2004-09-13 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 #
495 v:=:int:believe_pcc_promotion:::::::
496 #
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 #
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
504 #
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
511
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
515
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
521 # RETURN_VALUE.
522
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
536 # function call.
537
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
545 # function is used.
546
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
549
550 #
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
566
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
615 # disassembler. Perhaps objdump can handle it?
616 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
617 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
618
619
620 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
621 # evaluates non-zero, this is the address where the debugger will place
622 # a step-resume breakpoint to get us past the dynamic linker.
623 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
624 # For SVR4 shared libraries, each call goes through a small piece of
625 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
626 # to nonzero if we are currently stopped in one of these.
627 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_call_trampoline::0
628
629 # Some systems also have trampoline code for returning from shared libs.
630 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
631
632 # A target might have problems with watchpoints as soon as the stack
633 # frame of the current function has been destroyed. This mostly happens
634 # as the first action in a funtion's epilogue. in_function_epilogue_p()
635 # is defined to return a non-zero value if either the given addr is one
636 # instruction after the stack destroying instruction up to the trailing
637 # return instruction or if we can figure out that the stack frame has
638 # already been invalidated regardless of the value of addr. Targets
639 # which don't suffer from that problem could just let this functionality
640 # untouched.
641 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
642 # Given a vector of command-line arguments, return a newly allocated
643 # string which, when passed to the create_inferior function, will be
644 # parsed (on Unix systems, by the shell) to yield the same vector.
645 # This function should call error() if the argument vector is not
646 # representable for this target or if this target does not support
647 # command-line arguments.
648 # ARGC is the number of elements in the vector.
649 # ARGV is an array of strings, one per argument.
650 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
651 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
652 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
653 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
654 v:=:int:cannot_step_breakpoint:::0:0::0
655 v:=:int:have_nonsteppable_watchpoint:::0:0::0
656 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
657 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
658 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
659 # Is a register in a group
660 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
661 # Fetch the pointer to the ith function argument.
662 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
663
664 # Return the appropriate register set for a core file section with
665 # name SECT_NAME and size SECT_SIZE.
666 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
667 EOF
668 }
669
670 #
671 # The .log file
672 #
673 exec > new-gdbarch.log
674 function_list | while do_read
675 do
676 cat <<EOF
677 ${class} ${returntype} ${function} ($formal)
678 EOF
679 for r in ${read}
680 do
681 eval echo \"\ \ \ \ ${r}=\${${r}}\"
682 done
683 if class_is_predicate_p && fallback_default_p
684 then
685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
686 kill $$
687 exit 1
688 fi
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
690 then
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 kill $$
693 exit 1
694 fi
695 if class_is_multiarch_p
696 then
697 if class_is_predicate_p ; then :
698 elif test "x${predefault}" = "x"
699 then
700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
701 kill $$
702 exit 1
703 fi
704 fi
705 echo ""
706 done
707
708 exec 1>&2
709 compare_new gdbarch.log
710
711
712 copyright ()
713 {
714 cat <<EOF
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
716
717 /* Dynamic architecture support for GDB, the GNU debugger.
718
719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
720 Software Foundation, Inc.
721
722 This file is part of GDB.
723
724 This program is free software; you can redistribute it and/or modify
725 it under the terms of the GNU General Public License as published by
726 the Free Software Foundation; either version 2 of the License, or
727 (at your option) any later version.
728
729 This program is distributed in the hope that it will be useful,
730 but WITHOUT ANY WARRANTY; without even the implied warranty of
731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
732 GNU General Public License for more details.
733
734 You should have received a copy of the GNU General Public License
735 along with this program; if not, write to the Free Software
736 Foundation, Inc., 59 Temple Place - Suite 330,
737 Boston, MA 02111-1307, USA. */
738
739 /* This file was created with the aid of \`\`gdbarch.sh''.
740
741 The Bourne shell script \`\`gdbarch.sh'' creates the files
742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
743 against the existing \`\`gdbarch.[hc]''. Any differences found
744 being reported.
745
746 If editing this file, please also run gdbarch.sh and merge any
747 changes into that script. Conversely, when making sweeping changes
748 to this file, modifying gdbarch.sh and using its output may prove
749 easier. */
750
751 EOF
752 }
753
754 #
755 # The .h file
756 #
757
758 exec > new-gdbarch.h
759 copyright
760 cat <<EOF
761 #ifndef GDBARCH_H
762 #define GDBARCH_H
763
764 struct floatformat;
765 struct ui_file;
766 struct frame_info;
767 struct value;
768 struct objfile;
769 struct minimal_symbol;
770 struct regcache;
771 struct reggroup;
772 struct regset;
773 struct disassemble_info;
774 struct target_ops;
775 struct obstack;
776
777 extern struct gdbarch *current_gdbarch;
778 EOF
779
780 # function typedef's
781 printf "\n"
782 printf "\n"
783 printf "/* The following are pre-initialized by GDBARCH. */\n"
784 function_list | while do_read
785 do
786 if class_is_info_p
787 then
788 printf "\n"
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
791 if test -n "${macro}"
792 then
793 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
794 printf "#error \"Non multi-arch definition of ${macro}\"\n"
795 printf "#endif\n"
796 printf "#if !defined (${macro})\n"
797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
798 printf "#endif\n"
799 fi
800 fi
801 done
802
803 # function typedef's
804 printf "\n"
805 printf "\n"
806 printf "/* The following are initialized by the target dependent code. */\n"
807 function_list | while do_read
808 do
809 if [ -n "${comment}" ]
810 then
811 echo "${comment}" | sed \
812 -e '2 s,#,/*,' \
813 -e '3,$ s,#, ,' \
814 -e '$ s,$, */,'
815 fi
816
817 if class_is_predicate_p
818 then
819 if test -n "${macro}"
820 then
821 printf "\n"
822 printf "#if defined (${macro})\n"
823 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
824 printf "#if !defined (${macro}_P)\n"
825 printf "#define ${macro}_P() (1)\n"
826 printf "#endif\n"
827 printf "#endif\n"
828 fi
829 printf "\n"
830 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
831 if test -n "${macro}"
832 then
833 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
834 printf "#error \"Non multi-arch definition of ${macro}\"\n"
835 printf "#endif\n"
836 printf "#if !defined (${macro}_P)\n"
837 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
838 printf "#endif\n"
839 fi
840 fi
841 if class_is_variable_p
842 then
843 printf "\n"
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
845 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
846 if test -n "${macro}"
847 then
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#endif\n"
851 printf "#if !defined (${macro})\n"
852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
853 printf "#endif\n"
854 fi
855 fi
856 if class_is_function_p
857 then
858 printf "\n"
859 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
860 then
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
862 elif class_is_multiarch_p
863 then
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
865 else
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
867 fi
868 if [ "x${formal}" = "xvoid" ]
869 then
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 else
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
873 fi
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
875 if test -n "${macro}"
876 then
877 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
878 printf "#error \"Non multi-arch definition of ${macro}\"\n"
879 printf "#endif\n"
880 if [ "x${actual}" = "x" ]
881 then
882 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
883 elif [ "x${actual}" = "x-" ]
884 then
885 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
886 else
887 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
888 fi
889 printf "#if !defined (${macro})\n"
890 if [ "x${actual}" = "x" ]
891 then
892 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
893 elif [ "x${actual}" = "x-" ]
894 then
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
896 else
897 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
898 fi
899 printf "#endif\n"
900 fi
901 fi
902 done
903
904 # close it off
905 cat <<EOF
906
907 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
908
909
910 /* Mechanism for co-ordinating the selection of a specific
911 architecture.
912
913 GDB targets (*-tdep.c) can register an interest in a specific
914 architecture. Other GDB components can register a need to maintain
915 per-architecture data.
916
917 The mechanisms below ensures that there is only a loose connection
918 between the set-architecture command and the various GDB
919 components. Each component can independently register their need
920 to maintain architecture specific data with gdbarch.
921
922 Pragmatics:
923
924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
925 didn't scale.
926
927 The more traditional mega-struct containing architecture specific
928 data for all the various GDB components was also considered. Since
929 GDB is built from a variable number of (fairly independent)
930 components it was determined that the global aproach was not
931 applicable. */
932
933
934 /* Register a new architectural family with GDB.
935
936 Register support for the specified ARCHITECTURE with GDB. When
937 gdbarch determines that the specified architecture has been
938 selected, the corresponding INIT function is called.
939
940 --
941
942 The INIT function takes two parameters: INFO which contains the
943 information available to gdbarch about the (possibly new)
944 architecture; ARCHES which is a list of the previously created
945 \`\`struct gdbarch'' for this architecture.
946
947 The INFO parameter is, as far as possible, be pre-initialized with
948 information obtained from INFO.ABFD or the previously selected
949 architecture.
950
951 The ARCHES parameter is a linked list (sorted most recently used)
952 of all the previously created architures for this architecture
953 family. The (possibly NULL) ARCHES->gdbarch can used to access
954 values from the previously selected architecture for this
955 architecture family. The global \`\`current_gdbarch'' shall not be
956 used.
957
958 The INIT function shall return any of: NULL - indicating that it
959 doesn't recognize the selected architecture; an existing \`\`struct
960 gdbarch'' from the ARCHES list - indicating that the new
961 architecture is just a synonym for an earlier architecture (see
962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
963 - that describes the selected architecture (see gdbarch_alloc()).
964
965 The DUMP_TDEP function shall print out all target specific values.
966 Care should be taken to ensure that the function works in both the
967 multi-arch and non- multi-arch cases. */
968
969 struct gdbarch_list
970 {
971 struct gdbarch *gdbarch;
972 struct gdbarch_list *next;
973 };
974
975 struct gdbarch_info
976 {
977 /* Use default: NULL (ZERO). */
978 const struct bfd_arch_info *bfd_arch_info;
979
980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
981 int byte_order;
982
983 /* Use default: NULL (ZERO). */
984 bfd *abfd;
985
986 /* Use default: NULL (ZERO). */
987 struct gdbarch_tdep_info *tdep_info;
988
989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
990 enum gdb_osabi osabi;
991 };
992
993 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
994 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
995
996 /* DEPRECATED - use gdbarch_register() */
997 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
998
999 extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1002
1003
1004 /* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1008
1009 extern const char **gdbarch_printable_names (void);
1010
1011
1012 /* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1014
1015 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1016
1017
1018 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1019 basic initialization using values obtained from the INFO andTDEP
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1022
1023 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1024
1025
1026 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1028 gdbarch_tdep''. */
1029
1030 extern void gdbarch_free (struct gdbarch *);
1031
1032
1033 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1035 is also freed. */
1036
1037 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1040
1041
1042 /* Helper function. Force an update of the current architecture.
1043
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
1048
1049 Returns non-zero if the update succeeds */
1050
1051 extern int gdbarch_update_p (struct gdbarch_info info);
1052
1053
1054 /* Helper function. Find an architecture matching info.
1055
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1058
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1061
1062 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1063
1064
1065 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1066
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1072
1073 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
1085
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
1088 restored. INIT() is not re-called.
1089
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1092
1093 struct gdbarch_data;
1094
1095 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1101 void *pointer);
1102
1103 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1104
1105
1106
1107 /* Register per-architecture memory region.
1108
1109 Provide a memory-region swap mechanism. Per-architecture memory
1110 region are created. These memory regions are swapped whenever the
1111 architecture is changed. For a new architecture, the memory region
1112 is initialized with zero (0) and the INIT function is called.
1113
1114 Memory regions are swapped / initialized in the order that they are
1115 registered. NULL DATA and/or INIT values can be specified.
1116
1117 New code should use gdbarch_data_register_*(). */
1118
1119 typedef void (gdbarch_swap_ftype) (void);
1120 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1121 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1122
1123
1124
1125 /* Set the dynamic target-system-dependent parameters (architecture,
1126 byte-order, ...) using information found in the BFD */
1127
1128 extern void set_gdbarch_from_file (bfd *);
1129
1130
1131 /* Initialize the current architecture to the "first" one we find on
1132 our list. */
1133
1134 extern void initialize_current_architecture (void);
1135
1136 /* gdbarch trace variable */
1137 extern int gdbarch_debug;
1138
1139 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1140
1141 #endif
1142 EOF
1143 exec 1>&2
1144 #../move-if-change new-gdbarch.h gdbarch.h
1145 compare_new gdbarch.h
1146
1147
1148 #
1149 # C file
1150 #
1151
1152 exec > new-gdbarch.c
1153 copyright
1154 cat <<EOF
1155
1156 #include "defs.h"
1157 #include "arch-utils.h"
1158
1159 #include "gdbcmd.h"
1160 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1161 #include "symcat.h"
1162
1163 #include "floatformat.h"
1164
1165 #include "gdb_assert.h"
1166 #include "gdb_string.h"
1167 #include "gdb-events.h"
1168 #include "reggroups.h"
1169 #include "osabi.h"
1170 #include "gdb_obstack.h"
1171
1172 /* Static function declarations */
1173
1174 static void alloc_gdbarch_data (struct gdbarch *);
1175
1176 /* Non-zero if we want to trace architecture code. */
1177
1178 #ifndef GDBARCH_DEBUG
1179 #define GDBARCH_DEBUG 0
1180 #endif
1181 int gdbarch_debug = GDBARCH_DEBUG;
1182
1183 static const char *
1184 pformat (const struct floatformat *format)
1185 {
1186 if (format == NULL)
1187 return "(null)";
1188 else
1189 return format->name;
1190 }
1191
1192 EOF
1193
1194 # gdbarch open the gdbarch object
1195 printf "\n"
1196 printf "/* Maintain the struct gdbarch object */\n"
1197 printf "\n"
1198 printf "struct gdbarch\n"
1199 printf "{\n"
1200 printf " /* Has this architecture been fully initialized? */\n"
1201 printf " int initialized_p;\n"
1202 printf "\n"
1203 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1204 printf " struct obstack *obstack;\n"
1205 printf "\n"
1206 printf " /* basic architectural information */\n"
1207 function_list | while do_read
1208 do
1209 if class_is_info_p
1210 then
1211 printf " ${returntype} ${function};\n"
1212 fi
1213 done
1214 printf "\n"
1215 printf " /* target specific vector. */\n"
1216 printf " struct gdbarch_tdep *tdep;\n"
1217 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1218 printf "\n"
1219 printf " /* per-architecture data-pointers */\n"
1220 printf " unsigned nr_data;\n"
1221 printf " void **data;\n"
1222 printf "\n"
1223 printf " /* per-architecture swap-regions */\n"
1224 printf " struct gdbarch_swap *swap;\n"
1225 printf "\n"
1226 cat <<EOF
1227 /* Multi-arch values.
1228
1229 When extending this structure you must:
1230
1231 Add the field below.
1232
1233 Declare set/get functions and define the corresponding
1234 macro in gdbarch.h.
1235
1236 gdbarch_alloc(): If zero/NULL is not a suitable default,
1237 initialize the new field.
1238
1239 verify_gdbarch(): Confirm that the target updated the field
1240 correctly.
1241
1242 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1243 field is dumped out
1244
1245 \`\`startup_gdbarch()'': Append an initial value to the static
1246 variable (base values on the host's c-type system).
1247
1248 get_gdbarch(): Implement the set/get functions (probably using
1249 the macro's as shortcuts).
1250
1251 */
1252
1253 EOF
1254 function_list | while do_read
1255 do
1256 if class_is_variable_p
1257 then
1258 printf " ${returntype} ${function};\n"
1259 elif class_is_function_p
1260 then
1261 printf " gdbarch_${function}_ftype *${function};\n"
1262 fi
1263 done
1264 printf "};\n"
1265
1266 # A pre-initialized vector
1267 printf "\n"
1268 printf "\n"
1269 cat <<EOF
1270 /* The default architecture uses host values (for want of a better
1271 choice). */
1272 EOF
1273 printf "\n"
1274 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1275 printf "\n"
1276 printf "struct gdbarch startup_gdbarch =\n"
1277 printf "{\n"
1278 printf " 1, /* Always initialized. */\n"
1279 printf " NULL, /* The obstack. */\n"
1280 printf " /* basic architecture information */\n"
1281 function_list | while do_read
1282 do
1283 if class_is_info_p
1284 then
1285 printf " ${staticdefault}, /* ${function} */\n"
1286 fi
1287 done
1288 cat <<EOF
1289 /* target specific vector and its dump routine */
1290 NULL, NULL,
1291 /*per-architecture data-pointers and swap regions */
1292 0, NULL, NULL,
1293 /* Multi-arch values */
1294 EOF
1295 function_list | while do_read
1296 do
1297 if class_is_function_p || class_is_variable_p
1298 then
1299 printf " ${staticdefault}, /* ${function} */\n"
1300 fi
1301 done
1302 cat <<EOF
1303 /* startup_gdbarch() */
1304 };
1305
1306 struct gdbarch *current_gdbarch = &startup_gdbarch;
1307 EOF
1308
1309 # Create a new gdbarch struct
1310 cat <<EOF
1311
1312 /* Create a new \`\`struct gdbarch'' based on information provided by
1313 \`\`struct gdbarch_info''. */
1314 EOF
1315 printf "\n"
1316 cat <<EOF
1317 struct gdbarch *
1318 gdbarch_alloc (const struct gdbarch_info *info,
1319 struct gdbarch_tdep *tdep)
1320 {
1321 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1322 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1323 the current local architecture and not the previous global
1324 architecture. This ensures that the new architectures initial
1325 values are not influenced by the previous architecture. Once
1326 everything is parameterised with gdbarch, this will go away. */
1327 struct gdbarch *current_gdbarch;
1328
1329 /* Create an obstack for allocating all the per-architecture memory,
1330 then use that to allocate the architecture vector. */
1331 struct obstack *obstack = XMALLOC (struct obstack);
1332 obstack_init (obstack);
1333 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1334 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1335 current_gdbarch->obstack = obstack;
1336
1337 alloc_gdbarch_data (current_gdbarch);
1338
1339 current_gdbarch->tdep = tdep;
1340 EOF
1341 printf "\n"
1342 function_list | while do_read
1343 do
1344 if class_is_info_p
1345 then
1346 printf " current_gdbarch->${function} = info->${function};\n"
1347 fi
1348 done
1349 printf "\n"
1350 printf " /* Force the explicit initialization of these. */\n"
1351 function_list | while do_read
1352 do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1356 then
1357 printf " current_gdbarch->${function} = ${predefault};\n"
1358 fi
1359 fi
1360 done
1361 cat <<EOF
1362 /* gdbarch_alloc() */
1363
1364 return current_gdbarch;
1365 }
1366 EOF
1367
1368 # Free a gdbarch struct.
1369 printf "\n"
1370 printf "\n"
1371 cat <<EOF
1372 /* Allocate extra space using the per-architecture obstack. */
1373
1374 void *
1375 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1376 {
1377 void *data = obstack_alloc (arch->obstack, size);
1378 memset (data, 0, size);
1379 return data;
1380 }
1381
1382
1383 /* Free a gdbarch struct. This should never happen in normal
1384 operation --- once you've created a gdbarch, you keep it around.
1385 However, if an architecture's init function encounters an error
1386 building the structure, it may need to clean up a partially
1387 constructed gdbarch. */
1388
1389 void
1390 gdbarch_free (struct gdbarch *arch)
1391 {
1392 struct obstack *obstack;
1393 gdb_assert (arch != NULL);
1394 gdb_assert (!arch->initialized_p);
1395 obstack = arch->obstack;
1396 obstack_free (obstack, 0); /* Includes the ARCH. */
1397 xfree (obstack);
1398 }
1399 EOF
1400
1401 # verify a new architecture
1402 cat <<EOF
1403
1404
1405 /* Ensure that all values in a GDBARCH are reasonable. */
1406
1407 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1408 just happens to match the global variable \`\`current_gdbarch''. That
1409 way macros refering to that variable get the local and not the global
1410 version - ulgh. Once everything is parameterised with gdbarch, this
1411 will go away. */
1412
1413 static void
1414 verify_gdbarch (struct gdbarch *current_gdbarch)
1415 {
1416 struct ui_file *log;
1417 struct cleanup *cleanups;
1418 long dummy;
1419 char *buf;
1420 log = mem_fileopen ();
1421 cleanups = make_cleanup_ui_file_delete (log);
1422 /* fundamental */
1423 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1424 fprintf_unfiltered (log, "\n\tbyte-order");
1425 if (current_gdbarch->bfd_arch_info == NULL)
1426 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1427 /* Check those that need to be defined for the given multi-arch level. */
1428 EOF
1429 function_list | while do_read
1430 do
1431 if class_is_function_p || class_is_variable_p
1432 then
1433 if [ "x${invalid_p}" = "x0" ]
1434 then
1435 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1436 elif class_is_predicate_p
1437 then
1438 printf " /* Skip verify of ${function}, has predicate */\n"
1439 # FIXME: See do_read for potential simplification
1440 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1441 then
1442 printf " if (${invalid_p})\n"
1443 printf " current_gdbarch->${function} = ${postdefault};\n"
1444 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1445 then
1446 printf " if (current_gdbarch->${function} == ${predefault})\n"
1447 printf " current_gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${postdefault}" ]
1449 then
1450 printf " if (current_gdbarch->${function} == 0)\n"
1451 printf " current_gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${invalid_p}" ]
1453 then
1454 printf " if (${invalid_p})\n"
1455 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1456 elif [ -n "${predefault}" ]
1457 then
1458 printf " if (current_gdbarch->${function} == ${predefault})\n"
1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1460 fi
1461 fi
1462 done
1463 cat <<EOF
1464 buf = ui_file_xstrdup (log, &dummy);
1465 make_cleanup (xfree, buf);
1466 if (strlen (buf) > 0)
1467 internal_error (__FILE__, __LINE__,
1468 "verify_gdbarch: the following are invalid ...%s",
1469 buf);
1470 do_cleanups (cleanups);
1471 }
1472 EOF
1473
1474 # dump the structure
1475 printf "\n"
1476 printf "\n"
1477 cat <<EOF
1478 /* Print out the details of the current architecture. */
1479
1480 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1481 just happens to match the global variable \`\`current_gdbarch''. That
1482 way macros refering to that variable get the local and not the global
1483 version - ulgh. Once everything is parameterised with gdbarch, this
1484 will go away. */
1485
1486 void
1487 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1488 {
1489 const char *gdb_xm_file = "<not-defined>";
1490 const char *gdb_nm_file = "<not-defined>";
1491 const char *gdb_tm_file = "<not-defined>";
1492 #if defined (GDB_XM_FILE)
1493 gdb_xm_file = GDB_XM_FILE;
1494 #endif
1495 fprintf_unfiltered (file,
1496 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1497 gdb_xm_file);
1498 #if defined (GDB_NM_FILE)
1499 gdb_nm_file = GDB_NM_FILE;
1500 #endif
1501 fprintf_unfiltered (file,
1502 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1503 gdb_nm_file);
1504 #if defined (GDB_TM_FILE)
1505 gdb_tm_file = GDB_TM_FILE;
1506 #endif
1507 fprintf_unfiltered (file,
1508 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1509 gdb_tm_file);
1510 EOF
1511 function_list | sort -t: -k 4 | while do_read
1512 do
1513 # First the predicate
1514 if class_is_predicate_p
1515 then
1516 if test -n "${macro}"
1517 then
1518 printf "#ifdef ${macro}_P\n"
1519 printf " fprintf_unfiltered (file,\n"
1520 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1521 printf " \"${macro}_P()\",\n"
1522 printf " XSTRING (${macro}_P ()));\n"
1523 printf "#endif\n"
1524 fi
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1527 printf " gdbarch_${function}_p (current_gdbarch));\n"
1528 fi
1529 # Print the macro definition.
1530 if test -n "${macro}"
1531 then
1532 printf "#ifdef ${macro}\n"
1533 if class_is_function_p
1534 then
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1537 printf " \"${macro}(${actual})\",\n"
1538 printf " XSTRING (${macro} (${actual})));\n"
1539 else
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1542 printf " XSTRING (${macro}));\n"
1543 fi
1544 printf "#endif\n"
1545 fi
1546 # Print the corresponding value.
1547 if class_is_function_p
1548 then
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1551 printf " (long) current_gdbarch->${function});\n"
1552 else
1553 # It is a variable
1554 case "${print}:${returntype}" in
1555 :CORE_ADDR )
1556 fmt="0x%s"
1557 print="paddr_nz (current_gdbarch->${function})"
1558 ;;
1559 :* )
1560 fmt="%s"
1561 print="paddr_d (current_gdbarch->${function})"
1562 ;;
1563 * )
1564 fmt="%s"
1565 ;;
1566 esac
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1569 printf " ${print});\n"
1570 fi
1571 done
1572 cat <<EOF
1573 if (current_gdbarch->dump_tdep != NULL)
1574 current_gdbarch->dump_tdep (current_gdbarch, file);
1575 }
1576 EOF
1577
1578
1579 # GET/SET
1580 printf "\n"
1581 cat <<EOF
1582 struct gdbarch_tdep *
1583 gdbarch_tdep (struct gdbarch *gdbarch)
1584 {
1585 if (gdbarch_debug >= 2)
1586 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1587 return gdbarch->tdep;
1588 }
1589 EOF
1590 printf "\n"
1591 function_list | while do_read
1592 do
1593 if class_is_predicate_p
1594 then
1595 printf "\n"
1596 printf "int\n"
1597 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1598 printf "{\n"
1599 printf " gdb_assert (gdbarch != NULL);\n"
1600 printf " return ${predicate};\n"
1601 printf "}\n"
1602 fi
1603 if class_is_function_p
1604 then
1605 printf "\n"
1606 printf "${returntype}\n"
1607 if [ "x${formal}" = "xvoid" ]
1608 then
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1610 else
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1612 fi
1613 printf "{\n"
1614 printf " gdb_assert (gdbarch != NULL);\n"
1615 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1616 if class_is_predicate_p && test -n "${predefault}"
1617 then
1618 # Allow a call to a function with a predicate.
1619 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1620 fi
1621 printf " if (gdbarch_debug >= 2)\n"
1622 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1623 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1624 then
1625 if class_is_multiarch_p
1626 then
1627 params="gdbarch"
1628 else
1629 params=""
1630 fi
1631 else
1632 if class_is_multiarch_p
1633 then
1634 params="gdbarch, ${actual}"
1635 else
1636 params="${actual}"
1637 fi
1638 fi
1639 if [ "x${returntype}" = "xvoid" ]
1640 then
1641 printf " gdbarch->${function} (${params});\n"
1642 else
1643 printf " return gdbarch->${function} (${params});\n"
1644 fi
1645 printf "}\n"
1646 printf "\n"
1647 printf "void\n"
1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1649 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1650 printf "{\n"
1651 printf " gdbarch->${function} = ${function};\n"
1652 printf "}\n"
1653 elif class_is_variable_p
1654 then
1655 printf "\n"
1656 printf "${returntype}\n"
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1658 printf "{\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 if [ "x${invalid_p}" = "x0" ]
1661 then
1662 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1663 elif [ -n "${invalid_p}" ]
1664 then
1665 printf " /* Check variable is valid. */\n"
1666 printf " gdb_assert (!(${invalid_p}));\n"
1667 elif [ -n "${predefault}" ]
1668 then
1669 printf " /* Check variable changed from pre-default. */\n"
1670 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1671 fi
1672 printf " if (gdbarch_debug >= 2)\n"
1673 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1674 printf " return gdbarch->${function};\n"
1675 printf "}\n"
1676 printf "\n"
1677 printf "void\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1680 printf "{\n"
1681 printf " gdbarch->${function} = ${function};\n"
1682 printf "}\n"
1683 elif class_is_info_p
1684 then
1685 printf "\n"
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1688 printf "{\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 printf " if (gdbarch_debug >= 2)\n"
1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1692 printf " return gdbarch->${function};\n"
1693 printf "}\n"
1694 fi
1695 done
1696
1697 # All the trailing guff
1698 cat <<EOF
1699
1700
1701 /* Keep a registry of per-architecture data-pointers required by GDB
1702 modules. */
1703
1704 struct gdbarch_data
1705 {
1706 unsigned index;
1707 int init_p;
1708 gdbarch_data_pre_init_ftype *pre_init;
1709 gdbarch_data_post_init_ftype *post_init;
1710 };
1711
1712 struct gdbarch_data_registration
1713 {
1714 struct gdbarch_data *data;
1715 struct gdbarch_data_registration *next;
1716 };
1717
1718 struct gdbarch_data_registry
1719 {
1720 unsigned nr;
1721 struct gdbarch_data_registration *registrations;
1722 };
1723
1724 struct gdbarch_data_registry gdbarch_data_registry =
1725 {
1726 0, NULL,
1727 };
1728
1729 static struct gdbarch_data *
1730 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1731 gdbarch_data_post_init_ftype *post_init)
1732 {
1733 struct gdbarch_data_registration **curr;
1734 /* Append the new registraration. */
1735 for (curr = &gdbarch_data_registry.registrations;
1736 (*curr) != NULL;
1737 curr = &(*curr)->next);
1738 (*curr) = XMALLOC (struct gdbarch_data_registration);
1739 (*curr)->next = NULL;
1740 (*curr)->data = XMALLOC (struct gdbarch_data);
1741 (*curr)->data->index = gdbarch_data_registry.nr++;
1742 (*curr)->data->pre_init = pre_init;
1743 (*curr)->data->post_init = post_init;
1744 (*curr)->data->init_p = 1;
1745 return (*curr)->data;
1746 }
1747
1748 struct gdbarch_data *
1749 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1750 {
1751 return gdbarch_data_register (pre_init, NULL);
1752 }
1753
1754 struct gdbarch_data *
1755 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1756 {
1757 return gdbarch_data_register (NULL, post_init);
1758 }
1759
1760 /* Create/delete the gdbarch data vector. */
1761
1762 static void
1763 alloc_gdbarch_data (struct gdbarch *gdbarch)
1764 {
1765 gdb_assert (gdbarch->data == NULL);
1766 gdbarch->nr_data = gdbarch_data_registry.nr;
1767 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1768 }
1769
1770 /* Initialize the current value of the specified per-architecture
1771 data-pointer. */
1772
1773 void
1774 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1775 struct gdbarch_data *data,
1776 void *pointer)
1777 {
1778 gdb_assert (data->index < gdbarch->nr_data);
1779 gdb_assert (gdbarch->data[data->index] == NULL);
1780 gdb_assert (data->pre_init == NULL);
1781 gdbarch->data[data->index] = pointer;
1782 }
1783
1784 /* Return the current value of the specified per-architecture
1785 data-pointer. */
1786
1787 void *
1788 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1789 {
1790 gdb_assert (data->index < gdbarch->nr_data);
1791 if (gdbarch->data[data->index] == NULL)
1792 {
1793 /* The data-pointer isn't initialized, call init() to get a
1794 value. */
1795 if (data->pre_init != NULL)
1796 /* Mid architecture creation: pass just the obstack, and not
1797 the entire architecture, as that way it isn't possible for
1798 pre-init code to refer to undefined architecture
1799 fields. */
1800 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1801 else if (gdbarch->initialized_p
1802 && data->post_init != NULL)
1803 /* Post architecture creation: pass the entire architecture
1804 (as all fields are valid), but be careful to also detect
1805 recursive references. */
1806 {
1807 gdb_assert (data->init_p);
1808 data->init_p = 0;
1809 gdbarch->data[data->index] = data->post_init (gdbarch);
1810 data->init_p = 1;
1811 }
1812 else
1813 /* The architecture initialization hasn't completed - punt -
1814 hope that the caller knows what they are doing. Once
1815 deprecated_set_gdbarch_data has been initialized, this can be
1816 changed to an internal error. */
1817 return NULL;
1818 gdb_assert (gdbarch->data[data->index] != NULL);
1819 }
1820 return gdbarch->data[data->index];
1821 }
1822
1823
1824
1825 /* Keep a registry of swapped data required by GDB modules. */
1826
1827 struct gdbarch_swap
1828 {
1829 void *swap;
1830 struct gdbarch_swap_registration *source;
1831 struct gdbarch_swap *next;
1832 };
1833
1834 struct gdbarch_swap_registration
1835 {
1836 void *data;
1837 unsigned long sizeof_data;
1838 gdbarch_swap_ftype *init;
1839 struct gdbarch_swap_registration *next;
1840 };
1841
1842 struct gdbarch_swap_registry
1843 {
1844 int nr;
1845 struct gdbarch_swap_registration *registrations;
1846 };
1847
1848 struct gdbarch_swap_registry gdbarch_swap_registry =
1849 {
1850 0, NULL,
1851 };
1852
1853 void
1854 deprecated_register_gdbarch_swap (void *data,
1855 unsigned long sizeof_data,
1856 gdbarch_swap_ftype *init)
1857 {
1858 struct gdbarch_swap_registration **rego;
1859 for (rego = &gdbarch_swap_registry.registrations;
1860 (*rego) != NULL;
1861 rego = &(*rego)->next);
1862 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1863 (*rego)->next = NULL;
1864 (*rego)->init = init;
1865 (*rego)->data = data;
1866 (*rego)->sizeof_data = sizeof_data;
1867 }
1868
1869 static void
1870 current_gdbarch_swap_init_hack (void)
1871 {
1872 struct gdbarch_swap_registration *rego;
1873 struct gdbarch_swap **curr = &current_gdbarch->swap;
1874 for (rego = gdbarch_swap_registry.registrations;
1875 rego != NULL;
1876 rego = rego->next)
1877 {
1878 if (rego->data != NULL)
1879 {
1880 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1881 struct gdbarch_swap);
1882 (*curr)->source = rego;
1883 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1884 rego->sizeof_data);
1885 (*curr)->next = NULL;
1886 curr = &(*curr)->next;
1887 }
1888 if (rego->init != NULL)
1889 rego->init ();
1890 }
1891 }
1892
1893 static struct gdbarch *
1894 current_gdbarch_swap_out_hack (void)
1895 {
1896 struct gdbarch *old_gdbarch = current_gdbarch;
1897 struct gdbarch_swap *curr;
1898
1899 gdb_assert (old_gdbarch != NULL);
1900 for (curr = old_gdbarch->swap;
1901 curr != NULL;
1902 curr = curr->next)
1903 {
1904 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1905 memset (curr->source->data, 0, curr->source->sizeof_data);
1906 }
1907 current_gdbarch = NULL;
1908 return old_gdbarch;
1909 }
1910
1911 static void
1912 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1913 {
1914 struct gdbarch_swap *curr;
1915
1916 gdb_assert (current_gdbarch == NULL);
1917 for (curr = new_gdbarch->swap;
1918 curr != NULL;
1919 curr = curr->next)
1920 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1921 current_gdbarch = new_gdbarch;
1922 }
1923
1924
1925 /* Keep a registry of the architectures known by GDB. */
1926
1927 struct gdbarch_registration
1928 {
1929 enum bfd_architecture bfd_architecture;
1930 gdbarch_init_ftype *init;
1931 gdbarch_dump_tdep_ftype *dump_tdep;
1932 struct gdbarch_list *arches;
1933 struct gdbarch_registration *next;
1934 };
1935
1936 static struct gdbarch_registration *gdbarch_registry = NULL;
1937
1938 static void
1939 append_name (const char ***buf, int *nr, const char *name)
1940 {
1941 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1942 (*buf)[*nr] = name;
1943 *nr += 1;
1944 }
1945
1946 const char **
1947 gdbarch_printable_names (void)
1948 {
1949 /* Accumulate a list of names based on the registed list of
1950 architectures. */
1951 enum bfd_architecture a;
1952 int nr_arches = 0;
1953 const char **arches = NULL;
1954 struct gdbarch_registration *rego;
1955 for (rego = gdbarch_registry;
1956 rego != NULL;
1957 rego = rego->next)
1958 {
1959 const struct bfd_arch_info *ap;
1960 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1961 if (ap == NULL)
1962 internal_error (__FILE__, __LINE__,
1963 "gdbarch_architecture_names: multi-arch unknown");
1964 do
1965 {
1966 append_name (&arches, &nr_arches, ap->printable_name);
1967 ap = ap->next;
1968 }
1969 while (ap != NULL);
1970 }
1971 append_name (&arches, &nr_arches, NULL);
1972 return arches;
1973 }
1974
1975
1976 void
1977 gdbarch_register (enum bfd_architecture bfd_architecture,
1978 gdbarch_init_ftype *init,
1979 gdbarch_dump_tdep_ftype *dump_tdep)
1980 {
1981 struct gdbarch_registration **curr;
1982 const struct bfd_arch_info *bfd_arch_info;
1983 /* Check that BFD recognizes this architecture */
1984 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1985 if (bfd_arch_info == NULL)
1986 {
1987 internal_error (__FILE__, __LINE__,
1988 "gdbarch: Attempt to register unknown architecture (%d)",
1989 bfd_architecture);
1990 }
1991 /* Check that we haven't seen this architecture before */
1992 for (curr = &gdbarch_registry;
1993 (*curr) != NULL;
1994 curr = &(*curr)->next)
1995 {
1996 if (bfd_architecture == (*curr)->bfd_architecture)
1997 internal_error (__FILE__, __LINE__,
1998 "gdbarch: Duplicate registraration of architecture (%s)",
1999 bfd_arch_info->printable_name);
2000 }
2001 /* log it */
2002 if (gdbarch_debug)
2003 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2004 bfd_arch_info->printable_name,
2005 (long) init);
2006 /* Append it */
2007 (*curr) = XMALLOC (struct gdbarch_registration);
2008 (*curr)->bfd_architecture = bfd_architecture;
2009 (*curr)->init = init;
2010 (*curr)->dump_tdep = dump_tdep;
2011 (*curr)->arches = NULL;
2012 (*curr)->next = NULL;
2013 }
2014
2015 void
2016 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2017 gdbarch_init_ftype *init)
2018 {
2019 gdbarch_register (bfd_architecture, init, NULL);
2020 }
2021
2022
2023 /* Look for an architecture using gdbarch_info. Base search on only
2024 BFD_ARCH_INFO and BYTE_ORDER. */
2025
2026 struct gdbarch_list *
2027 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2028 const struct gdbarch_info *info)
2029 {
2030 for (; arches != NULL; arches = arches->next)
2031 {
2032 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2033 continue;
2034 if (info->byte_order != arches->gdbarch->byte_order)
2035 continue;
2036 if (info->osabi != arches->gdbarch->osabi)
2037 continue;
2038 return arches;
2039 }
2040 return NULL;
2041 }
2042
2043
2044 /* Find an architecture that matches the specified INFO. Create a new
2045 architecture if needed. Return that new architecture. Assumes
2046 that there is no current architecture. */
2047
2048 static struct gdbarch *
2049 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2050 {
2051 struct gdbarch *new_gdbarch;
2052 struct gdbarch_registration *rego;
2053
2054 /* The existing architecture has been swapped out - all this code
2055 works from a clean slate. */
2056 gdb_assert (current_gdbarch == NULL);
2057
2058 /* Fill in missing parts of the INFO struct using a number of
2059 sources: "set ..."; INFOabfd supplied; and the existing
2060 architecture. */
2061 gdbarch_info_fill (old_gdbarch, &info);
2062
2063 /* Must have found some sort of architecture. */
2064 gdb_assert (info.bfd_arch_info != NULL);
2065
2066 if (gdbarch_debug)
2067 {
2068 fprintf_unfiltered (gdb_stdlog,
2069 "find_arch_by_info: info.bfd_arch_info %s\n",
2070 (info.bfd_arch_info != NULL
2071 ? info.bfd_arch_info->printable_name
2072 : "(null)"));
2073 fprintf_unfiltered (gdb_stdlog,
2074 "find_arch_by_info: info.byte_order %d (%s)\n",
2075 info.byte_order,
2076 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2077 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2078 : "default"));
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.osabi %d (%s)\n",
2081 info.osabi, gdbarch_osabi_name (info.osabi));
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.abfd 0x%lx\n",
2084 (long) info.abfd);
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.tdep_info 0x%lx\n",
2087 (long) info.tdep_info);
2088 }
2089
2090 /* Find the tdep code that knows about this architecture. */
2091 for (rego = gdbarch_registry;
2092 rego != NULL;
2093 rego = rego->next)
2094 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2095 break;
2096 if (rego == NULL)
2097 {
2098 if (gdbarch_debug)
2099 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2100 "No matching architecture\n");
2101 return 0;
2102 }
2103
2104 /* Ask the tdep code for an architecture that matches "info". */
2105 new_gdbarch = rego->init (info, rego->arches);
2106
2107 /* Did the tdep code like it? No. Reject the change and revert to
2108 the old architecture. */
2109 if (new_gdbarch == NULL)
2110 {
2111 if (gdbarch_debug)
2112 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2113 "Target rejected architecture\n");
2114 return NULL;
2115 }
2116
2117 /* Is this a pre-existing architecture (as determined by already
2118 being initialized)? Move it to the front of the architecture
2119 list (keeping the list sorted Most Recently Used). */
2120 if (new_gdbarch->initialized_p)
2121 {
2122 struct gdbarch_list **list;
2123 struct gdbarch_list *this;
2124 if (gdbarch_debug)
2125 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2126 "Previous architecture 0x%08lx (%s) selected\n",
2127 (long) new_gdbarch,
2128 new_gdbarch->bfd_arch_info->printable_name);
2129 /* Find the existing arch in the list. */
2130 for (list = &rego->arches;
2131 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2132 list = &(*list)->next);
2133 /* It had better be in the list of architectures. */
2134 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2135 /* Unlink THIS. */
2136 this = (*list);
2137 (*list) = this->next;
2138 /* Insert THIS at the front. */
2139 this->next = rego->arches;
2140 rego->arches = this;
2141 /* Return it. */
2142 return new_gdbarch;
2143 }
2144
2145 /* It's a new architecture. */
2146 if (gdbarch_debug)
2147 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2148 "New architecture 0x%08lx (%s) selected\n",
2149 (long) new_gdbarch,
2150 new_gdbarch->bfd_arch_info->printable_name);
2151
2152 /* Insert the new architecture into the front of the architecture
2153 list (keep the list sorted Most Recently Used). */
2154 {
2155 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2156 this->next = rego->arches;
2157 this->gdbarch = new_gdbarch;
2158 rego->arches = this;
2159 }
2160
2161 /* Check that the newly installed architecture is valid. Plug in
2162 any post init values. */
2163 new_gdbarch->dump_tdep = rego->dump_tdep;
2164 verify_gdbarch (new_gdbarch);
2165 new_gdbarch->initialized_p = 1;
2166
2167 /* Initialize any per-architecture swap areas. This phase requires
2168 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2169 swap the entire architecture out. */
2170 current_gdbarch = new_gdbarch;
2171 current_gdbarch_swap_init_hack ();
2172 current_gdbarch_swap_out_hack ();
2173
2174 if (gdbarch_debug)
2175 gdbarch_dump (new_gdbarch, gdb_stdlog);
2176
2177 return new_gdbarch;
2178 }
2179
2180 struct gdbarch *
2181 gdbarch_find_by_info (struct gdbarch_info info)
2182 {
2183 /* Save the previously selected architecture, setting the global to
2184 NULL. This stops things like gdbarch->init() trying to use the
2185 previous architecture's configuration. The previous architecture
2186 may not even be of the same architecture family. The most recent
2187 architecture of the same family is found at the head of the
2188 rego->arches list. */
2189 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2190
2191 /* Find the specified architecture. */
2192 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2193
2194 /* Restore the existing architecture. */
2195 gdb_assert (current_gdbarch == NULL);
2196 current_gdbarch_swap_in_hack (old_gdbarch);
2197
2198 return new_gdbarch;
2199 }
2200
2201 /* Make the specified architecture current, swapping the existing one
2202 out. */
2203
2204 void
2205 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2206 {
2207 gdb_assert (new_gdbarch != NULL);
2208 gdb_assert (current_gdbarch != NULL);
2209 gdb_assert (new_gdbarch->initialized_p);
2210 current_gdbarch_swap_out_hack ();
2211 current_gdbarch_swap_in_hack (new_gdbarch);
2212 architecture_changed_event ();
2213 }
2214
2215 extern void _initialize_gdbarch (void);
2216
2217 void
2218 _initialize_gdbarch (void)
2219 {
2220 struct cmd_list_element *c;
2221
2222 deprecated_add_show_from_set
2223 (add_set_cmd ("arch",
2224 class_maintenance,
2225 var_zinteger,
2226 (char *)&gdbarch_debug,
2227 "Set architecture debugging.\\n\\
2228 When non-zero, architecture debugging is enabled.", &setdebuglist),
2229 &showdebuglist);
2230 c = add_set_cmd ("archdebug",
2231 class_maintenance,
2232 var_zinteger,
2233 (char *)&gdbarch_debug,
2234 "Set architecture debugging.\\n\\
2235 When non-zero, architecture debugging is enabled.", &setlist);
2236
2237 deprecate_cmd (c, "set debug arch");
2238 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2239 }
2240 EOF
2241
2242 # close things off
2243 exec 1>&2
2244 #../move-if-change new-gdbarch.c gdbarch.c
2245 compare_new gdbarch.c
This page took 0.080902 seconds and 4 git commands to generate.