763 # gdbarch_max_insn_length (arch) bytes, so this function must not
764 # write more bytes than that to that area.
765 #
766 # If you do not provide this function, GDB assumes that the
767 # architecture does not support displaced stepping.
768 #
769 # If your architecture doesn't need to adjust instructions before
770 # single-stepping them, consider using simple_displaced_step_copy_insn
771 # here.
772 #
773 # If the instruction cannot execute out of line, return NULL. The
774 # core falls back to stepping past the instruction in-line instead in
775 # that case.
776 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
777
778 # Return true if GDB should use hardware single-stepping to execute
779 # the displaced instruction identified by CLOSURE. If false,
780 # GDB will simply restart execution at the displaced instruction
781 # location, and it is up to the target to ensure GDB will receive
782 # control again (e.g. by placing a software breakpoint instruction
783 # into the displaced instruction buffer).
784 #
785 # The default implementation returns false on all targets that
786 # provide a gdbarch_software_single_step routine, and true otherwise.
787 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
788
789 # Fix up the state resulting from successfully single-stepping a
790 # displaced instruction, to give the result we would have gotten from
791 # stepping the instruction in its original location.
792 #
793 # REGS is the register state resulting from single-stepping the
794 # displaced instruction.
795 #
796 # CLOSURE is the result from the matching call to
797 # gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn.but not this
800 # function, then GDB assumes that no fixup is needed after
801 # single-stepping the instruction.
802 #
803 # For a general explanation of displaced stepping and how GDB uses it,
804 # see the comments in infrun.c.
805 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
806
807 # Free a closure returned by gdbarch_displaced_step_copy_insn.
808 #
809 # If you provide gdbarch_displaced_step_copy_insn, you must provide
810 # this function as well.
811 #
812 # If your architecture uses closures that don't need to be freed, then
813 # you can use simple_displaced_step_free_closure here.
814 #
815 # For a general explanation of displaced stepping and how GDB uses it,
816 # see the comments in infrun.c.
817 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
818
819 # Return the address of an appropriate place to put displaced
820 # instructions while we step over them. There need only be one such
821 # place, since we're only stepping one thread over a breakpoint at a
822 # time.
823 #
824 # For a general explanation of displaced stepping and how GDB uses it,
825 # see the comments in infrun.c.
826 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
827
828 # Relocate an instruction to execute at a different address. OLDLOC
829 # is the address in the inferior memory where the instruction to
830 # relocate is currently at. On input, TO points to the destination
831 # where we want the instruction to be copied (and possibly adjusted)
832 # to. On output, it points to one past the end of the resulting
833 # instruction(s). The effect of executing the instruction at TO shall
834 # be the same as if executing it at FROM. For example, call
835 # instructions that implicitly push the return address on the stack
836 # should be adjusted to return to the instruction after OLDLOC;
837 # relative branches, and other PC-relative instructions need the
838 # offset adjusted; etc.
839 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
840
841 # Refresh overlay mapped state for section OSECT.
842 F:void:overlay_update:struct obj_section *osect:osect
843
844 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
845
846 # Handle special encoding of static variables in stabs debug info.
847 F:const char *:static_transform_name:const char *name:name
848 # Set if the address in N_SO or N_FUN stabs may be zero.
849 v:int:sofun_address_maybe_missing:::0:0::0
850
851 # Parse the instruction at ADDR storing in the record execution log
852 # the registers REGCACHE and memory ranges that will be affected when
853 # the instruction executes, along with their current values.
854 # Return -1 if something goes wrong, 0 otherwise.
855 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
856
857 # Save process state after a signal.
858 # Return -1 if something goes wrong, 0 otherwise.
859 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
860
861 # Signal translation: translate inferior's signal (target's) number
862 # into GDB's representation. The implementation of this method must
863 # be host independent. IOW, don't rely on symbols of the NAT_FILE
864 # header (the nm-*.h files), the host <signal.h> header, or similar
865 # headers. This is mainly used when cross-debugging core files ---
866 # "Live" targets hide the translation behind the target interface
867 # (target_wait, target_resume, etc.).
868 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
869
870 # Signal translation: translate the GDB's internal signal number into
871 # the inferior's signal (target's) representation. The implementation
872 # of this method must be host independent. IOW, don't rely on symbols
873 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
874 # header, or similar headers.
875 # Return the target signal number if found, or -1 if the GDB internal
876 # signal number is invalid.
877 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
878
879 # Extra signal info inspection.
880 #
881 # Return a type suitable to inspect extra signal information.
882 M:struct type *:get_siginfo_type:void:
883
884 # Record architecture-specific information from the symbol table.
885 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
886
887 # Function for the 'catch syscall' feature.
888
889 # Get architecture-specific system calls information from registers.
890 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
891
892 # The filename of the XML syscall for this architecture.
893 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
894
895 # Information about system calls from this architecture
896 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
897
898 # SystemTap related fields and functions.
899
900 # A NULL-terminated array of prefixes used to mark an integer constant
901 # on the architecture's assembly.
902 # For example, on x86 integer constants are written as:
903 #
904 # \$10 ;; integer constant 10
905 #
906 # in this case, this prefix would be the character \`\$\'.
907 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
908
909 # A NULL-terminated array of suffixes used to mark an integer constant
910 # on the architecture's assembly.
911 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
912
913 # A NULL-terminated array of prefixes used to mark a register name on
914 # the architecture's assembly.
915 # For example, on x86 the register name is written as:
916 #
917 # \%eax ;; register eax
918 #
919 # in this case, this prefix would be the character \`\%\'.
920 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
921
922 # A NULL-terminated array of suffixes used to mark a register name on
923 # the architecture's assembly.
924 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
925
926 # A NULL-terminated array of prefixes used to mark a register
927 # indirection on the architecture's assembly.
928 # For example, on x86 the register indirection is written as:
929 #
930 # \(\%eax\) ;; indirecting eax
931 #
932 # in this case, this prefix would be the charater \`\(\'.
933 #
934 # Please note that we use the indirection prefix also for register
935 # displacement, e.g., \`4\(\%eax\)\' on x86.
936 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
937
938 # A NULL-terminated array of suffixes used to mark a register
939 # indirection on the architecture's assembly.
940 # For example, on x86 the register indirection is written as:
941 #
942 # \(\%eax\) ;; indirecting eax
943 #
944 # in this case, this prefix would be the charater \`\)\'.
945 #
946 # Please note that we use the indirection suffix also for register
947 # displacement, e.g., \`4\(\%eax\)\' on x86.
948 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
949
950 # Prefix(es) used to name a register using GDB's nomenclature.
951 #
952 # For example, on PPC a register is represented by a number in the assembly
953 # language (e.g., \`10\' is the 10th general-purpose register). However,
954 # inside GDB this same register has an \`r\' appended to its name, so the 10th
955 # register would be represented as \`r10\' internally.
956 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
957
958 # Suffix used to name a register using GDB's nomenclature.
959 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
960
961 # Check if S is a single operand.
962 #
963 # Single operands can be:
964 # \- Literal integers, e.g. \`\$10\' on x86
965 # \- Register access, e.g. \`\%eax\' on x86
966 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
967 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
968 #
969 # This function should check for these patterns on the string
970 # and return 1 if some were found, or zero otherwise. Please try to match
971 # as much info as you can from the string, i.e., if you have to match
972 # something like \`\(\%\', do not match just the \`\(\'.
973 M:int:stap_is_single_operand:const char *s:s
974
975 # Function used to handle a "special case" in the parser.
976 #
977 # A "special case" is considered to be an unknown token, i.e., a token
978 # that the parser does not know how to parse. A good example of special
979 # case would be ARM's register displacement syntax:
980 #
981 # [R0, #4] ;; displacing R0 by 4
982 #
983 # Since the parser assumes that a register displacement is of the form:
984 #
985 # <number> <indirection_prefix> <register_name> <indirection_suffix>
986 #
987 # it means that it will not be able to recognize and parse this odd syntax.
988 # Therefore, we should add a special case function that will handle this token.
989 #
990 # This function should generate the proper expression form of the expression
991 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
992 # and so on). It should also return 1 if the parsing was successful, or zero
993 # if the token was not recognized as a special token (in this case, returning
994 # zero means that the special parser is deferring the parsing to the generic
995 # parser), and should advance the buffer pointer (p->arg).
996 M:int:stap_parse_special_token:struct stap_parse_info *p:p
997
998 # DTrace related functions.
999
1000 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1001 # NARG must be >= 0.
1002 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1003
1004 # True if the given ADDR does not contain the instruction sequence
1005 # corresponding to a disabled DTrace is-enabled probe.
1006 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1007
1008 # Enable a DTrace is-enabled probe at ADDR.
1009 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1010
1011 # Disable a DTrace is-enabled probe at ADDR.
1012 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1013
1014 # True if the list of shared libraries is one and only for all
1015 # processes, as opposed to a list of shared libraries per inferior.
1016 # This usually means that all processes, although may or may not share
1017 # an address space, will see the same set of symbols at the same
1018 # addresses.
1019 v:int:has_global_solist:::0:0::0
1020
1021 # On some targets, even though each inferior has its own private
1022 # address space, the debug interface takes care of making breakpoints
1023 # visible to all address spaces automatically. For such cases,
1024 # this property should be set to true.
1025 v:int:has_global_breakpoints:::0:0::0
1026
1027 # True if inferiors share an address space (e.g., uClinux).
1028 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1029
1030 # True if a fast tracepoint can be set at an address.
1031 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1032
1033 # Guess register state based on tracepoint location. Used for tracepoints
1034 # where no registers have been collected, but there's only one location,
1035 # allowing us to guess the PC value, and perhaps some other registers.
1036 # On entry, regcache has all registers marked as unavailable.
1037 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1038
1039 # Return the "auto" target charset.
1040 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1041 # Return the "auto" target wide charset.
1042 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1043
1044 # If non-empty, this is a file extension that will be opened in place
1045 # of the file extension reported by the shared library list.
1046 #
1047 # This is most useful for toolchains that use a post-linker tool,
1048 # where the names of the files run on the target differ in extension
1049 # compared to the names of the files GDB should load for debug info.
1050 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1051
1052 # If true, the target OS has DOS-based file system semantics. That
1053 # is, absolute paths include a drive name, and the backslash is
1054 # considered a directory separator.
1055 v:int:has_dos_based_file_system:::0:0::0
1056
1057 # Generate bytecodes to collect the return address in a frame.
1058 # Since the bytecodes run on the target, possibly with GDB not even
1059 # connected, the full unwinding machinery is not available, and
1060 # typically this function will issue bytecodes for one or more likely
1061 # places that the return address may be found.
1062 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1063
1064 # Implement the "info proc" command.
1065 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1066
1067 # Implement the "info proc" command for core files. Noe that there
1068 # are two "info_proc"-like methods on gdbarch -- one for core files,
1069 # one for live targets.
1070 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1071
1072 # Iterate over all objfiles in the order that makes the most sense
1073 # for the architecture to make global symbol searches.
1074 #
1075 # CB is a callback function where OBJFILE is the objfile to be searched,
1076 # and CB_DATA a pointer to user-defined data (the same data that is passed
1077 # when calling this gdbarch method). The iteration stops if this function
1078 # returns nonzero.
1079 #
1080 # CB_DATA is a pointer to some user-defined data to be passed to
1081 # the callback.
1082 #
1083 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1084 # inspected when the symbol search was requested.
1085 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1086
1087 # Ravenscar arch-dependent ops.
1088 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1089
1090 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1091 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1092
1093 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1094 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1095
1096 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1097 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1098
1099 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1100 # Return 0 if *READPTR is already at the end of the buffer.
1101 # Return -1 if there is insufficient buffer for a whole entry.
1102 # Return 1 if an entry was read into *TYPEP and *VALP.
1103 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1104
1105 # Find the address range of the current inferior's vsyscall/vDSO, and
1106 # write it to *RANGE. If the vsyscall's length can't be determined, a
1107 # range with zero length is returned. Returns true if the vsyscall is
1108 # found, false otherwise.
1109 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1110
1111 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1112 # PROT has GDB_MMAP_PROT_* bitmask format.
1113 # Throw an error if it is not possible. Returned address is always valid.
1114 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1115
1116 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1117 # Print a warning if it is not possible.
1118 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1119
1120 # Return string (caller has to use xfree for it) with options for GCC
1121 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1122 # These options are put before CU's DW_AT_producer compilation options so that
1123 # they can override it. Method may also return NULL.
1124 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1125
1126 # Return a regular expression that matches names used by this
1127 # architecture in GNU configury triplets. The result is statically
1128 # allocated and must not be freed. The default implementation simply
1129 # returns the BFD architecture name, which is correct in nearly every
1130 # case.
1131 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1132
1133 # Return the size in 8-bit bytes of an addressable memory unit on this
1134 # architecture. This corresponds to the number of 8-bit bytes associated to
1135 # each address in memory.
1136 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1137
1138 EOF
1139 }
1140
1141 #
1142 # The .log file
1143 #
1144 exec > new-gdbarch.log
1145 function_list | while do_read
1146 do
1147 cat <<EOF
1148 ${class} ${returntype} ${function} ($formal)
1149 EOF
1150 for r in ${read}
1151 do
1152 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1153 done
1154 if class_is_predicate_p && fallback_default_p
1155 then
1156 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1157 kill $$
1158 exit 1
1159 fi
1160 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1161 then
1162 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1163 kill $$
1164 exit 1
1165 fi
1166 if class_is_multiarch_p
1167 then
1168 if class_is_predicate_p ; then :
1169 elif test "x${predefault}" = "x"
1170 then
1171 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1172 kill $$
1173 exit 1
1174 fi
1175 fi
1176 echo ""
1177 done
1178
1179 exec 1>&2
1180 compare_new gdbarch.log
1181
1182
1183 copyright ()
1184 {
1185 cat <<EOF
1186 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1187 /* vi:set ro: */
1188
1189 /* Dynamic architecture support for GDB, the GNU debugger.
1190
1191 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1192
1193 This file is part of GDB.
1194
1195 This program is free software; you can redistribute it and/or modify
1196 it under the terms of the GNU General Public License as published by
1197 the Free Software Foundation; either version 3 of the License, or
1198 (at your option) any later version.
1199
1200 This program is distributed in the hope that it will be useful,
1201 but WITHOUT ANY WARRANTY; without even the implied warranty of
1202 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1203 GNU General Public License for more details.
1204
1205 You should have received a copy of the GNU General Public License
1206 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1207
1208 /* This file was created with the aid of \`\`gdbarch.sh''.
1209
1210 The Bourne shell script \`\`gdbarch.sh'' creates the files
1211 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1212 against the existing \`\`gdbarch.[hc]''. Any differences found
1213 being reported.
1214
1215 If editing this file, please also run gdbarch.sh and merge any
1216 changes into that script. Conversely, when making sweeping changes
1217 to this file, modifying gdbarch.sh and using its output may prove
1218 easier. */
1219
1220 EOF
1221 }
1222
1223 #
1224 # The .h file
1225 #
1226
1227 exec > new-gdbarch.h
1228 copyright
1229 cat <<EOF
1230 #ifndef GDBARCH_H
1231 #define GDBARCH_H
1232
1233 #include "frame.h"
1234
1235 struct floatformat;
1236 struct ui_file;
1237 struct value;
1238 struct objfile;
1239 struct obj_section;
1240 struct minimal_symbol;
1241 struct regcache;
1242 struct reggroup;
1243 struct regset;
1244 struct disassemble_info;
1245 struct target_ops;
1246 struct obstack;
1247 struct bp_target_info;
1248 struct target_desc;
1249 struct objfile;
1250 struct symbol;
1251 struct displaced_step_closure;
1252 struct syscall;
1253 struct agent_expr;
1254 struct axs_value;
1255 struct stap_parse_info;
1256 struct parser_state;
1257 struct ravenscar_arch_ops;
1258 struct elf_internal_linux_prpsinfo;
1259 struct mem_range;
1260 struct syscalls_info;
1261 struct thread_info;
1262 struct ui_out;
1263
1264 #include "regcache.h"
1265
1266 /* The architecture associated with the inferior through the
1267 connection to the target.
1268
1269 The architecture vector provides some information that is really a
1270 property of the inferior, accessed through a particular target:
1271 ptrace operations; the layout of certain RSP packets; the solib_ops
1272 vector; etc. To differentiate architecture accesses to
1273 per-inferior/target properties from
1274 per-thread/per-frame/per-objfile properties, accesses to
1275 per-inferior/target properties should be made through this
1276 gdbarch. */
1277
1278 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1279 extern struct gdbarch *target_gdbarch (void);
1280
1281 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1282 gdbarch method. */
1283
1284 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1285 (struct objfile *objfile, void *cb_data);
1286
1287 /* Callback type for regset section iterators. The callback usually
1288 invokes the REGSET's supply or collect method, to which it must
1289 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1290 section name, and HUMAN_NAME is used for diagnostic messages.
1291 CB_DATA should have been passed unchanged through the iterator. */
1292
1293 typedef void (iterate_over_regset_sections_cb)
1294 (const char *sect_name, int size, const struct regset *regset,
1295 const char *human_name, void *cb_data);
1296 EOF
1297
1298 # function typedef's
1299 printf "\n"
1300 printf "\n"
1301 printf "/* The following are pre-initialized by GDBARCH. */\n"
1302 function_list | while do_read
1303 do
1304 if class_is_info_p
1305 then
1306 printf "\n"
1307 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1308 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1309 fi
1310 done
1311
1312 # function typedef's
1313 printf "\n"
1314 printf "\n"
1315 printf "/* The following are initialized by the target dependent code. */\n"
1316 function_list | while do_read
1317 do
1318 if [ -n "${comment}" ]
1319 then
1320 echo "${comment}" | sed \
1321 -e '2 s,#,/*,' \
1322 -e '3,$ s,#, ,' \
1323 -e '$ s,$, */,'
1324 fi
1325
1326 if class_is_predicate_p
1327 then
1328 printf "\n"
1329 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1330 fi
1331 if class_is_variable_p
1332 then
1333 printf "\n"
1334 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1335 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1336 fi
1337 if class_is_function_p
1338 then
1339 printf "\n"
1340 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1341 then
1342 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1343 elif class_is_multiarch_p
1344 then
1345 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1346 else
1347 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1348 fi
1349 if [ "x${formal}" = "xvoid" ]
1350 then
1351 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1352 else
1353 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1354 fi
1355 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1356 fi
1357 done
1358
1359 # close it off
1360 cat <<EOF
1361
1362 /* Definition for an unknown syscall, used basically in error-cases. */
1363 #define UNKNOWN_SYSCALL (-1)
1364
1365 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1366
1367
1368 /* Mechanism for co-ordinating the selection of a specific
1369 architecture.
1370
1371 GDB targets (*-tdep.c) can register an interest in a specific
1372 architecture. Other GDB components can register a need to maintain
1373 per-architecture data.
1374
1375 The mechanisms below ensures that there is only a loose connection
1376 between the set-architecture command and the various GDB
1377 components. Each component can independently register their need
1378 to maintain architecture specific data with gdbarch.
1379
1380 Pragmatics:
1381
1382 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1383 didn't scale.
1384
1385 The more traditional mega-struct containing architecture specific
1386 data for all the various GDB components was also considered. Since
1387 GDB is built from a variable number of (fairly independent)
1388 components it was determined that the global aproach was not
1389 applicable. */
1390
1391
1392 /* Register a new architectural family with GDB.
1393
1394 Register support for the specified ARCHITECTURE with GDB. When
1395 gdbarch determines that the specified architecture has been
1396 selected, the corresponding INIT function is called.
1397
1398 --
1399
1400 The INIT function takes two parameters: INFO which contains the
1401 information available to gdbarch about the (possibly new)
1402 architecture; ARCHES which is a list of the previously created
1403 \`\`struct gdbarch'' for this architecture.
1404
1405 The INFO parameter is, as far as possible, be pre-initialized with
1406 information obtained from INFO.ABFD or the global defaults.
1407
1408 The ARCHES parameter is a linked list (sorted most recently used)
1409 of all the previously created architures for this architecture
1410 family. The (possibly NULL) ARCHES->gdbarch can used to access
1411 values from the previously selected architecture for this
1412 architecture family.
1413
1414 The INIT function shall return any of: NULL - indicating that it
1415 doesn't recognize the selected architecture; an existing \`\`struct
1416 gdbarch'' from the ARCHES list - indicating that the new
1417 architecture is just a synonym for an earlier architecture (see
1418 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1419 - that describes the selected architecture (see gdbarch_alloc()).
1420
1421 The DUMP_TDEP function shall print out all target specific values.
1422 Care should be taken to ensure that the function works in both the
1423 multi-arch and non- multi-arch cases. */
1424
1425 struct gdbarch_list
1426 {
1427 struct gdbarch *gdbarch;
1428 struct gdbarch_list *next;
1429 };
1430
1431 struct gdbarch_info
1432 {
1433 /* Use default: NULL (ZERO). */
1434 const struct bfd_arch_info *bfd_arch_info;
1435
1436 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1437 enum bfd_endian byte_order;
1438
1439 enum bfd_endian byte_order_for_code;
1440
1441 /* Use default: NULL (ZERO). */
1442 bfd *abfd;
1443
1444 /* Use default: NULL (ZERO). */
1445 void *tdep_info;
1446
1447 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1448 enum gdb_osabi osabi;
1449
1450 /* Use default: NULL (ZERO). */
1451 const struct target_desc *target_desc;
1452 };
1453
1454 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1455 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1456
1457 /* DEPRECATED - use gdbarch_register() */
1458 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1459
1460 extern void gdbarch_register (enum bfd_architecture architecture,
1461 gdbarch_init_ftype *,
1462 gdbarch_dump_tdep_ftype *);
1463
1464
1465 /* Return a freshly allocated, NULL terminated, array of the valid
1466 architecture names. Since architectures are registered during the
1467 _initialize phase this function only returns useful information
1468 once initialization has been completed. */
1469
1470 extern const char **gdbarch_printable_names (void);
1471
1472
1473 /* Helper function. Search the list of ARCHES for a GDBARCH that
1474 matches the information provided by INFO. */
1475
1476 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1477
1478
1479 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1480 basic initialization using values obtained from the INFO and TDEP
1481 parameters. set_gdbarch_*() functions are called to complete the
1482 initialization of the object. */
1483
1484 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1485
1486
1487 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1488 It is assumed that the caller freeds the \`\`struct
1489 gdbarch_tdep''. */
1490
1491 extern void gdbarch_free (struct gdbarch *);
1492
1493
1494 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1495 obstack. The memory is freed when the corresponding architecture
1496 is also freed. */
1497
1498 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1499 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1500 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1501
1502 /* Duplicate STRING, returning an equivalent string that's allocated on the
1503 obstack associated with GDBARCH. The string is freed when the corresponding
1504 architecture is also freed. */
1505
1506 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1507
1508 /* Helper function. Force an update of the current architecture.
1509
1510 The actual architecture selected is determined by INFO, \`\`(gdb) set
1511 architecture'' et.al., the existing architecture and BFD's default
1512 architecture. INFO should be initialized to zero and then selected
1513 fields should be updated.
1514
1515 Returns non-zero if the update succeeds. */
1516
1517 extern int gdbarch_update_p (struct gdbarch_info info);
1518
1519
1520 /* Helper function. Find an architecture matching info.
1521
1522 INFO should be initialized using gdbarch_info_init, relevant fields
1523 set, and then finished using gdbarch_info_fill.
1524
1525 Returns the corresponding architecture, or NULL if no matching
1526 architecture was found. */
1527
1528 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1529
1530
1531 /* Helper function. Set the target gdbarch to "gdbarch". */
1532
1533 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1534
1535
1536 /* Register per-architecture data-pointer.
1537
1538 Reserve space for a per-architecture data-pointer. An identifier
1539 for the reserved data-pointer is returned. That identifer should
1540 be saved in a local static variable.
1541
1542 Memory for the per-architecture data shall be allocated using
1543 gdbarch_obstack_zalloc. That memory will be deleted when the
1544 corresponding architecture object is deleted.
1545
1546 When a previously created architecture is re-selected, the
1547 per-architecture data-pointer for that previous architecture is
1548 restored. INIT() is not re-called.
1549
1550 Multiple registrarants for any architecture are allowed (and
1551 strongly encouraged). */
1552
1553 struct gdbarch_data;
1554
1555 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1556 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1557 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1558 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1559 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1560 struct gdbarch_data *data,
1561 void *pointer);
1562
1563 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1564
1565
1566 /* Set the dynamic target-system-dependent parameters (architecture,
1567 byte-order, ...) using information found in the BFD. */
1568
1569 extern void set_gdbarch_from_file (bfd *);
1570
1571
1572 /* Initialize the current architecture to the "first" one we find on
1573 our list. */
1574
1575 extern void initialize_current_architecture (void);
1576
1577 /* gdbarch trace variable */
1578 extern unsigned int gdbarch_debug;
1579
1580 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1581
1582 #endif
1583 EOF
1584 exec 1>&2
1585 #../move-if-change new-gdbarch.h gdbarch.h
1586 compare_new gdbarch.h
1587
1588
1589 #
1590 # C file
1591 #
1592
1593 exec > new-gdbarch.c
1594 copyright
1595 cat <<EOF
1596
1597 #include "defs.h"
1598 #include "arch-utils.h"
1599
1600 #include "gdbcmd.h"
1601 #include "inferior.h"
1602 #include "symcat.h"
1603
1604 #include "floatformat.h"
1605 #include "reggroups.h"
1606 #include "osabi.h"
1607 #include "gdb_obstack.h"
1608 #include "observer.h"
1609 #include "regcache.h"
1610 #include "objfiles.h"
1611
1612 /* Static function declarations */
1613
1614 static void alloc_gdbarch_data (struct gdbarch *);
1615
1616 /* Non-zero if we want to trace architecture code. */
1617
1618 #ifndef GDBARCH_DEBUG
1619 #define GDBARCH_DEBUG 0
1620 #endif
1621 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1622 static void
1623 show_gdbarch_debug (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625 {
1626 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1627 }
1628
1629 static const char *
1630 pformat (const struct floatformat **format)
1631 {
1632 if (format == NULL)
1633 return "(null)";
1634 else
1635 /* Just print out one of them - this is only for diagnostics. */
1636 return format[0]->name;
1637 }
1638
1639 static const char *
1640 pstring (const char *string)
1641 {
1642 if (string == NULL)
1643 return "(null)";
1644 return string;
1645 }
1646
1647 /* Helper function to print a list of strings, represented as "const
1648 char *const *". The list is printed comma-separated. */
1649
1650 static char *
1651 pstring_list (const char *const *list)
1652 {
1653 static char ret[100];
1654 const char *const *p;
1655 size_t offset = 0;
1656
1657 if (list == NULL)
1658 return "(null)";
1659
1660 ret[0] = '\0';
1661 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1662 {
1663 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1664 offset += 2 + s;
1665 }
1666
1667 if (offset > 0)
1668 {
1669 gdb_assert (offset - 2 < sizeof (ret));
1670 ret[offset - 2] = '\0';
1671 }
1672
1673 return ret;
1674 }
1675
1676 EOF
1677
1678 # gdbarch open the gdbarch object
1679 printf "\n"
1680 printf "/* Maintain the struct gdbarch object. */\n"
1681 printf "\n"
1682 printf "struct gdbarch\n"
1683 printf "{\n"
1684 printf " /* Has this architecture been fully initialized? */\n"
1685 printf " int initialized_p;\n"
1686 printf "\n"
1687 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1688 printf " struct obstack *obstack;\n"
1689 printf "\n"
1690 printf " /* basic architectural information. */\n"
1691 function_list | while do_read
1692 do
1693 if class_is_info_p
1694 then
1695 printf " ${returntype} ${function};\n"
1696 fi
1697 done
1698 printf "\n"
1699 printf " /* target specific vector. */\n"
1700 printf " struct gdbarch_tdep *tdep;\n"
1701 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1702 printf "\n"
1703 printf " /* per-architecture data-pointers. */\n"
1704 printf " unsigned nr_data;\n"
1705 printf " void **data;\n"
1706 printf "\n"
1707 cat <<EOF
1708 /* Multi-arch values.
1709
1710 When extending this structure you must:
1711
1712 Add the field below.
1713
1714 Declare set/get functions and define the corresponding
1715 macro in gdbarch.h.
1716
1717 gdbarch_alloc(): If zero/NULL is not a suitable default,
1718 initialize the new field.
1719
1720 verify_gdbarch(): Confirm that the target updated the field
1721 correctly.
1722
1723 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1724 field is dumped out
1725
1726 get_gdbarch(): Implement the set/get functions (probably using
1727 the macro's as shortcuts).
1728
1729 */
1730
1731 EOF
1732 function_list | while do_read
1733 do
1734 if class_is_variable_p
1735 then
1736 printf " ${returntype} ${function};\n"
1737 elif class_is_function_p
1738 then
1739 printf " gdbarch_${function}_ftype *${function};\n"
1740 fi
1741 done
1742 printf "};\n"
1743
1744 # Create a new gdbarch struct
1745 cat <<EOF
1746
1747 /* Create a new \`\`struct gdbarch'' based on information provided by
1748 \`\`struct gdbarch_info''. */
1749 EOF
1750 printf "\n"
1751 cat <<EOF
1752 struct gdbarch *
1753 gdbarch_alloc (const struct gdbarch_info *info,
1754 struct gdbarch_tdep *tdep)
1755 {
1756 struct gdbarch *gdbarch;
1757
1758 /* Create an obstack for allocating all the per-architecture memory,
1759 then use that to allocate the architecture vector. */
1760 struct obstack *obstack = XNEW (struct obstack);
1761 obstack_init (obstack);
1762 gdbarch = XOBNEW (obstack, struct gdbarch);
1763 memset (gdbarch, 0, sizeof (*gdbarch));
1764 gdbarch->obstack = obstack;
1765
1766 alloc_gdbarch_data (gdbarch);
1767
1768 gdbarch->tdep = tdep;
1769 EOF
1770 printf "\n"
1771 function_list | while do_read
1772 do
1773 if class_is_info_p
1774 then
1775 printf " gdbarch->${function} = info->${function};\n"
1776 fi
1777 done
1778 printf "\n"
1779 printf " /* Force the explicit initialization of these. */\n"
1780 function_list | while do_read
1781 do
1782 if class_is_function_p || class_is_variable_p
1783 then
1784 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1785 then
1786 printf " gdbarch->${function} = ${predefault};\n"
1787 fi
1788 fi
1789 done
1790 cat <<EOF
1791 /* gdbarch_alloc() */
1792
1793 return gdbarch;
1794 }
1795 EOF
1796
1797 # Free a gdbarch struct.
1798 printf "\n"
1799 printf "\n"
1800 cat <<EOF
1801 /* Allocate extra space using the per-architecture obstack. */
1802
1803 void *
1804 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1805 {
1806 void *data = obstack_alloc (arch->obstack, size);
1807
1808 memset (data, 0, size);
1809 return data;
1810 }
1811
1812 /* See gdbarch.h. */
1813
1814 char *
1815 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1816 {
1817 return obstack_strdup (arch->obstack, string);
1818 }
1819
1820
1821 /* Free a gdbarch struct. This should never happen in normal
1822 operation --- once you've created a gdbarch, you keep it around.
1823 However, if an architecture's init function encounters an error
1824 building the structure, it may need to clean up a partially
1825 constructed gdbarch. */
1826
1827 void
1828 gdbarch_free (struct gdbarch *arch)
1829 {
1830 struct obstack *obstack;
1831
1832 gdb_assert (arch != NULL);
1833 gdb_assert (!arch->initialized_p);
1834 obstack = arch->obstack;
1835 obstack_free (obstack, 0); /* Includes the ARCH. */
1836 xfree (obstack);
1837 }
1838 EOF
1839
1840 # verify a new architecture
1841 cat <<EOF
1842
1843
1844 /* Ensure that all values in a GDBARCH are reasonable. */
1845
1846 static void
1847 verify_gdbarch (struct gdbarch *gdbarch)
1848 {
1849 struct ui_file *log;
1850 struct cleanup *cleanups;
1851 long length;
1852 char *buf;
1853
1854 log = mem_fileopen ();
1855 cleanups = make_cleanup_ui_file_delete (log);
1856 /* fundamental */
1857 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1858 fprintf_unfiltered (log, "\n\tbyte-order");
1859 if (gdbarch->bfd_arch_info == NULL)
1860 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1861 /* Check those that need to be defined for the given multi-arch level. */
1862 EOF
1863 function_list | while do_read
1864 do
1865 if class_is_function_p || class_is_variable_p
1866 then
1867 if [ "x${invalid_p}" = "x0" ]
1868 then
1869 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1870 elif class_is_predicate_p
1871 then
1872 printf " /* Skip verify of ${function}, has predicate. */\n"
1873 # FIXME: See do_read for potential simplification
1874 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1875 then
1876 printf " if (${invalid_p})\n"
1877 printf " gdbarch->${function} = ${postdefault};\n"
1878 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1879 then
1880 printf " if (gdbarch->${function} == ${predefault})\n"
1881 printf " gdbarch->${function} = ${postdefault};\n"
1882 elif [ -n "${postdefault}" ]
1883 then
1884 printf " if (gdbarch->${function} == 0)\n"
1885 printf " gdbarch->${function} = ${postdefault};\n"
1886 elif [ -n "${invalid_p}" ]
1887 then
1888 printf " if (${invalid_p})\n"
1889 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1890 elif [ -n "${predefault}" ]
1891 then
1892 printf " if (gdbarch->${function} == ${predefault})\n"
1893 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1894 fi
1895 fi
1896 done
1897 cat <<EOF
1898 buf = ui_file_xstrdup (log, &length);
1899 make_cleanup (xfree, buf);
1900 if (length > 0)
1901 internal_error (__FILE__, __LINE__,
1902 _("verify_gdbarch: the following are invalid ...%s"),
1903 buf);
1904 do_cleanups (cleanups);
1905 }
1906 EOF
1907
1908 # dump the structure
1909 printf "\n"
1910 printf "\n"
1911 cat <<EOF
1912 /* Print out the details of the current architecture. */
1913
1914 void
1915 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1916 {
1917 const char *gdb_nm_file = "<not-defined>";
1918
1919 #if defined (GDB_NM_FILE)
1920 gdb_nm_file = GDB_NM_FILE;
1921 #endif
1922 fprintf_unfiltered (file,
1923 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1924 gdb_nm_file);
1925 EOF
1926 function_list | sort -t: -k 3 | while do_read
1927 do
1928 # First the predicate
1929 if class_is_predicate_p
1930 then
1931 printf " fprintf_unfiltered (file,\n"
1932 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1933 printf " gdbarch_${function}_p (gdbarch));\n"
1934 fi
1935 # Print the corresponding value.
1936 if class_is_function_p
1937 then
1938 printf " fprintf_unfiltered (file,\n"
1939 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1940 printf " host_address_to_string (gdbarch->${function}));\n"
1941 else
1942 # It is a variable
1943 case "${print}:${returntype}" in
1944 :CORE_ADDR )
1945 fmt="%s"
1946 print="core_addr_to_string_nz (gdbarch->${function})"
1947 ;;
1948 :* )
1949 fmt="%s"
1950 print="plongest (gdbarch->${function})"
1951 ;;
1952 * )
1953 fmt="%s"
1954 ;;
1955 esac
1956 printf " fprintf_unfiltered (file,\n"
1957 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1958 printf " ${print});\n"
1959 fi
1960 done
1961 cat <<EOF
1962 if (gdbarch->dump_tdep != NULL)
1963 gdbarch->dump_tdep (gdbarch, file);
1964 }
1965 EOF
1966
1967
1968 # GET/SET
1969 printf "\n"
1970 cat <<EOF
1971 struct gdbarch_tdep *
1972 gdbarch_tdep (struct gdbarch *gdbarch)
1973 {
1974 if (gdbarch_debug >= 2)
1975 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1976 return gdbarch->tdep;
1977 }
1978 EOF
1979 printf "\n"
1980 function_list | while do_read
1981 do
1982 if class_is_predicate_p
1983 then
1984 printf "\n"
1985 printf "int\n"
1986 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1987 printf "{\n"
1988 printf " gdb_assert (gdbarch != NULL);\n"
1989 printf " return ${predicate};\n"
1990 printf "}\n"
1991 fi
1992 if class_is_function_p
1993 then
1994 printf "\n"
1995 printf "${returntype}\n"
1996 if [ "x${formal}" = "xvoid" ]
1997 then
1998 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1999 else
2000 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2001 fi
2002 printf "{\n"
2003 printf " gdb_assert (gdbarch != NULL);\n"
2004 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2005 if class_is_predicate_p && test -n "${predefault}"
2006 then
2007 # Allow a call to a function with a predicate.
2008 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2009 fi
2010 printf " if (gdbarch_debug >= 2)\n"
2011 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2012 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2013 then
2014 if class_is_multiarch_p
2015 then
2016 params="gdbarch"
2017 else
2018 params=""
2019 fi
2020 else
2021 if class_is_multiarch_p
2022 then
2023 params="gdbarch, ${actual}"
2024 else
2025 params="${actual}"
2026 fi
2027 fi
2028 if [ "x${returntype}" = "xvoid" ]
2029 then
2030 printf " gdbarch->${function} (${params});\n"
2031 else
2032 printf " return gdbarch->${function} (${params});\n"
2033 fi
2034 printf "}\n"
2035 printf "\n"
2036 printf "void\n"
2037 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2038 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2039 printf "{\n"
2040 printf " gdbarch->${function} = ${function};\n"
2041 printf "}\n"
2042 elif class_is_variable_p
2043 then
2044 printf "\n"
2045 printf "${returntype}\n"
2046 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2047 printf "{\n"
2048 printf " gdb_assert (gdbarch != NULL);\n"
2049 if [ "x${invalid_p}" = "x0" ]
2050 then
2051 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2052 elif [ -n "${invalid_p}" ]
2053 then
2054 printf " /* Check variable is valid. */\n"
2055 printf " gdb_assert (!(${invalid_p}));\n"
2056 elif [ -n "${predefault}" ]
2057 then
2058 printf " /* Check variable changed from pre-default. */\n"
2059 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2060 fi
2061 printf " if (gdbarch_debug >= 2)\n"
2062 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2063 printf " return gdbarch->${function};\n"
2064 printf "}\n"
2065 printf "\n"
2066 printf "void\n"
2067 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2068 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2069 printf "{\n"
2070 printf " gdbarch->${function} = ${function};\n"
2071 printf "}\n"
2072 elif class_is_info_p
2073 then
2074 printf "\n"
2075 printf "${returntype}\n"
2076 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2077 printf "{\n"
2078 printf " gdb_assert (gdbarch != NULL);\n"
2079 printf " if (gdbarch_debug >= 2)\n"
2080 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2081 printf " return gdbarch->${function};\n"
2082 printf "}\n"
2083 fi
2084 done
2085
2086 # All the trailing guff
2087 cat <<EOF
2088
2089
2090 /* Keep a registry of per-architecture data-pointers required by GDB
2091 modules. */
2092
2093 struct gdbarch_data
2094 {
2095 unsigned index;
2096 int init_p;
2097 gdbarch_data_pre_init_ftype *pre_init;
2098 gdbarch_data_post_init_ftype *post_init;
2099 };
2100
2101 struct gdbarch_data_registration
2102 {
2103 struct gdbarch_data *data;
2104 struct gdbarch_data_registration *next;
2105 };
2106
2107 struct gdbarch_data_registry
2108 {
2109 unsigned nr;
2110 struct gdbarch_data_registration *registrations;
2111 };
2112
2113 struct gdbarch_data_registry gdbarch_data_registry =
2114 {
2115 0, NULL,
2116 };
2117
2118 static struct gdbarch_data *
2119 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2120 gdbarch_data_post_init_ftype *post_init)
2121 {
2122 struct gdbarch_data_registration **curr;
2123
2124 /* Append the new registration. */
2125 for (curr = &gdbarch_data_registry.registrations;
2126 (*curr) != NULL;
2127 curr = &(*curr)->next);
2128 (*curr) = XNEW (struct gdbarch_data_registration);
2129 (*curr)->next = NULL;
2130 (*curr)->data = XNEW (struct gdbarch_data);
2131 (*curr)->data->index = gdbarch_data_registry.nr++;
2132 (*curr)->data->pre_init = pre_init;
2133 (*curr)->data->post_init = post_init;
2134 (*curr)->data->init_p = 1;
2135 return (*curr)->data;
2136 }
2137
2138 struct gdbarch_data *
2139 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2140 {
2141 return gdbarch_data_register (pre_init, NULL);
2142 }
2143
2144 struct gdbarch_data *
2145 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2146 {
2147 return gdbarch_data_register (NULL, post_init);
2148 }
2149
2150 /* Create/delete the gdbarch data vector. */
2151
2152 static void
2153 alloc_gdbarch_data (struct gdbarch *gdbarch)
2154 {
2155 gdb_assert (gdbarch->data == NULL);
2156 gdbarch->nr_data = gdbarch_data_registry.nr;
2157 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2158 }
2159
2160 /* Initialize the current value of the specified per-architecture
2161 data-pointer. */
2162
2163 void
2164 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2165 struct gdbarch_data *data,
2166 void *pointer)
2167 {
2168 gdb_assert (data->index < gdbarch->nr_data);
2169 gdb_assert (gdbarch->data[data->index] == NULL);
2170 gdb_assert (data->pre_init == NULL);
2171 gdbarch->data[data->index] = pointer;
2172 }
2173
2174 /* Return the current value of the specified per-architecture
2175 data-pointer. */
2176
2177 void *
2178 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2179 {
2180 gdb_assert (data->index < gdbarch->nr_data);
2181 if (gdbarch->data[data->index] == NULL)
2182 {
2183 /* The data-pointer isn't initialized, call init() to get a
2184 value. */
2185 if (data->pre_init != NULL)
2186 /* Mid architecture creation: pass just the obstack, and not
2187 the entire architecture, as that way it isn't possible for
2188 pre-init code to refer to undefined architecture
2189 fields. */
2190 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2191 else if (gdbarch->initialized_p
2192 && data->post_init != NULL)
2193 /* Post architecture creation: pass the entire architecture
2194 (as all fields are valid), but be careful to also detect
2195 recursive references. */
2196 {
2197 gdb_assert (data->init_p);
2198 data->init_p = 0;
2199 gdbarch->data[data->index] = data->post_init (gdbarch);
2200 data->init_p = 1;
2201 }
2202 else
2203 /* The architecture initialization hasn't completed - punt -
2204 hope that the caller knows what they are doing. Once
2205 deprecated_set_gdbarch_data has been initialized, this can be
2206 changed to an internal error. */
2207 return NULL;
2208 gdb_assert (gdbarch->data[data->index] != NULL);
2209 }
2210 return gdbarch->data[data->index];
2211 }
2212
2213
2214 /* Keep a registry of the architectures known by GDB. */
2215
2216 struct gdbarch_registration
2217 {
2218 enum bfd_architecture bfd_architecture;
2219 gdbarch_init_ftype *init;
2220 gdbarch_dump_tdep_ftype *dump_tdep;
2221 struct gdbarch_list *arches;
2222 struct gdbarch_registration *next;
2223 };
2224
2225 static struct gdbarch_registration *gdbarch_registry = NULL;
2226
2227 static void
2228 append_name (const char ***buf, int *nr, const char *name)
2229 {
2230 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2231 (*buf)[*nr] = name;
2232 *nr += 1;
2233 }
2234
2235 const char **
2236 gdbarch_printable_names (void)
2237 {
2238 /* Accumulate a list of names based on the registed list of
2239 architectures. */
2240 int nr_arches = 0;
2241 const char **arches = NULL;
2242 struct gdbarch_registration *rego;
2243
2244 for (rego = gdbarch_registry;
2245 rego != NULL;
2246 rego = rego->next)
2247 {
2248 const struct bfd_arch_info *ap;
2249 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2250 if (ap == NULL)
2251 internal_error (__FILE__, __LINE__,
2252 _("gdbarch_architecture_names: multi-arch unknown"));
2253 do
2254 {
2255 append_name (&arches, &nr_arches, ap->printable_name);
2256 ap = ap->next;
2257 }
2258 while (ap != NULL);
2259 }
2260 append_name (&arches, &nr_arches, NULL);
2261 return arches;
2262 }
2263
2264
2265 void
2266 gdbarch_register (enum bfd_architecture bfd_architecture,
2267 gdbarch_init_ftype *init,
2268 gdbarch_dump_tdep_ftype *dump_tdep)
2269 {
2270 struct gdbarch_registration **curr;
2271 const struct bfd_arch_info *bfd_arch_info;
2272
2273 /* Check that BFD recognizes this architecture */
2274 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2275 if (bfd_arch_info == NULL)
2276 {
2277 internal_error (__FILE__, __LINE__,
2278 _("gdbarch: Attempt to register "
2279 "unknown architecture (%d)"),
2280 bfd_architecture);
2281 }
2282 /* Check that we haven't seen this architecture before. */
2283 for (curr = &gdbarch_registry;
2284 (*curr) != NULL;
2285 curr = &(*curr)->next)
2286 {
2287 if (bfd_architecture == (*curr)->bfd_architecture)
2288 internal_error (__FILE__, __LINE__,
2289 _("gdbarch: Duplicate registration "
2290 "of architecture (%s)"),
2291 bfd_arch_info->printable_name);
2292 }
2293 /* log it */
2294 if (gdbarch_debug)
2295 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2296 bfd_arch_info->printable_name,
2297 host_address_to_string (init));
2298 /* Append it */
2299 (*curr) = XNEW (struct gdbarch_registration);
2300 (*curr)->bfd_architecture = bfd_architecture;
2301 (*curr)->init = init;
2302 (*curr)->dump_tdep = dump_tdep;
2303 (*curr)->arches = NULL;
2304 (*curr)->next = NULL;
2305 }
2306
2307 void
2308 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2309 gdbarch_init_ftype *init)
2310 {
2311 gdbarch_register (bfd_architecture, init, NULL);
2312 }
2313
2314
2315 /* Look for an architecture using gdbarch_info. */
2316
2317 struct gdbarch_list *
2318 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2319 const struct gdbarch_info *info)
2320 {
2321 for (; arches != NULL; arches = arches->next)
2322 {
2323 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2324 continue;
2325 if (info->byte_order != arches->gdbarch->byte_order)
2326 continue;
2327 if (info->osabi != arches->gdbarch->osabi)
2328 continue;
2329 if (info->target_desc != arches->gdbarch->target_desc)
2330 continue;
2331 return arches;
2332 }
2333 return NULL;
2334 }
2335
2336
2337 /* Find an architecture that matches the specified INFO. Create a new
2338 architecture if needed. Return that new architecture. */
2339
2340 struct gdbarch *
2341 gdbarch_find_by_info (struct gdbarch_info info)
2342 {
2343 struct gdbarch *new_gdbarch;
2344 struct gdbarch_registration *rego;
2345
2346 /* Fill in missing parts of the INFO struct using a number of
2347 sources: "set ..."; INFOabfd supplied; and the global
2348 defaults. */
2349 gdbarch_info_fill (&info);
2350
2351 /* Must have found some sort of architecture. */
2352 gdb_assert (info.bfd_arch_info != NULL);
2353
2354 if (gdbarch_debug)
2355 {
2356 fprintf_unfiltered (gdb_stdlog,
2357 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2358 (info.bfd_arch_info != NULL
2359 ? info.bfd_arch_info->printable_name
2360 : "(null)"));
2361 fprintf_unfiltered (gdb_stdlog,
2362 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2363 info.byte_order,
2364 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2365 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2366 : "default"));
2367 fprintf_unfiltered (gdb_stdlog,
2368 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2369 info.osabi, gdbarch_osabi_name (info.osabi));
2370 fprintf_unfiltered (gdb_stdlog,
2371 "gdbarch_find_by_info: info.abfd %s\n",
2372 host_address_to_string (info.abfd));
2373 fprintf_unfiltered (gdb_stdlog,
2374 "gdbarch_find_by_info: info.tdep_info %s\n",
2375 host_address_to_string (info.tdep_info));
2376 }
2377
2378 /* Find the tdep code that knows about this architecture. */
2379 for (rego = gdbarch_registry;
2380 rego != NULL;
2381 rego = rego->next)
2382 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2383 break;
2384 if (rego == NULL)
2385 {
2386 if (gdbarch_debug)
2387 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2388 "No matching architecture\n");
2389 return 0;
2390 }
2391
2392 /* Ask the tdep code for an architecture that matches "info". */
2393 new_gdbarch = rego->init (info, rego->arches);
2394
2395 /* Did the tdep code like it? No. Reject the change and revert to
2396 the old architecture. */
2397 if (new_gdbarch == NULL)
2398 {
2399 if (gdbarch_debug)
2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2401 "Target rejected architecture\n");
2402 return NULL;
2403 }
2404
2405 /* Is this a pre-existing architecture (as determined by already
2406 being initialized)? Move it to the front of the architecture
2407 list (keeping the list sorted Most Recently Used). */
2408 if (new_gdbarch->initialized_p)
2409 {
2410 struct gdbarch_list **list;
2411 struct gdbarch_list *self;
2412 if (gdbarch_debug)
2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2414 "Previous architecture %s (%s) selected\n",
2415 host_address_to_string (new_gdbarch),
2416 new_gdbarch->bfd_arch_info->printable_name);
2417 /* Find the existing arch in the list. */
2418 for (list = &rego->arches;
2419 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2420 list = &(*list)->next);
2421 /* It had better be in the list of architectures. */
2422 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2423 /* Unlink SELF. */
2424 self = (*list);
2425 (*list) = self->next;
2426 /* Insert SELF at the front. */
2427 self->next = rego->arches;
2428 rego->arches = self;
2429 /* Return it. */
2430 return new_gdbarch;
2431 }
2432
2433 /* It's a new architecture. */
2434 if (gdbarch_debug)
2435 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2436 "New architecture %s (%s) selected\n",
2437 host_address_to_string (new_gdbarch),
2438 new_gdbarch->bfd_arch_info->printable_name);
2439
2440 /* Insert the new architecture into the front of the architecture
2441 list (keep the list sorted Most Recently Used). */
2442 {
2443 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2444 self->next = rego->arches;
2445 self->gdbarch = new_gdbarch;
2446 rego->arches = self;
2447 }
2448
2449 /* Check that the newly installed architecture is valid. Plug in
2450 any post init values. */
2451 new_gdbarch->dump_tdep = rego->dump_tdep;
2452 verify_gdbarch (new_gdbarch);
2453 new_gdbarch->initialized_p = 1;
2454
2455 if (gdbarch_debug)
2456 gdbarch_dump (new_gdbarch, gdb_stdlog);
2457
2458 return new_gdbarch;
2459 }
2460
2461 /* Make the specified architecture current. */
2462
2463 void
2464 set_target_gdbarch (struct gdbarch *new_gdbarch)
2465 {
2466 gdb_assert (new_gdbarch != NULL);
2467 gdb_assert (new_gdbarch->initialized_p);
2468 current_inferior ()->gdbarch = new_gdbarch;
2469 observer_notify_architecture_changed (new_gdbarch);
2470 registers_changed ();
2471 }
2472
2473 /* Return the current inferior's arch. */
2474
2475 struct gdbarch *
2476 target_gdbarch (void)
2477 {
2478 return current_inferior ()->gdbarch;
2479 }
2480
2481 extern void _initialize_gdbarch (void);
2482
2483 void
2484 _initialize_gdbarch (void)
2485 {
2486 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2487 Set architecture debugging."), _("\\
2488 Show architecture debugging."), _("\\
2489 When non-zero, architecture debugging is enabled."),
2490 NULL,
2491 show_gdbarch_debug,
2492 &setdebuglist, &showdebuglist);
2493 }
2494 EOF
2495
2496 # close things off
2497 exec 1>&2
2498 #../move-if-change new-gdbarch.c gdbarch.c
2499 compare_new gdbarch.c
This page took 0.106752 seconds and 4 git commands to generate.