gdb/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "half", "float", "double", and
367 # "long double". These bit/format pairs should eventually be combined
368 # into a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
374 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
376 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
378 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
380
381 # For most targets, a pointer on the target and its representation as an
382 # address in GDB have the same size and "look the same". For such a
383 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
384 # / addr_bit will be set from it.
385 #
386 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
387 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
388 # as well.
389 #
390 # ptr_bit is the size of a pointer on the target
391 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
392 # addr_bit is the size of a target address as represented in gdb
393 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
394 #
395 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
396 v:int:char_signed:::1:-1:1
397 #
398 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
399 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
400 # Function for getting target's idea of a frame pointer. FIXME: GDB's
401 # whole scheme for dealing with "frames" and "frame pointers" needs a
402 # serious shakedown.
403 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
404 #
405 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
406 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
407 #
408 v:int:num_regs:::0:-1
409 # This macro gives the number of pseudo-registers that live in the
410 # register namespace but do not get fetched or stored on the target.
411 # These pseudo-registers may be aliases for other registers,
412 # combinations of other registers, or they may be computed by GDB.
413 v:int:num_pseudo_regs:::0:0::0
414
415 # GDB's standard (or well known) register numbers. These can map onto
416 # a real register or a pseudo (computed) register or not be defined at
417 # all (-1).
418 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
419 v:int:sp_regnum:::-1:-1::0
420 v:int:pc_regnum:::-1:-1::0
421 v:int:ps_regnum:::-1:-1::0
422 v:int:fp0_regnum:::0:-1::0
423 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
424 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
425 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
426 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
427 # Convert from an sdb register number to an internal gdb register number.
428 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
429 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
430 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
431 m:const char *:register_name:int regnr:regnr::0
432
433 # Return the type of a register specified by the architecture. Only
434 # the register cache should call this function directly; others should
435 # use "register_type".
436 M:struct type *:register_type:int reg_nr:reg_nr
437
438 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
439 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
440 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
441 # deprecated_fp_regnum.
442 v:int:deprecated_fp_regnum:::-1:-1::0
443
444 # See gdbint.texinfo. See infcall.c.
445 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
446 v:int:call_dummy_location::::AT_ENTRY_POINT::0
447 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
448
449 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
450 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
451 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
452 # MAP a GDB RAW register number onto a simulator register number. See
453 # also include/...-sim.h.
454 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
455 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
456 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
457 # setjmp/longjmp support.
458 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
459 #
460 v:int:believe_pcc_promotion:::::::
461 #
462 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
463 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
464 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
465 # Construct a value representing the contents of register REGNUM in
466 # frame FRAME, interpreted as type TYPE. The routine needs to
467 # allocate and return a struct value with all value attributes
468 # (but not the value contents) filled in.
469 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
470 #
471 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
472 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
473 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
474
475 # Return the return-value convention that will be used by FUNCTYPE
476 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
477 # case the return convention is computed based only on VALTYPE.
478 #
479 # If READBUF is not NULL, extract the return value and save it in this buffer.
480 #
481 # If WRITEBUF is not NULL, it contains a return value which will be
482 # stored into the appropriate register. This can be used when we want
483 # to force the value returned by a function (see the "return" command
484 # for instance).
485 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
486
487 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
488 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
489 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
490 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
491 # Return the adjusted address and kind to use for Z0/Z1 packets.
492 # KIND is usually the memory length of the breakpoint, but may have a
493 # different target-specific meaning.
494 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
495 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
496 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
497 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
498 v:CORE_ADDR:decr_pc_after_break:::0:::0
499
500 # A function can be addressed by either it's "pointer" (possibly a
501 # descriptor address) or "entry point" (first executable instruction).
502 # The method "convert_from_func_ptr_addr" converting the former to the
503 # latter. gdbarch_deprecated_function_start_offset is being used to implement
504 # a simplified subset of that functionality - the function's address
505 # corresponds to the "function pointer" and the function's start
506 # corresponds to the "function entry point" - and hence is redundant.
507
508 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
509
510 # Return the remote protocol register number associated with this
511 # register. Normally the identity mapping.
512 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
513
514 # Fetch the target specific address used to represent a load module.
515 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
516 #
517 v:CORE_ADDR:frame_args_skip:::0:::0
518 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
519 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
520 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
521 # frame-base. Enable frame-base before frame-unwind.
522 F:int:frame_num_args:struct frame_info *frame:frame
523 #
524 M:CORE_ADDR:frame_align:CORE_ADDR address:address
525 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
526 v:int:frame_red_zone_size
527 #
528 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
529 # On some machines there are bits in addresses which are not really
530 # part of the address, but are used by the kernel, the hardware, etc.
531 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
532 # we get a "real" address such as one would find in a symbol table.
533 # This is used only for addresses of instructions, and even then I'm
534 # not sure it's used in all contexts. It exists to deal with there
535 # being a few stray bits in the PC which would mislead us, not as some
536 # sort of generic thing to handle alignment or segmentation (it's
537 # possible it should be in TARGET_READ_PC instead).
538 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
539 # It is not at all clear why gdbarch_smash_text_address is not folded into
540 # gdbarch_addr_bits_remove.
541 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
542
543 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
544 # indicates if the target needs software single step. An ISA method to
545 # implement it.
546 #
547 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
548 # breakpoints using the breakpoint system instead of blatting memory directly
549 # (as with rs6000).
550 #
551 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
552 # target can single step. If not, then implement single step using breakpoints.
553 #
554 # A return value of 1 means that the software_single_step breakpoints
555 # were inserted; 0 means they were not.
556 F:int:software_single_step:struct frame_info *frame:frame
557
558 # Return non-zero if the processor is executing a delay slot and a
559 # further single-step is needed before the instruction finishes.
560 M:int:single_step_through_delay:struct frame_info *frame:frame
561 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
562 # disassembler. Perhaps objdump can handle it?
563 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
564 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
565
566
567 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
568 # evaluates non-zero, this is the address where the debugger will place
569 # a step-resume breakpoint to get us past the dynamic linker.
570 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
571 # Some systems also have trampoline code for returning from shared libs.
572 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
573
574 # A target might have problems with watchpoints as soon as the stack
575 # frame of the current function has been destroyed. This mostly happens
576 # as the first action in a funtion's epilogue. in_function_epilogue_p()
577 # is defined to return a non-zero value if either the given addr is one
578 # instruction after the stack destroying instruction up to the trailing
579 # return instruction or if we can figure out that the stack frame has
580 # already been invalidated regardless of the value of addr. Targets
581 # which don't suffer from that problem could just let this functionality
582 # untouched.
583 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
584 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
585 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
586 v:int:cannot_step_breakpoint:::0:0::0
587 v:int:have_nonsteppable_watchpoint:::0:0::0
588 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
589 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
590 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
591 # Is a register in a group
592 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
593 # Fetch the pointer to the ith function argument.
594 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
595
596 # Return the appropriate register set for a core file section with
597 # name SECT_NAME and size SECT_SIZE.
598 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
599
600 # When creating core dumps, some systems encode the PID in addition
601 # to the LWP id in core file register section names. In those cases, the
602 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
603 # is set to true for such architectures; false if "XXX" represents an LWP
604 # or thread id with no special encoding.
605 v:int:core_reg_section_encodes_pid:::0:0::0
606
607 # Supported register notes in a core file.
608 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
609
610 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
611 # core file into buffer READBUF with length LEN.
612 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
613
614 # How the core target converts a PTID from a core file to a string.
615 M:char *:core_pid_to_str:ptid_t ptid:ptid
616
617 # BFD target to use when generating a core file.
618 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
619
620 # If the elements of C++ vtables are in-place function descriptors rather
621 # than normal function pointers (which may point to code or a descriptor),
622 # set this to one.
623 v:int:vtable_function_descriptors:::0:0::0
624
625 # Set if the least significant bit of the delta is used instead of the least
626 # significant bit of the pfn for pointers to virtual member functions.
627 v:int:vbit_in_delta:::0:0::0
628
629 # Advance PC to next instruction in order to skip a permanent breakpoint.
630 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
631
632 # The maximum length of an instruction on this architecture.
633 V:ULONGEST:max_insn_length:::0:0
634
635 # Copy the instruction at FROM to TO, and make any adjustments
636 # necessary to single-step it at that address.
637 #
638 # REGS holds the state the thread's registers will have before
639 # executing the copied instruction; the PC in REGS will refer to FROM,
640 # not the copy at TO. The caller should update it to point at TO later.
641 #
642 # Return a pointer to data of the architecture's choice to be passed
643 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
644 # the instruction's effects have been completely simulated, with the
645 # resulting state written back to REGS.
646 #
647 # For a general explanation of displaced stepping and how GDB uses it,
648 # see the comments in infrun.c.
649 #
650 # The TO area is only guaranteed to have space for
651 # gdbarch_max_insn_length (arch) bytes, so this function must not
652 # write more bytes than that to that area.
653 #
654 # If you do not provide this function, GDB assumes that the
655 # architecture does not support displaced stepping.
656 #
657 # If your architecture doesn't need to adjust instructions before
658 # single-stepping them, consider using simple_displaced_step_copy_insn
659 # here.
660 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
661
662 # Return true if GDB should use hardware single-stepping to execute
663 # the displaced instruction identified by CLOSURE. If false,
664 # GDB will simply restart execution at the displaced instruction
665 # location, and it is up to the target to ensure GDB will receive
666 # control again (e.g. by placing a software breakpoint instruction
667 # into the displaced instruction buffer).
668 #
669 # The default implementation returns false on all targets that
670 # provide a gdbarch_software_single_step routine, and true otherwise.
671 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
672
673 # Fix up the state resulting from successfully single-stepping a
674 # displaced instruction, to give the result we would have gotten from
675 # stepping the instruction in its original location.
676 #
677 # REGS is the register state resulting from single-stepping the
678 # displaced instruction.
679 #
680 # CLOSURE is the result from the matching call to
681 # gdbarch_displaced_step_copy_insn.
682 #
683 # If you provide gdbarch_displaced_step_copy_insn.but not this
684 # function, then GDB assumes that no fixup is needed after
685 # single-stepping the instruction.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
690
691 # Free a closure returned by gdbarch_displaced_step_copy_insn.
692 #
693 # If you provide gdbarch_displaced_step_copy_insn, you must provide
694 # this function as well.
695 #
696 # If your architecture uses closures that don't need to be freed, then
697 # you can use simple_displaced_step_free_closure here.
698 #
699 # For a general explanation of displaced stepping and how GDB uses it,
700 # see the comments in infrun.c.
701 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
702
703 # Return the address of an appropriate place to put displaced
704 # instructions while we step over them. There need only be one such
705 # place, since we're only stepping one thread over a breakpoint at a
706 # time.
707 #
708 # For a general explanation of displaced stepping and how GDB uses it,
709 # see the comments in infrun.c.
710 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
711
712 # Relocate an instruction to execute at a different address. OLDLOC
713 # is the address in the inferior memory where the instruction to
714 # relocate is currently at. On input, TO points to the destination
715 # where we want the instruction to be copied (and possibly adjusted)
716 # to. On output, it points to one past the end of the resulting
717 # instruction(s). The effect of executing the instruction at TO shall
718 # be the same as if executing it at FROM. For example, call
719 # instructions that implicitly push the return address on the stack
720 # should be adjusted to return to the instruction after OLDLOC;
721 # relative branches, and other PC-relative instructions need the
722 # offset adjusted; etc.
723 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
724
725 # Refresh overlay mapped state for section OSECT.
726 F:void:overlay_update:struct obj_section *osect:osect
727
728 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
729
730 # Handle special encoding of static variables in stabs debug info.
731 F:char *:static_transform_name:char *name:name
732 # Set if the address in N_SO or N_FUN stabs may be zero.
733 v:int:sofun_address_maybe_missing:::0:0::0
734
735 # Parse the instruction at ADDR storing in the record execution log
736 # the registers REGCACHE and memory ranges that will be affected when
737 # the instruction executes, along with their current values.
738 # Return -1 if something goes wrong, 0 otherwise.
739 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
740
741 # Save process state after a signal.
742 # Return -1 if something goes wrong, 0 otherwise.
743 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
744
745 # Signal translation: translate inferior's signal (host's) number into
746 # GDB's representation.
747 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
748 # Signal translation: translate GDB's signal number into inferior's host
749 # signal number.
750 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
751
752 # Extra signal info inspection.
753 #
754 # Return a type suitable to inspect extra signal information.
755 M:struct type *:get_siginfo_type:void:
756
757 # Record architecture-specific information from the symbol table.
758 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
759
760 # Function for the 'catch syscall' feature.
761
762 # Get architecture-specific system calls information from registers.
763 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
764
765 # True if the list of shared libraries is one and only for all
766 # processes, as opposed to a list of shared libraries per inferior.
767 # This usually means that all processes, although may or may not share
768 # an address space, will see the same set of symbols at the same
769 # addresses.
770 v:int:has_global_solist:::0:0::0
771
772 # On some targets, even though each inferior has its own private
773 # address space, the debug interface takes care of making breakpoints
774 # visible to all address spaces automatically. For such cases,
775 # this property should be set to true.
776 v:int:has_global_breakpoints:::0:0::0
777
778 # True if inferiors share an address space (e.g., uClinux).
779 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
780
781 # True if a fast tracepoint can be set at an address.
782 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
783
784 # Return the "auto" target charset.
785 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
786 # Return the "auto" target wide charset.
787 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
788
789 # If non-empty, this is a file extension that will be opened in place
790 # of the file extension reported by the shared library list.
791 #
792 # This is most useful for toolchains that use a post-linker tool,
793 # where the names of the files run on the target differ in extension
794 # compared to the names of the files GDB should load for debug info.
795 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
796
797 # If true, the target OS has DOS-based file system semantics. That
798 # is, absolute paths include a drive name, and the backslash is
799 # considered a directory separator.
800 v:int:has_dos_based_file_system:::0:0::0
801 EOF
802 }
803
804 #
805 # The .log file
806 #
807 exec > new-gdbarch.log
808 function_list | while do_read
809 do
810 cat <<EOF
811 ${class} ${returntype} ${function} ($formal)
812 EOF
813 for r in ${read}
814 do
815 eval echo \"\ \ \ \ ${r}=\${${r}}\"
816 done
817 if class_is_predicate_p && fallback_default_p
818 then
819 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
820 kill $$
821 exit 1
822 fi
823 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
824 then
825 echo "Error: postdefault is useless when invalid_p=0" 1>&2
826 kill $$
827 exit 1
828 fi
829 if class_is_multiarch_p
830 then
831 if class_is_predicate_p ; then :
832 elif test "x${predefault}" = "x"
833 then
834 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
835 kill $$
836 exit 1
837 fi
838 fi
839 echo ""
840 done
841
842 exec 1>&2
843 compare_new gdbarch.log
844
845
846 copyright ()
847 {
848 cat <<EOF
849 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
850
851 /* Dynamic architecture support for GDB, the GNU debugger.
852
853 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
854 2007, 2008, 2009 Free Software Foundation, Inc.
855
856 This file is part of GDB.
857
858 This program is free software; you can redistribute it and/or modify
859 it under the terms of the GNU General Public License as published by
860 the Free Software Foundation; either version 3 of the License, or
861 (at your option) any later version.
862
863 This program is distributed in the hope that it will be useful,
864 but WITHOUT ANY WARRANTY; without even the implied warranty of
865 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
866 GNU General Public License for more details.
867
868 You should have received a copy of the GNU General Public License
869 along with this program. If not, see <http://www.gnu.org/licenses/>. */
870
871 /* This file was created with the aid of \`\`gdbarch.sh''.
872
873 The Bourne shell script \`\`gdbarch.sh'' creates the files
874 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
875 against the existing \`\`gdbarch.[hc]''. Any differences found
876 being reported.
877
878 If editing this file, please also run gdbarch.sh and merge any
879 changes into that script. Conversely, when making sweeping changes
880 to this file, modifying gdbarch.sh and using its output may prove
881 easier. */
882
883 EOF
884 }
885
886 #
887 # The .h file
888 #
889
890 exec > new-gdbarch.h
891 copyright
892 cat <<EOF
893 #ifndef GDBARCH_H
894 #define GDBARCH_H
895
896 struct floatformat;
897 struct ui_file;
898 struct frame_info;
899 struct value;
900 struct objfile;
901 struct obj_section;
902 struct minimal_symbol;
903 struct regcache;
904 struct reggroup;
905 struct regset;
906 struct disassemble_info;
907 struct target_ops;
908 struct obstack;
909 struct bp_target_info;
910 struct target_desc;
911 struct displaced_step_closure;
912 struct core_regset_section;
913 struct syscall;
914
915 /* The architecture associated with the connection to the target.
916
917 The architecture vector provides some information that is really
918 a property of the target: The layout of certain packets, for instance;
919 or the solib_ops vector. Etc. To differentiate architecture accesses
920 to per-target properties from per-thread/per-frame/per-objfile properties,
921 accesses to per-target properties should be made through target_gdbarch.
922
923 Eventually, when support for multiple targets is implemented in
924 GDB, this global should be made target-specific. */
925 extern struct gdbarch *target_gdbarch;
926 EOF
927
928 # function typedef's
929 printf "\n"
930 printf "\n"
931 printf "/* The following are pre-initialized by GDBARCH. */\n"
932 function_list | while do_read
933 do
934 if class_is_info_p
935 then
936 printf "\n"
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
939 fi
940 done
941
942 # function typedef's
943 printf "\n"
944 printf "\n"
945 printf "/* The following are initialized by the target dependent code. */\n"
946 function_list | while do_read
947 do
948 if [ -n "${comment}" ]
949 then
950 echo "${comment}" | sed \
951 -e '2 s,#,/*,' \
952 -e '3,$ s,#, ,' \
953 -e '$ s,$, */,'
954 fi
955
956 if class_is_predicate_p
957 then
958 printf "\n"
959 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
960 fi
961 if class_is_variable_p
962 then
963 printf "\n"
964 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
965 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
966 fi
967 if class_is_function_p
968 then
969 printf "\n"
970 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
971 then
972 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
973 elif class_is_multiarch_p
974 then
975 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
976 else
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
978 fi
979 if [ "x${formal}" = "xvoid" ]
980 then
981 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
982 else
983 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
984 fi
985 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
986 fi
987 done
988
989 # close it off
990 cat <<EOF
991
992 /* Definition for an unknown syscall, used basically in error-cases. */
993 #define UNKNOWN_SYSCALL (-1)
994
995 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
996
997
998 /* Mechanism for co-ordinating the selection of a specific
999 architecture.
1000
1001 GDB targets (*-tdep.c) can register an interest in a specific
1002 architecture. Other GDB components can register a need to maintain
1003 per-architecture data.
1004
1005 The mechanisms below ensures that there is only a loose connection
1006 between the set-architecture command and the various GDB
1007 components. Each component can independently register their need
1008 to maintain architecture specific data with gdbarch.
1009
1010 Pragmatics:
1011
1012 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1013 didn't scale.
1014
1015 The more traditional mega-struct containing architecture specific
1016 data for all the various GDB components was also considered. Since
1017 GDB is built from a variable number of (fairly independent)
1018 components it was determined that the global aproach was not
1019 applicable. */
1020
1021
1022 /* Register a new architectural family with GDB.
1023
1024 Register support for the specified ARCHITECTURE with GDB. When
1025 gdbarch determines that the specified architecture has been
1026 selected, the corresponding INIT function is called.
1027
1028 --
1029
1030 The INIT function takes two parameters: INFO which contains the
1031 information available to gdbarch about the (possibly new)
1032 architecture; ARCHES which is a list of the previously created
1033 \`\`struct gdbarch'' for this architecture.
1034
1035 The INFO parameter is, as far as possible, be pre-initialized with
1036 information obtained from INFO.ABFD or the global defaults.
1037
1038 The ARCHES parameter is a linked list (sorted most recently used)
1039 of all the previously created architures for this architecture
1040 family. The (possibly NULL) ARCHES->gdbarch can used to access
1041 values from the previously selected architecture for this
1042 architecture family.
1043
1044 The INIT function shall return any of: NULL - indicating that it
1045 doesn't recognize the selected architecture; an existing \`\`struct
1046 gdbarch'' from the ARCHES list - indicating that the new
1047 architecture is just a synonym for an earlier architecture (see
1048 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1049 - that describes the selected architecture (see gdbarch_alloc()).
1050
1051 The DUMP_TDEP function shall print out all target specific values.
1052 Care should be taken to ensure that the function works in both the
1053 multi-arch and non- multi-arch cases. */
1054
1055 struct gdbarch_list
1056 {
1057 struct gdbarch *gdbarch;
1058 struct gdbarch_list *next;
1059 };
1060
1061 struct gdbarch_info
1062 {
1063 /* Use default: NULL (ZERO). */
1064 const struct bfd_arch_info *bfd_arch_info;
1065
1066 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1067 int byte_order;
1068
1069 int byte_order_for_code;
1070
1071 /* Use default: NULL (ZERO). */
1072 bfd *abfd;
1073
1074 /* Use default: NULL (ZERO). */
1075 struct gdbarch_tdep_info *tdep_info;
1076
1077 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1078 enum gdb_osabi osabi;
1079
1080 /* Use default: NULL (ZERO). */
1081 const struct target_desc *target_desc;
1082 };
1083
1084 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1085 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1086
1087 /* DEPRECATED - use gdbarch_register() */
1088 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1089
1090 extern void gdbarch_register (enum bfd_architecture architecture,
1091 gdbarch_init_ftype *,
1092 gdbarch_dump_tdep_ftype *);
1093
1094
1095 /* Return a freshly allocated, NULL terminated, array of the valid
1096 architecture names. Since architectures are registered during the
1097 _initialize phase this function only returns useful information
1098 once initialization has been completed. */
1099
1100 extern const char **gdbarch_printable_names (void);
1101
1102
1103 /* Helper function. Search the list of ARCHES for a GDBARCH that
1104 matches the information provided by INFO. */
1105
1106 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1107
1108
1109 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1110 basic initialization using values obtained from the INFO and TDEP
1111 parameters. set_gdbarch_*() functions are called to complete the
1112 initialization of the object. */
1113
1114 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1115
1116
1117 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1118 It is assumed that the caller freeds the \`\`struct
1119 gdbarch_tdep''. */
1120
1121 extern void gdbarch_free (struct gdbarch *);
1122
1123
1124 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1125 obstack. The memory is freed when the corresponding architecture
1126 is also freed. */
1127
1128 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1129 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1130 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1131
1132
1133 /* Helper function. Force an update of the current architecture.
1134
1135 The actual architecture selected is determined by INFO, \`\`(gdb) set
1136 architecture'' et.al., the existing architecture and BFD's default
1137 architecture. INFO should be initialized to zero and then selected
1138 fields should be updated.
1139
1140 Returns non-zero if the update succeeds */
1141
1142 extern int gdbarch_update_p (struct gdbarch_info info);
1143
1144
1145 /* Helper function. Find an architecture matching info.
1146
1147 INFO should be initialized using gdbarch_info_init, relevant fields
1148 set, and then finished using gdbarch_info_fill.
1149
1150 Returns the corresponding architecture, or NULL if no matching
1151 architecture was found. */
1152
1153 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1154
1155
1156 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1157
1158 FIXME: kettenis/20031124: Of the functions that follow, only
1159 gdbarch_from_bfd is supposed to survive. The others will
1160 dissappear since in the future GDB will (hopefully) be truly
1161 multi-arch. However, for now we're still stuck with the concept of
1162 a single active architecture. */
1163
1164 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1165
1166
1167 /* Register per-architecture data-pointer.
1168
1169 Reserve space for a per-architecture data-pointer. An identifier
1170 for the reserved data-pointer is returned. That identifer should
1171 be saved in a local static variable.
1172
1173 Memory for the per-architecture data shall be allocated using
1174 gdbarch_obstack_zalloc. That memory will be deleted when the
1175 corresponding architecture object is deleted.
1176
1177 When a previously created architecture is re-selected, the
1178 per-architecture data-pointer for that previous architecture is
1179 restored. INIT() is not re-called.
1180
1181 Multiple registrarants for any architecture are allowed (and
1182 strongly encouraged). */
1183
1184 struct gdbarch_data;
1185
1186 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1187 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1188 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1189 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1190 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1191 struct gdbarch_data *data,
1192 void *pointer);
1193
1194 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1195
1196
1197 /* Set the dynamic target-system-dependent parameters (architecture,
1198 byte-order, ...) using information found in the BFD */
1199
1200 extern void set_gdbarch_from_file (bfd *);
1201
1202
1203 /* Initialize the current architecture to the "first" one we find on
1204 our list. */
1205
1206 extern void initialize_current_architecture (void);
1207
1208 /* gdbarch trace variable */
1209 extern int gdbarch_debug;
1210
1211 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1212
1213 #endif
1214 EOF
1215 exec 1>&2
1216 #../move-if-change new-gdbarch.h gdbarch.h
1217 compare_new gdbarch.h
1218
1219
1220 #
1221 # C file
1222 #
1223
1224 exec > new-gdbarch.c
1225 copyright
1226 cat <<EOF
1227
1228 #include "defs.h"
1229 #include "arch-utils.h"
1230
1231 #include "gdbcmd.h"
1232 #include "inferior.h"
1233 #include "symcat.h"
1234
1235 #include "floatformat.h"
1236
1237 #include "gdb_assert.h"
1238 #include "gdb_string.h"
1239 #include "reggroups.h"
1240 #include "osabi.h"
1241 #include "gdb_obstack.h"
1242 #include "observer.h"
1243 #include "regcache.h"
1244
1245 /* Static function declarations */
1246
1247 static void alloc_gdbarch_data (struct gdbarch *);
1248
1249 /* Non-zero if we want to trace architecture code. */
1250
1251 #ifndef GDBARCH_DEBUG
1252 #define GDBARCH_DEBUG 0
1253 #endif
1254 int gdbarch_debug = GDBARCH_DEBUG;
1255 static void
1256 show_gdbarch_debug (struct ui_file *file, int from_tty,
1257 struct cmd_list_element *c, const char *value)
1258 {
1259 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1260 }
1261
1262 static const char *
1263 pformat (const struct floatformat **format)
1264 {
1265 if (format == NULL)
1266 return "(null)";
1267 else
1268 /* Just print out one of them - this is only for diagnostics. */
1269 return format[0]->name;
1270 }
1271
1272 static const char *
1273 pstring (const char *string)
1274 {
1275 if (string == NULL)
1276 return "(null)";
1277 return string;
1278 }
1279
1280 EOF
1281
1282 # gdbarch open the gdbarch object
1283 printf "\n"
1284 printf "/* Maintain the struct gdbarch object */\n"
1285 printf "\n"
1286 printf "struct gdbarch\n"
1287 printf "{\n"
1288 printf " /* Has this architecture been fully initialized? */\n"
1289 printf " int initialized_p;\n"
1290 printf "\n"
1291 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1292 printf " struct obstack *obstack;\n"
1293 printf "\n"
1294 printf " /* basic architectural information */\n"
1295 function_list | while do_read
1296 do
1297 if class_is_info_p
1298 then
1299 printf " ${returntype} ${function};\n"
1300 fi
1301 done
1302 printf "\n"
1303 printf " /* target specific vector. */\n"
1304 printf " struct gdbarch_tdep *tdep;\n"
1305 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1306 printf "\n"
1307 printf " /* per-architecture data-pointers */\n"
1308 printf " unsigned nr_data;\n"
1309 printf " void **data;\n"
1310 printf "\n"
1311 printf " /* per-architecture swap-regions */\n"
1312 printf " struct gdbarch_swap *swap;\n"
1313 printf "\n"
1314 cat <<EOF
1315 /* Multi-arch values.
1316
1317 When extending this structure you must:
1318
1319 Add the field below.
1320
1321 Declare set/get functions and define the corresponding
1322 macro in gdbarch.h.
1323
1324 gdbarch_alloc(): If zero/NULL is not a suitable default,
1325 initialize the new field.
1326
1327 verify_gdbarch(): Confirm that the target updated the field
1328 correctly.
1329
1330 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1331 field is dumped out
1332
1333 \`\`startup_gdbarch()'': Append an initial value to the static
1334 variable (base values on the host's c-type system).
1335
1336 get_gdbarch(): Implement the set/get functions (probably using
1337 the macro's as shortcuts).
1338
1339 */
1340
1341 EOF
1342 function_list | while do_read
1343 do
1344 if class_is_variable_p
1345 then
1346 printf " ${returntype} ${function};\n"
1347 elif class_is_function_p
1348 then
1349 printf " gdbarch_${function}_ftype *${function};\n"
1350 fi
1351 done
1352 printf "};\n"
1353
1354 # A pre-initialized vector
1355 printf "\n"
1356 printf "\n"
1357 cat <<EOF
1358 /* The default architecture uses host values (for want of a better
1359 choice). */
1360 EOF
1361 printf "\n"
1362 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1363 printf "\n"
1364 printf "struct gdbarch startup_gdbarch =\n"
1365 printf "{\n"
1366 printf " 1, /* Always initialized. */\n"
1367 printf " NULL, /* The obstack. */\n"
1368 printf " /* basic architecture information */\n"
1369 function_list | while do_read
1370 do
1371 if class_is_info_p
1372 then
1373 printf " ${staticdefault}, /* ${function} */\n"
1374 fi
1375 done
1376 cat <<EOF
1377 /* target specific vector and its dump routine */
1378 NULL, NULL,
1379 /*per-architecture data-pointers and swap regions */
1380 0, NULL, NULL,
1381 /* Multi-arch values */
1382 EOF
1383 function_list | while do_read
1384 do
1385 if class_is_function_p || class_is_variable_p
1386 then
1387 printf " ${staticdefault}, /* ${function} */\n"
1388 fi
1389 done
1390 cat <<EOF
1391 /* startup_gdbarch() */
1392 };
1393
1394 struct gdbarch *target_gdbarch = &startup_gdbarch;
1395 EOF
1396
1397 # Create a new gdbarch struct
1398 cat <<EOF
1399
1400 /* Create a new \`\`struct gdbarch'' based on information provided by
1401 \`\`struct gdbarch_info''. */
1402 EOF
1403 printf "\n"
1404 cat <<EOF
1405 struct gdbarch *
1406 gdbarch_alloc (const struct gdbarch_info *info,
1407 struct gdbarch_tdep *tdep)
1408 {
1409 struct gdbarch *gdbarch;
1410
1411 /* Create an obstack for allocating all the per-architecture memory,
1412 then use that to allocate the architecture vector. */
1413 struct obstack *obstack = XMALLOC (struct obstack);
1414 obstack_init (obstack);
1415 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1416 memset (gdbarch, 0, sizeof (*gdbarch));
1417 gdbarch->obstack = obstack;
1418
1419 alloc_gdbarch_data (gdbarch);
1420
1421 gdbarch->tdep = tdep;
1422 EOF
1423 printf "\n"
1424 function_list | while do_read
1425 do
1426 if class_is_info_p
1427 then
1428 printf " gdbarch->${function} = info->${function};\n"
1429 fi
1430 done
1431 printf "\n"
1432 printf " /* Force the explicit initialization of these. */\n"
1433 function_list | while do_read
1434 do
1435 if class_is_function_p || class_is_variable_p
1436 then
1437 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1438 then
1439 printf " gdbarch->${function} = ${predefault};\n"
1440 fi
1441 fi
1442 done
1443 cat <<EOF
1444 /* gdbarch_alloc() */
1445
1446 return gdbarch;
1447 }
1448 EOF
1449
1450 # Free a gdbarch struct.
1451 printf "\n"
1452 printf "\n"
1453 cat <<EOF
1454 /* Allocate extra space using the per-architecture obstack. */
1455
1456 void *
1457 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1458 {
1459 void *data = obstack_alloc (arch->obstack, size);
1460
1461 memset (data, 0, size);
1462 return data;
1463 }
1464
1465
1466 /* Free a gdbarch struct. This should never happen in normal
1467 operation --- once you've created a gdbarch, you keep it around.
1468 However, if an architecture's init function encounters an error
1469 building the structure, it may need to clean up a partially
1470 constructed gdbarch. */
1471
1472 void
1473 gdbarch_free (struct gdbarch *arch)
1474 {
1475 struct obstack *obstack;
1476
1477 gdb_assert (arch != NULL);
1478 gdb_assert (!arch->initialized_p);
1479 obstack = arch->obstack;
1480 obstack_free (obstack, 0); /* Includes the ARCH. */
1481 xfree (obstack);
1482 }
1483 EOF
1484
1485 # verify a new architecture
1486 cat <<EOF
1487
1488
1489 /* Ensure that all values in a GDBARCH are reasonable. */
1490
1491 static void
1492 verify_gdbarch (struct gdbarch *gdbarch)
1493 {
1494 struct ui_file *log;
1495 struct cleanup *cleanups;
1496 long length;
1497 char *buf;
1498
1499 log = mem_fileopen ();
1500 cleanups = make_cleanup_ui_file_delete (log);
1501 /* fundamental */
1502 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1503 fprintf_unfiltered (log, "\n\tbyte-order");
1504 if (gdbarch->bfd_arch_info == NULL)
1505 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1506 /* Check those that need to be defined for the given multi-arch level. */
1507 EOF
1508 function_list | while do_read
1509 do
1510 if class_is_function_p || class_is_variable_p
1511 then
1512 if [ "x${invalid_p}" = "x0" ]
1513 then
1514 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1515 elif class_is_predicate_p
1516 then
1517 printf " /* Skip verify of ${function}, has predicate */\n"
1518 # FIXME: See do_read for potential simplification
1519 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1520 then
1521 printf " if (${invalid_p})\n"
1522 printf " gdbarch->${function} = ${postdefault};\n"
1523 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1524 then
1525 printf " if (gdbarch->${function} == ${predefault})\n"
1526 printf " gdbarch->${function} = ${postdefault};\n"
1527 elif [ -n "${postdefault}" ]
1528 then
1529 printf " if (gdbarch->${function} == 0)\n"
1530 printf " gdbarch->${function} = ${postdefault};\n"
1531 elif [ -n "${invalid_p}" ]
1532 then
1533 printf " if (${invalid_p})\n"
1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1535 elif [ -n "${predefault}" ]
1536 then
1537 printf " if (gdbarch->${function} == ${predefault})\n"
1538 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1539 fi
1540 fi
1541 done
1542 cat <<EOF
1543 buf = ui_file_xstrdup (log, &length);
1544 make_cleanup (xfree, buf);
1545 if (length > 0)
1546 internal_error (__FILE__, __LINE__,
1547 _("verify_gdbarch: the following are invalid ...%s"),
1548 buf);
1549 do_cleanups (cleanups);
1550 }
1551 EOF
1552
1553 # dump the structure
1554 printf "\n"
1555 printf "\n"
1556 cat <<EOF
1557 /* Print out the details of the current architecture. */
1558
1559 void
1560 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1561 {
1562 const char *gdb_nm_file = "<not-defined>";
1563
1564 #if defined (GDB_NM_FILE)
1565 gdb_nm_file = GDB_NM_FILE;
1566 #endif
1567 fprintf_unfiltered (file,
1568 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1569 gdb_nm_file);
1570 EOF
1571 function_list | sort -t: -k 3 | while do_read
1572 do
1573 # First the predicate
1574 if class_is_predicate_p
1575 then
1576 printf " fprintf_unfiltered (file,\n"
1577 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1578 printf " gdbarch_${function}_p (gdbarch));\n"
1579 fi
1580 # Print the corresponding value.
1581 if class_is_function_p
1582 then
1583 printf " fprintf_unfiltered (file,\n"
1584 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1585 printf " host_address_to_string (gdbarch->${function}));\n"
1586 else
1587 # It is a variable
1588 case "${print}:${returntype}" in
1589 :CORE_ADDR )
1590 fmt="%s"
1591 print="core_addr_to_string_nz (gdbarch->${function})"
1592 ;;
1593 :* )
1594 fmt="%s"
1595 print="plongest (gdbarch->${function})"
1596 ;;
1597 * )
1598 fmt="%s"
1599 ;;
1600 esac
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1603 printf " ${print});\n"
1604 fi
1605 done
1606 cat <<EOF
1607 if (gdbarch->dump_tdep != NULL)
1608 gdbarch->dump_tdep (gdbarch, file);
1609 }
1610 EOF
1611
1612
1613 # GET/SET
1614 printf "\n"
1615 cat <<EOF
1616 struct gdbarch_tdep *
1617 gdbarch_tdep (struct gdbarch *gdbarch)
1618 {
1619 if (gdbarch_debug >= 2)
1620 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1621 return gdbarch->tdep;
1622 }
1623 EOF
1624 printf "\n"
1625 function_list | while do_read
1626 do
1627 if class_is_predicate_p
1628 then
1629 printf "\n"
1630 printf "int\n"
1631 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1632 printf "{\n"
1633 printf " gdb_assert (gdbarch != NULL);\n"
1634 printf " return ${predicate};\n"
1635 printf "}\n"
1636 fi
1637 if class_is_function_p
1638 then
1639 printf "\n"
1640 printf "${returntype}\n"
1641 if [ "x${formal}" = "xvoid" ]
1642 then
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 else
1645 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1646 fi
1647 printf "{\n"
1648 printf " gdb_assert (gdbarch != NULL);\n"
1649 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1650 if class_is_predicate_p && test -n "${predefault}"
1651 then
1652 # Allow a call to a function with a predicate.
1653 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1654 fi
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1658 then
1659 if class_is_multiarch_p
1660 then
1661 params="gdbarch"
1662 else
1663 params=""
1664 fi
1665 else
1666 if class_is_multiarch_p
1667 then
1668 params="gdbarch, ${actual}"
1669 else
1670 params="${actual}"
1671 fi
1672 fi
1673 if [ "x${returntype}" = "xvoid" ]
1674 then
1675 printf " gdbarch->${function} (${params});\n"
1676 else
1677 printf " return gdbarch->${function} (${params});\n"
1678 fi
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_variable_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 if [ "x${invalid_p}" = "x0" ]
1695 then
1696 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1697 elif [ -n "${invalid_p}" ]
1698 then
1699 printf " /* Check variable is valid. */\n"
1700 printf " gdb_assert (!(${invalid_p}));\n"
1701 elif [ -n "${predefault}" ]
1702 then
1703 printf " /* Check variable changed from pre-default. */\n"
1704 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1705 fi
1706 printf " if (gdbarch_debug >= 2)\n"
1707 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1708 printf " return gdbarch->${function};\n"
1709 printf "}\n"
1710 printf "\n"
1711 printf "void\n"
1712 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1713 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1714 printf "{\n"
1715 printf " gdbarch->${function} = ${function};\n"
1716 printf "}\n"
1717 elif class_is_info_p
1718 then
1719 printf "\n"
1720 printf "${returntype}\n"
1721 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1722 printf "{\n"
1723 printf " gdb_assert (gdbarch != NULL);\n"
1724 printf " if (gdbarch_debug >= 2)\n"
1725 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1726 printf " return gdbarch->${function};\n"
1727 printf "}\n"
1728 fi
1729 done
1730
1731 # All the trailing guff
1732 cat <<EOF
1733
1734
1735 /* Keep a registry of per-architecture data-pointers required by GDB
1736 modules. */
1737
1738 struct gdbarch_data
1739 {
1740 unsigned index;
1741 int init_p;
1742 gdbarch_data_pre_init_ftype *pre_init;
1743 gdbarch_data_post_init_ftype *post_init;
1744 };
1745
1746 struct gdbarch_data_registration
1747 {
1748 struct gdbarch_data *data;
1749 struct gdbarch_data_registration *next;
1750 };
1751
1752 struct gdbarch_data_registry
1753 {
1754 unsigned nr;
1755 struct gdbarch_data_registration *registrations;
1756 };
1757
1758 struct gdbarch_data_registry gdbarch_data_registry =
1759 {
1760 0, NULL,
1761 };
1762
1763 static struct gdbarch_data *
1764 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1765 gdbarch_data_post_init_ftype *post_init)
1766 {
1767 struct gdbarch_data_registration **curr;
1768
1769 /* Append the new registration. */
1770 for (curr = &gdbarch_data_registry.registrations;
1771 (*curr) != NULL;
1772 curr = &(*curr)->next);
1773 (*curr) = XMALLOC (struct gdbarch_data_registration);
1774 (*curr)->next = NULL;
1775 (*curr)->data = XMALLOC (struct gdbarch_data);
1776 (*curr)->data->index = gdbarch_data_registry.nr++;
1777 (*curr)->data->pre_init = pre_init;
1778 (*curr)->data->post_init = post_init;
1779 (*curr)->data->init_p = 1;
1780 return (*curr)->data;
1781 }
1782
1783 struct gdbarch_data *
1784 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1785 {
1786 return gdbarch_data_register (pre_init, NULL);
1787 }
1788
1789 struct gdbarch_data *
1790 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1791 {
1792 return gdbarch_data_register (NULL, post_init);
1793 }
1794
1795 /* Create/delete the gdbarch data vector. */
1796
1797 static void
1798 alloc_gdbarch_data (struct gdbarch *gdbarch)
1799 {
1800 gdb_assert (gdbarch->data == NULL);
1801 gdbarch->nr_data = gdbarch_data_registry.nr;
1802 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1803 }
1804
1805 /* Initialize the current value of the specified per-architecture
1806 data-pointer. */
1807
1808 void
1809 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1810 struct gdbarch_data *data,
1811 void *pointer)
1812 {
1813 gdb_assert (data->index < gdbarch->nr_data);
1814 gdb_assert (gdbarch->data[data->index] == NULL);
1815 gdb_assert (data->pre_init == NULL);
1816 gdbarch->data[data->index] = pointer;
1817 }
1818
1819 /* Return the current value of the specified per-architecture
1820 data-pointer. */
1821
1822 void *
1823 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1824 {
1825 gdb_assert (data->index < gdbarch->nr_data);
1826 if (gdbarch->data[data->index] == NULL)
1827 {
1828 /* The data-pointer isn't initialized, call init() to get a
1829 value. */
1830 if (data->pre_init != NULL)
1831 /* Mid architecture creation: pass just the obstack, and not
1832 the entire architecture, as that way it isn't possible for
1833 pre-init code to refer to undefined architecture
1834 fields. */
1835 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1836 else if (gdbarch->initialized_p
1837 && data->post_init != NULL)
1838 /* Post architecture creation: pass the entire architecture
1839 (as all fields are valid), but be careful to also detect
1840 recursive references. */
1841 {
1842 gdb_assert (data->init_p);
1843 data->init_p = 0;
1844 gdbarch->data[data->index] = data->post_init (gdbarch);
1845 data->init_p = 1;
1846 }
1847 else
1848 /* The architecture initialization hasn't completed - punt -
1849 hope that the caller knows what they are doing. Once
1850 deprecated_set_gdbarch_data has been initialized, this can be
1851 changed to an internal error. */
1852 return NULL;
1853 gdb_assert (gdbarch->data[data->index] != NULL);
1854 }
1855 return gdbarch->data[data->index];
1856 }
1857
1858
1859 /* Keep a registry of the architectures known by GDB. */
1860
1861 struct gdbarch_registration
1862 {
1863 enum bfd_architecture bfd_architecture;
1864 gdbarch_init_ftype *init;
1865 gdbarch_dump_tdep_ftype *dump_tdep;
1866 struct gdbarch_list *arches;
1867 struct gdbarch_registration *next;
1868 };
1869
1870 static struct gdbarch_registration *gdbarch_registry = NULL;
1871
1872 static void
1873 append_name (const char ***buf, int *nr, const char *name)
1874 {
1875 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1876 (*buf)[*nr] = name;
1877 *nr += 1;
1878 }
1879
1880 const char **
1881 gdbarch_printable_names (void)
1882 {
1883 /* Accumulate a list of names based on the registed list of
1884 architectures. */
1885 int nr_arches = 0;
1886 const char **arches = NULL;
1887 struct gdbarch_registration *rego;
1888
1889 for (rego = gdbarch_registry;
1890 rego != NULL;
1891 rego = rego->next)
1892 {
1893 const struct bfd_arch_info *ap;
1894 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1895 if (ap == NULL)
1896 internal_error (__FILE__, __LINE__,
1897 _("gdbarch_architecture_names: multi-arch unknown"));
1898 do
1899 {
1900 append_name (&arches, &nr_arches, ap->printable_name);
1901 ap = ap->next;
1902 }
1903 while (ap != NULL);
1904 }
1905 append_name (&arches, &nr_arches, NULL);
1906 return arches;
1907 }
1908
1909
1910 void
1911 gdbarch_register (enum bfd_architecture bfd_architecture,
1912 gdbarch_init_ftype *init,
1913 gdbarch_dump_tdep_ftype *dump_tdep)
1914 {
1915 struct gdbarch_registration **curr;
1916 const struct bfd_arch_info *bfd_arch_info;
1917
1918 /* Check that BFD recognizes this architecture */
1919 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1920 if (bfd_arch_info == NULL)
1921 {
1922 internal_error (__FILE__, __LINE__,
1923 _("gdbarch: Attempt to register unknown architecture (%d)"),
1924 bfd_architecture);
1925 }
1926 /* Check that we haven't seen this architecture before */
1927 for (curr = &gdbarch_registry;
1928 (*curr) != NULL;
1929 curr = &(*curr)->next)
1930 {
1931 if (bfd_architecture == (*curr)->bfd_architecture)
1932 internal_error (__FILE__, __LINE__,
1933 _("gdbarch: Duplicate registraration of architecture (%s)"),
1934 bfd_arch_info->printable_name);
1935 }
1936 /* log it */
1937 if (gdbarch_debug)
1938 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1939 bfd_arch_info->printable_name,
1940 host_address_to_string (init));
1941 /* Append it */
1942 (*curr) = XMALLOC (struct gdbarch_registration);
1943 (*curr)->bfd_architecture = bfd_architecture;
1944 (*curr)->init = init;
1945 (*curr)->dump_tdep = dump_tdep;
1946 (*curr)->arches = NULL;
1947 (*curr)->next = NULL;
1948 }
1949
1950 void
1951 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1952 gdbarch_init_ftype *init)
1953 {
1954 gdbarch_register (bfd_architecture, init, NULL);
1955 }
1956
1957
1958 /* Look for an architecture using gdbarch_info. */
1959
1960 struct gdbarch_list *
1961 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1962 const struct gdbarch_info *info)
1963 {
1964 for (; arches != NULL; arches = arches->next)
1965 {
1966 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1967 continue;
1968 if (info->byte_order != arches->gdbarch->byte_order)
1969 continue;
1970 if (info->osabi != arches->gdbarch->osabi)
1971 continue;
1972 if (info->target_desc != arches->gdbarch->target_desc)
1973 continue;
1974 return arches;
1975 }
1976 return NULL;
1977 }
1978
1979
1980 /* Find an architecture that matches the specified INFO. Create a new
1981 architecture if needed. Return that new architecture. */
1982
1983 struct gdbarch *
1984 gdbarch_find_by_info (struct gdbarch_info info)
1985 {
1986 struct gdbarch *new_gdbarch;
1987 struct gdbarch_registration *rego;
1988
1989 /* Fill in missing parts of the INFO struct using a number of
1990 sources: "set ..."; INFOabfd supplied; and the global
1991 defaults. */
1992 gdbarch_info_fill (&info);
1993
1994 /* Must have found some sort of architecture. */
1995 gdb_assert (info.bfd_arch_info != NULL);
1996
1997 if (gdbarch_debug)
1998 {
1999 fprintf_unfiltered (gdb_stdlog,
2000 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2001 (info.bfd_arch_info != NULL
2002 ? info.bfd_arch_info->printable_name
2003 : "(null)"));
2004 fprintf_unfiltered (gdb_stdlog,
2005 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2006 info.byte_order,
2007 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2008 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2009 : "default"));
2010 fprintf_unfiltered (gdb_stdlog,
2011 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2012 info.osabi, gdbarch_osabi_name (info.osabi));
2013 fprintf_unfiltered (gdb_stdlog,
2014 "gdbarch_find_by_info: info.abfd %s\n",
2015 host_address_to_string (info.abfd));
2016 fprintf_unfiltered (gdb_stdlog,
2017 "gdbarch_find_by_info: info.tdep_info %s\n",
2018 host_address_to_string (info.tdep_info));
2019 }
2020
2021 /* Find the tdep code that knows about this architecture. */
2022 for (rego = gdbarch_registry;
2023 rego != NULL;
2024 rego = rego->next)
2025 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2026 break;
2027 if (rego == NULL)
2028 {
2029 if (gdbarch_debug)
2030 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2031 "No matching architecture\n");
2032 return 0;
2033 }
2034
2035 /* Ask the tdep code for an architecture that matches "info". */
2036 new_gdbarch = rego->init (info, rego->arches);
2037
2038 /* Did the tdep code like it? No. Reject the change and revert to
2039 the old architecture. */
2040 if (new_gdbarch == NULL)
2041 {
2042 if (gdbarch_debug)
2043 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2044 "Target rejected architecture\n");
2045 return NULL;
2046 }
2047
2048 /* Is this a pre-existing architecture (as determined by already
2049 being initialized)? Move it to the front of the architecture
2050 list (keeping the list sorted Most Recently Used). */
2051 if (new_gdbarch->initialized_p)
2052 {
2053 struct gdbarch_list **list;
2054 struct gdbarch_list *this;
2055 if (gdbarch_debug)
2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2057 "Previous architecture %s (%s) selected\n",
2058 host_address_to_string (new_gdbarch),
2059 new_gdbarch->bfd_arch_info->printable_name);
2060 /* Find the existing arch in the list. */
2061 for (list = &rego->arches;
2062 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2063 list = &(*list)->next);
2064 /* It had better be in the list of architectures. */
2065 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2066 /* Unlink THIS. */
2067 this = (*list);
2068 (*list) = this->next;
2069 /* Insert THIS at the front. */
2070 this->next = rego->arches;
2071 rego->arches = this;
2072 /* Return it. */
2073 return new_gdbarch;
2074 }
2075
2076 /* It's a new architecture. */
2077 if (gdbarch_debug)
2078 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2079 "New architecture %s (%s) selected\n",
2080 host_address_to_string (new_gdbarch),
2081 new_gdbarch->bfd_arch_info->printable_name);
2082
2083 /* Insert the new architecture into the front of the architecture
2084 list (keep the list sorted Most Recently Used). */
2085 {
2086 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2087 this->next = rego->arches;
2088 this->gdbarch = new_gdbarch;
2089 rego->arches = this;
2090 }
2091
2092 /* Check that the newly installed architecture is valid. Plug in
2093 any post init values. */
2094 new_gdbarch->dump_tdep = rego->dump_tdep;
2095 verify_gdbarch (new_gdbarch);
2096 new_gdbarch->initialized_p = 1;
2097
2098 if (gdbarch_debug)
2099 gdbarch_dump (new_gdbarch, gdb_stdlog);
2100
2101 return new_gdbarch;
2102 }
2103
2104 /* Make the specified architecture current. */
2105
2106 void
2107 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2108 {
2109 gdb_assert (new_gdbarch != NULL);
2110 gdb_assert (new_gdbarch->initialized_p);
2111 target_gdbarch = new_gdbarch;
2112 observer_notify_architecture_changed (new_gdbarch);
2113 registers_changed ();
2114 }
2115
2116 extern void _initialize_gdbarch (void);
2117
2118 void
2119 _initialize_gdbarch (void)
2120 {
2121 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2122 Set architecture debugging."), _("\\
2123 Show architecture debugging."), _("\\
2124 When non-zero, architecture debugging is enabled."),
2125 NULL,
2126 show_gdbarch_debug,
2127 &setdebuglist, &showdebuglist);
2128 }
2129 EOF
2130
2131 # close things off
2132 exec 1>&2
2133 #../move-if-change new-gdbarch.c gdbarch.c
2134 compare_new gdbarch.c
This page took 0.125852 seconds and 4 git commands to generate.