gdb/arc: Use default gdbarch methods where possible
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2019 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
369
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
384
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
394 #
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
398 #
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403 #
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
410 #
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
413 #
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
421 #
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428 #
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436 #
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
443
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
477
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
482
483 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484 # a dummy frame. A dummy frame is created before an inferior call,
485 # the frame_id returned here must match the frame_id that was built
486 # for the inferior call. Usually this means the returned frame_id's
487 # stack address should match the address returned by
488 # gdbarch_push_dummy_call, and the returned frame_id's code address
489 # should match the address at which the breakpoint was set in the dummy
490 # frame.
491 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
492 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
493 # deprecated_fp_regnum.
494 v;int;deprecated_fp_regnum;;;-1;-1;;0
495
496 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
497 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
499
500 # Return true if the code of FRAME is writable.
501 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
502
503 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
511
512 # Determine the address where a longjmp will land and save this address
513 # in PC. Return nonzero on success.
514 #
515 # FRAME corresponds to the longjmp frame.
516 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
517
518 #
519 v;int;believe_pcc_promotion;;;;;;;
520 #
521 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
524 # Construct a value representing the contents of register REGNUM in
525 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
526 # allocate and return a struct value with all value attributes
527 # (but not the value contents) filled in.
528 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
529 #
530 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
533
534 # Return the return-value convention that will be used by FUNCTION
535 # to return a value of type VALTYPE. FUNCTION may be NULL in which
536 # case the return convention is computed based only on VALTYPE.
537 #
538 # If READBUF is not NULL, extract the return value and save it in this buffer.
539 #
540 # If WRITEBUF is not NULL, it contains a return value which will be
541 # stored into the appropriate register. This can be used when we want
542 # to force the value returned by a function (see the "return" command
543 # for instance).
544 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
545
546 # Return true if the return value of function is stored in the first hidden
547 # parameter. In theory, this feature should be language-dependent, specified
548 # by language and its ABI, such as C++. Unfortunately, compiler may
549 # implement it to a target-dependent feature. So that we need such hook here
550 # to be aware of this in GDB.
551 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
552
553 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
555 # On some platforms, a single function may provide multiple entry points,
556 # e.g. one that is used for function-pointer calls and a different one
557 # that is used for direct function calls.
558 # In order to ensure that breakpoints set on the function will trigger
559 # no matter via which entry point the function is entered, a platform
560 # may provide the skip_entrypoint callback. It is called with IP set
561 # to the main entry point of a function (as determined by the symbol table),
562 # and should return the address of the innermost entry point, where the
563 # actual breakpoint needs to be set. Note that skip_entrypoint is used
564 # by GDB common code even when debugging optimized code, where skip_prologue
565 # is not used.
566 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
567
568 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
570
571 # Return the breakpoint kind for this target based on *PCPTR.
572 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
573
574 # Return the software breakpoint from KIND. KIND can have target
575 # specific meaning like the Z0 kind parameter.
576 # SIZE is set to the software breakpoint's length in memory.
577 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
578
579 # Return the breakpoint kind for this target based on the current
580 # processor state (e.g. the current instruction mode on ARM) and the
581 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
582 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
583
584 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
588
589 # A function can be addressed by either it's "pointer" (possibly a
590 # descriptor address) or "entry point" (first executable instruction).
591 # The method "convert_from_func_ptr_addr" converting the former to the
592 # latter. gdbarch_deprecated_function_start_offset is being used to implement
593 # a simplified subset of that functionality - the function's address
594 # corresponds to the "function pointer" and the function's start
595 # corresponds to the "function entry point" - and hence is redundant.
596
597 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
598
599 # Return the remote protocol register number associated with this
600 # register. Normally the identity mapping.
601 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
602
603 # Fetch the target specific address used to represent a load module.
604 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
605 #
606 v;CORE_ADDR;frame_args_skip;;;0;;;0
607 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
608 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
609 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
610 # frame-base. Enable frame-base before frame-unwind.
611 F;int;frame_num_args;struct frame_info *frame;frame
612 #
613 M;CORE_ADDR;frame_align;CORE_ADDR address;address
614 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
615 v;int;frame_red_zone_size
616 #
617 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
618 # On some machines there are bits in addresses which are not really
619 # part of the address, but are used by the kernel, the hardware, etc.
620 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
621 # we get a "real" address such as one would find in a symbol table.
622 # This is used only for addresses of instructions, and even then I'm
623 # not sure it's used in all contexts. It exists to deal with there
624 # being a few stray bits in the PC which would mislead us, not as some
625 # sort of generic thing to handle alignment or segmentation (it's
626 # possible it should be in TARGET_READ_PC instead).
627 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
628
629 # On some machines, not all bits of an address word are significant.
630 # For example, on AArch64, the top bits of an address known as the "tag"
631 # are ignored by the kernel, the hardware, etc. and can be regarded as
632 # additional data associated with the address.
633 v;int;significant_addr_bit;;;;;;0
634
635 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
636 # indicates if the target needs software single step. An ISA method to
637 # implement it.
638 #
639 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
640 # target can single step. If not, then implement single step using breakpoints.
641 #
642 # Return a vector of addresses on which the software single step
643 # breakpoints should be inserted. NULL means software single step is
644 # not used.
645 # Multiple breakpoints may be inserted for some instructions such as
646 # conditional branch. However, each implementation must always evaluate
647 # the condition and only put the breakpoint at the branch destination if
648 # the condition is true, so that we ensure forward progress when stepping
649 # past a conditional branch to self.
650 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
651
652 # Return non-zero if the processor is executing a delay slot and a
653 # further single-step is needed before the instruction finishes.
654 M;int;single_step_through_delay;struct frame_info *frame;frame
655 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
656 # disassembler. Perhaps objdump can handle it?
657 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
658 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
659
660
661 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
662 # evaluates non-zero, this is the address where the debugger will place
663 # a step-resume breakpoint to get us past the dynamic linker.
664 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
665 # Some systems also have trampoline code for returning from shared libs.
666 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
667
668 # Return true if PC lies inside an indirect branch thunk.
669 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
670
671 # A target might have problems with watchpoints as soon as the stack
672 # frame of the current function has been destroyed. This mostly happens
673 # as the first action in a function's epilogue. stack_frame_destroyed_p()
674 # is defined to return a non-zero value if either the given addr is one
675 # instruction after the stack destroying instruction up to the trailing
676 # return instruction or if we can figure out that the stack frame has
677 # already been invalidated regardless of the value of addr. Targets
678 # which don't suffer from that problem could just let this functionality
679 # untouched.
680 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
681 # Process an ELF symbol in the minimal symbol table in a backend-specific
682 # way. Normally this hook is supposed to do nothing, however if required,
683 # then this hook can be used to apply tranformations to symbols that are
684 # considered special in some way. For example the MIPS backend uses it
685 # to interpret \`st_other' information to mark compressed code symbols so
686 # that they can be treated in the appropriate manner in the processing of
687 # the main symbol table and DWARF-2 records.
688 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
689 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
690 # Process a symbol in the main symbol table in a backend-specific way.
691 # Normally this hook is supposed to do nothing, however if required,
692 # then this hook can be used to apply tranformations to symbols that
693 # are considered special in some way. This is currently used by the
694 # MIPS backend to make sure compressed code symbols have the ISA bit
695 # set. This in turn is needed for symbol values seen in GDB to match
696 # the values used at the runtime by the program itself, for function
697 # and label references.
698 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
699 # Adjust the address retrieved from a DWARF-2 record other than a line
700 # entry in a backend-specific way. Normally this hook is supposed to
701 # return the address passed unchanged, however if that is incorrect for
702 # any reason, then this hook can be used to fix the address up in the
703 # required manner. This is currently used by the MIPS backend to make
704 # sure addresses in FDE, range records, etc. referring to compressed
705 # code have the ISA bit set, matching line information and the symbol
706 # table.
707 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
708 # Adjust the address updated by a line entry in a backend-specific way.
709 # Normally this hook is supposed to return the address passed unchanged,
710 # however in the case of inconsistencies in these records, this hook can
711 # be used to fix them up in the required manner. This is currently used
712 # by the MIPS backend to make sure all line addresses in compressed code
713 # are presented with the ISA bit set, which is not always the case. This
714 # in turn ensures breakpoint addresses are correctly matched against the
715 # stop PC.
716 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
717 v;int;cannot_step_breakpoint;;;0;0;;0
718 # See comment in target.h about continuable, steppable and
719 # non-steppable watchpoints.
720 v;int;have_nonsteppable_watchpoint;;;0;0;;0
721 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
722 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
723 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
724 # FS are passed from the generic execute_cfa_program function.
725 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
726
727 # Return the appropriate type_flags for the supplied address class.
728 # This function should return 1 if the address class was recognized and
729 # type_flags was set, zero otherwise.
730 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
731 # Is a register in a group
732 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
733 # Fetch the pointer to the ith function argument.
734 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
735
736 # Iterate over all supported register notes in a core file. For each
737 # supported register note section, the iterator must call CB and pass
738 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
739 # the supported register note sections based on the current register
740 # values. Otherwise it should enumerate all supported register note
741 # sections.
742 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
743
744 # Create core file notes
745 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
746
747 # Find core file memory regions
748 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
749
750 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
751 # core file into buffer READBUF with length LEN. Return the number of bytes read
752 # (zero indicates failure).
753 # failed, otherwise, return the red length of READBUF.
754 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
755
756 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
757 # libraries list from core file into buffer READBUF with length LEN.
758 # Return the number of bytes read (zero indicates failure).
759 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
760
761 # How the core target converts a PTID from a core file to a string.
762 M;const char *;core_pid_to_str;ptid_t ptid;ptid
763
764 # How the core target extracts the name of a thread from a core file.
765 M;const char *;core_thread_name;struct thread_info *thr;thr
766
767 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
768 # from core file into buffer READBUF with length LEN. Return the number
769 # of bytes read (zero indicates EOF, a negative value indicates failure).
770 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
771
772 # BFD target to use when generating a core file.
773 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
774
775 # If the elements of C++ vtables are in-place function descriptors rather
776 # than normal function pointers (which may point to code or a descriptor),
777 # set this to one.
778 v;int;vtable_function_descriptors;;;0;0;;0
779
780 # Set if the least significant bit of the delta is used instead of the least
781 # significant bit of the pfn for pointers to virtual member functions.
782 v;int;vbit_in_delta;;;0;0;;0
783
784 # Advance PC to next instruction in order to skip a permanent breakpoint.
785 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
786
787 # The maximum length of an instruction on this architecture in bytes.
788 V;ULONGEST;max_insn_length;;;0;0
789
790 # Copy the instruction at FROM to TO, and make any adjustments
791 # necessary to single-step it at that address.
792 #
793 # REGS holds the state the thread's registers will have before
794 # executing the copied instruction; the PC in REGS will refer to FROM,
795 # not the copy at TO. The caller should update it to point at TO later.
796 #
797 # Return a pointer to data of the architecture's choice to be passed
798 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
799 # the instruction's effects have been completely simulated, with the
800 # resulting state written back to REGS.
801 #
802 # For a general explanation of displaced stepping and how GDB uses it,
803 # see the comments in infrun.c.
804 #
805 # The TO area is only guaranteed to have space for
806 # gdbarch_max_insn_length (arch) bytes, so this function must not
807 # write more bytes than that to that area.
808 #
809 # If you do not provide this function, GDB assumes that the
810 # architecture does not support displaced stepping.
811 #
812 # If the instruction cannot execute out of line, return NULL. The
813 # core falls back to stepping past the instruction in-line instead in
814 # that case.
815 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
816
817 # Return true if GDB should use hardware single-stepping to execute
818 # the displaced instruction identified by CLOSURE. If false,
819 # GDB will simply restart execution at the displaced instruction
820 # location, and it is up to the target to ensure GDB will receive
821 # control again (e.g. by placing a software breakpoint instruction
822 # into the displaced instruction buffer).
823 #
824 # The default implementation returns false on all targets that
825 # provide a gdbarch_software_single_step routine, and true otherwise.
826 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
827
828 # Fix up the state resulting from successfully single-stepping a
829 # displaced instruction, to give the result we would have gotten from
830 # stepping the instruction in its original location.
831 #
832 # REGS is the register state resulting from single-stepping the
833 # displaced instruction.
834 #
835 # CLOSURE is the result from the matching call to
836 # gdbarch_displaced_step_copy_insn.
837 #
838 # If you provide gdbarch_displaced_step_copy_insn.but not this
839 # function, then GDB assumes that no fixup is needed after
840 # single-stepping the instruction.
841 #
842 # For a general explanation of displaced stepping and how GDB uses it,
843 # see the comments in infrun.c.
844 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
845
846 # Return the address of an appropriate place to put displaced
847 # instructions while we step over them. There need only be one such
848 # place, since we're only stepping one thread over a breakpoint at a
849 # time.
850 #
851 # For a general explanation of displaced stepping and how GDB uses it,
852 # see the comments in infrun.c.
853 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
854
855 # Relocate an instruction to execute at a different address. OLDLOC
856 # is the address in the inferior memory where the instruction to
857 # relocate is currently at. On input, TO points to the destination
858 # where we want the instruction to be copied (and possibly adjusted)
859 # to. On output, it points to one past the end of the resulting
860 # instruction(s). The effect of executing the instruction at TO shall
861 # be the same as if executing it at FROM. For example, call
862 # instructions that implicitly push the return address on the stack
863 # should be adjusted to return to the instruction after OLDLOC;
864 # relative branches, and other PC-relative instructions need the
865 # offset adjusted; etc.
866 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
867
868 # Refresh overlay mapped state for section OSECT.
869 F;void;overlay_update;struct obj_section *osect;osect
870
871 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
872
873 # Handle special encoding of static variables in stabs debug info.
874 F;const char *;static_transform_name;const char *name;name
875 # Set if the address in N_SO or N_FUN stabs may be zero.
876 v;int;sofun_address_maybe_missing;;;0;0;;0
877
878 # Parse the instruction at ADDR storing in the record execution log
879 # the registers REGCACHE and memory ranges that will be affected when
880 # the instruction executes, along with their current values.
881 # Return -1 if something goes wrong, 0 otherwise.
882 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
883
884 # Save process state after a signal.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
887
888 # Signal translation: translate inferior's signal (target's) number
889 # into GDB's representation. The implementation of this method must
890 # be host independent. IOW, don't rely on symbols of the NAT_FILE
891 # header (the nm-*.h files), the host <signal.h> header, or similar
892 # headers. This is mainly used when cross-debugging core files ---
893 # "Live" targets hide the translation behind the target interface
894 # (target_wait, target_resume, etc.).
895 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
896
897 # Signal translation: translate the GDB's internal signal number into
898 # the inferior's signal (target's) representation. The implementation
899 # of this method must be host independent. IOW, don't rely on symbols
900 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
901 # header, or similar headers.
902 # Return the target signal number if found, or -1 if the GDB internal
903 # signal number is invalid.
904 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
905
906 # Extra signal info inspection.
907 #
908 # Return a type suitable to inspect extra signal information.
909 M;struct type *;get_siginfo_type;void;
910
911 # Record architecture-specific information from the symbol table.
912 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
913
914 # Function for the 'catch syscall' feature.
915
916 # Get architecture-specific system calls information from registers.
917 M;LONGEST;get_syscall_number;thread_info *thread;thread
918
919 # The filename of the XML syscall for this architecture.
920 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
921
922 # Information about system calls from this architecture
923 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
924
925 # SystemTap related fields and functions.
926
927 # A NULL-terminated array of prefixes used to mark an integer constant
928 # on the architecture's assembly.
929 # For example, on x86 integer constants are written as:
930 #
931 # \$10 ;; integer constant 10
932 #
933 # in this case, this prefix would be the character \`\$\'.
934 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
935
936 # A NULL-terminated array of suffixes used to mark an integer constant
937 # on the architecture's assembly.
938 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
939
940 # A NULL-terminated array of prefixes used to mark a register name on
941 # the architecture's assembly.
942 # For example, on x86 the register name is written as:
943 #
944 # \%eax ;; register eax
945 #
946 # in this case, this prefix would be the character \`\%\'.
947 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
948
949 # A NULL-terminated array of suffixes used to mark a register name on
950 # the architecture's assembly.
951 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
952
953 # A NULL-terminated array of prefixes used to mark a register
954 # indirection on the architecture's assembly.
955 # For example, on x86 the register indirection is written as:
956 #
957 # \(\%eax\) ;; indirecting eax
958 #
959 # in this case, this prefix would be the charater \`\(\'.
960 #
961 # Please note that we use the indirection prefix also for register
962 # displacement, e.g., \`4\(\%eax\)\' on x86.
963 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
964
965 # A NULL-terminated array of suffixes used to mark a register
966 # indirection on the architecture's assembly.
967 # For example, on x86 the register indirection is written as:
968 #
969 # \(\%eax\) ;; indirecting eax
970 #
971 # in this case, this prefix would be the charater \`\)\'.
972 #
973 # Please note that we use the indirection suffix also for register
974 # displacement, e.g., \`4\(\%eax\)\' on x86.
975 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
976
977 # Prefix(es) used to name a register using GDB's nomenclature.
978 #
979 # For example, on PPC a register is represented by a number in the assembly
980 # language (e.g., \`10\' is the 10th general-purpose register). However,
981 # inside GDB this same register has an \`r\' appended to its name, so the 10th
982 # register would be represented as \`r10\' internally.
983 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
984
985 # Suffix used to name a register using GDB's nomenclature.
986 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
987
988 # Check if S is a single operand.
989 #
990 # Single operands can be:
991 # \- Literal integers, e.g. \`\$10\' on x86
992 # \- Register access, e.g. \`\%eax\' on x86
993 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
994 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
995 #
996 # This function should check for these patterns on the string
997 # and return 1 if some were found, or zero otherwise. Please try to match
998 # as much info as you can from the string, i.e., if you have to match
999 # something like \`\(\%\', do not match just the \`\(\'.
1000 M;int;stap_is_single_operand;const char *s;s
1001
1002 # Function used to handle a "special case" in the parser.
1003 #
1004 # A "special case" is considered to be an unknown token, i.e., a token
1005 # that the parser does not know how to parse. A good example of special
1006 # case would be ARM's register displacement syntax:
1007 #
1008 # [R0, #4] ;; displacing R0 by 4
1009 #
1010 # Since the parser assumes that a register displacement is of the form:
1011 #
1012 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1013 #
1014 # it means that it will not be able to recognize and parse this odd syntax.
1015 # Therefore, we should add a special case function that will handle this token.
1016 #
1017 # This function should generate the proper expression form of the expression
1018 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1019 # and so on). It should also return 1 if the parsing was successful, or zero
1020 # if the token was not recognized as a special token (in this case, returning
1021 # zero means that the special parser is deferring the parsing to the generic
1022 # parser), and should advance the buffer pointer (p->arg).
1023 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1024
1025 # DTrace related functions.
1026
1027 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1028 # NARG must be >= 0.
1029 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1030
1031 # True if the given ADDR does not contain the instruction sequence
1032 # corresponding to a disabled DTrace is-enabled probe.
1033 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1034
1035 # Enable a DTrace is-enabled probe at ADDR.
1036 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1037
1038 # Disable a DTrace is-enabled probe at ADDR.
1039 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1040
1041 # True if the list of shared libraries is one and only for all
1042 # processes, as opposed to a list of shared libraries per inferior.
1043 # This usually means that all processes, although may or may not share
1044 # an address space, will see the same set of symbols at the same
1045 # addresses.
1046 v;int;has_global_solist;;;0;0;;0
1047
1048 # On some targets, even though each inferior has its own private
1049 # address space, the debug interface takes care of making breakpoints
1050 # visible to all address spaces automatically. For such cases,
1051 # this property should be set to true.
1052 v;int;has_global_breakpoints;;;0;0;;0
1053
1054 # True if inferiors share an address space (e.g., uClinux).
1055 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1056
1057 # True if a fast tracepoint can be set at an address.
1058 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1059
1060 # Guess register state based on tracepoint location. Used for tracepoints
1061 # where no registers have been collected, but there's only one location,
1062 # allowing us to guess the PC value, and perhaps some other registers.
1063 # On entry, regcache has all registers marked as unavailable.
1064 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1065
1066 # Return the "auto" target charset.
1067 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1068 # Return the "auto" target wide charset.
1069 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1070
1071 # If non-empty, this is a file extension that will be opened in place
1072 # of the file extension reported by the shared library list.
1073 #
1074 # This is most useful for toolchains that use a post-linker tool,
1075 # where the names of the files run on the target differ in extension
1076 # compared to the names of the files GDB should load for debug info.
1077 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1078
1079 # If true, the target OS has DOS-based file system semantics. That
1080 # is, absolute paths include a drive name, and the backslash is
1081 # considered a directory separator.
1082 v;int;has_dos_based_file_system;;;0;0;;0
1083
1084 # Generate bytecodes to collect the return address in a frame.
1085 # Since the bytecodes run on the target, possibly with GDB not even
1086 # connected, the full unwinding machinery is not available, and
1087 # typically this function will issue bytecodes for one or more likely
1088 # places that the return address may be found.
1089 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1090
1091 # Implement the "info proc" command.
1092 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1093
1094 # Implement the "info proc" command for core files. Noe that there
1095 # are two "info_proc"-like methods on gdbarch -- one for core files,
1096 # one for live targets.
1097 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1098
1099 # Iterate over all objfiles in the order that makes the most sense
1100 # for the architecture to make global symbol searches.
1101 #
1102 # CB is a callback function where OBJFILE is the objfile to be searched,
1103 # and CB_DATA a pointer to user-defined data (the same data that is passed
1104 # when calling this gdbarch method). The iteration stops if this function
1105 # returns nonzero.
1106 #
1107 # CB_DATA is a pointer to some user-defined data to be passed to
1108 # the callback.
1109 #
1110 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1111 # inspected when the symbol search was requested.
1112 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1113
1114 # Ravenscar arch-dependent ops.
1115 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1116
1117 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1118 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1119
1120 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1121 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1122
1123 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1124 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1125
1126 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1127 # Return 0 if *READPTR is already at the end of the buffer.
1128 # Return -1 if there is insufficient buffer for a whole entry.
1129 # Return 1 if an entry was read into *TYPEP and *VALP.
1130 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1131
1132 # Print the description of a single auxv entry described by TYPE and VAL
1133 # to FILE.
1134 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1135
1136 # Find the address range of the current inferior's vsyscall/vDSO, and
1137 # write it to *RANGE. If the vsyscall's length can't be determined, a
1138 # range with zero length is returned. Returns true if the vsyscall is
1139 # found, false otherwise.
1140 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1141
1142 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1143 # PROT has GDB_MMAP_PROT_* bitmask format.
1144 # Throw an error if it is not possible. Returned address is always valid.
1145 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1146
1147 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1148 # Print a warning if it is not possible.
1149 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1150
1151 # Return string (caller has to use xfree for it) with options for GCC
1152 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1153 # These options are put before CU's DW_AT_producer compilation options so that
1154 # they can override it. Method may also return NULL.
1155 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1156
1157 # Return a regular expression that matches names used by this
1158 # architecture in GNU configury triplets. The result is statically
1159 # allocated and must not be freed. The default implementation simply
1160 # returns the BFD architecture name, which is correct in nearly every
1161 # case.
1162 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1163
1164 # Return the size in 8-bit bytes of an addressable memory unit on this
1165 # architecture. This corresponds to the number of 8-bit bytes associated to
1166 # each address in memory.
1167 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1168
1169 # Functions for allowing a target to modify its disassembler options.
1170 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1171 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1172 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1173
1174 # Type alignment override method. Return the architecture specific
1175 # alignment required for TYPE. If there is no special handling
1176 # required for TYPE then return the value 0, GDB will then apply the
1177 # default rules as laid out in gdbtypes.c:type_align.
1178 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1179
1180 EOF
1181 }
1182
1183 #
1184 # The .log file
1185 #
1186 exec > new-gdbarch.log
1187 function_list | while do_read
1188 do
1189 cat <<EOF
1190 ${class} ${returntype} ${function} ($formal)
1191 EOF
1192 for r in ${read}
1193 do
1194 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1195 done
1196 if class_is_predicate_p && fallback_default_p
1197 then
1198 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1199 kill $$
1200 exit 1
1201 fi
1202 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1203 then
1204 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1205 kill $$
1206 exit 1
1207 fi
1208 if class_is_multiarch_p
1209 then
1210 if class_is_predicate_p ; then :
1211 elif test "x${predefault}" = "x"
1212 then
1213 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1214 kill $$
1215 exit 1
1216 fi
1217 fi
1218 echo ""
1219 done
1220
1221 exec 1>&2
1222 compare_new gdbarch.log
1223
1224
1225 copyright ()
1226 {
1227 cat <<EOF
1228 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1229 /* vi:set ro: */
1230
1231 /* Dynamic architecture support for GDB, the GNU debugger.
1232
1233 Copyright (C) 1998-2019 Free Software Foundation, Inc.
1234
1235 This file is part of GDB.
1236
1237 This program is free software; you can redistribute it and/or modify
1238 it under the terms of the GNU General Public License as published by
1239 the Free Software Foundation; either version 3 of the License, or
1240 (at your option) any later version.
1241
1242 This program is distributed in the hope that it will be useful,
1243 but WITHOUT ANY WARRANTY; without even the implied warranty of
1244 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1245 GNU General Public License for more details.
1246
1247 You should have received a copy of the GNU General Public License
1248 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1249
1250 /* This file was created with the aid of \`\`gdbarch.sh''.
1251
1252 The Bourne shell script \`\`gdbarch.sh'' creates the files
1253 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1254 against the existing \`\`gdbarch.[hc]''. Any differences found
1255 being reported.
1256
1257 If editing this file, please also run gdbarch.sh and merge any
1258 changes into that script. Conversely, when making sweeping changes
1259 to this file, modifying gdbarch.sh and using its output may prove
1260 easier. */
1261
1262 EOF
1263 }
1264
1265 #
1266 # The .h file
1267 #
1268
1269 exec > new-gdbarch.h
1270 copyright
1271 cat <<EOF
1272 #ifndef GDBARCH_H
1273 #define GDBARCH_H
1274
1275 #include <vector>
1276 #include "frame.h"
1277 #include "dis-asm.h"
1278 #include "gdb_obstack.h"
1279
1280 struct floatformat;
1281 struct ui_file;
1282 struct value;
1283 struct objfile;
1284 struct obj_section;
1285 struct minimal_symbol;
1286 struct regcache;
1287 struct reggroup;
1288 struct regset;
1289 struct disassemble_info;
1290 struct target_ops;
1291 struct obstack;
1292 struct bp_target_info;
1293 struct target_desc;
1294 struct symbol;
1295 struct displaced_step_closure;
1296 struct syscall;
1297 struct agent_expr;
1298 struct axs_value;
1299 struct stap_parse_info;
1300 struct parser_state;
1301 struct ravenscar_arch_ops;
1302 struct mem_range;
1303 struct syscalls_info;
1304 struct thread_info;
1305 struct ui_out;
1306
1307 #include "regcache.h"
1308
1309 /* The architecture associated with the inferior through the
1310 connection to the target.
1311
1312 The architecture vector provides some information that is really a
1313 property of the inferior, accessed through a particular target:
1314 ptrace operations; the layout of certain RSP packets; the solib_ops
1315 vector; etc. To differentiate architecture accesses to
1316 per-inferior/target properties from
1317 per-thread/per-frame/per-objfile properties, accesses to
1318 per-inferior/target properties should be made through this
1319 gdbarch. */
1320
1321 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1322 extern struct gdbarch *target_gdbarch (void);
1323
1324 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1325 gdbarch method. */
1326
1327 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1328 (struct objfile *objfile, void *cb_data);
1329
1330 /* Callback type for regset section iterators. The callback usually
1331 invokes the REGSET's supply or collect method, to which it must
1332 pass a buffer - for collects this buffer will need to be created using
1333 COLLECT_SIZE, for supply the existing buffer being read from should
1334 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1335 is used for diagnostic messages. CB_DATA should have been passed
1336 unchanged through the iterator. */
1337
1338 typedef void (iterate_over_regset_sections_cb)
1339 (const char *sect_name, int supply_size, int collect_size,
1340 const struct regset *regset, const char *human_name, void *cb_data);
1341
1342 /* For a function call, does the function return a value using a
1343 normal value return or a structure return - passing a hidden
1344 argument pointing to storage. For the latter, there are two
1345 cases: language-mandated structure return and target ABI
1346 structure return. */
1347
1348 enum function_call_return_method
1349 {
1350 /* Standard value return. */
1351 return_method_normal = 0,
1352
1353 /* Language ABI structure return. This is handled
1354 by passing the return location as the first parameter to
1355 the function, even preceding "this". */
1356 return_method_hidden_param,
1357
1358 /* Target ABI struct return. This is target-specific; for instance,
1359 on ia64 the first argument is passed in out0 but the hidden
1360 structure return pointer would normally be passed in r8. */
1361 return_method_struct,
1362 };
1363
1364 EOF
1365
1366 # function typedef's
1367 printf "\n"
1368 printf "\n"
1369 printf "/* The following are pre-initialized by GDBARCH. */\n"
1370 function_list | while do_read
1371 do
1372 if class_is_info_p
1373 then
1374 printf "\n"
1375 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1376 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1377 fi
1378 done
1379
1380 # function typedef's
1381 printf "\n"
1382 printf "\n"
1383 printf "/* The following are initialized by the target dependent code. */\n"
1384 function_list | while do_read
1385 do
1386 if [ -n "${comment}" ]
1387 then
1388 echo "${comment}" | sed \
1389 -e '2 s,#,/*,' \
1390 -e '3,$ s,#, ,' \
1391 -e '$ s,$, */,'
1392 fi
1393
1394 if class_is_predicate_p
1395 then
1396 printf "\n"
1397 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1398 fi
1399 if class_is_variable_p
1400 then
1401 printf "\n"
1402 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1403 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1404 fi
1405 if class_is_function_p
1406 then
1407 printf "\n"
1408 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1409 then
1410 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1411 elif class_is_multiarch_p
1412 then
1413 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1414 else
1415 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1416 fi
1417 if [ "x${formal}" = "xvoid" ]
1418 then
1419 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1420 else
1421 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1422 fi
1423 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1424 fi
1425 done
1426
1427 # close it off
1428 cat <<EOF
1429
1430 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1431
1432
1433 /* Mechanism for co-ordinating the selection of a specific
1434 architecture.
1435
1436 GDB targets (*-tdep.c) can register an interest in a specific
1437 architecture. Other GDB components can register a need to maintain
1438 per-architecture data.
1439
1440 The mechanisms below ensures that there is only a loose connection
1441 between the set-architecture command and the various GDB
1442 components. Each component can independently register their need
1443 to maintain architecture specific data with gdbarch.
1444
1445 Pragmatics:
1446
1447 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1448 didn't scale.
1449
1450 The more traditional mega-struct containing architecture specific
1451 data for all the various GDB components was also considered. Since
1452 GDB is built from a variable number of (fairly independent)
1453 components it was determined that the global aproach was not
1454 applicable. */
1455
1456
1457 /* Register a new architectural family with GDB.
1458
1459 Register support for the specified ARCHITECTURE with GDB. When
1460 gdbarch determines that the specified architecture has been
1461 selected, the corresponding INIT function is called.
1462
1463 --
1464
1465 The INIT function takes two parameters: INFO which contains the
1466 information available to gdbarch about the (possibly new)
1467 architecture; ARCHES which is a list of the previously created
1468 \`\`struct gdbarch'' for this architecture.
1469
1470 The INFO parameter is, as far as possible, be pre-initialized with
1471 information obtained from INFO.ABFD or the global defaults.
1472
1473 The ARCHES parameter is a linked list (sorted most recently used)
1474 of all the previously created architures for this architecture
1475 family. The (possibly NULL) ARCHES->gdbarch can used to access
1476 values from the previously selected architecture for this
1477 architecture family.
1478
1479 The INIT function shall return any of: NULL - indicating that it
1480 doesn't recognize the selected architecture; an existing \`\`struct
1481 gdbarch'' from the ARCHES list - indicating that the new
1482 architecture is just a synonym for an earlier architecture (see
1483 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1484 - that describes the selected architecture (see gdbarch_alloc()).
1485
1486 The DUMP_TDEP function shall print out all target specific values.
1487 Care should be taken to ensure that the function works in both the
1488 multi-arch and non- multi-arch cases. */
1489
1490 struct gdbarch_list
1491 {
1492 struct gdbarch *gdbarch;
1493 struct gdbarch_list *next;
1494 };
1495
1496 struct gdbarch_info
1497 {
1498 /* Use default: NULL (ZERO). */
1499 const struct bfd_arch_info *bfd_arch_info;
1500
1501 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1502 enum bfd_endian byte_order;
1503
1504 enum bfd_endian byte_order_for_code;
1505
1506 /* Use default: NULL (ZERO). */
1507 bfd *abfd;
1508
1509 /* Use default: NULL (ZERO). */
1510 union
1511 {
1512 /* Architecture-specific information. The generic form for targets
1513 that have extra requirements. */
1514 struct gdbarch_tdep_info *tdep_info;
1515
1516 /* Architecture-specific target description data. Numerous targets
1517 need only this, so give them an easy way to hold it. */
1518 struct tdesc_arch_data *tdesc_data;
1519
1520 /* SPU file system ID. This is a single integer, so using the
1521 generic form would only complicate code. Other targets may
1522 reuse this member if suitable. */
1523 int *id;
1524 };
1525
1526 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1527 enum gdb_osabi osabi;
1528
1529 /* Use default: NULL (ZERO). */
1530 const struct target_desc *target_desc;
1531 };
1532
1533 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1534 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1535
1536 /* DEPRECATED - use gdbarch_register() */
1537 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1538
1539 extern void gdbarch_register (enum bfd_architecture architecture,
1540 gdbarch_init_ftype *,
1541 gdbarch_dump_tdep_ftype *);
1542
1543
1544 /* Return a freshly allocated, NULL terminated, array of the valid
1545 architecture names. Since architectures are registered during the
1546 _initialize phase this function only returns useful information
1547 once initialization has been completed. */
1548
1549 extern const char **gdbarch_printable_names (void);
1550
1551
1552 /* Helper function. Search the list of ARCHES for a GDBARCH that
1553 matches the information provided by INFO. */
1554
1555 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1556
1557
1558 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1559 basic initialization using values obtained from the INFO and TDEP
1560 parameters. set_gdbarch_*() functions are called to complete the
1561 initialization of the object. */
1562
1563 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1564
1565
1566 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1567 It is assumed that the caller freeds the \`\`struct
1568 gdbarch_tdep''. */
1569
1570 extern void gdbarch_free (struct gdbarch *);
1571
1572 /* Get the obstack owned by ARCH. */
1573
1574 extern obstack *gdbarch_obstack (gdbarch *arch);
1575
1576 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1577 obstack. The memory is freed when the corresponding architecture
1578 is also freed. */
1579
1580 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1581 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1582
1583 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1584 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1585
1586 /* Duplicate STRING, returning an equivalent string that's allocated on the
1587 obstack associated with GDBARCH. The string is freed when the corresponding
1588 architecture is also freed. */
1589
1590 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1591
1592 /* Helper function. Force an update of the current architecture.
1593
1594 The actual architecture selected is determined by INFO, \`\`(gdb) set
1595 architecture'' et.al., the existing architecture and BFD's default
1596 architecture. INFO should be initialized to zero and then selected
1597 fields should be updated.
1598
1599 Returns non-zero if the update succeeds. */
1600
1601 extern int gdbarch_update_p (struct gdbarch_info info);
1602
1603
1604 /* Helper function. Find an architecture matching info.
1605
1606 INFO should be initialized using gdbarch_info_init, relevant fields
1607 set, and then finished using gdbarch_info_fill.
1608
1609 Returns the corresponding architecture, or NULL if no matching
1610 architecture was found. */
1611
1612 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1613
1614
1615 /* Helper function. Set the target gdbarch to "gdbarch". */
1616
1617 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1618
1619
1620 /* Register per-architecture data-pointer.
1621
1622 Reserve space for a per-architecture data-pointer. An identifier
1623 for the reserved data-pointer is returned. That identifer should
1624 be saved in a local static variable.
1625
1626 Memory for the per-architecture data shall be allocated using
1627 gdbarch_obstack_zalloc. That memory will be deleted when the
1628 corresponding architecture object is deleted.
1629
1630 When a previously created architecture is re-selected, the
1631 per-architecture data-pointer for that previous architecture is
1632 restored. INIT() is not re-called.
1633
1634 Multiple registrarants for any architecture are allowed (and
1635 strongly encouraged). */
1636
1637 struct gdbarch_data;
1638
1639 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1640 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1641 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1642 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1643 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1644 struct gdbarch_data *data,
1645 void *pointer);
1646
1647 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1648
1649
1650 /* Set the dynamic target-system-dependent parameters (architecture,
1651 byte-order, ...) using information found in the BFD. */
1652
1653 extern void set_gdbarch_from_file (bfd *);
1654
1655
1656 /* Initialize the current architecture to the "first" one we find on
1657 our list. */
1658
1659 extern void initialize_current_architecture (void);
1660
1661 /* gdbarch trace variable */
1662 extern unsigned int gdbarch_debug;
1663
1664 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1665
1666 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1667
1668 static inline int
1669 gdbarch_num_cooked_regs (gdbarch *arch)
1670 {
1671 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1672 }
1673
1674 #endif
1675 EOF
1676 exec 1>&2
1677 #../move-if-change new-gdbarch.h gdbarch.h
1678 compare_new gdbarch.h
1679
1680
1681 #
1682 # C file
1683 #
1684
1685 exec > new-gdbarch.c
1686 copyright
1687 cat <<EOF
1688
1689 #include "defs.h"
1690 #include "arch-utils.h"
1691
1692 #include "gdbcmd.h"
1693 #include "inferior.h"
1694 #include "symcat.h"
1695
1696 #include "floatformat.h"
1697 #include "reggroups.h"
1698 #include "osabi.h"
1699 #include "gdb_obstack.h"
1700 #include "observable.h"
1701 #include "regcache.h"
1702 #include "objfiles.h"
1703 #include "auxv.h"
1704 #include "frame-unwind.h"
1705 #include "dummy-frame.h"
1706
1707 /* Static function declarations */
1708
1709 static void alloc_gdbarch_data (struct gdbarch *);
1710
1711 /* Non-zero if we want to trace architecture code. */
1712
1713 #ifndef GDBARCH_DEBUG
1714 #define GDBARCH_DEBUG 0
1715 #endif
1716 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1717 static void
1718 show_gdbarch_debug (struct ui_file *file, int from_tty,
1719 struct cmd_list_element *c, const char *value)
1720 {
1721 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1722 }
1723
1724 static const char *
1725 pformat (const struct floatformat **format)
1726 {
1727 if (format == NULL)
1728 return "(null)";
1729 else
1730 /* Just print out one of them - this is only for diagnostics. */
1731 return format[0]->name;
1732 }
1733
1734 static const char *
1735 pstring (const char *string)
1736 {
1737 if (string == NULL)
1738 return "(null)";
1739 return string;
1740 }
1741
1742 static const char *
1743 pstring_ptr (char **string)
1744 {
1745 if (string == NULL || *string == NULL)
1746 return "(null)";
1747 return *string;
1748 }
1749
1750 /* Helper function to print a list of strings, represented as "const
1751 char *const *". The list is printed comma-separated. */
1752
1753 static const char *
1754 pstring_list (const char *const *list)
1755 {
1756 static char ret[100];
1757 const char *const *p;
1758 size_t offset = 0;
1759
1760 if (list == NULL)
1761 return "(null)";
1762
1763 ret[0] = '\0';
1764 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1765 {
1766 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1767 offset += 2 + s;
1768 }
1769
1770 if (offset > 0)
1771 {
1772 gdb_assert (offset - 2 < sizeof (ret));
1773 ret[offset - 2] = '\0';
1774 }
1775
1776 return ret;
1777 }
1778
1779 EOF
1780
1781 # gdbarch open the gdbarch object
1782 printf "\n"
1783 printf "/* Maintain the struct gdbarch object. */\n"
1784 printf "\n"
1785 printf "struct gdbarch\n"
1786 printf "{\n"
1787 printf " /* Has this architecture been fully initialized? */\n"
1788 printf " int initialized_p;\n"
1789 printf "\n"
1790 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1791 printf " struct obstack *obstack;\n"
1792 printf "\n"
1793 printf " /* basic architectural information. */\n"
1794 function_list | while do_read
1795 do
1796 if class_is_info_p
1797 then
1798 printf " ${returntype} ${function};\n"
1799 fi
1800 done
1801 printf "\n"
1802 printf " /* target specific vector. */\n"
1803 printf " struct gdbarch_tdep *tdep;\n"
1804 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1805 printf "\n"
1806 printf " /* per-architecture data-pointers. */\n"
1807 printf " unsigned nr_data;\n"
1808 printf " void **data;\n"
1809 printf "\n"
1810 cat <<EOF
1811 /* Multi-arch values.
1812
1813 When extending this structure you must:
1814
1815 Add the field below.
1816
1817 Declare set/get functions and define the corresponding
1818 macro in gdbarch.h.
1819
1820 gdbarch_alloc(): If zero/NULL is not a suitable default,
1821 initialize the new field.
1822
1823 verify_gdbarch(): Confirm that the target updated the field
1824 correctly.
1825
1826 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1827 field is dumped out
1828
1829 get_gdbarch(): Implement the set/get functions (probably using
1830 the macro's as shortcuts).
1831
1832 */
1833
1834 EOF
1835 function_list | while do_read
1836 do
1837 if class_is_variable_p
1838 then
1839 printf " ${returntype} ${function};\n"
1840 elif class_is_function_p
1841 then
1842 printf " gdbarch_${function}_ftype *${function};\n"
1843 fi
1844 done
1845 printf "};\n"
1846
1847 # Create a new gdbarch struct
1848 cat <<EOF
1849
1850 /* Create a new \`\`struct gdbarch'' based on information provided by
1851 \`\`struct gdbarch_info''. */
1852 EOF
1853 printf "\n"
1854 cat <<EOF
1855 struct gdbarch *
1856 gdbarch_alloc (const struct gdbarch_info *info,
1857 struct gdbarch_tdep *tdep)
1858 {
1859 struct gdbarch *gdbarch;
1860
1861 /* Create an obstack for allocating all the per-architecture memory,
1862 then use that to allocate the architecture vector. */
1863 struct obstack *obstack = XNEW (struct obstack);
1864 obstack_init (obstack);
1865 gdbarch = XOBNEW (obstack, struct gdbarch);
1866 memset (gdbarch, 0, sizeof (*gdbarch));
1867 gdbarch->obstack = obstack;
1868
1869 alloc_gdbarch_data (gdbarch);
1870
1871 gdbarch->tdep = tdep;
1872 EOF
1873 printf "\n"
1874 function_list | while do_read
1875 do
1876 if class_is_info_p
1877 then
1878 printf " gdbarch->${function} = info->${function};\n"
1879 fi
1880 done
1881 printf "\n"
1882 printf " /* Force the explicit initialization of these. */\n"
1883 function_list | while do_read
1884 do
1885 if class_is_function_p || class_is_variable_p
1886 then
1887 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1888 then
1889 printf " gdbarch->${function} = ${predefault};\n"
1890 fi
1891 fi
1892 done
1893 cat <<EOF
1894 /* gdbarch_alloc() */
1895
1896 return gdbarch;
1897 }
1898 EOF
1899
1900 # Free a gdbarch struct.
1901 printf "\n"
1902 printf "\n"
1903 cat <<EOF
1904
1905 obstack *gdbarch_obstack (gdbarch *arch)
1906 {
1907 return arch->obstack;
1908 }
1909
1910 /* See gdbarch.h. */
1911
1912 char *
1913 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1914 {
1915 return obstack_strdup (arch->obstack, string);
1916 }
1917
1918
1919 /* Free a gdbarch struct. This should never happen in normal
1920 operation --- once you've created a gdbarch, you keep it around.
1921 However, if an architecture's init function encounters an error
1922 building the structure, it may need to clean up a partially
1923 constructed gdbarch. */
1924
1925 void
1926 gdbarch_free (struct gdbarch *arch)
1927 {
1928 struct obstack *obstack;
1929
1930 gdb_assert (arch != NULL);
1931 gdb_assert (!arch->initialized_p);
1932 obstack = arch->obstack;
1933 obstack_free (obstack, 0); /* Includes the ARCH. */
1934 xfree (obstack);
1935 }
1936 EOF
1937
1938 # verify a new architecture
1939 cat <<EOF
1940
1941
1942 /* Ensure that all values in a GDBARCH are reasonable. */
1943
1944 static void
1945 verify_gdbarch (struct gdbarch *gdbarch)
1946 {
1947 string_file log;
1948
1949 /* fundamental */
1950 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1951 log.puts ("\n\tbyte-order");
1952 if (gdbarch->bfd_arch_info == NULL)
1953 log.puts ("\n\tbfd_arch_info");
1954 /* Check those that need to be defined for the given multi-arch level. */
1955 EOF
1956 function_list | while do_read
1957 do
1958 if class_is_function_p || class_is_variable_p
1959 then
1960 if [ "x${invalid_p}" = "x0" ]
1961 then
1962 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1963 elif class_is_predicate_p
1964 then
1965 printf " /* Skip verify of ${function}, has predicate. */\n"
1966 # FIXME: See do_read for potential simplification
1967 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1968 then
1969 printf " if (${invalid_p})\n"
1970 printf " gdbarch->${function} = ${postdefault};\n"
1971 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1972 then
1973 printf " if (gdbarch->${function} == ${predefault})\n"
1974 printf " gdbarch->${function} = ${postdefault};\n"
1975 elif [ -n "${postdefault}" ]
1976 then
1977 printf " if (gdbarch->${function} == 0)\n"
1978 printf " gdbarch->${function} = ${postdefault};\n"
1979 elif [ -n "${invalid_p}" ]
1980 then
1981 printf " if (${invalid_p})\n"
1982 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1983 elif [ -n "${predefault}" ]
1984 then
1985 printf " if (gdbarch->${function} == ${predefault})\n"
1986 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1987 fi
1988 fi
1989 done
1990 cat <<EOF
1991 if (!log.empty ())
1992 internal_error (__FILE__, __LINE__,
1993 _("verify_gdbarch: the following are invalid ...%s"),
1994 log.c_str ());
1995 }
1996 EOF
1997
1998 # dump the structure
1999 printf "\n"
2000 printf "\n"
2001 cat <<EOF
2002 /* Print out the details of the current architecture. */
2003
2004 void
2005 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2006 {
2007 const char *gdb_nm_file = "<not-defined>";
2008
2009 #if defined (GDB_NM_FILE)
2010 gdb_nm_file = GDB_NM_FILE;
2011 #endif
2012 fprintf_unfiltered (file,
2013 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2014 gdb_nm_file);
2015 EOF
2016 function_list | sort '-t;' -k 3 | while do_read
2017 do
2018 # First the predicate
2019 if class_is_predicate_p
2020 then
2021 printf " fprintf_unfiltered (file,\n"
2022 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2023 printf " gdbarch_${function}_p (gdbarch));\n"
2024 fi
2025 # Print the corresponding value.
2026 if class_is_function_p
2027 then
2028 printf " fprintf_unfiltered (file,\n"
2029 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2030 printf " host_address_to_string (gdbarch->${function}));\n"
2031 else
2032 # It is a variable
2033 case "${print}:${returntype}" in
2034 :CORE_ADDR )
2035 fmt="%s"
2036 print="core_addr_to_string_nz (gdbarch->${function})"
2037 ;;
2038 :* )
2039 fmt="%s"
2040 print="plongest (gdbarch->${function})"
2041 ;;
2042 * )
2043 fmt="%s"
2044 ;;
2045 esac
2046 printf " fprintf_unfiltered (file,\n"
2047 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2048 printf " ${print});\n"
2049 fi
2050 done
2051 cat <<EOF
2052 if (gdbarch->dump_tdep != NULL)
2053 gdbarch->dump_tdep (gdbarch, file);
2054 }
2055 EOF
2056
2057
2058 # GET/SET
2059 printf "\n"
2060 cat <<EOF
2061 struct gdbarch_tdep *
2062 gdbarch_tdep (struct gdbarch *gdbarch)
2063 {
2064 if (gdbarch_debug >= 2)
2065 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2066 return gdbarch->tdep;
2067 }
2068 EOF
2069 printf "\n"
2070 function_list | while do_read
2071 do
2072 if class_is_predicate_p
2073 then
2074 printf "\n"
2075 printf "int\n"
2076 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2077 printf "{\n"
2078 printf " gdb_assert (gdbarch != NULL);\n"
2079 printf " return ${predicate};\n"
2080 printf "}\n"
2081 fi
2082 if class_is_function_p
2083 then
2084 printf "\n"
2085 printf "${returntype}\n"
2086 if [ "x${formal}" = "xvoid" ]
2087 then
2088 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2089 else
2090 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2091 fi
2092 printf "{\n"
2093 printf " gdb_assert (gdbarch != NULL);\n"
2094 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2095 if class_is_predicate_p && test -n "${predefault}"
2096 then
2097 # Allow a call to a function with a predicate.
2098 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2099 fi
2100 printf " if (gdbarch_debug >= 2)\n"
2101 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2102 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2103 then
2104 if class_is_multiarch_p
2105 then
2106 params="gdbarch"
2107 else
2108 params=""
2109 fi
2110 else
2111 if class_is_multiarch_p
2112 then
2113 params="gdbarch, ${actual}"
2114 else
2115 params="${actual}"
2116 fi
2117 fi
2118 if [ "x${returntype}" = "xvoid" ]
2119 then
2120 printf " gdbarch->${function} (${params});\n"
2121 else
2122 printf " return gdbarch->${function} (${params});\n"
2123 fi
2124 printf "}\n"
2125 printf "\n"
2126 printf "void\n"
2127 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2128 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2129 printf "{\n"
2130 printf " gdbarch->${function} = ${function};\n"
2131 printf "}\n"
2132 elif class_is_variable_p
2133 then
2134 printf "\n"
2135 printf "${returntype}\n"
2136 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2137 printf "{\n"
2138 printf " gdb_assert (gdbarch != NULL);\n"
2139 if [ "x${invalid_p}" = "x0" ]
2140 then
2141 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2142 elif [ -n "${invalid_p}" ]
2143 then
2144 printf " /* Check variable is valid. */\n"
2145 printf " gdb_assert (!(${invalid_p}));\n"
2146 elif [ -n "${predefault}" ]
2147 then
2148 printf " /* Check variable changed from pre-default. */\n"
2149 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2150 fi
2151 printf " if (gdbarch_debug >= 2)\n"
2152 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2153 printf " return gdbarch->${function};\n"
2154 printf "}\n"
2155 printf "\n"
2156 printf "void\n"
2157 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2158 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2159 printf "{\n"
2160 printf " gdbarch->${function} = ${function};\n"
2161 printf "}\n"
2162 elif class_is_info_p
2163 then
2164 printf "\n"
2165 printf "${returntype}\n"
2166 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2167 printf "{\n"
2168 printf " gdb_assert (gdbarch != NULL);\n"
2169 printf " if (gdbarch_debug >= 2)\n"
2170 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2171 printf " return gdbarch->${function};\n"
2172 printf "}\n"
2173 fi
2174 done
2175
2176 # All the trailing guff
2177 cat <<EOF
2178
2179
2180 /* Keep a registry of per-architecture data-pointers required by GDB
2181 modules. */
2182
2183 struct gdbarch_data
2184 {
2185 unsigned index;
2186 int init_p;
2187 gdbarch_data_pre_init_ftype *pre_init;
2188 gdbarch_data_post_init_ftype *post_init;
2189 };
2190
2191 struct gdbarch_data_registration
2192 {
2193 struct gdbarch_data *data;
2194 struct gdbarch_data_registration *next;
2195 };
2196
2197 struct gdbarch_data_registry
2198 {
2199 unsigned nr;
2200 struct gdbarch_data_registration *registrations;
2201 };
2202
2203 struct gdbarch_data_registry gdbarch_data_registry =
2204 {
2205 0, NULL,
2206 };
2207
2208 static struct gdbarch_data *
2209 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2210 gdbarch_data_post_init_ftype *post_init)
2211 {
2212 struct gdbarch_data_registration **curr;
2213
2214 /* Append the new registration. */
2215 for (curr = &gdbarch_data_registry.registrations;
2216 (*curr) != NULL;
2217 curr = &(*curr)->next);
2218 (*curr) = XNEW (struct gdbarch_data_registration);
2219 (*curr)->next = NULL;
2220 (*curr)->data = XNEW (struct gdbarch_data);
2221 (*curr)->data->index = gdbarch_data_registry.nr++;
2222 (*curr)->data->pre_init = pre_init;
2223 (*curr)->data->post_init = post_init;
2224 (*curr)->data->init_p = 1;
2225 return (*curr)->data;
2226 }
2227
2228 struct gdbarch_data *
2229 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2230 {
2231 return gdbarch_data_register (pre_init, NULL);
2232 }
2233
2234 struct gdbarch_data *
2235 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2236 {
2237 return gdbarch_data_register (NULL, post_init);
2238 }
2239
2240 /* Create/delete the gdbarch data vector. */
2241
2242 static void
2243 alloc_gdbarch_data (struct gdbarch *gdbarch)
2244 {
2245 gdb_assert (gdbarch->data == NULL);
2246 gdbarch->nr_data = gdbarch_data_registry.nr;
2247 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2248 }
2249
2250 /* Initialize the current value of the specified per-architecture
2251 data-pointer. */
2252
2253 void
2254 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2255 struct gdbarch_data *data,
2256 void *pointer)
2257 {
2258 gdb_assert (data->index < gdbarch->nr_data);
2259 gdb_assert (gdbarch->data[data->index] == NULL);
2260 gdb_assert (data->pre_init == NULL);
2261 gdbarch->data[data->index] = pointer;
2262 }
2263
2264 /* Return the current value of the specified per-architecture
2265 data-pointer. */
2266
2267 void *
2268 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2269 {
2270 gdb_assert (data->index < gdbarch->nr_data);
2271 if (gdbarch->data[data->index] == NULL)
2272 {
2273 /* The data-pointer isn't initialized, call init() to get a
2274 value. */
2275 if (data->pre_init != NULL)
2276 /* Mid architecture creation: pass just the obstack, and not
2277 the entire architecture, as that way it isn't possible for
2278 pre-init code to refer to undefined architecture
2279 fields. */
2280 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2281 else if (gdbarch->initialized_p
2282 && data->post_init != NULL)
2283 /* Post architecture creation: pass the entire architecture
2284 (as all fields are valid), but be careful to also detect
2285 recursive references. */
2286 {
2287 gdb_assert (data->init_p);
2288 data->init_p = 0;
2289 gdbarch->data[data->index] = data->post_init (gdbarch);
2290 data->init_p = 1;
2291 }
2292 else
2293 /* The architecture initialization hasn't completed - punt -
2294 hope that the caller knows what they are doing. Once
2295 deprecated_set_gdbarch_data has been initialized, this can be
2296 changed to an internal error. */
2297 return NULL;
2298 gdb_assert (gdbarch->data[data->index] != NULL);
2299 }
2300 return gdbarch->data[data->index];
2301 }
2302
2303
2304 /* Keep a registry of the architectures known by GDB. */
2305
2306 struct gdbarch_registration
2307 {
2308 enum bfd_architecture bfd_architecture;
2309 gdbarch_init_ftype *init;
2310 gdbarch_dump_tdep_ftype *dump_tdep;
2311 struct gdbarch_list *arches;
2312 struct gdbarch_registration *next;
2313 };
2314
2315 static struct gdbarch_registration *gdbarch_registry = NULL;
2316
2317 static void
2318 append_name (const char ***buf, int *nr, const char *name)
2319 {
2320 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2321 (*buf)[*nr] = name;
2322 *nr += 1;
2323 }
2324
2325 const char **
2326 gdbarch_printable_names (void)
2327 {
2328 /* Accumulate a list of names based on the registed list of
2329 architectures. */
2330 int nr_arches = 0;
2331 const char **arches = NULL;
2332 struct gdbarch_registration *rego;
2333
2334 for (rego = gdbarch_registry;
2335 rego != NULL;
2336 rego = rego->next)
2337 {
2338 const struct bfd_arch_info *ap;
2339 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2340 if (ap == NULL)
2341 internal_error (__FILE__, __LINE__,
2342 _("gdbarch_architecture_names: multi-arch unknown"));
2343 do
2344 {
2345 append_name (&arches, &nr_arches, ap->printable_name);
2346 ap = ap->next;
2347 }
2348 while (ap != NULL);
2349 }
2350 append_name (&arches, &nr_arches, NULL);
2351 return arches;
2352 }
2353
2354
2355 void
2356 gdbarch_register (enum bfd_architecture bfd_architecture,
2357 gdbarch_init_ftype *init,
2358 gdbarch_dump_tdep_ftype *dump_tdep)
2359 {
2360 struct gdbarch_registration **curr;
2361 const struct bfd_arch_info *bfd_arch_info;
2362
2363 /* Check that BFD recognizes this architecture */
2364 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2365 if (bfd_arch_info == NULL)
2366 {
2367 internal_error (__FILE__, __LINE__,
2368 _("gdbarch: Attempt to register "
2369 "unknown architecture (%d)"),
2370 bfd_architecture);
2371 }
2372 /* Check that we haven't seen this architecture before. */
2373 for (curr = &gdbarch_registry;
2374 (*curr) != NULL;
2375 curr = &(*curr)->next)
2376 {
2377 if (bfd_architecture == (*curr)->bfd_architecture)
2378 internal_error (__FILE__, __LINE__,
2379 _("gdbarch: Duplicate registration "
2380 "of architecture (%s)"),
2381 bfd_arch_info->printable_name);
2382 }
2383 /* log it */
2384 if (gdbarch_debug)
2385 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2386 bfd_arch_info->printable_name,
2387 host_address_to_string (init));
2388 /* Append it */
2389 (*curr) = XNEW (struct gdbarch_registration);
2390 (*curr)->bfd_architecture = bfd_architecture;
2391 (*curr)->init = init;
2392 (*curr)->dump_tdep = dump_tdep;
2393 (*curr)->arches = NULL;
2394 (*curr)->next = NULL;
2395 }
2396
2397 void
2398 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2399 gdbarch_init_ftype *init)
2400 {
2401 gdbarch_register (bfd_architecture, init, NULL);
2402 }
2403
2404
2405 /* Look for an architecture using gdbarch_info. */
2406
2407 struct gdbarch_list *
2408 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2409 const struct gdbarch_info *info)
2410 {
2411 for (; arches != NULL; arches = arches->next)
2412 {
2413 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2414 continue;
2415 if (info->byte_order != arches->gdbarch->byte_order)
2416 continue;
2417 if (info->osabi != arches->gdbarch->osabi)
2418 continue;
2419 if (info->target_desc != arches->gdbarch->target_desc)
2420 continue;
2421 return arches;
2422 }
2423 return NULL;
2424 }
2425
2426
2427 /* Find an architecture that matches the specified INFO. Create a new
2428 architecture if needed. Return that new architecture. */
2429
2430 struct gdbarch *
2431 gdbarch_find_by_info (struct gdbarch_info info)
2432 {
2433 struct gdbarch *new_gdbarch;
2434 struct gdbarch_registration *rego;
2435
2436 /* Fill in missing parts of the INFO struct using a number of
2437 sources: "set ..."; INFOabfd supplied; and the global
2438 defaults. */
2439 gdbarch_info_fill (&info);
2440
2441 /* Must have found some sort of architecture. */
2442 gdb_assert (info.bfd_arch_info != NULL);
2443
2444 if (gdbarch_debug)
2445 {
2446 fprintf_unfiltered (gdb_stdlog,
2447 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2448 (info.bfd_arch_info != NULL
2449 ? info.bfd_arch_info->printable_name
2450 : "(null)"));
2451 fprintf_unfiltered (gdb_stdlog,
2452 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2453 info.byte_order,
2454 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2455 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2456 : "default"));
2457 fprintf_unfiltered (gdb_stdlog,
2458 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2459 info.osabi, gdbarch_osabi_name (info.osabi));
2460 fprintf_unfiltered (gdb_stdlog,
2461 "gdbarch_find_by_info: info.abfd %s\n",
2462 host_address_to_string (info.abfd));
2463 fprintf_unfiltered (gdb_stdlog,
2464 "gdbarch_find_by_info: info.tdep_info %s\n",
2465 host_address_to_string (info.tdep_info));
2466 }
2467
2468 /* Find the tdep code that knows about this architecture. */
2469 for (rego = gdbarch_registry;
2470 rego != NULL;
2471 rego = rego->next)
2472 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2473 break;
2474 if (rego == NULL)
2475 {
2476 if (gdbarch_debug)
2477 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2478 "No matching architecture\n");
2479 return 0;
2480 }
2481
2482 /* Ask the tdep code for an architecture that matches "info". */
2483 new_gdbarch = rego->init (info, rego->arches);
2484
2485 /* Did the tdep code like it? No. Reject the change and revert to
2486 the old architecture. */
2487 if (new_gdbarch == NULL)
2488 {
2489 if (gdbarch_debug)
2490 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2491 "Target rejected architecture\n");
2492 return NULL;
2493 }
2494
2495 /* Is this a pre-existing architecture (as determined by already
2496 being initialized)? Move it to the front of the architecture
2497 list (keeping the list sorted Most Recently Used). */
2498 if (new_gdbarch->initialized_p)
2499 {
2500 struct gdbarch_list **list;
2501 struct gdbarch_list *self;
2502 if (gdbarch_debug)
2503 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2504 "Previous architecture %s (%s) selected\n",
2505 host_address_to_string (new_gdbarch),
2506 new_gdbarch->bfd_arch_info->printable_name);
2507 /* Find the existing arch in the list. */
2508 for (list = &rego->arches;
2509 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2510 list = &(*list)->next);
2511 /* It had better be in the list of architectures. */
2512 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2513 /* Unlink SELF. */
2514 self = (*list);
2515 (*list) = self->next;
2516 /* Insert SELF at the front. */
2517 self->next = rego->arches;
2518 rego->arches = self;
2519 /* Return it. */
2520 return new_gdbarch;
2521 }
2522
2523 /* It's a new architecture. */
2524 if (gdbarch_debug)
2525 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2526 "New architecture %s (%s) selected\n",
2527 host_address_to_string (new_gdbarch),
2528 new_gdbarch->bfd_arch_info->printable_name);
2529
2530 /* Insert the new architecture into the front of the architecture
2531 list (keep the list sorted Most Recently Used). */
2532 {
2533 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2534 self->next = rego->arches;
2535 self->gdbarch = new_gdbarch;
2536 rego->arches = self;
2537 }
2538
2539 /* Check that the newly installed architecture is valid. Plug in
2540 any post init values. */
2541 new_gdbarch->dump_tdep = rego->dump_tdep;
2542 verify_gdbarch (new_gdbarch);
2543 new_gdbarch->initialized_p = 1;
2544
2545 if (gdbarch_debug)
2546 gdbarch_dump (new_gdbarch, gdb_stdlog);
2547
2548 return new_gdbarch;
2549 }
2550
2551 /* Make the specified architecture current. */
2552
2553 void
2554 set_target_gdbarch (struct gdbarch *new_gdbarch)
2555 {
2556 gdb_assert (new_gdbarch != NULL);
2557 gdb_assert (new_gdbarch->initialized_p);
2558 current_inferior ()->gdbarch = new_gdbarch;
2559 gdb::observers::architecture_changed.notify (new_gdbarch);
2560 registers_changed ();
2561 }
2562
2563 /* Return the current inferior's arch. */
2564
2565 struct gdbarch *
2566 target_gdbarch (void)
2567 {
2568 return current_inferior ()->gdbarch;
2569 }
2570
2571 void
2572 _initialize_gdbarch (void)
2573 {
2574 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2575 Set architecture debugging."), _("\\
2576 Show architecture debugging."), _("\\
2577 When non-zero, architecture debugging is enabled."),
2578 NULL,
2579 show_gdbarch_debug,
2580 &setdebuglist, &showdebuglist);
2581 }
2582 EOF
2583
2584 # close things off
2585 exec 1>&2
2586 #../move-if-change new-gdbarch.c gdbarch.c
2587 compare_new gdbarch.c
This page took 0.116772 seconds and 4 git commands to generate.