gdb/doc: Add documentation for tfile description section lines.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
465 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
466 m:const char *:register_name:int regnr:regnr::0
467
468 # Return the type of a register specified by the architecture. Only
469 # the register cache should call this function directly; others should
470 # use "register_type".
471 M:struct type *:register_type:int reg_nr:reg_nr
472
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
479 v:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
481
482 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
484 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
489 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
490
491 # Determine the address where a longjmp will land and save this address
492 # in PC. Return nonzero on success.
493 #
494 # FRAME corresponds to the longjmp frame.
495 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
496
497 #
498 v:int:believe_pcc_promotion:::::::
499 #
500 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
501 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
502 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
503 # Construct a value representing the contents of register REGNUM in
504 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
505 # allocate and return a struct value with all value attributes
506 # (but not the value contents) filled in.
507 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
508 #
509 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
511 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512
513 # Return the return-value convention that will be used by FUNCTION
514 # to return a value of type VALTYPE. FUNCTION may be NULL in which
515 # case the return convention is computed based only on VALTYPE.
516 #
517 # If READBUF is not NULL, extract the return value and save it in this buffer.
518 #
519 # If WRITEBUF is not NULL, it contains a return value which will be
520 # stored into the appropriate register. This can be used when we want
521 # to force the value returned by a function (see the "return" command
522 # for instance).
523 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
524
525 # Return true if the return value of function is stored in the first hidden
526 # parameter. In theory, this feature should be language-dependent, specified
527 # by language and its ABI, such as C++. Unfortunately, compiler may
528 # implement it to a target-dependent feature. So that we need such hook here
529 # to be aware of this in GDB.
530 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531
532 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
533 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
534 # On some platforms, a single function may provide multiple entry points,
535 # e.g. one that is used for function-pointer calls and a different one
536 # that is used for direct function calls.
537 # In order to ensure that breakpoints set on the function will trigger
538 # no matter via which entry point the function is entered, a platform
539 # may provide the skip_entrypoint callback. It is called with IP set
540 # to the main entry point of a function (as determined by the symbol table),
541 # and should return the address of the innermost entry point, where the
542 # actual breakpoint needs to be set. Note that skip_entrypoint is used
543 # by GDB common code even when debugging optimized code, where skip_prologue
544 # is not used.
545 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546
547 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
548 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
549 # Return the adjusted address and kind to use for Z0/Z1 packets.
550 # KIND is usually the memory length of the breakpoint, but may have a
551 # different target-specific meaning.
552 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
553 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
556 v:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. gdbarch_deprecated_function_start_offset is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 # Return the remote protocol register number associated with this
569 # register. Normally the identity mapping.
570 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
571
572 # Fetch the target specific address used to represent a load module.
573 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
574 #
575 v:CORE_ADDR:frame_args_skip:::0:::0
576 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
577 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
578 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
579 # frame-base. Enable frame-base before frame-unwind.
580 F:int:frame_num_args:struct frame_info *frame:frame
581 #
582 M:CORE_ADDR:frame_align:CORE_ADDR address:address
583 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
584 v:int:frame_red_zone_size
585 #
586 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
587 # On some machines there are bits in addresses which are not really
588 # part of the address, but are used by the kernel, the hardware, etc.
589 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
590 # we get a "real" address such as one would find in a symbol table.
591 # This is used only for addresses of instructions, and even then I'm
592 # not sure it's used in all contexts. It exists to deal with there
593 # being a few stray bits in the PC which would mislead us, not as some
594 # sort of generic thing to handle alignment or segmentation (it's
595 # possible it should be in TARGET_READ_PC instead).
596 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
597
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
599 # indicates if the target needs software single step. An ISA method to
600 # implement it.
601 #
602 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603 # breakpoints using the breakpoint system instead of blatting memory directly
604 # (as with rs6000).
605 #
606 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607 # target can single step. If not, then implement single step using breakpoints.
608 #
609 # A return value of 1 means that the software_single_step breakpoints
610 # were inserted; 0 means they were not.
611 F:int:software_single_step:struct frame_info *frame:frame
612
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M:int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
620
621
622 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
628
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a function's epilogue. stack_frame_destroyed_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
637 # untouched.
638 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
639 # Process an ELF symbol in the minimal symbol table in a backend-specific
640 # way. Normally this hook is supposed to do nothing, however if required,
641 # then this hook can be used to apply tranformations to symbols that are
642 # considered special in some way. For example the MIPS backend uses it
643 # to interpret \`st_other' information to mark compressed code symbols so
644 # that they can be treated in the appropriate manner in the processing of
645 # the main symbol table and DWARF-2 records.
646 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
647 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
648 # Process a symbol in the main symbol table in a backend-specific way.
649 # Normally this hook is supposed to do nothing, however if required,
650 # then this hook can be used to apply tranformations to symbols that
651 # are considered special in some way. This is currently used by the
652 # MIPS backend to make sure compressed code symbols have the ISA bit
653 # set. This in turn is needed for symbol values seen in GDB to match
654 # the values used at the runtime by the program itself, for function
655 # and label references.
656 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
657 # Adjust the address retrieved from a DWARF-2 record other than a line
658 # entry in a backend-specific way. Normally this hook is supposed to
659 # return the address passed unchanged, however if that is incorrect for
660 # any reason, then this hook can be used to fix the address up in the
661 # required manner. This is currently used by the MIPS backend to make
662 # sure addresses in FDE, range records, etc. referring to compressed
663 # code have the ISA bit set, matching line information and the symbol
664 # table.
665 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
666 # Adjust the address updated by a line entry in a backend-specific way.
667 # Normally this hook is supposed to return the address passed unchanged,
668 # however in the case of inconsistencies in these records, this hook can
669 # be used to fix them up in the required manner. This is currently used
670 # by the MIPS backend to make sure all line addresses in compressed code
671 # are presented with the ISA bit set, which is not always the case. This
672 # in turn ensures breakpoint addresses are correctly matched against the
673 # stop PC.
674 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
675 v:int:cannot_step_breakpoint:::0:0::0
676 v:int:have_nonsteppable_watchpoint:::0:0::0
677 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
678 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
679
680 # Return the appropriate type_flags for the supplied address class.
681 # This function should return 1 if the address class was recognized and
682 # type_flags was set, zero otherwise.
683 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
684 # Is a register in a group
685 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
686 # Fetch the pointer to the ith function argument.
687 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
688
689 # Iterate over all supported register notes in a core file. For each
690 # supported register note section, the iterator must call CB and pass
691 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
692 # the supported register note sections based on the current register
693 # values. Otherwise it should enumerate all supported register note
694 # sections.
695 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
696
697 # Create core file notes
698 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
699
700 # The elfcore writer hook to use to write Linux prpsinfo notes to core
701 # files. Most Linux architectures use the same prpsinfo32 or
702 # prpsinfo64 layouts, and so won't need to provide this hook, as we
703 # call the Linux generic routines in bfd to write prpsinfo notes by
704 # default.
705 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
706
707 # Find core file memory regions
708 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
709
710 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
711 # core file into buffer READBUF with length LEN. Return the number of bytes read
712 # (zero indicates failure).
713 # failed, otherwise, return the red length of READBUF.
714 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
715
716 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
717 # libraries list from core file into buffer READBUF with length LEN.
718 # Return the number of bytes read (zero indicates failure).
719 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
720
721 # How the core target converts a PTID from a core file to a string.
722 M:char *:core_pid_to_str:ptid_t ptid:ptid
723
724 # How the core target extracts the name of a thread from a core file.
725 M:const char *:core_thread_name:struct thread_info *thr:thr
726
727 # BFD target to use when generating a core file.
728 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
729
730 # If the elements of C++ vtables are in-place function descriptors rather
731 # than normal function pointers (which may point to code or a descriptor),
732 # set this to one.
733 v:int:vtable_function_descriptors:::0:0::0
734
735 # Set if the least significant bit of the delta is used instead of the least
736 # significant bit of the pfn for pointers to virtual member functions.
737 v:int:vbit_in_delta:::0:0::0
738
739 # Advance PC to next instruction in order to skip a permanent breakpoint.
740 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
741
742 # The maximum length of an instruction on this architecture in bytes.
743 V:ULONGEST:max_insn_length:::0:0
744
745 # Copy the instruction at FROM to TO, and make any adjustments
746 # necessary to single-step it at that address.
747 #
748 # REGS holds the state the thread's registers will have before
749 # executing the copied instruction; the PC in REGS will refer to FROM,
750 # not the copy at TO. The caller should update it to point at TO later.
751 #
752 # Return a pointer to data of the architecture's choice to be passed
753 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
754 # the instruction's effects have been completely simulated, with the
755 # resulting state written back to REGS.
756 #
757 # For a general explanation of displaced stepping and how GDB uses it,
758 # see the comments in infrun.c.
759 #
760 # The TO area is only guaranteed to have space for
761 # gdbarch_max_insn_length (arch) bytes, so this function must not
762 # write more bytes than that to that area.
763 #
764 # If you do not provide this function, GDB assumes that the
765 # architecture does not support displaced stepping.
766 #
767 # If your architecture doesn't need to adjust instructions before
768 # single-stepping them, consider using simple_displaced_step_copy_insn
769 # here.
770 #
771 # If the instruction cannot execute out of line, return NULL. The
772 # core falls back to stepping past the instruction in-line instead in
773 # that case.
774 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
775
776 # Return true if GDB should use hardware single-stepping to execute
777 # the displaced instruction identified by CLOSURE. If false,
778 # GDB will simply restart execution at the displaced instruction
779 # location, and it is up to the target to ensure GDB will receive
780 # control again (e.g. by placing a software breakpoint instruction
781 # into the displaced instruction buffer).
782 #
783 # The default implementation returns false on all targets that
784 # provide a gdbarch_software_single_step routine, and true otherwise.
785 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
786
787 # Fix up the state resulting from successfully single-stepping a
788 # displaced instruction, to give the result we would have gotten from
789 # stepping the instruction in its original location.
790 #
791 # REGS is the register state resulting from single-stepping the
792 # displaced instruction.
793 #
794 # CLOSURE is the result from the matching call to
795 # gdbarch_displaced_step_copy_insn.
796 #
797 # If you provide gdbarch_displaced_step_copy_insn.but not this
798 # function, then GDB assumes that no fixup is needed after
799 # single-stepping the instruction.
800 #
801 # For a general explanation of displaced stepping and how GDB uses it,
802 # see the comments in infrun.c.
803 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
804
805 # Free a closure returned by gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn, you must provide
808 # this function as well.
809 #
810 # If your architecture uses closures that don't need to be freed, then
811 # you can use simple_displaced_step_free_closure here.
812 #
813 # For a general explanation of displaced stepping and how GDB uses it,
814 # see the comments in infrun.c.
815 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
816
817 # Return the address of an appropriate place to put displaced
818 # instructions while we step over them. There need only be one such
819 # place, since we're only stepping one thread over a breakpoint at a
820 # time.
821 #
822 # For a general explanation of displaced stepping and how GDB uses it,
823 # see the comments in infrun.c.
824 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
825
826 # Relocate an instruction to execute at a different address. OLDLOC
827 # is the address in the inferior memory where the instruction to
828 # relocate is currently at. On input, TO points to the destination
829 # where we want the instruction to be copied (and possibly adjusted)
830 # to. On output, it points to one past the end of the resulting
831 # instruction(s). The effect of executing the instruction at TO shall
832 # be the same as if executing it at FROM. For example, call
833 # instructions that implicitly push the return address on the stack
834 # should be adjusted to return to the instruction after OLDLOC;
835 # relative branches, and other PC-relative instructions need the
836 # offset adjusted; etc.
837 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
838
839 # Refresh overlay mapped state for section OSECT.
840 F:void:overlay_update:struct obj_section *osect:osect
841
842 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
843
844 # Handle special encoding of static variables in stabs debug info.
845 F:const char *:static_transform_name:const char *name:name
846 # Set if the address in N_SO or N_FUN stabs may be zero.
847 v:int:sofun_address_maybe_missing:::0:0::0
848
849 # Parse the instruction at ADDR storing in the record execution log
850 # the registers REGCACHE and memory ranges that will be affected when
851 # the instruction executes, along with their current values.
852 # Return -1 if something goes wrong, 0 otherwise.
853 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
854
855 # Save process state after a signal.
856 # Return -1 if something goes wrong, 0 otherwise.
857 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
858
859 # Signal translation: translate inferior's signal (target's) number
860 # into GDB's representation. The implementation of this method must
861 # be host independent. IOW, don't rely on symbols of the NAT_FILE
862 # header (the nm-*.h files), the host <signal.h> header, or similar
863 # headers. This is mainly used when cross-debugging core files ---
864 # "Live" targets hide the translation behind the target interface
865 # (target_wait, target_resume, etc.).
866 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
867
868 # Signal translation: translate the GDB's internal signal number into
869 # the inferior's signal (target's) representation. The implementation
870 # of this method must be host independent. IOW, don't rely on symbols
871 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
872 # header, or similar headers.
873 # Return the target signal number if found, or -1 if the GDB internal
874 # signal number is invalid.
875 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
876
877 # Extra signal info inspection.
878 #
879 # Return a type suitable to inspect extra signal information.
880 M:struct type *:get_siginfo_type:void:
881
882 # Record architecture-specific information from the symbol table.
883 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
884
885 # Function for the 'catch syscall' feature.
886
887 # Get architecture-specific system calls information from registers.
888 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
889
890 # The filename of the XML syscall for this architecture.
891 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
892
893 # Information about system calls from this architecture
894 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
895
896 # SystemTap related fields and functions.
897
898 # A NULL-terminated array of prefixes used to mark an integer constant
899 # on the architecture's assembly.
900 # For example, on x86 integer constants are written as:
901 #
902 # \$10 ;; integer constant 10
903 #
904 # in this case, this prefix would be the character \`\$\'.
905 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
906
907 # A NULL-terminated array of suffixes used to mark an integer constant
908 # on the architecture's assembly.
909 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
910
911 # A NULL-terminated array of prefixes used to mark a register name on
912 # the architecture's assembly.
913 # For example, on x86 the register name is written as:
914 #
915 # \%eax ;; register eax
916 #
917 # in this case, this prefix would be the character \`\%\'.
918 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
919
920 # A NULL-terminated array of suffixes used to mark a register name on
921 # the architecture's assembly.
922 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
923
924 # A NULL-terminated array of prefixes used to mark a register
925 # indirection on the architecture's assembly.
926 # For example, on x86 the register indirection is written as:
927 #
928 # \(\%eax\) ;; indirecting eax
929 #
930 # in this case, this prefix would be the charater \`\(\'.
931 #
932 # Please note that we use the indirection prefix also for register
933 # displacement, e.g., \`4\(\%eax\)\' on x86.
934 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
935
936 # A NULL-terminated array of suffixes used to mark a register
937 # indirection on the architecture's assembly.
938 # For example, on x86 the register indirection is written as:
939 #
940 # \(\%eax\) ;; indirecting eax
941 #
942 # in this case, this prefix would be the charater \`\)\'.
943 #
944 # Please note that we use the indirection suffix also for register
945 # displacement, e.g., \`4\(\%eax\)\' on x86.
946 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
947
948 # Prefix(es) used to name a register using GDB's nomenclature.
949 #
950 # For example, on PPC a register is represented by a number in the assembly
951 # language (e.g., \`10\' is the 10th general-purpose register). However,
952 # inside GDB this same register has an \`r\' appended to its name, so the 10th
953 # register would be represented as \`r10\' internally.
954 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
955
956 # Suffix used to name a register using GDB's nomenclature.
957 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
958
959 # Check if S is a single operand.
960 #
961 # Single operands can be:
962 # \- Literal integers, e.g. \`\$10\' on x86
963 # \- Register access, e.g. \`\%eax\' on x86
964 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
965 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
966 #
967 # This function should check for these patterns on the string
968 # and return 1 if some were found, or zero otherwise. Please try to match
969 # as much info as you can from the string, i.e., if you have to match
970 # something like \`\(\%\', do not match just the \`\(\'.
971 M:int:stap_is_single_operand:const char *s:s
972
973 # Function used to handle a "special case" in the parser.
974 #
975 # A "special case" is considered to be an unknown token, i.e., a token
976 # that the parser does not know how to parse. A good example of special
977 # case would be ARM's register displacement syntax:
978 #
979 # [R0, #4] ;; displacing R0 by 4
980 #
981 # Since the parser assumes that a register displacement is of the form:
982 #
983 # <number> <indirection_prefix> <register_name> <indirection_suffix>
984 #
985 # it means that it will not be able to recognize and parse this odd syntax.
986 # Therefore, we should add a special case function that will handle this token.
987 #
988 # This function should generate the proper expression form of the expression
989 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
990 # and so on). It should also return 1 if the parsing was successful, or zero
991 # if the token was not recognized as a special token (in this case, returning
992 # zero means that the special parser is deferring the parsing to the generic
993 # parser), and should advance the buffer pointer (p->arg).
994 M:int:stap_parse_special_token:struct stap_parse_info *p:p
995
996 # DTrace related functions.
997
998 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
999 # NARG must be >= 0.
1000 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1001
1002 # True if the given ADDR does not contain the instruction sequence
1003 # corresponding to a disabled DTrace is-enabled probe.
1004 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1005
1006 # Enable a DTrace is-enabled probe at ADDR.
1007 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1008
1009 # Disable a DTrace is-enabled probe at ADDR.
1010 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1011
1012 # True if the list of shared libraries is one and only for all
1013 # processes, as opposed to a list of shared libraries per inferior.
1014 # This usually means that all processes, although may or may not share
1015 # an address space, will see the same set of symbols at the same
1016 # addresses.
1017 v:int:has_global_solist:::0:0::0
1018
1019 # On some targets, even though each inferior has its own private
1020 # address space, the debug interface takes care of making breakpoints
1021 # visible to all address spaces automatically. For such cases,
1022 # this property should be set to true.
1023 v:int:has_global_breakpoints:::0:0::0
1024
1025 # True if inferiors share an address space (e.g., uClinux).
1026 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1027
1028 # True if a fast tracepoint can be set at an address.
1029 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1030
1031 # Return the "auto" target charset.
1032 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1033 # Return the "auto" target wide charset.
1034 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1035
1036 # If non-empty, this is a file extension that will be opened in place
1037 # of the file extension reported by the shared library list.
1038 #
1039 # This is most useful for toolchains that use a post-linker tool,
1040 # where the names of the files run on the target differ in extension
1041 # compared to the names of the files GDB should load for debug info.
1042 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1043
1044 # If true, the target OS has DOS-based file system semantics. That
1045 # is, absolute paths include a drive name, and the backslash is
1046 # considered a directory separator.
1047 v:int:has_dos_based_file_system:::0:0::0
1048
1049 # Generate bytecodes to collect the return address in a frame.
1050 # Since the bytecodes run on the target, possibly with GDB not even
1051 # connected, the full unwinding machinery is not available, and
1052 # typically this function will issue bytecodes for one or more likely
1053 # places that the return address may be found.
1054 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1055
1056 # Implement the "info proc" command.
1057 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1058
1059 # Implement the "info proc" command for core files. Noe that there
1060 # are two "info_proc"-like methods on gdbarch -- one for core files,
1061 # one for live targets.
1062 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1063
1064 # Iterate over all objfiles in the order that makes the most sense
1065 # for the architecture to make global symbol searches.
1066 #
1067 # CB is a callback function where OBJFILE is the objfile to be searched,
1068 # and CB_DATA a pointer to user-defined data (the same data that is passed
1069 # when calling this gdbarch method). The iteration stops if this function
1070 # returns nonzero.
1071 #
1072 # CB_DATA is a pointer to some user-defined data to be passed to
1073 # the callback.
1074 #
1075 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1076 # inspected when the symbol search was requested.
1077 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1078
1079 # Ravenscar arch-dependent ops.
1080 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1081
1082 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1083 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1084
1085 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1086 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1087
1088 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1089 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1090
1091 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1092 # Return 0 if *READPTR is already at the end of the buffer.
1093 # Return -1 if there is insufficient buffer for a whole entry.
1094 # Return 1 if an entry was read into *TYPEP and *VALP.
1095 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1096
1097 # Find the address range of the current inferior's vsyscall/vDSO, and
1098 # write it to *RANGE. If the vsyscall's length can't be determined, a
1099 # range with zero length is returned. Returns true if the vsyscall is
1100 # found, false otherwise.
1101 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1102
1103 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1104 # PROT has GDB_MMAP_PROT_* bitmask format.
1105 # Throw an error if it is not possible. Returned address is always valid.
1106 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1107
1108 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1109 # Print a warning if it is not possible.
1110 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1111
1112 # Return string (caller has to use xfree for it) with options for GCC
1113 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1114 # These options are put before CU's DW_AT_producer compilation options so that
1115 # they can override it. Method may also return NULL.
1116 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1117
1118 # Return a regular expression that matches names used by this
1119 # architecture in GNU configury triplets. The result is statically
1120 # allocated and must not be freed. The default implementation simply
1121 # returns the BFD architecture name, which is correct in nearly every
1122 # case.
1123 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1124
1125 # Return the size in 8-bit bytes of an addressable memory unit on this
1126 # architecture. This corresponds to the number of 8-bit bytes associated to
1127 # each address in memory.
1128 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1129
1130 EOF
1131 }
1132
1133 #
1134 # The .log file
1135 #
1136 exec > new-gdbarch.log
1137 function_list | while do_read
1138 do
1139 cat <<EOF
1140 ${class} ${returntype} ${function} ($formal)
1141 EOF
1142 for r in ${read}
1143 do
1144 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1145 done
1146 if class_is_predicate_p && fallback_default_p
1147 then
1148 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1149 kill $$
1150 exit 1
1151 fi
1152 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1153 then
1154 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1155 kill $$
1156 exit 1
1157 fi
1158 if class_is_multiarch_p
1159 then
1160 if class_is_predicate_p ; then :
1161 elif test "x${predefault}" = "x"
1162 then
1163 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1164 kill $$
1165 exit 1
1166 fi
1167 fi
1168 echo ""
1169 done
1170
1171 exec 1>&2
1172 compare_new gdbarch.log
1173
1174
1175 copyright ()
1176 {
1177 cat <<EOF
1178 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1179 /* vi:set ro: */
1180
1181 /* Dynamic architecture support for GDB, the GNU debugger.
1182
1183 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1184
1185 This file is part of GDB.
1186
1187 This program is free software; you can redistribute it and/or modify
1188 it under the terms of the GNU General Public License as published by
1189 the Free Software Foundation; either version 3 of the License, or
1190 (at your option) any later version.
1191
1192 This program is distributed in the hope that it will be useful,
1193 but WITHOUT ANY WARRANTY; without even the implied warranty of
1194 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1195 GNU General Public License for more details.
1196
1197 You should have received a copy of the GNU General Public License
1198 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1199
1200 /* This file was created with the aid of \`\`gdbarch.sh''.
1201
1202 The Bourne shell script \`\`gdbarch.sh'' creates the files
1203 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1204 against the existing \`\`gdbarch.[hc]''. Any differences found
1205 being reported.
1206
1207 If editing this file, please also run gdbarch.sh and merge any
1208 changes into that script. Conversely, when making sweeping changes
1209 to this file, modifying gdbarch.sh and using its output may prove
1210 easier. */
1211
1212 EOF
1213 }
1214
1215 #
1216 # The .h file
1217 #
1218
1219 exec > new-gdbarch.h
1220 copyright
1221 cat <<EOF
1222 #ifndef GDBARCH_H
1223 #define GDBARCH_H
1224
1225 #include "frame.h"
1226
1227 struct floatformat;
1228 struct ui_file;
1229 struct value;
1230 struct objfile;
1231 struct obj_section;
1232 struct minimal_symbol;
1233 struct regcache;
1234 struct reggroup;
1235 struct regset;
1236 struct disassemble_info;
1237 struct target_ops;
1238 struct obstack;
1239 struct bp_target_info;
1240 struct target_desc;
1241 struct objfile;
1242 struct symbol;
1243 struct displaced_step_closure;
1244 struct syscall;
1245 struct agent_expr;
1246 struct axs_value;
1247 struct stap_parse_info;
1248 struct parser_state;
1249 struct ravenscar_arch_ops;
1250 struct elf_internal_linux_prpsinfo;
1251 struct mem_range;
1252 struct syscalls_info;
1253 struct thread_info;
1254
1255 #include "regcache.h"
1256
1257 /* The architecture associated with the inferior through the
1258 connection to the target.
1259
1260 The architecture vector provides some information that is really a
1261 property of the inferior, accessed through a particular target:
1262 ptrace operations; the layout of certain RSP packets; the solib_ops
1263 vector; etc. To differentiate architecture accesses to
1264 per-inferior/target properties from
1265 per-thread/per-frame/per-objfile properties, accesses to
1266 per-inferior/target properties should be made through this
1267 gdbarch. */
1268
1269 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1270 extern struct gdbarch *target_gdbarch (void);
1271
1272 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1273 gdbarch method. */
1274
1275 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1276 (struct objfile *objfile, void *cb_data);
1277
1278 /* Callback type for regset section iterators. The callback usually
1279 invokes the REGSET's supply or collect method, to which it must
1280 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1281 section name, and HUMAN_NAME is used for diagnostic messages.
1282 CB_DATA should have been passed unchanged through the iterator. */
1283
1284 typedef void (iterate_over_regset_sections_cb)
1285 (const char *sect_name, int size, const struct regset *regset,
1286 const char *human_name, void *cb_data);
1287 EOF
1288
1289 # function typedef's
1290 printf "\n"
1291 printf "\n"
1292 printf "/* The following are pre-initialized by GDBARCH. */\n"
1293 function_list | while do_read
1294 do
1295 if class_is_info_p
1296 then
1297 printf "\n"
1298 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1299 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1300 fi
1301 done
1302
1303 # function typedef's
1304 printf "\n"
1305 printf "\n"
1306 printf "/* The following are initialized by the target dependent code. */\n"
1307 function_list | while do_read
1308 do
1309 if [ -n "${comment}" ]
1310 then
1311 echo "${comment}" | sed \
1312 -e '2 s,#,/*,' \
1313 -e '3,$ s,#, ,' \
1314 -e '$ s,$, */,'
1315 fi
1316
1317 if class_is_predicate_p
1318 then
1319 printf "\n"
1320 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1321 fi
1322 if class_is_variable_p
1323 then
1324 printf "\n"
1325 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1326 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1327 fi
1328 if class_is_function_p
1329 then
1330 printf "\n"
1331 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1332 then
1333 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1334 elif class_is_multiarch_p
1335 then
1336 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1337 else
1338 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1339 fi
1340 if [ "x${formal}" = "xvoid" ]
1341 then
1342 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1343 else
1344 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1345 fi
1346 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1347 fi
1348 done
1349
1350 # close it off
1351 cat <<EOF
1352
1353 /* Definition for an unknown syscall, used basically in error-cases. */
1354 #define UNKNOWN_SYSCALL (-1)
1355
1356 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1357
1358
1359 /* Mechanism for co-ordinating the selection of a specific
1360 architecture.
1361
1362 GDB targets (*-tdep.c) can register an interest in a specific
1363 architecture. Other GDB components can register a need to maintain
1364 per-architecture data.
1365
1366 The mechanisms below ensures that there is only a loose connection
1367 between the set-architecture command and the various GDB
1368 components. Each component can independently register their need
1369 to maintain architecture specific data with gdbarch.
1370
1371 Pragmatics:
1372
1373 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1374 didn't scale.
1375
1376 The more traditional mega-struct containing architecture specific
1377 data for all the various GDB components was also considered. Since
1378 GDB is built from a variable number of (fairly independent)
1379 components it was determined that the global aproach was not
1380 applicable. */
1381
1382
1383 /* Register a new architectural family with GDB.
1384
1385 Register support for the specified ARCHITECTURE with GDB. When
1386 gdbarch determines that the specified architecture has been
1387 selected, the corresponding INIT function is called.
1388
1389 --
1390
1391 The INIT function takes two parameters: INFO which contains the
1392 information available to gdbarch about the (possibly new)
1393 architecture; ARCHES which is a list of the previously created
1394 \`\`struct gdbarch'' for this architecture.
1395
1396 The INFO parameter is, as far as possible, be pre-initialized with
1397 information obtained from INFO.ABFD or the global defaults.
1398
1399 The ARCHES parameter is a linked list (sorted most recently used)
1400 of all the previously created architures for this architecture
1401 family. The (possibly NULL) ARCHES->gdbarch can used to access
1402 values from the previously selected architecture for this
1403 architecture family.
1404
1405 The INIT function shall return any of: NULL - indicating that it
1406 doesn't recognize the selected architecture; an existing \`\`struct
1407 gdbarch'' from the ARCHES list - indicating that the new
1408 architecture is just a synonym for an earlier architecture (see
1409 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1410 - that describes the selected architecture (see gdbarch_alloc()).
1411
1412 The DUMP_TDEP function shall print out all target specific values.
1413 Care should be taken to ensure that the function works in both the
1414 multi-arch and non- multi-arch cases. */
1415
1416 struct gdbarch_list
1417 {
1418 struct gdbarch *gdbarch;
1419 struct gdbarch_list *next;
1420 };
1421
1422 struct gdbarch_info
1423 {
1424 /* Use default: NULL (ZERO). */
1425 const struct bfd_arch_info *bfd_arch_info;
1426
1427 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1428 enum bfd_endian byte_order;
1429
1430 enum bfd_endian byte_order_for_code;
1431
1432 /* Use default: NULL (ZERO). */
1433 bfd *abfd;
1434
1435 /* Use default: NULL (ZERO). */
1436 void *tdep_info;
1437
1438 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1439 enum gdb_osabi osabi;
1440
1441 /* Use default: NULL (ZERO). */
1442 const struct target_desc *target_desc;
1443 };
1444
1445 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1446 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1447
1448 /* DEPRECATED - use gdbarch_register() */
1449 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1450
1451 extern void gdbarch_register (enum bfd_architecture architecture,
1452 gdbarch_init_ftype *,
1453 gdbarch_dump_tdep_ftype *);
1454
1455
1456 /* Return a freshly allocated, NULL terminated, array of the valid
1457 architecture names. Since architectures are registered during the
1458 _initialize phase this function only returns useful information
1459 once initialization has been completed. */
1460
1461 extern const char **gdbarch_printable_names (void);
1462
1463
1464 /* Helper function. Search the list of ARCHES for a GDBARCH that
1465 matches the information provided by INFO. */
1466
1467 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1468
1469
1470 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1471 basic initialization using values obtained from the INFO and TDEP
1472 parameters. set_gdbarch_*() functions are called to complete the
1473 initialization of the object. */
1474
1475 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1476
1477
1478 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1479 It is assumed that the caller freeds the \`\`struct
1480 gdbarch_tdep''. */
1481
1482 extern void gdbarch_free (struct gdbarch *);
1483
1484
1485 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1486 obstack. The memory is freed when the corresponding architecture
1487 is also freed. */
1488
1489 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1490 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1491 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1492
1493 /* Duplicate STRING, returning an equivalent string that's allocated on the
1494 obstack associated with GDBARCH. The string is freed when the corresponding
1495 architecture is also freed. */
1496
1497 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1498
1499 /* Helper function. Force an update of the current architecture.
1500
1501 The actual architecture selected is determined by INFO, \`\`(gdb) set
1502 architecture'' et.al., the existing architecture and BFD's default
1503 architecture. INFO should be initialized to zero and then selected
1504 fields should be updated.
1505
1506 Returns non-zero if the update succeeds. */
1507
1508 extern int gdbarch_update_p (struct gdbarch_info info);
1509
1510
1511 /* Helper function. Find an architecture matching info.
1512
1513 INFO should be initialized using gdbarch_info_init, relevant fields
1514 set, and then finished using gdbarch_info_fill.
1515
1516 Returns the corresponding architecture, or NULL if no matching
1517 architecture was found. */
1518
1519 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1520
1521
1522 /* Helper function. Set the target gdbarch to "gdbarch". */
1523
1524 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1525
1526
1527 /* Register per-architecture data-pointer.
1528
1529 Reserve space for a per-architecture data-pointer. An identifier
1530 for the reserved data-pointer is returned. That identifer should
1531 be saved in a local static variable.
1532
1533 Memory for the per-architecture data shall be allocated using
1534 gdbarch_obstack_zalloc. That memory will be deleted when the
1535 corresponding architecture object is deleted.
1536
1537 When a previously created architecture is re-selected, the
1538 per-architecture data-pointer for that previous architecture is
1539 restored. INIT() is not re-called.
1540
1541 Multiple registrarants for any architecture are allowed (and
1542 strongly encouraged). */
1543
1544 struct gdbarch_data;
1545
1546 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1547 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1548 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1549 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1550 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1551 struct gdbarch_data *data,
1552 void *pointer);
1553
1554 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1555
1556
1557 /* Set the dynamic target-system-dependent parameters (architecture,
1558 byte-order, ...) using information found in the BFD. */
1559
1560 extern void set_gdbarch_from_file (bfd *);
1561
1562
1563 /* Initialize the current architecture to the "first" one we find on
1564 our list. */
1565
1566 extern void initialize_current_architecture (void);
1567
1568 /* gdbarch trace variable */
1569 extern unsigned int gdbarch_debug;
1570
1571 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1572
1573 #endif
1574 EOF
1575 exec 1>&2
1576 #../move-if-change new-gdbarch.h gdbarch.h
1577 compare_new gdbarch.h
1578
1579
1580 #
1581 # C file
1582 #
1583
1584 exec > new-gdbarch.c
1585 copyright
1586 cat <<EOF
1587
1588 #include "defs.h"
1589 #include "arch-utils.h"
1590
1591 #include "gdbcmd.h"
1592 #include "inferior.h"
1593 #include "symcat.h"
1594
1595 #include "floatformat.h"
1596 #include "reggroups.h"
1597 #include "osabi.h"
1598 #include "gdb_obstack.h"
1599 #include "observer.h"
1600 #include "regcache.h"
1601 #include "objfiles.h"
1602
1603 /* Static function declarations */
1604
1605 static void alloc_gdbarch_data (struct gdbarch *);
1606
1607 /* Non-zero if we want to trace architecture code. */
1608
1609 #ifndef GDBARCH_DEBUG
1610 #define GDBARCH_DEBUG 0
1611 #endif
1612 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1613 static void
1614 show_gdbarch_debug (struct ui_file *file, int from_tty,
1615 struct cmd_list_element *c, const char *value)
1616 {
1617 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1618 }
1619
1620 static const char *
1621 pformat (const struct floatformat **format)
1622 {
1623 if (format == NULL)
1624 return "(null)";
1625 else
1626 /* Just print out one of them - this is only for diagnostics. */
1627 return format[0]->name;
1628 }
1629
1630 static const char *
1631 pstring (const char *string)
1632 {
1633 if (string == NULL)
1634 return "(null)";
1635 return string;
1636 }
1637
1638 /* Helper function to print a list of strings, represented as "const
1639 char *const *". The list is printed comma-separated. */
1640
1641 static char *
1642 pstring_list (const char *const *list)
1643 {
1644 static char ret[100];
1645 const char *const *p;
1646 size_t offset = 0;
1647
1648 if (list == NULL)
1649 return "(null)";
1650
1651 ret[0] = '\0';
1652 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1653 {
1654 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1655 offset += 2 + s;
1656 }
1657
1658 if (offset > 0)
1659 {
1660 gdb_assert (offset - 2 < sizeof (ret));
1661 ret[offset - 2] = '\0';
1662 }
1663
1664 return ret;
1665 }
1666
1667 EOF
1668
1669 # gdbarch open the gdbarch object
1670 printf "\n"
1671 printf "/* Maintain the struct gdbarch object. */\n"
1672 printf "\n"
1673 printf "struct gdbarch\n"
1674 printf "{\n"
1675 printf " /* Has this architecture been fully initialized? */\n"
1676 printf " int initialized_p;\n"
1677 printf "\n"
1678 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1679 printf " struct obstack *obstack;\n"
1680 printf "\n"
1681 printf " /* basic architectural information. */\n"
1682 function_list | while do_read
1683 do
1684 if class_is_info_p
1685 then
1686 printf " ${returntype} ${function};\n"
1687 fi
1688 done
1689 printf "\n"
1690 printf " /* target specific vector. */\n"
1691 printf " struct gdbarch_tdep *tdep;\n"
1692 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1693 printf "\n"
1694 printf " /* per-architecture data-pointers. */\n"
1695 printf " unsigned nr_data;\n"
1696 printf " void **data;\n"
1697 printf "\n"
1698 cat <<EOF
1699 /* Multi-arch values.
1700
1701 When extending this structure you must:
1702
1703 Add the field below.
1704
1705 Declare set/get functions and define the corresponding
1706 macro in gdbarch.h.
1707
1708 gdbarch_alloc(): If zero/NULL is not a suitable default,
1709 initialize the new field.
1710
1711 verify_gdbarch(): Confirm that the target updated the field
1712 correctly.
1713
1714 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1715 field is dumped out
1716
1717 get_gdbarch(): Implement the set/get functions (probably using
1718 the macro's as shortcuts).
1719
1720 */
1721
1722 EOF
1723 function_list | while do_read
1724 do
1725 if class_is_variable_p
1726 then
1727 printf " ${returntype} ${function};\n"
1728 elif class_is_function_p
1729 then
1730 printf " gdbarch_${function}_ftype *${function};\n"
1731 fi
1732 done
1733 printf "};\n"
1734
1735 # Create a new gdbarch struct
1736 cat <<EOF
1737
1738 /* Create a new \`\`struct gdbarch'' based on information provided by
1739 \`\`struct gdbarch_info''. */
1740 EOF
1741 printf "\n"
1742 cat <<EOF
1743 struct gdbarch *
1744 gdbarch_alloc (const struct gdbarch_info *info,
1745 struct gdbarch_tdep *tdep)
1746 {
1747 struct gdbarch *gdbarch;
1748
1749 /* Create an obstack for allocating all the per-architecture memory,
1750 then use that to allocate the architecture vector. */
1751 struct obstack *obstack = XNEW (struct obstack);
1752 obstack_init (obstack);
1753 gdbarch = XOBNEW (obstack, struct gdbarch);
1754 memset (gdbarch, 0, sizeof (*gdbarch));
1755 gdbarch->obstack = obstack;
1756
1757 alloc_gdbarch_data (gdbarch);
1758
1759 gdbarch->tdep = tdep;
1760 EOF
1761 printf "\n"
1762 function_list | while do_read
1763 do
1764 if class_is_info_p
1765 then
1766 printf " gdbarch->${function} = info->${function};\n"
1767 fi
1768 done
1769 printf "\n"
1770 printf " /* Force the explicit initialization of these. */\n"
1771 function_list | while do_read
1772 do
1773 if class_is_function_p || class_is_variable_p
1774 then
1775 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1776 then
1777 printf " gdbarch->${function} = ${predefault};\n"
1778 fi
1779 fi
1780 done
1781 cat <<EOF
1782 /* gdbarch_alloc() */
1783
1784 return gdbarch;
1785 }
1786 EOF
1787
1788 # Free a gdbarch struct.
1789 printf "\n"
1790 printf "\n"
1791 cat <<EOF
1792 /* Allocate extra space using the per-architecture obstack. */
1793
1794 void *
1795 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1796 {
1797 void *data = obstack_alloc (arch->obstack, size);
1798
1799 memset (data, 0, size);
1800 return data;
1801 }
1802
1803 /* See gdbarch.h. */
1804
1805 char *
1806 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1807 {
1808 return obstack_strdup (arch->obstack, string);
1809 }
1810
1811
1812 /* Free a gdbarch struct. This should never happen in normal
1813 operation --- once you've created a gdbarch, you keep it around.
1814 However, if an architecture's init function encounters an error
1815 building the structure, it may need to clean up a partially
1816 constructed gdbarch. */
1817
1818 void
1819 gdbarch_free (struct gdbarch *arch)
1820 {
1821 struct obstack *obstack;
1822
1823 gdb_assert (arch != NULL);
1824 gdb_assert (!arch->initialized_p);
1825 obstack = arch->obstack;
1826 obstack_free (obstack, 0); /* Includes the ARCH. */
1827 xfree (obstack);
1828 }
1829 EOF
1830
1831 # verify a new architecture
1832 cat <<EOF
1833
1834
1835 /* Ensure that all values in a GDBARCH are reasonable. */
1836
1837 static void
1838 verify_gdbarch (struct gdbarch *gdbarch)
1839 {
1840 struct ui_file *log;
1841 struct cleanup *cleanups;
1842 long length;
1843 char *buf;
1844
1845 log = mem_fileopen ();
1846 cleanups = make_cleanup_ui_file_delete (log);
1847 /* fundamental */
1848 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1849 fprintf_unfiltered (log, "\n\tbyte-order");
1850 if (gdbarch->bfd_arch_info == NULL)
1851 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1852 /* Check those that need to be defined for the given multi-arch level. */
1853 EOF
1854 function_list | while do_read
1855 do
1856 if class_is_function_p || class_is_variable_p
1857 then
1858 if [ "x${invalid_p}" = "x0" ]
1859 then
1860 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1861 elif class_is_predicate_p
1862 then
1863 printf " /* Skip verify of ${function}, has predicate. */\n"
1864 # FIXME: See do_read for potential simplification
1865 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1866 then
1867 printf " if (${invalid_p})\n"
1868 printf " gdbarch->${function} = ${postdefault};\n"
1869 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1870 then
1871 printf " if (gdbarch->${function} == ${predefault})\n"
1872 printf " gdbarch->${function} = ${postdefault};\n"
1873 elif [ -n "${postdefault}" ]
1874 then
1875 printf " if (gdbarch->${function} == 0)\n"
1876 printf " gdbarch->${function} = ${postdefault};\n"
1877 elif [ -n "${invalid_p}" ]
1878 then
1879 printf " if (${invalid_p})\n"
1880 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1881 elif [ -n "${predefault}" ]
1882 then
1883 printf " if (gdbarch->${function} == ${predefault})\n"
1884 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1885 fi
1886 fi
1887 done
1888 cat <<EOF
1889 buf = ui_file_xstrdup (log, &length);
1890 make_cleanup (xfree, buf);
1891 if (length > 0)
1892 internal_error (__FILE__, __LINE__,
1893 _("verify_gdbarch: the following are invalid ...%s"),
1894 buf);
1895 do_cleanups (cleanups);
1896 }
1897 EOF
1898
1899 # dump the structure
1900 printf "\n"
1901 printf "\n"
1902 cat <<EOF
1903 /* Print out the details of the current architecture. */
1904
1905 void
1906 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1907 {
1908 const char *gdb_nm_file = "<not-defined>";
1909
1910 #if defined (GDB_NM_FILE)
1911 gdb_nm_file = GDB_NM_FILE;
1912 #endif
1913 fprintf_unfiltered (file,
1914 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1915 gdb_nm_file);
1916 EOF
1917 function_list | sort -t: -k 3 | while do_read
1918 do
1919 # First the predicate
1920 if class_is_predicate_p
1921 then
1922 printf " fprintf_unfiltered (file,\n"
1923 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1924 printf " gdbarch_${function}_p (gdbarch));\n"
1925 fi
1926 # Print the corresponding value.
1927 if class_is_function_p
1928 then
1929 printf " fprintf_unfiltered (file,\n"
1930 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1931 printf " host_address_to_string (gdbarch->${function}));\n"
1932 else
1933 # It is a variable
1934 case "${print}:${returntype}" in
1935 :CORE_ADDR )
1936 fmt="%s"
1937 print="core_addr_to_string_nz (gdbarch->${function})"
1938 ;;
1939 :* )
1940 fmt="%s"
1941 print="plongest (gdbarch->${function})"
1942 ;;
1943 * )
1944 fmt="%s"
1945 ;;
1946 esac
1947 printf " fprintf_unfiltered (file,\n"
1948 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1949 printf " ${print});\n"
1950 fi
1951 done
1952 cat <<EOF
1953 if (gdbarch->dump_tdep != NULL)
1954 gdbarch->dump_tdep (gdbarch, file);
1955 }
1956 EOF
1957
1958
1959 # GET/SET
1960 printf "\n"
1961 cat <<EOF
1962 struct gdbarch_tdep *
1963 gdbarch_tdep (struct gdbarch *gdbarch)
1964 {
1965 if (gdbarch_debug >= 2)
1966 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1967 return gdbarch->tdep;
1968 }
1969 EOF
1970 printf "\n"
1971 function_list | while do_read
1972 do
1973 if class_is_predicate_p
1974 then
1975 printf "\n"
1976 printf "int\n"
1977 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1978 printf "{\n"
1979 printf " gdb_assert (gdbarch != NULL);\n"
1980 printf " return ${predicate};\n"
1981 printf "}\n"
1982 fi
1983 if class_is_function_p
1984 then
1985 printf "\n"
1986 printf "${returntype}\n"
1987 if [ "x${formal}" = "xvoid" ]
1988 then
1989 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1990 else
1991 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1992 fi
1993 printf "{\n"
1994 printf " gdb_assert (gdbarch != NULL);\n"
1995 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1996 if class_is_predicate_p && test -n "${predefault}"
1997 then
1998 # Allow a call to a function with a predicate.
1999 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2000 fi
2001 printf " if (gdbarch_debug >= 2)\n"
2002 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2003 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2004 then
2005 if class_is_multiarch_p
2006 then
2007 params="gdbarch"
2008 else
2009 params=""
2010 fi
2011 else
2012 if class_is_multiarch_p
2013 then
2014 params="gdbarch, ${actual}"
2015 else
2016 params="${actual}"
2017 fi
2018 fi
2019 if [ "x${returntype}" = "xvoid" ]
2020 then
2021 printf " gdbarch->${function} (${params});\n"
2022 else
2023 printf " return gdbarch->${function} (${params});\n"
2024 fi
2025 printf "}\n"
2026 printf "\n"
2027 printf "void\n"
2028 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2029 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2030 printf "{\n"
2031 printf " gdbarch->${function} = ${function};\n"
2032 printf "}\n"
2033 elif class_is_variable_p
2034 then
2035 printf "\n"
2036 printf "${returntype}\n"
2037 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2038 printf "{\n"
2039 printf " gdb_assert (gdbarch != NULL);\n"
2040 if [ "x${invalid_p}" = "x0" ]
2041 then
2042 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2043 elif [ -n "${invalid_p}" ]
2044 then
2045 printf " /* Check variable is valid. */\n"
2046 printf " gdb_assert (!(${invalid_p}));\n"
2047 elif [ -n "${predefault}" ]
2048 then
2049 printf " /* Check variable changed from pre-default. */\n"
2050 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2051 fi
2052 printf " if (gdbarch_debug >= 2)\n"
2053 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2054 printf " return gdbarch->${function};\n"
2055 printf "}\n"
2056 printf "\n"
2057 printf "void\n"
2058 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2059 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2060 printf "{\n"
2061 printf " gdbarch->${function} = ${function};\n"
2062 printf "}\n"
2063 elif class_is_info_p
2064 then
2065 printf "\n"
2066 printf "${returntype}\n"
2067 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2068 printf "{\n"
2069 printf " gdb_assert (gdbarch != NULL);\n"
2070 printf " if (gdbarch_debug >= 2)\n"
2071 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2072 printf " return gdbarch->${function};\n"
2073 printf "}\n"
2074 fi
2075 done
2076
2077 # All the trailing guff
2078 cat <<EOF
2079
2080
2081 /* Keep a registry of per-architecture data-pointers required by GDB
2082 modules. */
2083
2084 struct gdbarch_data
2085 {
2086 unsigned index;
2087 int init_p;
2088 gdbarch_data_pre_init_ftype *pre_init;
2089 gdbarch_data_post_init_ftype *post_init;
2090 };
2091
2092 struct gdbarch_data_registration
2093 {
2094 struct gdbarch_data *data;
2095 struct gdbarch_data_registration *next;
2096 };
2097
2098 struct gdbarch_data_registry
2099 {
2100 unsigned nr;
2101 struct gdbarch_data_registration *registrations;
2102 };
2103
2104 struct gdbarch_data_registry gdbarch_data_registry =
2105 {
2106 0, NULL,
2107 };
2108
2109 static struct gdbarch_data *
2110 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2111 gdbarch_data_post_init_ftype *post_init)
2112 {
2113 struct gdbarch_data_registration **curr;
2114
2115 /* Append the new registration. */
2116 for (curr = &gdbarch_data_registry.registrations;
2117 (*curr) != NULL;
2118 curr = &(*curr)->next);
2119 (*curr) = XNEW (struct gdbarch_data_registration);
2120 (*curr)->next = NULL;
2121 (*curr)->data = XNEW (struct gdbarch_data);
2122 (*curr)->data->index = gdbarch_data_registry.nr++;
2123 (*curr)->data->pre_init = pre_init;
2124 (*curr)->data->post_init = post_init;
2125 (*curr)->data->init_p = 1;
2126 return (*curr)->data;
2127 }
2128
2129 struct gdbarch_data *
2130 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2131 {
2132 return gdbarch_data_register (pre_init, NULL);
2133 }
2134
2135 struct gdbarch_data *
2136 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2137 {
2138 return gdbarch_data_register (NULL, post_init);
2139 }
2140
2141 /* Create/delete the gdbarch data vector. */
2142
2143 static void
2144 alloc_gdbarch_data (struct gdbarch *gdbarch)
2145 {
2146 gdb_assert (gdbarch->data == NULL);
2147 gdbarch->nr_data = gdbarch_data_registry.nr;
2148 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2149 }
2150
2151 /* Initialize the current value of the specified per-architecture
2152 data-pointer. */
2153
2154 void
2155 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2156 struct gdbarch_data *data,
2157 void *pointer)
2158 {
2159 gdb_assert (data->index < gdbarch->nr_data);
2160 gdb_assert (gdbarch->data[data->index] == NULL);
2161 gdb_assert (data->pre_init == NULL);
2162 gdbarch->data[data->index] = pointer;
2163 }
2164
2165 /* Return the current value of the specified per-architecture
2166 data-pointer. */
2167
2168 void *
2169 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2170 {
2171 gdb_assert (data->index < gdbarch->nr_data);
2172 if (gdbarch->data[data->index] == NULL)
2173 {
2174 /* The data-pointer isn't initialized, call init() to get a
2175 value. */
2176 if (data->pre_init != NULL)
2177 /* Mid architecture creation: pass just the obstack, and not
2178 the entire architecture, as that way it isn't possible for
2179 pre-init code to refer to undefined architecture
2180 fields. */
2181 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2182 else if (gdbarch->initialized_p
2183 && data->post_init != NULL)
2184 /* Post architecture creation: pass the entire architecture
2185 (as all fields are valid), but be careful to also detect
2186 recursive references. */
2187 {
2188 gdb_assert (data->init_p);
2189 data->init_p = 0;
2190 gdbarch->data[data->index] = data->post_init (gdbarch);
2191 data->init_p = 1;
2192 }
2193 else
2194 /* The architecture initialization hasn't completed - punt -
2195 hope that the caller knows what they are doing. Once
2196 deprecated_set_gdbarch_data has been initialized, this can be
2197 changed to an internal error. */
2198 return NULL;
2199 gdb_assert (gdbarch->data[data->index] != NULL);
2200 }
2201 return gdbarch->data[data->index];
2202 }
2203
2204
2205 /* Keep a registry of the architectures known by GDB. */
2206
2207 struct gdbarch_registration
2208 {
2209 enum bfd_architecture bfd_architecture;
2210 gdbarch_init_ftype *init;
2211 gdbarch_dump_tdep_ftype *dump_tdep;
2212 struct gdbarch_list *arches;
2213 struct gdbarch_registration *next;
2214 };
2215
2216 static struct gdbarch_registration *gdbarch_registry = NULL;
2217
2218 static void
2219 append_name (const char ***buf, int *nr, const char *name)
2220 {
2221 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2222 (*buf)[*nr] = name;
2223 *nr += 1;
2224 }
2225
2226 const char **
2227 gdbarch_printable_names (void)
2228 {
2229 /* Accumulate a list of names based on the registed list of
2230 architectures. */
2231 int nr_arches = 0;
2232 const char **arches = NULL;
2233 struct gdbarch_registration *rego;
2234
2235 for (rego = gdbarch_registry;
2236 rego != NULL;
2237 rego = rego->next)
2238 {
2239 const struct bfd_arch_info *ap;
2240 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2241 if (ap == NULL)
2242 internal_error (__FILE__, __LINE__,
2243 _("gdbarch_architecture_names: multi-arch unknown"));
2244 do
2245 {
2246 append_name (&arches, &nr_arches, ap->printable_name);
2247 ap = ap->next;
2248 }
2249 while (ap != NULL);
2250 }
2251 append_name (&arches, &nr_arches, NULL);
2252 return arches;
2253 }
2254
2255
2256 void
2257 gdbarch_register (enum bfd_architecture bfd_architecture,
2258 gdbarch_init_ftype *init,
2259 gdbarch_dump_tdep_ftype *dump_tdep)
2260 {
2261 struct gdbarch_registration **curr;
2262 const struct bfd_arch_info *bfd_arch_info;
2263
2264 /* Check that BFD recognizes this architecture */
2265 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2266 if (bfd_arch_info == NULL)
2267 {
2268 internal_error (__FILE__, __LINE__,
2269 _("gdbarch: Attempt to register "
2270 "unknown architecture (%d)"),
2271 bfd_architecture);
2272 }
2273 /* Check that we haven't seen this architecture before. */
2274 for (curr = &gdbarch_registry;
2275 (*curr) != NULL;
2276 curr = &(*curr)->next)
2277 {
2278 if (bfd_architecture == (*curr)->bfd_architecture)
2279 internal_error (__FILE__, __LINE__,
2280 _("gdbarch: Duplicate registration "
2281 "of architecture (%s)"),
2282 bfd_arch_info->printable_name);
2283 }
2284 /* log it */
2285 if (gdbarch_debug)
2286 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2287 bfd_arch_info->printable_name,
2288 host_address_to_string (init));
2289 /* Append it */
2290 (*curr) = XNEW (struct gdbarch_registration);
2291 (*curr)->bfd_architecture = bfd_architecture;
2292 (*curr)->init = init;
2293 (*curr)->dump_tdep = dump_tdep;
2294 (*curr)->arches = NULL;
2295 (*curr)->next = NULL;
2296 }
2297
2298 void
2299 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2300 gdbarch_init_ftype *init)
2301 {
2302 gdbarch_register (bfd_architecture, init, NULL);
2303 }
2304
2305
2306 /* Look for an architecture using gdbarch_info. */
2307
2308 struct gdbarch_list *
2309 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2310 const struct gdbarch_info *info)
2311 {
2312 for (; arches != NULL; arches = arches->next)
2313 {
2314 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2315 continue;
2316 if (info->byte_order != arches->gdbarch->byte_order)
2317 continue;
2318 if (info->osabi != arches->gdbarch->osabi)
2319 continue;
2320 if (info->target_desc != arches->gdbarch->target_desc)
2321 continue;
2322 return arches;
2323 }
2324 return NULL;
2325 }
2326
2327
2328 /* Find an architecture that matches the specified INFO. Create a new
2329 architecture if needed. Return that new architecture. */
2330
2331 struct gdbarch *
2332 gdbarch_find_by_info (struct gdbarch_info info)
2333 {
2334 struct gdbarch *new_gdbarch;
2335 struct gdbarch_registration *rego;
2336
2337 /* Fill in missing parts of the INFO struct using a number of
2338 sources: "set ..."; INFOabfd supplied; and the global
2339 defaults. */
2340 gdbarch_info_fill (&info);
2341
2342 /* Must have found some sort of architecture. */
2343 gdb_assert (info.bfd_arch_info != NULL);
2344
2345 if (gdbarch_debug)
2346 {
2347 fprintf_unfiltered (gdb_stdlog,
2348 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2349 (info.bfd_arch_info != NULL
2350 ? info.bfd_arch_info->printable_name
2351 : "(null)"));
2352 fprintf_unfiltered (gdb_stdlog,
2353 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2354 info.byte_order,
2355 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2356 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2357 : "default"));
2358 fprintf_unfiltered (gdb_stdlog,
2359 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2360 info.osabi, gdbarch_osabi_name (info.osabi));
2361 fprintf_unfiltered (gdb_stdlog,
2362 "gdbarch_find_by_info: info.abfd %s\n",
2363 host_address_to_string (info.abfd));
2364 fprintf_unfiltered (gdb_stdlog,
2365 "gdbarch_find_by_info: info.tdep_info %s\n",
2366 host_address_to_string (info.tdep_info));
2367 }
2368
2369 /* Find the tdep code that knows about this architecture. */
2370 for (rego = gdbarch_registry;
2371 rego != NULL;
2372 rego = rego->next)
2373 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2374 break;
2375 if (rego == NULL)
2376 {
2377 if (gdbarch_debug)
2378 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2379 "No matching architecture\n");
2380 return 0;
2381 }
2382
2383 /* Ask the tdep code for an architecture that matches "info". */
2384 new_gdbarch = rego->init (info, rego->arches);
2385
2386 /* Did the tdep code like it? No. Reject the change and revert to
2387 the old architecture. */
2388 if (new_gdbarch == NULL)
2389 {
2390 if (gdbarch_debug)
2391 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2392 "Target rejected architecture\n");
2393 return NULL;
2394 }
2395
2396 /* Is this a pre-existing architecture (as determined by already
2397 being initialized)? Move it to the front of the architecture
2398 list (keeping the list sorted Most Recently Used). */
2399 if (new_gdbarch->initialized_p)
2400 {
2401 struct gdbarch_list **list;
2402 struct gdbarch_list *self;
2403 if (gdbarch_debug)
2404 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2405 "Previous architecture %s (%s) selected\n",
2406 host_address_to_string (new_gdbarch),
2407 new_gdbarch->bfd_arch_info->printable_name);
2408 /* Find the existing arch in the list. */
2409 for (list = &rego->arches;
2410 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2411 list = &(*list)->next);
2412 /* It had better be in the list of architectures. */
2413 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2414 /* Unlink SELF. */
2415 self = (*list);
2416 (*list) = self->next;
2417 /* Insert SELF at the front. */
2418 self->next = rego->arches;
2419 rego->arches = self;
2420 /* Return it. */
2421 return new_gdbarch;
2422 }
2423
2424 /* It's a new architecture. */
2425 if (gdbarch_debug)
2426 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2427 "New architecture %s (%s) selected\n",
2428 host_address_to_string (new_gdbarch),
2429 new_gdbarch->bfd_arch_info->printable_name);
2430
2431 /* Insert the new architecture into the front of the architecture
2432 list (keep the list sorted Most Recently Used). */
2433 {
2434 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2435 self->next = rego->arches;
2436 self->gdbarch = new_gdbarch;
2437 rego->arches = self;
2438 }
2439
2440 /* Check that the newly installed architecture is valid. Plug in
2441 any post init values. */
2442 new_gdbarch->dump_tdep = rego->dump_tdep;
2443 verify_gdbarch (new_gdbarch);
2444 new_gdbarch->initialized_p = 1;
2445
2446 if (gdbarch_debug)
2447 gdbarch_dump (new_gdbarch, gdb_stdlog);
2448
2449 return new_gdbarch;
2450 }
2451
2452 /* Make the specified architecture current. */
2453
2454 void
2455 set_target_gdbarch (struct gdbarch *new_gdbarch)
2456 {
2457 gdb_assert (new_gdbarch != NULL);
2458 gdb_assert (new_gdbarch->initialized_p);
2459 current_inferior ()->gdbarch = new_gdbarch;
2460 observer_notify_architecture_changed (new_gdbarch);
2461 registers_changed ();
2462 }
2463
2464 /* Return the current inferior's arch. */
2465
2466 struct gdbarch *
2467 target_gdbarch (void)
2468 {
2469 return current_inferior ()->gdbarch;
2470 }
2471
2472 extern void _initialize_gdbarch (void);
2473
2474 void
2475 _initialize_gdbarch (void)
2476 {
2477 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2478 Set architecture debugging."), _("\\
2479 Show architecture debugging."), _("\\
2480 When non-zero, architecture debugging is enabled."),
2481 NULL,
2482 show_gdbarch_debug,
2483 &setdebuglist, &showdebuglist);
2484 }
2485 EOF
2486
2487 # close things off
2488 exec 1>&2
2489 #../move-if-change new-gdbarch.c gdbarch.c
2490 compare_new gdbarch.c
This page took 0.10128 seconds and 4 git commands to generate.