Implementing catch syscall.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Fix up the state resulting from successfully single-stepping a
658 # displaced instruction, to give the result we would have gotten from
659 # stepping the instruction in its original location.
660 #
661 # REGS is the register state resulting from single-stepping the
662 # displaced instruction.
663 #
664 # CLOSURE is the result from the matching call to
665 # gdbarch_displaced_step_copy_insn.
666 #
667 # If you provide gdbarch_displaced_step_copy_insn.but not this
668 # function, then GDB assumes that no fixup is needed after
669 # single-stepping the instruction.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675 # Free a closure returned by gdbarch_displaced_step_copy_insn.
676 #
677 # If you provide gdbarch_displaced_step_copy_insn, you must provide
678 # this function as well.
679 #
680 # If your architecture uses closures that don't need to be freed, then
681 # you can use simple_displaced_step_free_closure here.
682 #
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687 # Return the address of an appropriate place to put displaced
688 # instructions while we step over them. There need only be one such
689 # place, since we're only stepping one thread over a breakpoint at a
690 # time.
691 #
692 # For a general explanation of displaced stepping and how GDB uses it,
693 # see the comments in infrun.c.
694 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
696 # Refresh overlay mapped state for section OSECT.
697 F:void:overlay_update:struct obj_section *osect:osect
698
699 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
700
701 # Handle special encoding of static variables in stabs debug info.
702 F:char *:static_transform_name:char *name:name
703 # Set if the address in N_SO or N_FUN stabs may be zero.
704 v:int:sofun_address_maybe_missing:::0:0::0
705
706 # Parse the instruction at ADDR storing in the record execution log
707 # the registers REGCACHE and memory ranges that will be affected when
708 # the instruction executes, along with their current values.
709 # Return -1 if something goes wrong, 0 otherwise.
710 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
712 # Signal translation: translate inferior's signal (host's) number into
713 # GDB's representation.
714 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715 # Signal translation: translate GDB's signal number into inferior's host
716 # signal number.
717 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
718
719 # Extra signal info inspection.
720 #
721 # Return a type suitable to inspect extra signal information.
722 M:struct type *:get_siginfo_type:void:
723
724 # Record architecture-specific information from the symbol table.
725 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
726
727 # Function for the 'catch syscall' feature.
728
729 # Get architecture-specific system calls information from registers.
730 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
731
732 # True if the list of shared libraries is one and only for all
733 # processes, as opposed to a list of shared libraries per inferior.
734 # This usually means that all processes, although may or may not share
735 # an address space, will see the same set of symbols at the same
736 # addresses.
737 v:int:has_global_solist:::0:0::0
738
739 # On some targets, even though each inferior has its own private
740 # address space, the debug interface takes care of making breakpoints
741 # visible to all address spaces automatically. For such cases,
742 # this property should be set to true.
743 v:int:has_global_breakpoints:::0:0::0
744 EOF
745 }
746
747 #
748 # The .log file
749 #
750 exec > new-gdbarch.log
751 function_list | while do_read
752 do
753 cat <<EOF
754 ${class} ${returntype} ${function} ($formal)
755 EOF
756 for r in ${read}
757 do
758 eval echo \"\ \ \ \ ${r}=\${${r}}\"
759 done
760 if class_is_predicate_p && fallback_default_p
761 then
762 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
763 kill $$
764 exit 1
765 fi
766 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
767 then
768 echo "Error: postdefault is useless when invalid_p=0" 1>&2
769 kill $$
770 exit 1
771 fi
772 if class_is_multiarch_p
773 then
774 if class_is_predicate_p ; then :
775 elif test "x${predefault}" = "x"
776 then
777 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
778 kill $$
779 exit 1
780 fi
781 fi
782 echo ""
783 done
784
785 exec 1>&2
786 compare_new gdbarch.log
787
788
789 copyright ()
790 {
791 cat <<EOF
792 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
793
794 /* Dynamic architecture support for GDB, the GNU debugger.
795
796 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
797 Free Software Foundation, Inc.
798
799 This file is part of GDB.
800
801 This program is free software; you can redistribute it and/or modify
802 it under the terms of the GNU General Public License as published by
803 the Free Software Foundation; either version 3 of the License, or
804 (at your option) any later version.
805
806 This program is distributed in the hope that it will be useful,
807 but WITHOUT ANY WARRANTY; without even the implied warranty of
808 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
809 GNU General Public License for more details.
810
811 You should have received a copy of the GNU General Public License
812 along with this program. If not, see <http://www.gnu.org/licenses/>. */
813
814 /* This file was created with the aid of \`\`gdbarch.sh''.
815
816 The Bourne shell script \`\`gdbarch.sh'' creates the files
817 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
818 against the existing \`\`gdbarch.[hc]''. Any differences found
819 being reported.
820
821 If editing this file, please also run gdbarch.sh and merge any
822 changes into that script. Conversely, when making sweeping changes
823 to this file, modifying gdbarch.sh and using its output may prove
824 easier. */
825
826 EOF
827 }
828
829 #
830 # The .h file
831 #
832
833 exec > new-gdbarch.h
834 copyright
835 cat <<EOF
836 #ifndef GDBARCH_H
837 #define GDBARCH_H
838
839 struct floatformat;
840 struct ui_file;
841 struct frame_info;
842 struct value;
843 struct objfile;
844 struct obj_section;
845 struct minimal_symbol;
846 struct regcache;
847 struct reggroup;
848 struct regset;
849 struct disassemble_info;
850 struct target_ops;
851 struct obstack;
852 struct bp_target_info;
853 struct target_desc;
854 struct displaced_step_closure;
855 struct core_regset_section;
856 struct syscall;
857
858 /* The architecture associated with the connection to the target.
859
860 The architecture vector provides some information that is really
861 a property of the target: The layout of certain packets, for instance;
862 or the solib_ops vector. Etc. To differentiate architecture accesses
863 to per-target properties from per-thread/per-frame/per-objfile properties,
864 accesses to per-target properties should be made through target_gdbarch.
865
866 Eventually, when support for multiple targets is implemented in
867 GDB, this global should be made target-specific. */
868 extern struct gdbarch *target_gdbarch;
869 EOF
870
871 # function typedef's
872 printf "\n"
873 printf "\n"
874 printf "/* The following are pre-initialized by GDBARCH. */\n"
875 function_list | while do_read
876 do
877 if class_is_info_p
878 then
879 printf "\n"
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
882 fi
883 done
884
885 # function typedef's
886 printf "\n"
887 printf "\n"
888 printf "/* The following are initialized by the target dependent code. */\n"
889 function_list | while do_read
890 do
891 if [ -n "${comment}" ]
892 then
893 echo "${comment}" | sed \
894 -e '2 s,#,/*,' \
895 -e '3,$ s,#, ,' \
896 -e '$ s,$, */,'
897 fi
898
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
903 fi
904 if class_is_variable_p
905 then
906 printf "\n"
907 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
908 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
909 fi
910 if class_is_function_p
911 then
912 printf "\n"
913 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
914 then
915 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
916 elif class_is_multiarch_p
917 then
918 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
919 else
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
921 fi
922 if [ "x${formal}" = "xvoid" ]
923 then
924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
925 else
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
927 fi
928 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
929 fi
930 done
931
932 # close it off
933 cat <<EOF
934
935 /* Definition for an unknown syscall, used basically in error-cases. */
936 #define UNKNOWN_SYSCALL (-1)
937
938 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
939
940
941 /* Mechanism for co-ordinating the selection of a specific
942 architecture.
943
944 GDB targets (*-tdep.c) can register an interest in a specific
945 architecture. Other GDB components can register a need to maintain
946 per-architecture data.
947
948 The mechanisms below ensures that there is only a loose connection
949 between the set-architecture command and the various GDB
950 components. Each component can independently register their need
951 to maintain architecture specific data with gdbarch.
952
953 Pragmatics:
954
955 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
956 didn't scale.
957
958 The more traditional mega-struct containing architecture specific
959 data for all the various GDB components was also considered. Since
960 GDB is built from a variable number of (fairly independent)
961 components it was determined that the global aproach was not
962 applicable. */
963
964
965 /* Register a new architectural family with GDB.
966
967 Register support for the specified ARCHITECTURE with GDB. When
968 gdbarch determines that the specified architecture has been
969 selected, the corresponding INIT function is called.
970
971 --
972
973 The INIT function takes two parameters: INFO which contains the
974 information available to gdbarch about the (possibly new)
975 architecture; ARCHES which is a list of the previously created
976 \`\`struct gdbarch'' for this architecture.
977
978 The INFO parameter is, as far as possible, be pre-initialized with
979 information obtained from INFO.ABFD or the global defaults.
980
981 The ARCHES parameter is a linked list (sorted most recently used)
982 of all the previously created architures for this architecture
983 family. The (possibly NULL) ARCHES->gdbarch can used to access
984 values from the previously selected architecture for this
985 architecture family.
986
987 The INIT function shall return any of: NULL - indicating that it
988 doesn't recognize the selected architecture; an existing \`\`struct
989 gdbarch'' from the ARCHES list - indicating that the new
990 architecture is just a synonym for an earlier architecture (see
991 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
992 - that describes the selected architecture (see gdbarch_alloc()).
993
994 The DUMP_TDEP function shall print out all target specific values.
995 Care should be taken to ensure that the function works in both the
996 multi-arch and non- multi-arch cases. */
997
998 struct gdbarch_list
999 {
1000 struct gdbarch *gdbarch;
1001 struct gdbarch_list *next;
1002 };
1003
1004 struct gdbarch_info
1005 {
1006 /* Use default: NULL (ZERO). */
1007 const struct bfd_arch_info *bfd_arch_info;
1008
1009 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1010 int byte_order;
1011
1012 int byte_order_for_code;
1013
1014 /* Use default: NULL (ZERO). */
1015 bfd *abfd;
1016
1017 /* Use default: NULL (ZERO). */
1018 struct gdbarch_tdep_info *tdep_info;
1019
1020 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1021 enum gdb_osabi osabi;
1022
1023 /* Use default: NULL (ZERO). */
1024 const struct target_desc *target_desc;
1025 };
1026
1027 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1028 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1029
1030 /* DEPRECATED - use gdbarch_register() */
1031 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
1033 extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
1037
1038 /* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043 extern const char **gdbarch_printable_names (void);
1044
1045
1046 /* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
1049 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1050
1051
1052 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1053 basic initialization using values obtained from the INFO and TDEP
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
1060 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
1064 extern void gdbarch_free (struct gdbarch *);
1065
1066
1067 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1068 obstack. The memory is freed when the corresponding architecture
1069 is also freed. */
1070
1071 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1072 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1073 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1074
1075
1076 /* Helper function. Force an update of the current architecture.
1077
1078 The actual architecture selected is determined by INFO, \`\`(gdb) set
1079 architecture'' et.al., the existing architecture and BFD's default
1080 architecture. INFO should be initialized to zero and then selected
1081 fields should be updated.
1082
1083 Returns non-zero if the update succeeds */
1084
1085 extern int gdbarch_update_p (struct gdbarch_info info);
1086
1087
1088 /* Helper function. Find an architecture matching info.
1089
1090 INFO should be initialized using gdbarch_info_init, relevant fields
1091 set, and then finished using gdbarch_info_fill.
1092
1093 Returns the corresponding architecture, or NULL if no matching
1094 architecture was found. */
1095
1096 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1097
1098
1099 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1100
1101 FIXME: kettenis/20031124: Of the functions that follow, only
1102 gdbarch_from_bfd is supposed to survive. The others will
1103 dissappear since in the future GDB will (hopefully) be truly
1104 multi-arch. However, for now we're still stuck with the concept of
1105 a single active architecture. */
1106
1107 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1108
1109
1110 /* Register per-architecture data-pointer.
1111
1112 Reserve space for a per-architecture data-pointer. An identifier
1113 for the reserved data-pointer is returned. That identifer should
1114 be saved in a local static variable.
1115
1116 Memory for the per-architecture data shall be allocated using
1117 gdbarch_obstack_zalloc. That memory will be deleted when the
1118 corresponding architecture object is deleted.
1119
1120 When a previously created architecture is re-selected, the
1121 per-architecture data-pointer for that previous architecture is
1122 restored. INIT() is not re-called.
1123
1124 Multiple registrarants for any architecture are allowed (and
1125 strongly encouraged). */
1126
1127 struct gdbarch_data;
1128
1129 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1130 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1131 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1132 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1133 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1134 struct gdbarch_data *data,
1135 void *pointer);
1136
1137 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1138
1139
1140 /* Set the dynamic target-system-dependent parameters (architecture,
1141 byte-order, ...) using information found in the BFD */
1142
1143 extern void set_gdbarch_from_file (bfd *);
1144
1145
1146 /* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149 extern void initialize_current_architecture (void);
1150
1151 /* gdbarch trace variable */
1152 extern int gdbarch_debug;
1153
1154 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1155
1156 #endif
1157 EOF
1158 exec 1>&2
1159 #../move-if-change new-gdbarch.h gdbarch.h
1160 compare_new gdbarch.h
1161
1162
1163 #
1164 # C file
1165 #
1166
1167 exec > new-gdbarch.c
1168 copyright
1169 cat <<EOF
1170
1171 #include "defs.h"
1172 #include "arch-utils.h"
1173
1174 #include "gdbcmd.h"
1175 #include "inferior.h"
1176 #include "symcat.h"
1177
1178 #include "floatformat.h"
1179
1180 #include "gdb_assert.h"
1181 #include "gdb_string.h"
1182 #include "reggroups.h"
1183 #include "osabi.h"
1184 #include "gdb_obstack.h"
1185 #include "observer.h"
1186 #include "regcache.h"
1187
1188 /* Static function declarations */
1189
1190 static void alloc_gdbarch_data (struct gdbarch *);
1191
1192 /* Non-zero if we want to trace architecture code. */
1193
1194 #ifndef GDBARCH_DEBUG
1195 #define GDBARCH_DEBUG 0
1196 #endif
1197 int gdbarch_debug = GDBARCH_DEBUG;
1198 static void
1199 show_gdbarch_debug (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c, const char *value)
1201 {
1202 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1203 }
1204
1205 static const char *
1206 pformat (const struct floatformat **format)
1207 {
1208 if (format == NULL)
1209 return "(null)";
1210 else
1211 /* Just print out one of them - this is only for diagnostics. */
1212 return format[0]->name;
1213 }
1214
1215 EOF
1216
1217 # gdbarch open the gdbarch object
1218 printf "\n"
1219 printf "/* Maintain the struct gdbarch object */\n"
1220 printf "\n"
1221 printf "struct gdbarch\n"
1222 printf "{\n"
1223 printf " /* Has this architecture been fully initialized? */\n"
1224 printf " int initialized_p;\n"
1225 printf "\n"
1226 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1227 printf " struct obstack *obstack;\n"
1228 printf "\n"
1229 printf " /* basic architectural information */\n"
1230 function_list | while do_read
1231 do
1232 if class_is_info_p
1233 then
1234 printf " ${returntype} ${function};\n"
1235 fi
1236 done
1237 printf "\n"
1238 printf " /* target specific vector. */\n"
1239 printf " struct gdbarch_tdep *tdep;\n"
1240 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241 printf "\n"
1242 printf " /* per-architecture data-pointers */\n"
1243 printf " unsigned nr_data;\n"
1244 printf " void **data;\n"
1245 printf "\n"
1246 printf " /* per-architecture swap-regions */\n"
1247 printf " struct gdbarch_swap *swap;\n"
1248 printf "\n"
1249 cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1266 field is dumped out
1267
1268 \`\`startup_gdbarch()'': Append an initial value to the static
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276 EOF
1277 function_list | while do_read
1278 do
1279 if class_is_variable_p
1280 then
1281 printf " ${returntype} ${function};\n"
1282 elif class_is_function_p
1283 then
1284 printf " gdbarch_${function}_ftype *${function};\n"
1285 fi
1286 done
1287 printf "};\n"
1288
1289 # A pre-initialized vector
1290 printf "\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* The default architecture uses host values (for want of a better
1294 choice). */
1295 EOF
1296 printf "\n"
1297 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298 printf "\n"
1299 printf "struct gdbarch startup_gdbarch =\n"
1300 printf "{\n"
1301 printf " 1, /* Always initialized. */\n"
1302 printf " NULL, /* The obstack. */\n"
1303 printf " /* basic architecture information */\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " ${staticdefault}, /* ${function} */\n"
1309 fi
1310 done
1311 cat <<EOF
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317 EOF
1318 function_list | while do_read
1319 do
1320 if class_is_function_p || class_is_variable_p
1321 then
1322 printf " ${staticdefault}, /* ${function} */\n"
1323 fi
1324 done
1325 cat <<EOF
1326 /* startup_gdbarch() */
1327 };
1328
1329 struct gdbarch *target_gdbarch = &startup_gdbarch;
1330 EOF
1331
1332 # Create a new gdbarch struct
1333 cat <<EOF
1334
1335 /* Create a new \`\`struct gdbarch'' based on information provided by
1336 \`\`struct gdbarch_info''. */
1337 EOF
1338 printf "\n"
1339 cat <<EOF
1340 struct gdbarch *
1341 gdbarch_alloc (const struct gdbarch_info *info,
1342 struct gdbarch_tdep *tdep)
1343 {
1344 struct gdbarch *gdbarch;
1345
1346 /* Create an obstack for allocating all the per-architecture memory,
1347 then use that to allocate the architecture vector. */
1348 struct obstack *obstack = XMALLOC (struct obstack);
1349 obstack_init (obstack);
1350 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1351 memset (gdbarch, 0, sizeof (*gdbarch));
1352 gdbarch->obstack = obstack;
1353
1354 alloc_gdbarch_data (gdbarch);
1355
1356 gdbarch->tdep = tdep;
1357 EOF
1358 printf "\n"
1359 function_list | while do_read
1360 do
1361 if class_is_info_p
1362 then
1363 printf " gdbarch->${function} = info->${function};\n"
1364 fi
1365 done
1366 printf "\n"
1367 printf " /* Force the explicit initialization of these. */\n"
1368 function_list | while do_read
1369 do
1370 if class_is_function_p || class_is_variable_p
1371 then
1372 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1373 then
1374 printf " gdbarch->${function} = ${predefault};\n"
1375 fi
1376 fi
1377 done
1378 cat <<EOF
1379 /* gdbarch_alloc() */
1380
1381 return gdbarch;
1382 }
1383 EOF
1384
1385 # Free a gdbarch struct.
1386 printf "\n"
1387 printf "\n"
1388 cat <<EOF
1389 /* Allocate extra space using the per-architecture obstack. */
1390
1391 void *
1392 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1393 {
1394 void *data = obstack_alloc (arch->obstack, size);
1395 memset (data, 0, size);
1396 return data;
1397 }
1398
1399
1400 /* Free a gdbarch struct. This should never happen in normal
1401 operation --- once you've created a gdbarch, you keep it around.
1402 However, if an architecture's init function encounters an error
1403 building the structure, it may need to clean up a partially
1404 constructed gdbarch. */
1405
1406 void
1407 gdbarch_free (struct gdbarch *arch)
1408 {
1409 struct obstack *obstack;
1410 gdb_assert (arch != NULL);
1411 gdb_assert (!arch->initialized_p);
1412 obstack = arch->obstack;
1413 obstack_free (obstack, 0); /* Includes the ARCH. */
1414 xfree (obstack);
1415 }
1416 EOF
1417
1418 # verify a new architecture
1419 cat <<EOF
1420
1421
1422 /* Ensure that all values in a GDBARCH are reasonable. */
1423
1424 static void
1425 verify_gdbarch (struct gdbarch *gdbarch)
1426 {
1427 struct ui_file *log;
1428 struct cleanup *cleanups;
1429 long length;
1430 char *buf;
1431 log = mem_fileopen ();
1432 cleanups = make_cleanup_ui_file_delete (log);
1433 /* fundamental */
1434 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1435 fprintf_unfiltered (log, "\n\tbyte-order");
1436 if (gdbarch->bfd_arch_info == NULL)
1437 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1438 /* Check those that need to be defined for the given multi-arch level. */
1439 EOF
1440 function_list | while do_read
1441 do
1442 if class_is_function_p || class_is_variable_p
1443 then
1444 if [ "x${invalid_p}" = "x0" ]
1445 then
1446 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1447 elif class_is_predicate_p
1448 then
1449 printf " /* Skip verify of ${function}, has predicate */\n"
1450 # FIXME: See do_read for potential simplification
1451 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1452 then
1453 printf " if (${invalid_p})\n"
1454 printf " gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1456 then
1457 printf " if (gdbarch->${function} == ${predefault})\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${postdefault}" ]
1460 then
1461 printf " if (gdbarch->${function} == 0)\n"
1462 printf " gdbarch->${function} = ${postdefault};\n"
1463 elif [ -n "${invalid_p}" ]
1464 then
1465 printf " if (${invalid_p})\n"
1466 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1467 elif [ -n "${predefault}" ]
1468 then
1469 printf " if (gdbarch->${function} == ${predefault})\n"
1470 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1471 fi
1472 fi
1473 done
1474 cat <<EOF
1475 buf = ui_file_xstrdup (log, &length);
1476 make_cleanup (xfree, buf);
1477 if (length > 0)
1478 internal_error (__FILE__, __LINE__,
1479 _("verify_gdbarch: the following are invalid ...%s"),
1480 buf);
1481 do_cleanups (cleanups);
1482 }
1483 EOF
1484
1485 # dump the structure
1486 printf "\n"
1487 printf "\n"
1488 cat <<EOF
1489 /* Print out the details of the current architecture. */
1490
1491 void
1492 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1493 {
1494 const char *gdb_nm_file = "<not-defined>";
1495 #if defined (GDB_NM_FILE)
1496 gdb_nm_file = GDB_NM_FILE;
1497 #endif
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1500 gdb_nm_file);
1501 EOF
1502 function_list | sort -t: -k 3 | while do_read
1503 do
1504 # First the predicate
1505 if class_is_predicate_p
1506 then
1507 printf " fprintf_unfiltered (file,\n"
1508 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1509 printf " gdbarch_${function}_p (gdbarch));\n"
1510 fi
1511 # Print the corresponding value.
1512 if class_is_function_p
1513 then
1514 printf " fprintf_unfiltered (file,\n"
1515 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1516 printf " host_address_to_string (gdbarch->${function}));\n"
1517 else
1518 # It is a variable
1519 case "${print}:${returntype}" in
1520 :CORE_ADDR )
1521 fmt="%s"
1522 print="core_addr_to_string_nz (gdbarch->${function})"
1523 ;;
1524 :* )
1525 fmt="%s"
1526 print="plongest (gdbarch->${function})"
1527 ;;
1528 * )
1529 fmt="%s"
1530 ;;
1531 esac
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1534 printf " ${print});\n"
1535 fi
1536 done
1537 cat <<EOF
1538 if (gdbarch->dump_tdep != NULL)
1539 gdbarch->dump_tdep (gdbarch, file);
1540 }
1541 EOF
1542
1543
1544 # GET/SET
1545 printf "\n"
1546 cat <<EOF
1547 struct gdbarch_tdep *
1548 gdbarch_tdep (struct gdbarch *gdbarch)
1549 {
1550 if (gdbarch_debug >= 2)
1551 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1552 return gdbarch->tdep;
1553 }
1554 EOF
1555 printf "\n"
1556 function_list | while do_read
1557 do
1558 if class_is_predicate_p
1559 then
1560 printf "\n"
1561 printf "int\n"
1562 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1563 printf "{\n"
1564 printf " gdb_assert (gdbarch != NULL);\n"
1565 printf " return ${predicate};\n"
1566 printf "}\n"
1567 fi
1568 if class_is_function_p
1569 then
1570 printf "\n"
1571 printf "${returntype}\n"
1572 if [ "x${formal}" = "xvoid" ]
1573 then
1574 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1575 else
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1577 fi
1578 printf "{\n"
1579 printf " gdb_assert (gdbarch != NULL);\n"
1580 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1581 if class_is_predicate_p && test -n "${predefault}"
1582 then
1583 # Allow a call to a function with a predicate.
1584 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1585 fi
1586 printf " if (gdbarch_debug >= 2)\n"
1587 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1588 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1589 then
1590 if class_is_multiarch_p
1591 then
1592 params="gdbarch"
1593 else
1594 params=""
1595 fi
1596 else
1597 if class_is_multiarch_p
1598 then
1599 params="gdbarch, ${actual}"
1600 else
1601 params="${actual}"
1602 fi
1603 fi
1604 if [ "x${returntype}" = "xvoid" ]
1605 then
1606 printf " gdbarch->${function} (${params});\n"
1607 else
1608 printf " return gdbarch->${function} (${params});\n"
1609 fi
1610 printf "}\n"
1611 printf "\n"
1612 printf "void\n"
1613 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1614 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1615 printf "{\n"
1616 printf " gdbarch->${function} = ${function};\n"
1617 printf "}\n"
1618 elif class_is_variable_p
1619 then
1620 printf "\n"
1621 printf "${returntype}\n"
1622 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1623 printf "{\n"
1624 printf " gdb_assert (gdbarch != NULL);\n"
1625 if [ "x${invalid_p}" = "x0" ]
1626 then
1627 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1628 elif [ -n "${invalid_p}" ]
1629 then
1630 printf " /* Check variable is valid. */\n"
1631 printf " gdb_assert (!(${invalid_p}));\n"
1632 elif [ -n "${predefault}" ]
1633 then
1634 printf " /* Check variable changed from pre-default. */\n"
1635 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1636 fi
1637 printf " if (gdbarch_debug >= 2)\n"
1638 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1639 printf " return gdbarch->${function};\n"
1640 printf "}\n"
1641 printf "\n"
1642 printf "void\n"
1643 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1644 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1645 printf "{\n"
1646 printf " gdbarch->${function} = ${function};\n"
1647 printf "}\n"
1648 elif class_is_info_p
1649 then
1650 printf "\n"
1651 printf "${returntype}\n"
1652 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1653 printf "{\n"
1654 printf " gdb_assert (gdbarch != NULL);\n"
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 printf " return gdbarch->${function};\n"
1658 printf "}\n"
1659 fi
1660 done
1661
1662 # All the trailing guff
1663 cat <<EOF
1664
1665
1666 /* Keep a registry of per-architecture data-pointers required by GDB
1667 modules. */
1668
1669 struct gdbarch_data
1670 {
1671 unsigned index;
1672 int init_p;
1673 gdbarch_data_pre_init_ftype *pre_init;
1674 gdbarch_data_post_init_ftype *post_init;
1675 };
1676
1677 struct gdbarch_data_registration
1678 {
1679 struct gdbarch_data *data;
1680 struct gdbarch_data_registration *next;
1681 };
1682
1683 struct gdbarch_data_registry
1684 {
1685 unsigned nr;
1686 struct gdbarch_data_registration *registrations;
1687 };
1688
1689 struct gdbarch_data_registry gdbarch_data_registry =
1690 {
1691 0, NULL,
1692 };
1693
1694 static struct gdbarch_data *
1695 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1696 gdbarch_data_post_init_ftype *post_init)
1697 {
1698 struct gdbarch_data_registration **curr;
1699 /* Append the new registraration. */
1700 for (curr = &gdbarch_data_registry.registrations;
1701 (*curr) != NULL;
1702 curr = &(*curr)->next);
1703 (*curr) = XMALLOC (struct gdbarch_data_registration);
1704 (*curr)->next = NULL;
1705 (*curr)->data = XMALLOC (struct gdbarch_data);
1706 (*curr)->data->index = gdbarch_data_registry.nr++;
1707 (*curr)->data->pre_init = pre_init;
1708 (*curr)->data->post_init = post_init;
1709 (*curr)->data->init_p = 1;
1710 return (*curr)->data;
1711 }
1712
1713 struct gdbarch_data *
1714 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1715 {
1716 return gdbarch_data_register (pre_init, NULL);
1717 }
1718
1719 struct gdbarch_data *
1720 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1721 {
1722 return gdbarch_data_register (NULL, post_init);
1723 }
1724
1725 /* Create/delete the gdbarch data vector. */
1726
1727 static void
1728 alloc_gdbarch_data (struct gdbarch *gdbarch)
1729 {
1730 gdb_assert (gdbarch->data == NULL);
1731 gdbarch->nr_data = gdbarch_data_registry.nr;
1732 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1733 }
1734
1735 /* Initialize the current value of the specified per-architecture
1736 data-pointer. */
1737
1738 void
1739 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1740 struct gdbarch_data *data,
1741 void *pointer)
1742 {
1743 gdb_assert (data->index < gdbarch->nr_data);
1744 gdb_assert (gdbarch->data[data->index] == NULL);
1745 gdb_assert (data->pre_init == NULL);
1746 gdbarch->data[data->index] = pointer;
1747 }
1748
1749 /* Return the current value of the specified per-architecture
1750 data-pointer. */
1751
1752 void *
1753 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1754 {
1755 gdb_assert (data->index < gdbarch->nr_data);
1756 if (gdbarch->data[data->index] == NULL)
1757 {
1758 /* The data-pointer isn't initialized, call init() to get a
1759 value. */
1760 if (data->pre_init != NULL)
1761 /* Mid architecture creation: pass just the obstack, and not
1762 the entire architecture, as that way it isn't possible for
1763 pre-init code to refer to undefined architecture
1764 fields. */
1765 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1766 else if (gdbarch->initialized_p
1767 && data->post_init != NULL)
1768 /* Post architecture creation: pass the entire architecture
1769 (as all fields are valid), but be careful to also detect
1770 recursive references. */
1771 {
1772 gdb_assert (data->init_p);
1773 data->init_p = 0;
1774 gdbarch->data[data->index] = data->post_init (gdbarch);
1775 data->init_p = 1;
1776 }
1777 else
1778 /* The architecture initialization hasn't completed - punt -
1779 hope that the caller knows what they are doing. Once
1780 deprecated_set_gdbarch_data has been initialized, this can be
1781 changed to an internal error. */
1782 return NULL;
1783 gdb_assert (gdbarch->data[data->index] != NULL);
1784 }
1785 return gdbarch->data[data->index];
1786 }
1787
1788
1789 /* Keep a registry of the architectures known by GDB. */
1790
1791 struct gdbarch_registration
1792 {
1793 enum bfd_architecture bfd_architecture;
1794 gdbarch_init_ftype *init;
1795 gdbarch_dump_tdep_ftype *dump_tdep;
1796 struct gdbarch_list *arches;
1797 struct gdbarch_registration *next;
1798 };
1799
1800 static struct gdbarch_registration *gdbarch_registry = NULL;
1801
1802 static void
1803 append_name (const char ***buf, int *nr, const char *name)
1804 {
1805 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1806 (*buf)[*nr] = name;
1807 *nr += 1;
1808 }
1809
1810 const char **
1811 gdbarch_printable_names (void)
1812 {
1813 /* Accumulate a list of names based on the registed list of
1814 architectures. */
1815 enum bfd_architecture a;
1816 int nr_arches = 0;
1817 const char **arches = NULL;
1818 struct gdbarch_registration *rego;
1819 for (rego = gdbarch_registry;
1820 rego != NULL;
1821 rego = rego->next)
1822 {
1823 const struct bfd_arch_info *ap;
1824 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1825 if (ap == NULL)
1826 internal_error (__FILE__, __LINE__,
1827 _("gdbarch_architecture_names: multi-arch unknown"));
1828 do
1829 {
1830 append_name (&arches, &nr_arches, ap->printable_name);
1831 ap = ap->next;
1832 }
1833 while (ap != NULL);
1834 }
1835 append_name (&arches, &nr_arches, NULL);
1836 return arches;
1837 }
1838
1839
1840 void
1841 gdbarch_register (enum bfd_architecture bfd_architecture,
1842 gdbarch_init_ftype *init,
1843 gdbarch_dump_tdep_ftype *dump_tdep)
1844 {
1845 struct gdbarch_registration **curr;
1846 const struct bfd_arch_info *bfd_arch_info;
1847 /* Check that BFD recognizes this architecture */
1848 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1849 if (bfd_arch_info == NULL)
1850 {
1851 internal_error (__FILE__, __LINE__,
1852 _("gdbarch: Attempt to register unknown architecture (%d)"),
1853 bfd_architecture);
1854 }
1855 /* Check that we haven't seen this architecture before */
1856 for (curr = &gdbarch_registry;
1857 (*curr) != NULL;
1858 curr = &(*curr)->next)
1859 {
1860 if (bfd_architecture == (*curr)->bfd_architecture)
1861 internal_error (__FILE__, __LINE__,
1862 _("gdbarch: Duplicate registraration of architecture (%s)"),
1863 bfd_arch_info->printable_name);
1864 }
1865 /* log it */
1866 if (gdbarch_debug)
1867 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1868 bfd_arch_info->printable_name,
1869 host_address_to_string (init));
1870 /* Append it */
1871 (*curr) = XMALLOC (struct gdbarch_registration);
1872 (*curr)->bfd_architecture = bfd_architecture;
1873 (*curr)->init = init;
1874 (*curr)->dump_tdep = dump_tdep;
1875 (*curr)->arches = NULL;
1876 (*curr)->next = NULL;
1877 }
1878
1879 void
1880 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1881 gdbarch_init_ftype *init)
1882 {
1883 gdbarch_register (bfd_architecture, init, NULL);
1884 }
1885
1886
1887 /* Look for an architecture using gdbarch_info. */
1888
1889 struct gdbarch_list *
1890 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1891 const struct gdbarch_info *info)
1892 {
1893 for (; arches != NULL; arches = arches->next)
1894 {
1895 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1896 continue;
1897 if (info->byte_order != arches->gdbarch->byte_order)
1898 continue;
1899 if (info->osabi != arches->gdbarch->osabi)
1900 continue;
1901 if (info->target_desc != arches->gdbarch->target_desc)
1902 continue;
1903 return arches;
1904 }
1905 return NULL;
1906 }
1907
1908
1909 /* Find an architecture that matches the specified INFO. Create a new
1910 architecture if needed. Return that new architecture. */
1911
1912 struct gdbarch *
1913 gdbarch_find_by_info (struct gdbarch_info info)
1914 {
1915 struct gdbarch *new_gdbarch;
1916 struct gdbarch_registration *rego;
1917
1918 /* Fill in missing parts of the INFO struct using a number of
1919 sources: "set ..."; INFOabfd supplied; and the global
1920 defaults. */
1921 gdbarch_info_fill (&info);
1922
1923 /* Must have found some sort of architecture. */
1924 gdb_assert (info.bfd_arch_info != NULL);
1925
1926 if (gdbarch_debug)
1927 {
1928 fprintf_unfiltered (gdb_stdlog,
1929 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1930 (info.bfd_arch_info != NULL
1931 ? info.bfd_arch_info->printable_name
1932 : "(null)"));
1933 fprintf_unfiltered (gdb_stdlog,
1934 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1935 info.byte_order,
1936 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1937 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1938 : "default"));
1939 fprintf_unfiltered (gdb_stdlog,
1940 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1941 info.osabi, gdbarch_osabi_name (info.osabi));
1942 fprintf_unfiltered (gdb_stdlog,
1943 "gdbarch_find_by_info: info.abfd %s\n",
1944 host_address_to_string (info.abfd));
1945 fprintf_unfiltered (gdb_stdlog,
1946 "gdbarch_find_by_info: info.tdep_info %s\n",
1947 host_address_to_string (info.tdep_info));
1948 }
1949
1950 /* Find the tdep code that knows about this architecture. */
1951 for (rego = gdbarch_registry;
1952 rego != NULL;
1953 rego = rego->next)
1954 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1955 break;
1956 if (rego == NULL)
1957 {
1958 if (gdbarch_debug)
1959 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1960 "No matching architecture\n");
1961 return 0;
1962 }
1963
1964 /* Ask the tdep code for an architecture that matches "info". */
1965 new_gdbarch = rego->init (info, rego->arches);
1966
1967 /* Did the tdep code like it? No. Reject the change and revert to
1968 the old architecture. */
1969 if (new_gdbarch == NULL)
1970 {
1971 if (gdbarch_debug)
1972 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1973 "Target rejected architecture\n");
1974 return NULL;
1975 }
1976
1977 /* Is this a pre-existing architecture (as determined by already
1978 being initialized)? Move it to the front of the architecture
1979 list (keeping the list sorted Most Recently Used). */
1980 if (new_gdbarch->initialized_p)
1981 {
1982 struct gdbarch_list **list;
1983 struct gdbarch_list *this;
1984 if (gdbarch_debug)
1985 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1986 "Previous architecture %s (%s) selected\n",
1987 host_address_to_string (new_gdbarch),
1988 new_gdbarch->bfd_arch_info->printable_name);
1989 /* Find the existing arch in the list. */
1990 for (list = &rego->arches;
1991 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1992 list = &(*list)->next);
1993 /* It had better be in the list of architectures. */
1994 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1995 /* Unlink THIS. */
1996 this = (*list);
1997 (*list) = this->next;
1998 /* Insert THIS at the front. */
1999 this->next = rego->arches;
2000 rego->arches = this;
2001 /* Return it. */
2002 return new_gdbarch;
2003 }
2004
2005 /* It's a new architecture. */
2006 if (gdbarch_debug)
2007 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2008 "New architecture %s (%s) selected\n",
2009 host_address_to_string (new_gdbarch),
2010 new_gdbarch->bfd_arch_info->printable_name);
2011
2012 /* Insert the new architecture into the front of the architecture
2013 list (keep the list sorted Most Recently Used). */
2014 {
2015 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2016 this->next = rego->arches;
2017 this->gdbarch = new_gdbarch;
2018 rego->arches = this;
2019 }
2020
2021 /* Check that the newly installed architecture is valid. Plug in
2022 any post init values. */
2023 new_gdbarch->dump_tdep = rego->dump_tdep;
2024 verify_gdbarch (new_gdbarch);
2025 new_gdbarch->initialized_p = 1;
2026
2027 if (gdbarch_debug)
2028 gdbarch_dump (new_gdbarch, gdb_stdlog);
2029
2030 return new_gdbarch;
2031 }
2032
2033 /* Make the specified architecture current. */
2034
2035 void
2036 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2037 {
2038 gdb_assert (new_gdbarch != NULL);
2039 gdb_assert (new_gdbarch->initialized_p);
2040 target_gdbarch = new_gdbarch;
2041 observer_notify_architecture_changed (new_gdbarch);
2042 registers_changed ();
2043 }
2044
2045 extern void _initialize_gdbarch (void);
2046
2047 void
2048 _initialize_gdbarch (void)
2049 {
2050 struct cmd_list_element *c;
2051
2052 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2053 Set architecture debugging."), _("\\
2054 Show architecture debugging."), _("\\
2055 When non-zero, architecture debugging is enabled."),
2056 NULL,
2057 show_gdbarch_debug,
2058 &setdebuglist, &showdebuglist);
2059 }
2060 EOF
2061
2062 # close things off
2063 exec 1>&2
2064 #../move-if-change new-gdbarch.c gdbarch.c
2065 compare_new gdbarch.c
This page took 0.091928 seconds and 4 git commands to generate.