* gdbarch.sh (DEPRECATED_REG_STRUCT_HAS_ADDR): Add comment.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457 # that updates PC, NPC and even NNPC.
458 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 # This should be defined in tm.h, if REGISTER_NAMES is not set up
467 # to map one to one onto the sdb register numbers.
468 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
469 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
470 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
471
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
474 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
475 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
476 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
477 # from REGISTER_TYPE.
478 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
479 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
480 # register offsets computed using just REGISTER_TYPE, this can be
481 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
482 # function with predicate has a valid (callable) initial value. As a
483 # consequence, even when the predicate is false, the corresponding
484 # function works. This simplifies the migration process - old code,
485 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
486 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
487 # If all registers have identical raw and virtual sizes and those
488 # sizes agree with the value computed from REGISTER_TYPE,
489 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
490 # registers.
491 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
492 # If all registers have identical raw and virtual sizes and those
493 # sizes agree with the value computed from REGISTER_TYPE,
494 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
495 # registers.
496 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
497 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
498 # replaced by the constant MAX_REGISTER_SIZE.
499 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
500 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
501 # replaced by the constant MAX_REGISTER_SIZE.
502 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
503
504 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
505 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
506 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
507 # SAVE_DUMMY_FRAME_TOS.
508 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
509 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
510 # DEPRECATED_FP_REGNUM.
511 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
512 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
513 # DEPRECATED_TARGET_READ_FP.
514 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
515
516 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
517 # replacement for DEPRECATED_PUSH_ARGUMENTS.
518 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
519 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
520 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
521 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
522 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
523 # Implement PUSH_RETURN_ADDRESS, and then merge in
524 # DEPRECATED_PUSH_RETURN_ADDRESS.
525 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
526 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
527 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
528 # DEPRECATED_REGISTER_SIZE can be deleted.
529 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
530 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
531 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
532 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
534 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
535 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
536 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
537 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
538 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
539 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
541 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
542 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
543 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
544 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
545 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
546 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
547 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
548 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
549 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
550 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
551 # Implement PUSH_DUMMY_CALL, then delete
552 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
553 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
554
555 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
556 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
557 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
559 # MAP a GDB RAW register number onto a simulator register number. See
560 # also include/...-sim.h.
561 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
562 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
563 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
564 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
565 # setjmp/longjmp support.
566 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
567 # NOTE: cagney/2002-11-24: This function with predicate has a valid
568 # (callable) initial value. As a consequence, even when the predicate
569 # is false, the corresponding function works. This simplifies the
570 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
571 # doesn't need to be modified.
572 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
573 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
574 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
575 #
576 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
577 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
578 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
579 #
580 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
581 # For raw <-> cooked register conversions, replaced by pseudo registers.
582 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
583 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
584 # For raw <-> cooked register conversions, replaced by pseudo registers.
585 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
586 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
587 # For raw <-> cooked register conversions, replaced by pseudo registers.
588 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
589 #
590 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
591 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
592 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
593 #
594 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
595 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
596 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
597 #
598 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
599 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
600 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
601 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
602 #
603 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
604 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
605 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
606 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
607 #
608 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
609 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
610 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
611 #
612 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
613 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
614 #
615 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
616 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
617 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
618 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
619 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
620 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
621 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
622 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
623 #
624 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
625 #
626 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
627 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
628 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
629 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
630 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
631 # note, per UNWIND_PC's doco, that while the two have similar
632 # interfaces they have very different underlying implementations.
633 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
634 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
635 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
636 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
637 # frame-base. Enable frame-base before frame-unwind.
638 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
639 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
640 # frame-base. Enable frame-base before frame-unwind.
641 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
642 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
643 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
644 #
645 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
646 # to frame_align and the requirement that methods such as
647 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
648 # alignment.
649 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
650 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
651 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
652 # stabs_argument_has_addr.
653 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
654 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
655 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
656 v:2:PARM_BOUNDARY:int:parm_boundary
657 #
658 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
659 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
660 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
661 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
662 # On some machines there are bits in addresses which are not really
663 # part of the address, but are used by the kernel, the hardware, etc.
664 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
665 # we get a "real" address such as one would find in a symbol table.
666 # This is used only for addresses of instructions, and even then I'm
667 # not sure it's used in all contexts. It exists to deal with there
668 # being a few stray bits in the PC which would mislead us, not as some
669 # sort of generic thing to handle alignment or segmentation (it's
670 # possible it should be in TARGET_READ_PC instead).
671 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
672 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
673 # ADDR_BITS_REMOVE.
674 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
675 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
676 # the target needs software single step. An ISA method to implement it.
677 #
678 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
679 # using the breakpoint system instead of blatting memory directly (as with rs6000).
680 #
681 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
682 # single step. If not, then implement single step using breakpoints.
683 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
684 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
685 # disassembler. Perhaphs objdump can handle it?
686 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
687 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
688
689
690 # For SVR4 shared libraries, each call goes through a small piece of
691 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
692 # to nonzero if we are currently stopped in one of these.
693 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
694
695 # Some systems also have trampoline code for returning from shared libs.
696 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
697
698 # Sigtramp is a routine that the kernel calls (which then calls the
699 # signal handler). On most machines it is a library routine that is
700 # linked into the executable.
701 #
702 # This macro, given a program counter value and the name of the
703 # function in which that PC resides (which can be null if the name is
704 # not known), returns nonzero if the PC and name show that we are in
705 # sigtramp.
706 #
707 # On most machines just see if the name is sigtramp (and if we have
708 # no name, assume we are not in sigtramp).
709 #
710 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
711 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
712 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
713 # own local NAME lookup.
714 #
715 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
716 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
717 # does not.
718 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
719 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
720 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
721 # A target might have problems with watchpoints as soon as the stack
722 # frame of the current function has been destroyed. This mostly happens
723 # as the first action in a funtion's epilogue. in_function_epilogue_p()
724 # is defined to return a non-zero value if either the given addr is one
725 # instruction after the stack destroying instruction up to the trailing
726 # return instruction or if we can figure out that the stack frame has
727 # already been invalidated regardless of the value of addr. Targets
728 # which don't suffer from that problem could just let this functionality
729 # untouched.
730 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
731 # Given a vector of command-line arguments, return a newly allocated
732 # string which, when passed to the create_inferior function, will be
733 # parsed (on Unix systems, by the shell) to yield the same vector.
734 # This function should call error() if the argument vector is not
735 # representable for this target or if this target does not support
736 # command-line arguments.
737 # ARGC is the number of elements in the vector.
738 # ARGV is an array of strings, one per argument.
739 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
740 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
741 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
742 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
743 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
744 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
745 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
746 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
747 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
748 # Is a register in a group
749 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
750 # Fetch the pointer to the ith function argument.
751 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
752 EOF
753 }
754
755 #
756 # The .log file
757 #
758 exec > new-gdbarch.log
759 function_list | while do_read
760 do
761 cat <<EOF
762 ${class} ${macro}(${actual})
763 ${returntype} ${function} ($formal)${attrib}
764 EOF
765 for r in ${read}
766 do
767 eval echo \"\ \ \ \ ${r}=\${${r}}\"
768 done
769 if class_is_predicate_p && fallback_default_p
770 then
771 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
772 kill $$
773 exit 1
774 fi
775 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
776 then
777 echo "Error: postdefault is useless when invalid_p=0" 1>&2
778 kill $$
779 exit 1
780 fi
781 if class_is_multiarch_p
782 then
783 if class_is_predicate_p ; then :
784 elif test "x${predefault}" = "x"
785 then
786 echo "Error: pure multi-arch function must have a predefault" 1>&2
787 kill $$
788 exit 1
789 fi
790 fi
791 echo ""
792 done
793
794 exec 1>&2
795 compare_new gdbarch.log
796
797
798 copyright ()
799 {
800 cat <<EOF
801 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
802
803 /* Dynamic architecture support for GDB, the GNU debugger.
804 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
805
806 This file is part of GDB.
807
808 This program is free software; you can redistribute it and/or modify
809 it under the terms of the GNU General Public License as published by
810 the Free Software Foundation; either version 2 of the License, or
811 (at your option) any later version.
812
813 This program is distributed in the hope that it will be useful,
814 but WITHOUT ANY WARRANTY; without even the implied warranty of
815 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
816 GNU General Public License for more details.
817
818 You should have received a copy of the GNU General Public License
819 along with this program; if not, write to the Free Software
820 Foundation, Inc., 59 Temple Place - Suite 330,
821 Boston, MA 02111-1307, USA. */
822
823 /* This file was created with the aid of \`\`gdbarch.sh''.
824
825 The Bourne shell script \`\`gdbarch.sh'' creates the files
826 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
827 against the existing \`\`gdbarch.[hc]''. Any differences found
828 being reported.
829
830 If editing this file, please also run gdbarch.sh and merge any
831 changes into that script. Conversely, when making sweeping changes
832 to this file, modifying gdbarch.sh and using its output may prove
833 easier. */
834
835 EOF
836 }
837
838 #
839 # The .h file
840 #
841
842 exec > new-gdbarch.h
843 copyright
844 cat <<EOF
845 #ifndef GDBARCH_H
846 #define GDBARCH_H
847
848 struct floatformat;
849 struct ui_file;
850 struct frame_info;
851 struct value;
852 struct objfile;
853 struct minimal_symbol;
854 struct regcache;
855 struct reggroup;
856 struct disassemble_info;
857
858 extern struct gdbarch *current_gdbarch;
859
860
861 /* If any of the following are defined, the target wasn't correctly
862 converted. */
863
864 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
865 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
866 #endif
867 EOF
868
869 # function typedef's
870 printf "\n"
871 printf "\n"
872 printf "/* The following are pre-initialized by GDBARCH. */\n"
873 function_list | while do_read
874 do
875 if class_is_info_p
876 then
877 printf "\n"
878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
879 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
880 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
881 printf "#error \"Non multi-arch definition of ${macro}\"\n"
882 printf "#endif\n"
883 printf "#if !defined (${macro})\n"
884 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
885 printf "#endif\n"
886 fi
887 done
888
889 # function typedef's
890 printf "\n"
891 printf "\n"
892 printf "/* The following are initialized by the target dependent code. */\n"
893 function_list | while do_read
894 do
895 if [ -n "${comment}" ]
896 then
897 echo "${comment}" | sed \
898 -e '2 s,#,/*,' \
899 -e '3,$ s,#, ,' \
900 -e '$ s,$, */,'
901 fi
902 if class_is_multiarch_p
903 then
904 if class_is_predicate_p
905 then
906 printf "\n"
907 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
908 fi
909 else
910 if class_is_predicate_p
911 then
912 printf "\n"
913 printf "#if defined (${macro})\n"
914 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
915 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
916 printf "#if !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (1)\n"
918 printf "#endif\n"
919 printf "#endif\n"
920 printf "\n"
921 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
926 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
929 fi
930 if class_is_variable_p
931 then
932 printf "\n"
933 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
934 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
935 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
936 printf "#error \"Non multi-arch definition of ${macro}\"\n"
937 printf "#endif\n"
938 printf "#if !defined (${macro})\n"
939 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
940 printf "#endif\n"
941 fi
942 if class_is_function_p
943 then
944 printf "\n"
945 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
946 then
947 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
948 elif class_is_multiarch_p
949 then
950 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
951 else
952 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
953 fi
954 if [ "x${formal}" = "xvoid" ]
955 then
956 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
957 else
958 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
959 fi
960 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
961 if class_is_multiarch_p ; then :
962 else
963 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
964 printf "#error \"Non multi-arch definition of ${macro}\"\n"
965 printf "#endif\n"
966 if [ "x${actual}" = "x" ]
967 then
968 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
969 elif [ "x${actual}" = "x-" ]
970 then
971 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
972 else
973 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
974 fi
975 printf "#if !defined (${macro})\n"
976 if [ "x${actual}" = "x" ]
977 then
978 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
979 elif [ "x${actual}" = "x-" ]
980 then
981 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
982 else
983 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
984 fi
985 printf "#endif\n"
986 fi
987 fi
988 done
989
990 # close it off
991 cat <<EOF
992
993 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
994
995
996 /* Mechanism for co-ordinating the selection of a specific
997 architecture.
998
999 GDB targets (*-tdep.c) can register an interest in a specific
1000 architecture. Other GDB components can register a need to maintain
1001 per-architecture data.
1002
1003 The mechanisms below ensures that there is only a loose connection
1004 between the set-architecture command and the various GDB
1005 components. Each component can independently register their need
1006 to maintain architecture specific data with gdbarch.
1007
1008 Pragmatics:
1009
1010 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1011 didn't scale.
1012
1013 The more traditional mega-struct containing architecture specific
1014 data for all the various GDB components was also considered. Since
1015 GDB is built from a variable number of (fairly independent)
1016 components it was determined that the global aproach was not
1017 applicable. */
1018
1019
1020 /* Register a new architectural family with GDB.
1021
1022 Register support for the specified ARCHITECTURE with GDB. When
1023 gdbarch determines that the specified architecture has been
1024 selected, the corresponding INIT function is called.
1025
1026 --
1027
1028 The INIT function takes two parameters: INFO which contains the
1029 information available to gdbarch about the (possibly new)
1030 architecture; ARCHES which is a list of the previously created
1031 \`\`struct gdbarch'' for this architecture.
1032
1033 The INFO parameter is, as far as possible, be pre-initialized with
1034 information obtained from INFO.ABFD or the previously selected
1035 architecture.
1036
1037 The ARCHES parameter is a linked list (sorted most recently used)
1038 of all the previously created architures for this architecture
1039 family. The (possibly NULL) ARCHES->gdbarch can used to access
1040 values from the previously selected architecture for this
1041 architecture family. The global \`\`current_gdbarch'' shall not be
1042 used.
1043
1044 The INIT function shall return any of: NULL - indicating that it
1045 doesn't recognize the selected architecture; an existing \`\`struct
1046 gdbarch'' from the ARCHES list - indicating that the new
1047 architecture is just a synonym for an earlier architecture (see
1048 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1049 - that describes the selected architecture (see gdbarch_alloc()).
1050
1051 The DUMP_TDEP function shall print out all target specific values.
1052 Care should be taken to ensure that the function works in both the
1053 multi-arch and non- multi-arch cases. */
1054
1055 struct gdbarch_list
1056 {
1057 struct gdbarch *gdbarch;
1058 struct gdbarch_list *next;
1059 };
1060
1061 struct gdbarch_info
1062 {
1063 /* Use default: NULL (ZERO). */
1064 const struct bfd_arch_info *bfd_arch_info;
1065
1066 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1067 int byte_order;
1068
1069 /* Use default: NULL (ZERO). */
1070 bfd *abfd;
1071
1072 /* Use default: NULL (ZERO). */
1073 struct gdbarch_tdep_info *tdep_info;
1074
1075 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1076 enum gdb_osabi osabi;
1077 };
1078
1079 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1080 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1081
1082 /* DEPRECATED - use gdbarch_register() */
1083 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1084
1085 extern void gdbarch_register (enum bfd_architecture architecture,
1086 gdbarch_init_ftype *,
1087 gdbarch_dump_tdep_ftype *);
1088
1089
1090 /* Return a freshly allocated, NULL terminated, array of the valid
1091 architecture names. Since architectures are registered during the
1092 _initialize phase this function only returns useful information
1093 once initialization has been completed. */
1094
1095 extern const char **gdbarch_printable_names (void);
1096
1097
1098 /* Helper function. Search the list of ARCHES for a GDBARCH that
1099 matches the information provided by INFO. */
1100
1101 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1102
1103
1104 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1105 basic initialization using values obtained from the INFO andTDEP
1106 parameters. set_gdbarch_*() functions are called to complete the
1107 initialization of the object. */
1108
1109 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1110
1111
1112 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1113 It is assumed that the caller freeds the \`\`struct
1114 gdbarch_tdep''. */
1115
1116 extern void gdbarch_free (struct gdbarch *);
1117
1118
1119 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1120 obstack. The memory is freed when the corresponding architecture
1121 is also freed. */
1122
1123 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1124 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1125 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1126
1127
1128 /* Helper function. Force an update of the current architecture.
1129
1130 The actual architecture selected is determined by INFO, \`\`(gdb) set
1131 architecture'' et.al., the existing architecture and BFD's default
1132 architecture. INFO should be initialized to zero and then selected
1133 fields should be updated.
1134
1135 Returns non-zero if the update succeeds */
1136
1137 extern int gdbarch_update_p (struct gdbarch_info info);
1138
1139
1140
1141 /* Register per-architecture data-pointer.
1142
1143 Reserve space for a per-architecture data-pointer. An identifier
1144 for the reserved data-pointer is returned. That identifer should
1145 be saved in a local static variable.
1146
1147 The per-architecture data-pointer is either initialized explicitly
1148 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1149 gdbarch_data()).
1150
1151 Memory for the per-architecture data shall be allocated using
1152 gdbarch_obstack_zalloc. That memory will be deleted when the
1153 corresponding architecture object is deleted.
1154
1155 When a previously created architecture is re-selected, the
1156 per-architecture data-pointer for that previous architecture is
1157 restored. INIT() is not re-called.
1158
1159 Multiple registrarants for any architecture are allowed (and
1160 strongly encouraged). */
1161
1162 struct gdbarch_data;
1163
1164 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1165 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1166 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1167 struct gdbarch_data *data,
1168 void *pointer);
1169
1170 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1171
1172
1173 /* Register per-architecture memory region.
1174
1175 Provide a memory-region swap mechanism. Per-architecture memory
1176 region are created. These memory regions are swapped whenever the
1177 architecture is changed. For a new architecture, the memory region
1178 is initialized with zero (0) and the INIT function is called.
1179
1180 Memory regions are swapped / initialized in the order that they are
1181 registered. NULL DATA and/or INIT values can be specified.
1182
1183 New code should use register_gdbarch_data(). */
1184
1185 typedef void (gdbarch_swap_ftype) (void);
1186 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1187 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1188
1189
1190
1191 /* The target-system-dependent byte order is dynamic */
1192
1193 extern int target_byte_order;
1194 #ifndef TARGET_BYTE_ORDER
1195 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1196 #endif
1197
1198 extern int target_byte_order_auto;
1199 #ifndef TARGET_BYTE_ORDER_AUTO
1200 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1201 #endif
1202
1203
1204
1205 /* The target-system-dependent BFD architecture is dynamic */
1206
1207 extern int target_architecture_auto;
1208 #ifndef TARGET_ARCHITECTURE_AUTO
1209 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1210 #endif
1211
1212 extern const struct bfd_arch_info *target_architecture;
1213 #ifndef TARGET_ARCHITECTURE
1214 #define TARGET_ARCHITECTURE (target_architecture + 0)
1215 #endif
1216
1217
1218 /* Set the dynamic target-system-dependent parameters (architecture,
1219 byte-order, ...) using information found in the BFD */
1220
1221 extern void set_gdbarch_from_file (bfd *);
1222
1223
1224 /* Initialize the current architecture to the "first" one we find on
1225 our list. */
1226
1227 extern void initialize_current_architecture (void);
1228
1229 /* For non-multiarched targets, do any initialization of the default
1230 gdbarch object necessary after the _initialize_MODULE functions
1231 have run. */
1232 extern void initialize_non_multiarch (void);
1233
1234 /* gdbarch trace variable */
1235 extern int gdbarch_debug;
1236
1237 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1238
1239 #endif
1240 EOF
1241 exec 1>&2
1242 #../move-if-change new-gdbarch.h gdbarch.h
1243 compare_new gdbarch.h
1244
1245
1246 #
1247 # C file
1248 #
1249
1250 exec > new-gdbarch.c
1251 copyright
1252 cat <<EOF
1253
1254 #include "defs.h"
1255 #include "arch-utils.h"
1256
1257 #include "gdbcmd.h"
1258 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1259 #include "symcat.h"
1260
1261 #include "floatformat.h"
1262
1263 #include "gdb_assert.h"
1264 #include "gdb_string.h"
1265 #include "gdb-events.h"
1266 #include "reggroups.h"
1267 #include "osabi.h"
1268 #include "symfile.h" /* For entry_point_address. */
1269 #include "gdb_obstack.h"
1270
1271 /* Static function declarations */
1272
1273 static void verify_gdbarch (struct gdbarch *gdbarch);
1274 static void alloc_gdbarch_data (struct gdbarch *);
1275 static void init_gdbarch_swap (struct gdbarch *);
1276 static void clear_gdbarch_swap (struct gdbarch *);
1277 static void swapout_gdbarch_swap (struct gdbarch *);
1278 static void swapin_gdbarch_swap (struct gdbarch *);
1279
1280 /* Non-zero if we want to trace architecture code. */
1281
1282 #ifndef GDBARCH_DEBUG
1283 #define GDBARCH_DEBUG 0
1284 #endif
1285 int gdbarch_debug = GDBARCH_DEBUG;
1286
1287 EOF
1288
1289 # gdbarch open the gdbarch object
1290 printf "\n"
1291 printf "/* Maintain the struct gdbarch object */\n"
1292 printf "\n"
1293 printf "struct gdbarch\n"
1294 printf "{\n"
1295 printf " /* Has this architecture been fully initialized? */\n"
1296 printf " int initialized_p;\n"
1297 printf "\n"
1298 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1299 printf " struct obstack *obstack;\n"
1300 printf "\n"
1301 printf " /* basic architectural information */\n"
1302 function_list | while do_read
1303 do
1304 if class_is_info_p
1305 then
1306 printf " ${returntype} ${function};\n"
1307 fi
1308 done
1309 printf "\n"
1310 printf " /* target specific vector. */\n"
1311 printf " struct gdbarch_tdep *tdep;\n"
1312 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1313 printf "\n"
1314 printf " /* per-architecture data-pointers */\n"
1315 printf " unsigned nr_data;\n"
1316 printf " void **data;\n"
1317 printf "\n"
1318 printf " /* per-architecture swap-regions */\n"
1319 printf " struct gdbarch_swap *swap;\n"
1320 printf "\n"
1321 cat <<EOF
1322 /* Multi-arch values.
1323
1324 When extending this structure you must:
1325
1326 Add the field below.
1327
1328 Declare set/get functions and define the corresponding
1329 macro in gdbarch.h.
1330
1331 gdbarch_alloc(): If zero/NULL is not a suitable default,
1332 initialize the new field.
1333
1334 verify_gdbarch(): Confirm that the target updated the field
1335 correctly.
1336
1337 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1338 field is dumped out
1339
1340 \`\`startup_gdbarch()'': Append an initial value to the static
1341 variable (base values on the host's c-type system).
1342
1343 get_gdbarch(): Implement the set/get functions (probably using
1344 the macro's as shortcuts).
1345
1346 */
1347
1348 EOF
1349 function_list | while do_read
1350 do
1351 if class_is_variable_p
1352 then
1353 printf " ${returntype} ${function};\n"
1354 elif class_is_function_p
1355 then
1356 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1357 fi
1358 done
1359 printf "};\n"
1360
1361 # A pre-initialized vector
1362 printf "\n"
1363 printf "\n"
1364 cat <<EOF
1365 /* The default architecture uses host values (for want of a better
1366 choice). */
1367 EOF
1368 printf "\n"
1369 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1370 printf "\n"
1371 printf "struct gdbarch startup_gdbarch =\n"
1372 printf "{\n"
1373 printf " 1, /* Always initialized. */\n"
1374 printf " NULL, /* The obstack. */\n"
1375 printf " /* basic architecture information */\n"
1376 function_list | while do_read
1377 do
1378 if class_is_info_p
1379 then
1380 printf " ${staticdefault}, /* ${function} */\n"
1381 fi
1382 done
1383 cat <<EOF
1384 /* target specific vector and its dump routine */
1385 NULL, NULL,
1386 /*per-architecture data-pointers and swap regions */
1387 0, NULL, NULL,
1388 /* Multi-arch values */
1389 EOF
1390 function_list | while do_read
1391 do
1392 if class_is_function_p || class_is_variable_p
1393 then
1394 printf " ${staticdefault}, /* ${function} */\n"
1395 fi
1396 done
1397 cat <<EOF
1398 /* startup_gdbarch() */
1399 };
1400
1401 struct gdbarch *current_gdbarch = &startup_gdbarch;
1402
1403 /* Do any initialization needed for a non-multiarch configuration
1404 after the _initialize_MODULE functions have been run. */
1405 void
1406 initialize_non_multiarch (void)
1407 {
1408 alloc_gdbarch_data (&startup_gdbarch);
1409 /* Ensure that all swap areas are zeroed so that they again think
1410 they are starting from scratch. */
1411 clear_gdbarch_swap (&startup_gdbarch);
1412 init_gdbarch_swap (&startup_gdbarch);
1413 }
1414 EOF
1415
1416 # Create a new gdbarch struct
1417 printf "\n"
1418 printf "\n"
1419 cat <<EOF
1420 /* Create a new \`\`struct gdbarch'' based on information provided by
1421 \`\`struct gdbarch_info''. */
1422 EOF
1423 printf "\n"
1424 cat <<EOF
1425 struct gdbarch *
1426 gdbarch_alloc (const struct gdbarch_info *info,
1427 struct gdbarch_tdep *tdep)
1428 {
1429 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1430 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1431 the current local architecture and not the previous global
1432 architecture. This ensures that the new architectures initial
1433 values are not influenced by the previous architecture. Once
1434 everything is parameterised with gdbarch, this will go away. */
1435 struct gdbarch *current_gdbarch;
1436
1437 /* Create an obstack for allocating all the per-architecture memory,
1438 then use that to allocate the architecture vector. */
1439 struct obstack *obstack = XMALLOC (struct obstack);
1440 obstack_init (obstack);
1441 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1442 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1443 current_gdbarch->obstack = obstack;
1444
1445 alloc_gdbarch_data (current_gdbarch);
1446
1447 current_gdbarch->tdep = tdep;
1448 EOF
1449 printf "\n"
1450 function_list | while do_read
1451 do
1452 if class_is_info_p
1453 then
1454 printf " current_gdbarch->${function} = info->${function};\n"
1455 fi
1456 done
1457 printf "\n"
1458 printf " /* Force the explicit initialization of these. */\n"
1459 function_list | while do_read
1460 do
1461 if class_is_function_p || class_is_variable_p
1462 then
1463 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1464 then
1465 printf " current_gdbarch->${function} = ${predefault};\n"
1466 fi
1467 fi
1468 done
1469 cat <<EOF
1470 /* gdbarch_alloc() */
1471
1472 return current_gdbarch;
1473 }
1474 EOF
1475
1476 # Free a gdbarch struct.
1477 printf "\n"
1478 printf "\n"
1479 cat <<EOF
1480 /* Allocate extra space using the per-architecture obstack. */
1481
1482 void *
1483 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1484 {
1485 void *data = obstack_alloc (arch->obstack, size);
1486 memset (data, 0, size);
1487 return data;
1488 }
1489
1490
1491 /* Free a gdbarch struct. This should never happen in normal
1492 operation --- once you've created a gdbarch, you keep it around.
1493 However, if an architecture's init function encounters an error
1494 building the structure, it may need to clean up a partially
1495 constructed gdbarch. */
1496
1497 void
1498 gdbarch_free (struct gdbarch *arch)
1499 {
1500 struct obstack *obstack;
1501 gdb_assert (arch != NULL);
1502 gdb_assert (!arch->initialized_p);
1503 obstack = arch->obstack;
1504 obstack_free (obstack, 0); /* Includes the ARCH. */
1505 xfree (obstack);
1506 }
1507 EOF
1508
1509 # verify a new architecture
1510 printf "\n"
1511 printf "\n"
1512 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1513 printf "\n"
1514 cat <<EOF
1515 static void
1516 verify_gdbarch (struct gdbarch *gdbarch)
1517 {
1518 struct ui_file *log;
1519 struct cleanup *cleanups;
1520 long dummy;
1521 char *buf;
1522 log = mem_fileopen ();
1523 cleanups = make_cleanup_ui_file_delete (log);
1524 /* fundamental */
1525 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1526 fprintf_unfiltered (log, "\n\tbyte-order");
1527 if (gdbarch->bfd_arch_info == NULL)
1528 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1529 /* Check those that need to be defined for the given multi-arch level. */
1530 EOF
1531 function_list | while do_read
1532 do
1533 if class_is_function_p || class_is_variable_p
1534 then
1535 if [ "x${invalid_p}" = "x0" ]
1536 then
1537 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1538 elif class_is_predicate_p
1539 then
1540 printf " /* Skip verify of ${function}, has predicate */\n"
1541 # FIXME: See do_read for potential simplification
1542 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1543 then
1544 printf " if (${invalid_p})\n"
1545 printf " gdbarch->${function} = ${postdefault};\n"
1546 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1547 then
1548 printf " if (gdbarch->${function} == ${predefault})\n"
1549 printf " gdbarch->${function} = ${postdefault};\n"
1550 elif [ -n "${postdefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == 0)\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${invalid_p}" ]
1555 then
1556 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1557 printf " && (${invalid_p}))\n"
1558 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1559 elif [ -n "${predefault}" ]
1560 then
1561 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1562 printf " && (gdbarch->${function} == ${predefault}))\n"
1563 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1564 fi
1565 fi
1566 done
1567 cat <<EOF
1568 buf = ui_file_xstrdup (log, &dummy);
1569 make_cleanup (xfree, buf);
1570 if (strlen (buf) > 0)
1571 internal_error (__FILE__, __LINE__,
1572 "verify_gdbarch: the following are invalid ...%s",
1573 buf);
1574 do_cleanups (cleanups);
1575 }
1576 EOF
1577
1578 # dump the structure
1579 printf "\n"
1580 printf "\n"
1581 cat <<EOF
1582 /* Print out the details of the current architecture. */
1583
1584 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1585 just happens to match the global variable \`\`current_gdbarch''. That
1586 way macros refering to that variable get the local and not the global
1587 version - ulgh. Once everything is parameterised with gdbarch, this
1588 will go away. */
1589
1590 void
1591 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1592 {
1593 fprintf_unfiltered (file,
1594 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1595 GDB_MULTI_ARCH);
1596 EOF
1597 function_list | sort -t: -k 3 | while do_read
1598 do
1599 # First the predicate
1600 if class_is_predicate_p
1601 then
1602 if class_is_multiarch_p
1603 then
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1606 printf " gdbarch_${function}_p (current_gdbarch));\n"
1607 else
1608 printf "#ifdef ${macro}_P\n"
1609 printf " fprintf_unfiltered (file,\n"
1610 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1611 printf " \"${macro}_P()\",\n"
1612 printf " XSTRING (${macro}_P ()));\n"
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1615 printf " ${macro}_P ());\n"
1616 printf "#endif\n"
1617 fi
1618 fi
1619 # multiarch functions don't have macros.
1620 if class_is_multiarch_p
1621 then
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1624 printf " (long) current_gdbarch->${function});\n"
1625 continue
1626 fi
1627 # Print the macro definition.
1628 printf "#ifdef ${macro}\n"
1629 if class_is_function_p
1630 then
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1633 printf " \"${macro}(${actual})\",\n"
1634 printf " XSTRING (${macro} (${actual})));\n"
1635 else
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1638 printf " XSTRING (${macro}));\n"
1639 fi
1640 if [ "x${print_p}" = "x()" ]
1641 then
1642 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1643 elif [ "x${print_p}" = "x0" ]
1644 then
1645 printf " /* skip print of ${macro}, print_p == 0. */\n"
1646 elif [ -n "${print_p}" ]
1647 then
1648 printf " if (${print_p})\n"
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1651 printf " ${print});\n"
1652 elif class_is_function_p
1653 then
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1656 printf " (long) current_gdbarch->${function}\n"
1657 printf " /*${macro} ()*/);\n"
1658 else
1659 printf " fprintf_unfiltered (file,\n"
1660 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1661 printf " ${print});\n"
1662 fi
1663 printf "#endif\n"
1664 done
1665 cat <<EOF
1666 if (current_gdbarch->dump_tdep != NULL)
1667 current_gdbarch->dump_tdep (current_gdbarch, file);
1668 }
1669 EOF
1670
1671
1672 # GET/SET
1673 printf "\n"
1674 cat <<EOF
1675 struct gdbarch_tdep *
1676 gdbarch_tdep (struct gdbarch *gdbarch)
1677 {
1678 if (gdbarch_debug >= 2)
1679 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1680 return gdbarch->tdep;
1681 }
1682 EOF
1683 printf "\n"
1684 function_list | while do_read
1685 do
1686 if class_is_predicate_p
1687 then
1688 printf "\n"
1689 printf "int\n"
1690 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1691 printf "{\n"
1692 printf " gdb_assert (gdbarch != NULL);\n"
1693 printf " return ${predicate};\n"
1694 printf "}\n"
1695 fi
1696 if class_is_function_p
1697 then
1698 printf "\n"
1699 printf "${returntype}\n"
1700 if [ "x${formal}" = "xvoid" ]
1701 then
1702 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1703 else
1704 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1705 fi
1706 printf "{\n"
1707 printf " gdb_assert (gdbarch != NULL);\n"
1708 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1709 if class_is_predicate_p && test -n "${predefault}"
1710 then
1711 # Allow a call to a function with a predicate.
1712 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1713 fi
1714 printf " if (gdbarch_debug >= 2)\n"
1715 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1716 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1717 then
1718 if class_is_multiarch_p
1719 then
1720 params="gdbarch"
1721 else
1722 params=""
1723 fi
1724 else
1725 if class_is_multiarch_p
1726 then
1727 params="gdbarch, ${actual}"
1728 else
1729 params="${actual}"
1730 fi
1731 fi
1732 if [ "x${returntype}" = "xvoid" ]
1733 then
1734 printf " gdbarch->${function} (${params});\n"
1735 else
1736 printf " return gdbarch->${function} (${params});\n"
1737 fi
1738 printf "}\n"
1739 printf "\n"
1740 printf "void\n"
1741 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1742 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1743 printf "{\n"
1744 printf " gdbarch->${function} = ${function};\n"
1745 printf "}\n"
1746 elif class_is_variable_p
1747 then
1748 printf "\n"
1749 printf "${returntype}\n"
1750 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1751 printf "{\n"
1752 printf " gdb_assert (gdbarch != NULL);\n"
1753 if [ "x${invalid_p}" = "x0" ]
1754 then
1755 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1756 elif [ -n "${invalid_p}" ]
1757 then
1758 printf " /* Check variable is valid. */\n"
1759 printf " gdb_assert (!(${invalid_p}));\n"
1760 elif [ -n "${predefault}" ]
1761 then
1762 printf " /* Check variable changed from pre-default. */\n"
1763 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1764 fi
1765 printf " if (gdbarch_debug >= 2)\n"
1766 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1767 printf " return gdbarch->${function};\n"
1768 printf "}\n"
1769 printf "\n"
1770 printf "void\n"
1771 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1772 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1773 printf "{\n"
1774 printf " gdbarch->${function} = ${function};\n"
1775 printf "}\n"
1776 elif class_is_info_p
1777 then
1778 printf "\n"
1779 printf "${returntype}\n"
1780 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1781 printf "{\n"
1782 printf " gdb_assert (gdbarch != NULL);\n"
1783 printf " if (gdbarch_debug >= 2)\n"
1784 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1785 printf " return gdbarch->${function};\n"
1786 printf "}\n"
1787 fi
1788 done
1789
1790 # All the trailing guff
1791 cat <<EOF
1792
1793
1794 /* Keep a registry of per-architecture data-pointers required by GDB
1795 modules. */
1796
1797 struct gdbarch_data
1798 {
1799 unsigned index;
1800 int init_p;
1801 gdbarch_data_init_ftype *init;
1802 };
1803
1804 struct gdbarch_data_registration
1805 {
1806 struct gdbarch_data *data;
1807 struct gdbarch_data_registration *next;
1808 };
1809
1810 struct gdbarch_data_registry
1811 {
1812 unsigned nr;
1813 struct gdbarch_data_registration *registrations;
1814 };
1815
1816 struct gdbarch_data_registry gdbarch_data_registry =
1817 {
1818 0, NULL,
1819 };
1820
1821 struct gdbarch_data *
1822 register_gdbarch_data (gdbarch_data_init_ftype *init)
1823 {
1824 struct gdbarch_data_registration **curr;
1825 /* Append the new registraration. */
1826 for (curr = &gdbarch_data_registry.registrations;
1827 (*curr) != NULL;
1828 curr = &(*curr)->next);
1829 (*curr) = XMALLOC (struct gdbarch_data_registration);
1830 (*curr)->next = NULL;
1831 (*curr)->data = XMALLOC (struct gdbarch_data);
1832 (*curr)->data->index = gdbarch_data_registry.nr++;
1833 (*curr)->data->init = init;
1834 (*curr)->data->init_p = 1;
1835 return (*curr)->data;
1836 }
1837
1838
1839 /* Create/delete the gdbarch data vector. */
1840
1841 static void
1842 alloc_gdbarch_data (struct gdbarch *gdbarch)
1843 {
1844 gdb_assert (gdbarch->data == NULL);
1845 gdbarch->nr_data = gdbarch_data_registry.nr;
1846 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1847 }
1848
1849 /* Initialize the current value of the specified per-architecture
1850 data-pointer. */
1851
1852 void
1853 set_gdbarch_data (struct gdbarch *gdbarch,
1854 struct gdbarch_data *data,
1855 void *pointer)
1856 {
1857 gdb_assert (data->index < gdbarch->nr_data);
1858 gdb_assert (gdbarch->data[data->index] == NULL);
1859 gdbarch->data[data->index] = pointer;
1860 }
1861
1862 /* Return the current value of the specified per-architecture
1863 data-pointer. */
1864
1865 void *
1866 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1867 {
1868 gdb_assert (data->index < gdbarch->nr_data);
1869 /* The data-pointer isn't initialized, call init() to get a value but
1870 only if the architecture initializaiton has completed. Otherwise
1871 punt - hope that the caller knows what they are doing. */
1872 if (gdbarch->data[data->index] == NULL
1873 && gdbarch->initialized_p)
1874 {
1875 /* Be careful to detect an initialization cycle. */
1876 gdb_assert (data->init_p);
1877 data->init_p = 0;
1878 gdb_assert (data->init != NULL);
1879 gdbarch->data[data->index] = data->init (gdbarch);
1880 data->init_p = 1;
1881 gdb_assert (gdbarch->data[data->index] != NULL);
1882 }
1883 return gdbarch->data[data->index];
1884 }
1885
1886
1887
1888 /* Keep a registry of swapped data required by GDB modules. */
1889
1890 struct gdbarch_swap
1891 {
1892 void *swap;
1893 struct gdbarch_swap_registration *source;
1894 struct gdbarch_swap *next;
1895 };
1896
1897 struct gdbarch_swap_registration
1898 {
1899 void *data;
1900 unsigned long sizeof_data;
1901 gdbarch_swap_ftype *init;
1902 struct gdbarch_swap_registration *next;
1903 };
1904
1905 struct gdbarch_swap_registry
1906 {
1907 int nr;
1908 struct gdbarch_swap_registration *registrations;
1909 };
1910
1911 struct gdbarch_swap_registry gdbarch_swap_registry =
1912 {
1913 0, NULL,
1914 };
1915
1916 void
1917 register_gdbarch_swap (void *data,
1918 unsigned long sizeof_data,
1919 gdbarch_swap_ftype *init)
1920 {
1921 struct gdbarch_swap_registration **rego;
1922 for (rego = &gdbarch_swap_registry.registrations;
1923 (*rego) != NULL;
1924 rego = &(*rego)->next);
1925 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1926 (*rego)->next = NULL;
1927 (*rego)->init = init;
1928 (*rego)->data = data;
1929 (*rego)->sizeof_data = sizeof_data;
1930 }
1931
1932 static void
1933 clear_gdbarch_swap (struct gdbarch *gdbarch)
1934 {
1935 struct gdbarch_swap *curr;
1936 for (curr = gdbarch->swap;
1937 curr != NULL;
1938 curr = curr->next)
1939 {
1940 memset (curr->source->data, 0, curr->source->sizeof_data);
1941 }
1942 }
1943
1944 static void
1945 init_gdbarch_swap (struct gdbarch *gdbarch)
1946 {
1947 struct gdbarch_swap_registration *rego;
1948 struct gdbarch_swap **curr = &gdbarch->swap;
1949 for (rego = gdbarch_swap_registry.registrations;
1950 rego != NULL;
1951 rego = rego->next)
1952 {
1953 if (rego->data != NULL)
1954 {
1955 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1956 (*curr)->source = rego;
1957 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1958 (*curr)->next = NULL;
1959 curr = &(*curr)->next;
1960 }
1961 if (rego->init != NULL)
1962 rego->init ();
1963 }
1964 }
1965
1966 static void
1967 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1968 {
1969 struct gdbarch_swap *curr;
1970 for (curr = gdbarch->swap;
1971 curr != NULL;
1972 curr = curr->next)
1973 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1974 }
1975
1976 static void
1977 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1978 {
1979 struct gdbarch_swap *curr;
1980 for (curr = gdbarch->swap;
1981 curr != NULL;
1982 curr = curr->next)
1983 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1984 }
1985
1986
1987 /* Keep a registry of the architectures known by GDB. */
1988
1989 struct gdbarch_registration
1990 {
1991 enum bfd_architecture bfd_architecture;
1992 gdbarch_init_ftype *init;
1993 gdbarch_dump_tdep_ftype *dump_tdep;
1994 struct gdbarch_list *arches;
1995 struct gdbarch_registration *next;
1996 };
1997
1998 static struct gdbarch_registration *gdbarch_registry = NULL;
1999
2000 static void
2001 append_name (const char ***buf, int *nr, const char *name)
2002 {
2003 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2004 (*buf)[*nr] = name;
2005 *nr += 1;
2006 }
2007
2008 const char **
2009 gdbarch_printable_names (void)
2010 {
2011 /* Accumulate a list of names based on the registed list of
2012 architectures. */
2013 enum bfd_architecture a;
2014 int nr_arches = 0;
2015 const char **arches = NULL;
2016 struct gdbarch_registration *rego;
2017 for (rego = gdbarch_registry;
2018 rego != NULL;
2019 rego = rego->next)
2020 {
2021 const struct bfd_arch_info *ap;
2022 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2023 if (ap == NULL)
2024 internal_error (__FILE__, __LINE__,
2025 "gdbarch_architecture_names: multi-arch unknown");
2026 do
2027 {
2028 append_name (&arches, &nr_arches, ap->printable_name);
2029 ap = ap->next;
2030 }
2031 while (ap != NULL);
2032 }
2033 append_name (&arches, &nr_arches, NULL);
2034 return arches;
2035 }
2036
2037
2038 void
2039 gdbarch_register (enum bfd_architecture bfd_architecture,
2040 gdbarch_init_ftype *init,
2041 gdbarch_dump_tdep_ftype *dump_tdep)
2042 {
2043 struct gdbarch_registration **curr;
2044 const struct bfd_arch_info *bfd_arch_info;
2045 /* Check that BFD recognizes this architecture */
2046 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2047 if (bfd_arch_info == NULL)
2048 {
2049 internal_error (__FILE__, __LINE__,
2050 "gdbarch: Attempt to register unknown architecture (%d)",
2051 bfd_architecture);
2052 }
2053 /* Check that we haven't seen this architecture before */
2054 for (curr = &gdbarch_registry;
2055 (*curr) != NULL;
2056 curr = &(*curr)->next)
2057 {
2058 if (bfd_architecture == (*curr)->bfd_architecture)
2059 internal_error (__FILE__, __LINE__,
2060 "gdbarch: Duplicate registraration of architecture (%s)",
2061 bfd_arch_info->printable_name);
2062 }
2063 /* log it */
2064 if (gdbarch_debug)
2065 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2066 bfd_arch_info->printable_name,
2067 (long) init);
2068 /* Append it */
2069 (*curr) = XMALLOC (struct gdbarch_registration);
2070 (*curr)->bfd_architecture = bfd_architecture;
2071 (*curr)->init = init;
2072 (*curr)->dump_tdep = dump_tdep;
2073 (*curr)->arches = NULL;
2074 (*curr)->next = NULL;
2075 }
2076
2077 void
2078 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2079 gdbarch_init_ftype *init)
2080 {
2081 gdbarch_register (bfd_architecture, init, NULL);
2082 }
2083
2084
2085 /* Look for an architecture using gdbarch_info. Base search on only
2086 BFD_ARCH_INFO and BYTE_ORDER. */
2087
2088 struct gdbarch_list *
2089 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2090 const struct gdbarch_info *info)
2091 {
2092 for (; arches != NULL; arches = arches->next)
2093 {
2094 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2095 continue;
2096 if (info->byte_order != arches->gdbarch->byte_order)
2097 continue;
2098 if (info->osabi != arches->gdbarch->osabi)
2099 continue;
2100 return arches;
2101 }
2102 return NULL;
2103 }
2104
2105
2106 /* Update the current architecture. Return ZERO if the update request
2107 failed. */
2108
2109 int
2110 gdbarch_update_p (struct gdbarch_info info)
2111 {
2112 struct gdbarch *new_gdbarch;
2113 struct gdbarch *old_gdbarch;
2114 struct gdbarch_registration *rego;
2115
2116 /* Fill in missing parts of the INFO struct using a number of
2117 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2118
2119 /* \`\`(gdb) set architecture ...'' */
2120 if (info.bfd_arch_info == NULL
2121 && !TARGET_ARCHITECTURE_AUTO)
2122 info.bfd_arch_info = TARGET_ARCHITECTURE;
2123 if (info.bfd_arch_info == NULL
2124 && info.abfd != NULL
2125 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2126 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2127 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2128 if (info.bfd_arch_info == NULL)
2129 info.bfd_arch_info = TARGET_ARCHITECTURE;
2130
2131 /* \`\`(gdb) set byte-order ...'' */
2132 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2133 && !TARGET_BYTE_ORDER_AUTO)
2134 info.byte_order = TARGET_BYTE_ORDER;
2135 /* From the INFO struct. */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2137 && info.abfd != NULL)
2138 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2139 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2140 : BFD_ENDIAN_UNKNOWN);
2141 /* From the current target. */
2142 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2143 info.byte_order = TARGET_BYTE_ORDER;
2144
2145 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2146 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2147 info.osabi = gdbarch_lookup_osabi (info.abfd);
2148 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2149 info.osabi = current_gdbarch->osabi;
2150
2151 /* Must have found some sort of architecture. */
2152 gdb_assert (info.bfd_arch_info != NULL);
2153
2154 if (gdbarch_debug)
2155 {
2156 fprintf_unfiltered (gdb_stdlog,
2157 "gdbarch_update: info.bfd_arch_info %s\n",
2158 (info.bfd_arch_info != NULL
2159 ? info.bfd_arch_info->printable_name
2160 : "(null)"));
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: info.byte_order %d (%s)\n",
2163 info.byte_order,
2164 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2165 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2166 : "default"));
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_update: info.osabi %d (%s)\n",
2169 info.osabi, gdbarch_osabi_name (info.osabi));
2170 fprintf_unfiltered (gdb_stdlog,
2171 "gdbarch_update: info.abfd 0x%lx\n",
2172 (long) info.abfd);
2173 fprintf_unfiltered (gdb_stdlog,
2174 "gdbarch_update: info.tdep_info 0x%lx\n",
2175 (long) info.tdep_info);
2176 }
2177
2178 /* Find the target that knows about this architecture. */
2179 for (rego = gdbarch_registry;
2180 rego != NULL;
2181 rego = rego->next)
2182 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2183 break;
2184 if (rego == NULL)
2185 {
2186 if (gdbarch_debug)
2187 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2188 return 0;
2189 }
2190
2191 /* Swap the data belonging to the old target out setting the
2192 installed data to zero. This stops the ->init() function trying
2193 to refer to the previous architecture's global data structures. */
2194 swapout_gdbarch_swap (current_gdbarch);
2195 clear_gdbarch_swap (current_gdbarch);
2196
2197 /* Save the previously selected architecture, setting the global to
2198 NULL. This stops ->init() trying to use the previous
2199 architecture's configuration. The previous architecture may not
2200 even be of the same architecture family. The most recent
2201 architecture of the same family is found at the head of the
2202 rego->arches list. */
2203 old_gdbarch = current_gdbarch;
2204 current_gdbarch = NULL;
2205
2206 /* Ask the target for a replacement architecture. */
2207 new_gdbarch = rego->init (info, rego->arches);
2208
2209 /* Did the target like it? No. Reject the change and revert to the
2210 old architecture. */
2211 if (new_gdbarch == NULL)
2212 {
2213 if (gdbarch_debug)
2214 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2215 swapin_gdbarch_swap (old_gdbarch);
2216 current_gdbarch = old_gdbarch;
2217 return 0;
2218 }
2219
2220 /* Did the architecture change? No. Oops, put the old architecture
2221 back. */
2222 if (old_gdbarch == new_gdbarch)
2223 {
2224 if (gdbarch_debug)
2225 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2226 (long) new_gdbarch,
2227 new_gdbarch->bfd_arch_info->printable_name);
2228 swapin_gdbarch_swap (old_gdbarch);
2229 current_gdbarch = old_gdbarch;
2230 return 1;
2231 }
2232
2233 /* Is this a pre-existing architecture? Yes. Move it to the front
2234 of the list of architectures (keeping the list sorted Most
2235 Recently Used) and then copy it in. */
2236 {
2237 struct gdbarch_list **list;
2238 for (list = &rego->arches;
2239 (*list) != NULL;
2240 list = &(*list)->next)
2241 {
2242 if ((*list)->gdbarch == new_gdbarch)
2243 {
2244 struct gdbarch_list *this;
2245 if (gdbarch_debug)
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2248 (long) new_gdbarch,
2249 new_gdbarch->bfd_arch_info->printable_name);
2250 /* Unlink this. */
2251 this = (*list);
2252 (*list) = this->next;
2253 /* Insert in the front. */
2254 this->next = rego->arches;
2255 rego->arches = this;
2256 /* Copy the new architecture in. */
2257 current_gdbarch = new_gdbarch;
2258 swapin_gdbarch_swap (new_gdbarch);
2259 architecture_changed_event ();
2260 return 1;
2261 }
2262 }
2263 }
2264
2265 /* Prepend this new architecture to the architecture list (keep the
2266 list sorted Most Recently Used). */
2267 {
2268 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2269 this->next = rego->arches;
2270 this->gdbarch = new_gdbarch;
2271 rego->arches = this;
2272 }
2273
2274 /* Switch to this new architecture marking it initialized. */
2275 current_gdbarch = new_gdbarch;
2276 current_gdbarch->initialized_p = 1;
2277 if (gdbarch_debug)
2278 {
2279 fprintf_unfiltered (gdb_stdlog,
2280 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2281 (long) new_gdbarch,
2282 new_gdbarch->bfd_arch_info->printable_name);
2283 }
2284
2285 /* Check that the newly installed architecture is valid. Plug in
2286 any post init values. */
2287 new_gdbarch->dump_tdep = rego->dump_tdep;
2288 verify_gdbarch (new_gdbarch);
2289
2290 /* Initialize the per-architecture memory (swap) areas.
2291 CURRENT_GDBARCH must be update before these modules are
2292 called. */
2293 init_gdbarch_swap (new_gdbarch);
2294
2295 /* Initialize the per-architecture data. CURRENT_GDBARCH
2296 must be updated before these modules are called. */
2297 architecture_changed_event ();
2298
2299 if (gdbarch_debug)
2300 gdbarch_dump (current_gdbarch, gdb_stdlog);
2301
2302 return 1;
2303 }
2304
2305
2306 extern void _initialize_gdbarch (void);
2307
2308 void
2309 _initialize_gdbarch (void)
2310 {
2311 struct cmd_list_element *c;
2312
2313 add_show_from_set (add_set_cmd ("arch",
2314 class_maintenance,
2315 var_zinteger,
2316 (char *)&gdbarch_debug,
2317 "Set architecture debugging.\\n\\
2318 When non-zero, architecture debugging is enabled.", &setdebuglist),
2319 &showdebuglist);
2320 c = add_set_cmd ("archdebug",
2321 class_maintenance,
2322 var_zinteger,
2323 (char *)&gdbarch_debug,
2324 "Set architecture debugging.\\n\\
2325 When non-zero, architecture debugging is enabled.", &setlist);
2326
2327 deprecate_cmd (c, "set debug arch");
2328 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2329 }
2330 EOF
2331
2332 # close things off
2333 exec 1>&2
2334 #../move-if-change new-gdbarch.c gdbarch.c
2335 compare_new gdbarch.c
This page took 0.104221 seconds and 4 git commands to generate.