4b11f92d9a21e5a41484ea15b220d347dd3ece0e
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 # Return true if the return value of function is stored in the first hidden
519 # parameter. In theory, this feature should be language-dependent, specified
520 # by language and its ABI, such as C++. Unfortunately, compiler may
521 # implement it to a target-dependent feature. So that we need such hook here
522 # to be aware of this in GDB.
523 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
525 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
526 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
527 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
528 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
529 # Return the adjusted address and kind to use for Z0/Z1 packets.
530 # KIND is usually the memory length of the breakpoint, but may have a
531 # different target-specific meaning.
532 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
533 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
534 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
536 v:CORE_ADDR:decr_pc_after_break:::0:::0
537
538 # A function can be addressed by either it's "pointer" (possibly a
539 # descriptor address) or "entry point" (first executable instruction).
540 # The method "convert_from_func_ptr_addr" converting the former to the
541 # latter. gdbarch_deprecated_function_start_offset is being used to implement
542 # a simplified subset of that functionality - the function's address
543 # corresponds to the "function pointer" and the function's start
544 # corresponds to the "function entry point" - and hence is redundant.
545
546 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
547
548 # Return the remote protocol register number associated with this
549 # register. Normally the identity mapping.
550 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
551
552 # Fetch the target specific address used to represent a load module.
553 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
554 #
555 v:CORE_ADDR:frame_args_skip:::0:::0
556 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
558 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559 # frame-base. Enable frame-base before frame-unwind.
560 F:int:frame_num_args:struct frame_info *frame:frame
561 #
562 M:CORE_ADDR:frame_align:CORE_ADDR address:address
563 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564 v:int:frame_red_zone_size
565 #
566 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
567 # On some machines there are bits in addresses which are not really
568 # part of the address, but are used by the kernel, the hardware, etc.
569 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
570 # we get a "real" address such as one would find in a symbol table.
571 # This is used only for addresses of instructions, and even then I'm
572 # not sure it's used in all contexts. It exists to deal with there
573 # being a few stray bits in the PC which would mislead us, not as some
574 # sort of generic thing to handle alignment or segmentation (it's
575 # possible it should be in TARGET_READ_PC instead).
576 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
577 # It is not at all clear why gdbarch_smash_text_address is not folded into
578 # gdbarch_addr_bits_remove.
579 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Iterate over all objfiles in the order that makes the most sense
947 # for the architecture to make global symbol searches.
948 #
949 # CB is a callback function where OBJFILE is the objfile to be searched,
950 # and CB_DATA a pointer to user-defined data (the same data that is passed
951 # when calling this gdbarch method). The iteration stops if this function
952 # returns nonzero.
953 #
954 # CB_DATA is a pointer to some user-defined data to be passed to
955 # the callback.
956 #
957 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958 # inspected when the symbol search was requested.
959 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
960
961 EOF
962 }
963
964 #
965 # The .log file
966 #
967 exec > new-gdbarch.log
968 function_list | while do_read
969 do
970 cat <<EOF
971 ${class} ${returntype} ${function} ($formal)
972 EOF
973 for r in ${read}
974 do
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
976 done
977 if class_is_predicate_p && fallback_default_p
978 then
979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
980 kill $$
981 exit 1
982 fi
983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
984 then
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 kill $$
987 exit 1
988 fi
989 if class_is_multiarch_p
990 then
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
993 then
994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
995 kill $$
996 exit 1
997 fi
998 fi
999 echo ""
1000 done
1001
1002 exec 1>&2
1003 compare_new gdbarch.log
1004
1005
1006 copyright ()
1007 {
1008 cat <<EOF
1009 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1010 /* vi:set ro: */
1011
1012 /* Dynamic architecture support for GDB, the GNU debugger.
1013
1014 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1015 2007, 2008, 2009 Free Software Foundation, Inc.
1016
1017 This file is part of GDB.
1018
1019 This program is free software; you can redistribute it and/or modify
1020 it under the terms of the GNU General Public License as published by
1021 the Free Software Foundation; either version 3 of the License, or
1022 (at your option) any later version.
1023
1024 This program is distributed in the hope that it will be useful,
1025 but WITHOUT ANY WARRANTY; without even the implied warranty of
1026 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1027 GNU General Public License for more details.
1028
1029 You should have received a copy of the GNU General Public License
1030 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1031
1032 /* This file was created with the aid of \`\`gdbarch.sh''.
1033
1034 The Bourne shell script \`\`gdbarch.sh'' creates the files
1035 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1036 against the existing \`\`gdbarch.[hc]''. Any differences found
1037 being reported.
1038
1039 If editing this file, please also run gdbarch.sh and merge any
1040 changes into that script. Conversely, when making sweeping changes
1041 to this file, modifying gdbarch.sh and using its output may prove
1042 easier. */
1043
1044 EOF
1045 }
1046
1047 #
1048 # The .h file
1049 #
1050
1051 exec > new-gdbarch.h
1052 copyright
1053 cat <<EOF
1054 #ifndef GDBARCH_H
1055 #define GDBARCH_H
1056
1057 struct floatformat;
1058 struct ui_file;
1059 struct frame_info;
1060 struct value;
1061 struct objfile;
1062 struct obj_section;
1063 struct minimal_symbol;
1064 struct regcache;
1065 struct reggroup;
1066 struct regset;
1067 struct disassemble_info;
1068 struct target_ops;
1069 struct obstack;
1070 struct bp_target_info;
1071 struct target_desc;
1072 struct displaced_step_closure;
1073 struct core_regset_section;
1074 struct syscall;
1075 struct agent_expr;
1076 struct axs_value;
1077 struct stap_parse_info;
1078
1079 /* The architecture associated with the inferior through the
1080 connection to the target.
1081
1082 The architecture vector provides some information that is really a
1083 property of the inferior, accessed through a particular target:
1084 ptrace operations; the layout of certain RSP packets; the solib_ops
1085 vector; etc. To differentiate architecture accesses to
1086 per-inferior/target properties from
1087 per-thread/per-frame/per-objfile properties, accesses to
1088 per-inferior/target properties should be made through this
1089 gdbarch. */
1090
1091 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1092 extern struct gdbarch *target_gdbarch (void);
1093
1094 /* The initial, default architecture. It uses host values (for want of a better
1095 choice). */
1096 extern struct gdbarch startup_gdbarch;
1097
1098
1099 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1100 gdbarch method. */
1101
1102 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1103 (struct objfile *objfile, void *cb_data);
1104 EOF
1105
1106 # function typedef's
1107 printf "\n"
1108 printf "\n"
1109 printf "/* The following are pre-initialized by GDBARCH. */\n"
1110 function_list | while do_read
1111 do
1112 if class_is_info_p
1113 then
1114 printf "\n"
1115 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1116 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1117 fi
1118 done
1119
1120 # function typedef's
1121 printf "\n"
1122 printf "\n"
1123 printf "/* The following are initialized by the target dependent code. */\n"
1124 function_list | while do_read
1125 do
1126 if [ -n "${comment}" ]
1127 then
1128 echo "${comment}" | sed \
1129 -e '2 s,#,/*,' \
1130 -e '3,$ s,#, ,' \
1131 -e '$ s,$, */,'
1132 fi
1133
1134 if class_is_predicate_p
1135 then
1136 printf "\n"
1137 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1138 fi
1139 if class_is_variable_p
1140 then
1141 printf "\n"
1142 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1143 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1144 fi
1145 if class_is_function_p
1146 then
1147 printf "\n"
1148 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1149 then
1150 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1151 elif class_is_multiarch_p
1152 then
1153 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1154 else
1155 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1156 fi
1157 if [ "x${formal}" = "xvoid" ]
1158 then
1159 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1160 else
1161 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1162 fi
1163 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1164 fi
1165 done
1166
1167 # close it off
1168 cat <<EOF
1169
1170 /* Definition for an unknown syscall, used basically in error-cases. */
1171 #define UNKNOWN_SYSCALL (-1)
1172
1173 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1174
1175
1176 /* Mechanism for co-ordinating the selection of a specific
1177 architecture.
1178
1179 GDB targets (*-tdep.c) can register an interest in a specific
1180 architecture. Other GDB components can register a need to maintain
1181 per-architecture data.
1182
1183 The mechanisms below ensures that there is only a loose connection
1184 between the set-architecture command and the various GDB
1185 components. Each component can independently register their need
1186 to maintain architecture specific data with gdbarch.
1187
1188 Pragmatics:
1189
1190 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1191 didn't scale.
1192
1193 The more traditional mega-struct containing architecture specific
1194 data for all the various GDB components was also considered. Since
1195 GDB is built from a variable number of (fairly independent)
1196 components it was determined that the global aproach was not
1197 applicable. */
1198
1199
1200 /* Register a new architectural family with GDB.
1201
1202 Register support for the specified ARCHITECTURE with GDB. When
1203 gdbarch determines that the specified architecture has been
1204 selected, the corresponding INIT function is called.
1205
1206 --
1207
1208 The INIT function takes two parameters: INFO which contains the
1209 information available to gdbarch about the (possibly new)
1210 architecture; ARCHES which is a list of the previously created
1211 \`\`struct gdbarch'' for this architecture.
1212
1213 The INFO parameter is, as far as possible, be pre-initialized with
1214 information obtained from INFO.ABFD or the global defaults.
1215
1216 The ARCHES parameter is a linked list (sorted most recently used)
1217 of all the previously created architures for this architecture
1218 family. The (possibly NULL) ARCHES->gdbarch can used to access
1219 values from the previously selected architecture for this
1220 architecture family.
1221
1222 The INIT function shall return any of: NULL - indicating that it
1223 doesn't recognize the selected architecture; an existing \`\`struct
1224 gdbarch'' from the ARCHES list - indicating that the new
1225 architecture is just a synonym for an earlier architecture (see
1226 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1227 - that describes the selected architecture (see gdbarch_alloc()).
1228
1229 The DUMP_TDEP function shall print out all target specific values.
1230 Care should be taken to ensure that the function works in both the
1231 multi-arch and non- multi-arch cases. */
1232
1233 struct gdbarch_list
1234 {
1235 struct gdbarch *gdbarch;
1236 struct gdbarch_list *next;
1237 };
1238
1239 struct gdbarch_info
1240 {
1241 /* Use default: NULL (ZERO). */
1242 const struct bfd_arch_info *bfd_arch_info;
1243
1244 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1245 int byte_order;
1246
1247 int byte_order_for_code;
1248
1249 /* Use default: NULL (ZERO). */
1250 bfd *abfd;
1251
1252 /* Use default: NULL (ZERO). */
1253 struct gdbarch_tdep_info *tdep_info;
1254
1255 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1256 enum gdb_osabi osabi;
1257
1258 /* Use default: NULL (ZERO). */
1259 const struct target_desc *target_desc;
1260 };
1261
1262 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1263 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1264
1265 /* DEPRECATED - use gdbarch_register() */
1266 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1267
1268 extern void gdbarch_register (enum bfd_architecture architecture,
1269 gdbarch_init_ftype *,
1270 gdbarch_dump_tdep_ftype *);
1271
1272
1273 /* Return a freshly allocated, NULL terminated, array of the valid
1274 architecture names. Since architectures are registered during the
1275 _initialize phase this function only returns useful information
1276 once initialization has been completed. */
1277
1278 extern const char **gdbarch_printable_names (void);
1279
1280
1281 /* Helper function. Search the list of ARCHES for a GDBARCH that
1282 matches the information provided by INFO. */
1283
1284 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1285
1286
1287 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1288 basic initialization using values obtained from the INFO and TDEP
1289 parameters. set_gdbarch_*() functions are called to complete the
1290 initialization of the object. */
1291
1292 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1293
1294
1295 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1296 It is assumed that the caller freeds the \`\`struct
1297 gdbarch_tdep''. */
1298
1299 extern void gdbarch_free (struct gdbarch *);
1300
1301
1302 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1303 obstack. The memory is freed when the corresponding architecture
1304 is also freed. */
1305
1306 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1307 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1308 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1309
1310
1311 /* Helper function. Force an update of the current architecture.
1312
1313 The actual architecture selected is determined by INFO, \`\`(gdb) set
1314 architecture'' et.al., the existing architecture and BFD's default
1315 architecture. INFO should be initialized to zero and then selected
1316 fields should be updated.
1317
1318 Returns non-zero if the update succeeds. */
1319
1320 extern int gdbarch_update_p (struct gdbarch_info info);
1321
1322
1323 /* Helper function. Find an architecture matching info.
1324
1325 INFO should be initialized using gdbarch_info_init, relevant fields
1326 set, and then finished using gdbarch_info_fill.
1327
1328 Returns the corresponding architecture, or NULL if no matching
1329 architecture was found. */
1330
1331 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1332
1333
1334 /* Helper function. Set the target gdbarch to "gdbarch". */
1335
1336 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1337
1338
1339 /* Register per-architecture data-pointer.
1340
1341 Reserve space for a per-architecture data-pointer. An identifier
1342 for the reserved data-pointer is returned. That identifer should
1343 be saved in a local static variable.
1344
1345 Memory for the per-architecture data shall be allocated using
1346 gdbarch_obstack_zalloc. That memory will be deleted when the
1347 corresponding architecture object is deleted.
1348
1349 When a previously created architecture is re-selected, the
1350 per-architecture data-pointer for that previous architecture is
1351 restored. INIT() is not re-called.
1352
1353 Multiple registrarants for any architecture are allowed (and
1354 strongly encouraged). */
1355
1356 struct gdbarch_data;
1357
1358 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1359 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1360 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1361 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1362 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1363 struct gdbarch_data *data,
1364 void *pointer);
1365
1366 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1367
1368
1369 /* Set the dynamic target-system-dependent parameters (architecture,
1370 byte-order, ...) using information found in the BFD. */
1371
1372 extern void set_gdbarch_from_file (bfd *);
1373
1374
1375 /* Initialize the current architecture to the "first" one we find on
1376 our list. */
1377
1378 extern void initialize_current_architecture (void);
1379
1380 /* gdbarch trace variable */
1381 extern unsigned int gdbarch_debug;
1382
1383 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1384
1385 #endif
1386 EOF
1387 exec 1>&2
1388 #../move-if-change new-gdbarch.h gdbarch.h
1389 compare_new gdbarch.h
1390
1391
1392 #
1393 # C file
1394 #
1395
1396 exec > new-gdbarch.c
1397 copyright
1398 cat <<EOF
1399
1400 #include "defs.h"
1401 #include "arch-utils.h"
1402
1403 #include "gdbcmd.h"
1404 #include "inferior.h"
1405 #include "symcat.h"
1406
1407 #include "floatformat.h"
1408
1409 #include "gdb_assert.h"
1410 #include "gdb_string.h"
1411 #include "reggroups.h"
1412 #include "osabi.h"
1413 #include "gdb_obstack.h"
1414 #include "observer.h"
1415 #include "regcache.h"
1416 #include "objfiles.h"
1417
1418 /* Static function declarations */
1419
1420 static void alloc_gdbarch_data (struct gdbarch *);
1421
1422 /* Non-zero if we want to trace architecture code. */
1423
1424 #ifndef GDBARCH_DEBUG
1425 #define GDBARCH_DEBUG 0
1426 #endif
1427 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1428 static void
1429 show_gdbarch_debug (struct ui_file *file, int from_tty,
1430 struct cmd_list_element *c, const char *value)
1431 {
1432 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1433 }
1434
1435 static const char *
1436 pformat (const struct floatformat **format)
1437 {
1438 if (format == NULL)
1439 return "(null)";
1440 else
1441 /* Just print out one of them - this is only for diagnostics. */
1442 return format[0]->name;
1443 }
1444
1445 static const char *
1446 pstring (const char *string)
1447 {
1448 if (string == NULL)
1449 return "(null)";
1450 return string;
1451 }
1452
1453 EOF
1454
1455 # gdbarch open the gdbarch object
1456 printf "\n"
1457 printf "/* Maintain the struct gdbarch object. */\n"
1458 printf "\n"
1459 printf "struct gdbarch\n"
1460 printf "{\n"
1461 printf " /* Has this architecture been fully initialized? */\n"
1462 printf " int initialized_p;\n"
1463 printf "\n"
1464 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1465 printf " struct obstack *obstack;\n"
1466 printf "\n"
1467 printf " /* basic architectural information. */\n"
1468 function_list | while do_read
1469 do
1470 if class_is_info_p
1471 then
1472 printf " ${returntype} ${function};\n"
1473 fi
1474 done
1475 printf "\n"
1476 printf " /* target specific vector. */\n"
1477 printf " struct gdbarch_tdep *tdep;\n"
1478 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1479 printf "\n"
1480 printf " /* per-architecture data-pointers. */\n"
1481 printf " unsigned nr_data;\n"
1482 printf " void **data;\n"
1483 printf "\n"
1484 cat <<EOF
1485 /* Multi-arch values.
1486
1487 When extending this structure you must:
1488
1489 Add the field below.
1490
1491 Declare set/get functions and define the corresponding
1492 macro in gdbarch.h.
1493
1494 gdbarch_alloc(): If zero/NULL is not a suitable default,
1495 initialize the new field.
1496
1497 verify_gdbarch(): Confirm that the target updated the field
1498 correctly.
1499
1500 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1501 field is dumped out
1502
1503 \`\`startup_gdbarch()'': Append an initial value to the static
1504 variable (base values on the host's c-type system).
1505
1506 get_gdbarch(): Implement the set/get functions (probably using
1507 the macro's as shortcuts).
1508
1509 */
1510
1511 EOF
1512 function_list | while do_read
1513 do
1514 if class_is_variable_p
1515 then
1516 printf " ${returntype} ${function};\n"
1517 elif class_is_function_p
1518 then
1519 printf " gdbarch_${function}_ftype *${function};\n"
1520 fi
1521 done
1522 printf "};\n"
1523
1524 # A pre-initialized vector
1525 printf "\n"
1526 printf "\n"
1527 cat <<EOF
1528 /* The default architecture uses host values (for want of a better
1529 choice). */
1530 EOF
1531 printf "\n"
1532 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1533 printf "\n"
1534 printf "struct gdbarch startup_gdbarch =\n"
1535 printf "{\n"
1536 printf " 1, /* Always initialized. */\n"
1537 printf " NULL, /* The obstack. */\n"
1538 printf " /* basic architecture information. */\n"
1539 function_list | while do_read
1540 do
1541 if class_is_info_p
1542 then
1543 printf " ${staticdefault}, /* ${function} */\n"
1544 fi
1545 done
1546 cat <<EOF
1547 /* target specific vector and its dump routine. */
1548 NULL, NULL,
1549 /*per-architecture data-pointers. */
1550 0, NULL,
1551 /* Multi-arch values */
1552 EOF
1553 function_list | while do_read
1554 do
1555 if class_is_function_p || class_is_variable_p
1556 then
1557 printf " ${staticdefault}, /* ${function} */\n"
1558 fi
1559 done
1560 cat <<EOF
1561 /* startup_gdbarch() */
1562 };
1563
1564 EOF
1565
1566 # Create a new gdbarch struct
1567 cat <<EOF
1568
1569 /* Create a new \`\`struct gdbarch'' based on information provided by
1570 \`\`struct gdbarch_info''. */
1571 EOF
1572 printf "\n"
1573 cat <<EOF
1574 struct gdbarch *
1575 gdbarch_alloc (const struct gdbarch_info *info,
1576 struct gdbarch_tdep *tdep)
1577 {
1578 struct gdbarch *gdbarch;
1579
1580 /* Create an obstack for allocating all the per-architecture memory,
1581 then use that to allocate the architecture vector. */
1582 struct obstack *obstack = XMALLOC (struct obstack);
1583 obstack_init (obstack);
1584 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1585 memset (gdbarch, 0, sizeof (*gdbarch));
1586 gdbarch->obstack = obstack;
1587
1588 alloc_gdbarch_data (gdbarch);
1589
1590 gdbarch->tdep = tdep;
1591 EOF
1592 printf "\n"
1593 function_list | while do_read
1594 do
1595 if class_is_info_p
1596 then
1597 printf " gdbarch->${function} = info->${function};\n"
1598 fi
1599 done
1600 printf "\n"
1601 printf " /* Force the explicit initialization of these. */\n"
1602 function_list | while do_read
1603 do
1604 if class_is_function_p || class_is_variable_p
1605 then
1606 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1607 then
1608 printf " gdbarch->${function} = ${predefault};\n"
1609 fi
1610 fi
1611 done
1612 cat <<EOF
1613 /* gdbarch_alloc() */
1614
1615 return gdbarch;
1616 }
1617 EOF
1618
1619 # Free a gdbarch struct.
1620 printf "\n"
1621 printf "\n"
1622 cat <<EOF
1623 /* Allocate extra space using the per-architecture obstack. */
1624
1625 void *
1626 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1627 {
1628 void *data = obstack_alloc (arch->obstack, size);
1629
1630 memset (data, 0, size);
1631 return data;
1632 }
1633
1634
1635 /* Free a gdbarch struct. This should never happen in normal
1636 operation --- once you've created a gdbarch, you keep it around.
1637 However, if an architecture's init function encounters an error
1638 building the structure, it may need to clean up a partially
1639 constructed gdbarch. */
1640
1641 void
1642 gdbarch_free (struct gdbarch *arch)
1643 {
1644 struct obstack *obstack;
1645
1646 gdb_assert (arch != NULL);
1647 gdb_assert (!arch->initialized_p);
1648 obstack = arch->obstack;
1649 obstack_free (obstack, 0); /* Includes the ARCH. */
1650 xfree (obstack);
1651 }
1652 EOF
1653
1654 # verify a new architecture
1655 cat <<EOF
1656
1657
1658 /* Ensure that all values in a GDBARCH are reasonable. */
1659
1660 static void
1661 verify_gdbarch (struct gdbarch *gdbarch)
1662 {
1663 struct ui_file *log;
1664 struct cleanup *cleanups;
1665 long length;
1666 char *buf;
1667
1668 log = mem_fileopen ();
1669 cleanups = make_cleanup_ui_file_delete (log);
1670 /* fundamental */
1671 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1672 fprintf_unfiltered (log, "\n\tbyte-order");
1673 if (gdbarch->bfd_arch_info == NULL)
1674 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1675 /* Check those that need to be defined for the given multi-arch level. */
1676 EOF
1677 function_list | while do_read
1678 do
1679 if class_is_function_p || class_is_variable_p
1680 then
1681 if [ "x${invalid_p}" = "x0" ]
1682 then
1683 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1684 elif class_is_predicate_p
1685 then
1686 printf " /* Skip verify of ${function}, has predicate. */\n"
1687 # FIXME: See do_read for potential simplification
1688 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1689 then
1690 printf " if (${invalid_p})\n"
1691 printf " gdbarch->${function} = ${postdefault};\n"
1692 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1693 then
1694 printf " if (gdbarch->${function} == ${predefault})\n"
1695 printf " gdbarch->${function} = ${postdefault};\n"
1696 elif [ -n "${postdefault}" ]
1697 then
1698 printf " if (gdbarch->${function} == 0)\n"
1699 printf " gdbarch->${function} = ${postdefault};\n"
1700 elif [ -n "${invalid_p}" ]
1701 then
1702 printf " if (${invalid_p})\n"
1703 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1704 elif [ -n "${predefault}" ]
1705 then
1706 printf " if (gdbarch->${function} == ${predefault})\n"
1707 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1708 fi
1709 fi
1710 done
1711 cat <<EOF
1712 buf = ui_file_xstrdup (log, &length);
1713 make_cleanup (xfree, buf);
1714 if (length > 0)
1715 internal_error (__FILE__, __LINE__,
1716 _("verify_gdbarch: the following are invalid ...%s"),
1717 buf);
1718 do_cleanups (cleanups);
1719 }
1720 EOF
1721
1722 # dump the structure
1723 printf "\n"
1724 printf "\n"
1725 cat <<EOF
1726 /* Print out the details of the current architecture. */
1727
1728 void
1729 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1730 {
1731 const char *gdb_nm_file = "<not-defined>";
1732
1733 #if defined (GDB_NM_FILE)
1734 gdb_nm_file = GDB_NM_FILE;
1735 #endif
1736 fprintf_unfiltered (file,
1737 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1738 gdb_nm_file);
1739 EOF
1740 function_list | sort -t: -k 3 | while do_read
1741 do
1742 # First the predicate
1743 if class_is_predicate_p
1744 then
1745 printf " fprintf_unfiltered (file,\n"
1746 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1747 printf " gdbarch_${function}_p (gdbarch));\n"
1748 fi
1749 # Print the corresponding value.
1750 if class_is_function_p
1751 then
1752 printf " fprintf_unfiltered (file,\n"
1753 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1754 printf " host_address_to_string (gdbarch->${function}));\n"
1755 else
1756 # It is a variable
1757 case "${print}:${returntype}" in
1758 :CORE_ADDR )
1759 fmt="%s"
1760 print="core_addr_to_string_nz (gdbarch->${function})"
1761 ;;
1762 :* )
1763 fmt="%s"
1764 print="plongest (gdbarch->${function})"
1765 ;;
1766 * )
1767 fmt="%s"
1768 ;;
1769 esac
1770 printf " fprintf_unfiltered (file,\n"
1771 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1772 printf " ${print});\n"
1773 fi
1774 done
1775 cat <<EOF
1776 if (gdbarch->dump_tdep != NULL)
1777 gdbarch->dump_tdep (gdbarch, file);
1778 }
1779 EOF
1780
1781
1782 # GET/SET
1783 printf "\n"
1784 cat <<EOF
1785 struct gdbarch_tdep *
1786 gdbarch_tdep (struct gdbarch *gdbarch)
1787 {
1788 if (gdbarch_debug >= 2)
1789 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1790 return gdbarch->tdep;
1791 }
1792 EOF
1793 printf "\n"
1794 function_list | while do_read
1795 do
1796 if class_is_predicate_p
1797 then
1798 printf "\n"
1799 printf "int\n"
1800 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1801 printf "{\n"
1802 printf " gdb_assert (gdbarch != NULL);\n"
1803 printf " return ${predicate};\n"
1804 printf "}\n"
1805 fi
1806 if class_is_function_p
1807 then
1808 printf "\n"
1809 printf "${returntype}\n"
1810 if [ "x${formal}" = "xvoid" ]
1811 then
1812 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1813 else
1814 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1815 fi
1816 printf "{\n"
1817 printf " gdb_assert (gdbarch != NULL);\n"
1818 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1819 if class_is_predicate_p && test -n "${predefault}"
1820 then
1821 # Allow a call to a function with a predicate.
1822 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1823 fi
1824 printf " if (gdbarch_debug >= 2)\n"
1825 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1826 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1827 then
1828 if class_is_multiarch_p
1829 then
1830 params="gdbarch"
1831 else
1832 params=""
1833 fi
1834 else
1835 if class_is_multiarch_p
1836 then
1837 params="gdbarch, ${actual}"
1838 else
1839 params="${actual}"
1840 fi
1841 fi
1842 if [ "x${returntype}" = "xvoid" ]
1843 then
1844 printf " gdbarch->${function} (${params});\n"
1845 else
1846 printf " return gdbarch->${function} (${params});\n"
1847 fi
1848 printf "}\n"
1849 printf "\n"
1850 printf "void\n"
1851 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1852 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1853 printf "{\n"
1854 printf " gdbarch->${function} = ${function};\n"
1855 printf "}\n"
1856 elif class_is_variable_p
1857 then
1858 printf "\n"
1859 printf "${returntype}\n"
1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1861 printf "{\n"
1862 printf " gdb_assert (gdbarch != NULL);\n"
1863 if [ "x${invalid_p}" = "x0" ]
1864 then
1865 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1866 elif [ -n "${invalid_p}" ]
1867 then
1868 printf " /* Check variable is valid. */\n"
1869 printf " gdb_assert (!(${invalid_p}));\n"
1870 elif [ -n "${predefault}" ]
1871 then
1872 printf " /* Check variable changed from pre-default. */\n"
1873 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1874 fi
1875 printf " if (gdbarch_debug >= 2)\n"
1876 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1877 printf " return gdbarch->${function};\n"
1878 printf "}\n"
1879 printf "\n"
1880 printf "void\n"
1881 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1882 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1883 printf "{\n"
1884 printf " gdbarch->${function} = ${function};\n"
1885 printf "}\n"
1886 elif class_is_info_p
1887 then
1888 printf "\n"
1889 printf "${returntype}\n"
1890 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1891 printf "{\n"
1892 printf " gdb_assert (gdbarch != NULL);\n"
1893 printf " if (gdbarch_debug >= 2)\n"
1894 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1895 printf " return gdbarch->${function};\n"
1896 printf "}\n"
1897 fi
1898 done
1899
1900 # All the trailing guff
1901 cat <<EOF
1902
1903
1904 /* Keep a registry of per-architecture data-pointers required by GDB
1905 modules. */
1906
1907 struct gdbarch_data
1908 {
1909 unsigned index;
1910 int init_p;
1911 gdbarch_data_pre_init_ftype *pre_init;
1912 gdbarch_data_post_init_ftype *post_init;
1913 };
1914
1915 struct gdbarch_data_registration
1916 {
1917 struct gdbarch_data *data;
1918 struct gdbarch_data_registration *next;
1919 };
1920
1921 struct gdbarch_data_registry
1922 {
1923 unsigned nr;
1924 struct gdbarch_data_registration *registrations;
1925 };
1926
1927 struct gdbarch_data_registry gdbarch_data_registry =
1928 {
1929 0, NULL,
1930 };
1931
1932 static struct gdbarch_data *
1933 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1934 gdbarch_data_post_init_ftype *post_init)
1935 {
1936 struct gdbarch_data_registration **curr;
1937
1938 /* Append the new registration. */
1939 for (curr = &gdbarch_data_registry.registrations;
1940 (*curr) != NULL;
1941 curr = &(*curr)->next);
1942 (*curr) = XMALLOC (struct gdbarch_data_registration);
1943 (*curr)->next = NULL;
1944 (*curr)->data = XMALLOC (struct gdbarch_data);
1945 (*curr)->data->index = gdbarch_data_registry.nr++;
1946 (*curr)->data->pre_init = pre_init;
1947 (*curr)->data->post_init = post_init;
1948 (*curr)->data->init_p = 1;
1949 return (*curr)->data;
1950 }
1951
1952 struct gdbarch_data *
1953 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1954 {
1955 return gdbarch_data_register (pre_init, NULL);
1956 }
1957
1958 struct gdbarch_data *
1959 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1960 {
1961 return gdbarch_data_register (NULL, post_init);
1962 }
1963
1964 /* Create/delete the gdbarch data vector. */
1965
1966 static void
1967 alloc_gdbarch_data (struct gdbarch *gdbarch)
1968 {
1969 gdb_assert (gdbarch->data == NULL);
1970 gdbarch->nr_data = gdbarch_data_registry.nr;
1971 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1972 }
1973
1974 /* Initialize the current value of the specified per-architecture
1975 data-pointer. */
1976
1977 void
1978 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1979 struct gdbarch_data *data,
1980 void *pointer)
1981 {
1982 gdb_assert (data->index < gdbarch->nr_data);
1983 gdb_assert (gdbarch->data[data->index] == NULL);
1984 gdb_assert (data->pre_init == NULL);
1985 gdbarch->data[data->index] = pointer;
1986 }
1987
1988 /* Return the current value of the specified per-architecture
1989 data-pointer. */
1990
1991 void *
1992 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1993 {
1994 gdb_assert (data->index < gdbarch->nr_data);
1995 if (gdbarch->data[data->index] == NULL)
1996 {
1997 /* The data-pointer isn't initialized, call init() to get a
1998 value. */
1999 if (data->pre_init != NULL)
2000 /* Mid architecture creation: pass just the obstack, and not
2001 the entire architecture, as that way it isn't possible for
2002 pre-init code to refer to undefined architecture
2003 fields. */
2004 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2005 else if (gdbarch->initialized_p
2006 && data->post_init != NULL)
2007 /* Post architecture creation: pass the entire architecture
2008 (as all fields are valid), but be careful to also detect
2009 recursive references. */
2010 {
2011 gdb_assert (data->init_p);
2012 data->init_p = 0;
2013 gdbarch->data[data->index] = data->post_init (gdbarch);
2014 data->init_p = 1;
2015 }
2016 else
2017 /* The architecture initialization hasn't completed - punt -
2018 hope that the caller knows what they are doing. Once
2019 deprecated_set_gdbarch_data has been initialized, this can be
2020 changed to an internal error. */
2021 return NULL;
2022 gdb_assert (gdbarch->data[data->index] != NULL);
2023 }
2024 return gdbarch->data[data->index];
2025 }
2026
2027
2028 /* Keep a registry of the architectures known by GDB. */
2029
2030 struct gdbarch_registration
2031 {
2032 enum bfd_architecture bfd_architecture;
2033 gdbarch_init_ftype *init;
2034 gdbarch_dump_tdep_ftype *dump_tdep;
2035 struct gdbarch_list *arches;
2036 struct gdbarch_registration *next;
2037 };
2038
2039 static struct gdbarch_registration *gdbarch_registry = NULL;
2040
2041 static void
2042 append_name (const char ***buf, int *nr, const char *name)
2043 {
2044 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2045 (*buf)[*nr] = name;
2046 *nr += 1;
2047 }
2048
2049 const char **
2050 gdbarch_printable_names (void)
2051 {
2052 /* Accumulate a list of names based on the registed list of
2053 architectures. */
2054 int nr_arches = 0;
2055 const char **arches = NULL;
2056 struct gdbarch_registration *rego;
2057
2058 for (rego = gdbarch_registry;
2059 rego != NULL;
2060 rego = rego->next)
2061 {
2062 const struct bfd_arch_info *ap;
2063 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2064 if (ap == NULL)
2065 internal_error (__FILE__, __LINE__,
2066 _("gdbarch_architecture_names: multi-arch unknown"));
2067 do
2068 {
2069 append_name (&arches, &nr_arches, ap->printable_name);
2070 ap = ap->next;
2071 }
2072 while (ap != NULL);
2073 }
2074 append_name (&arches, &nr_arches, NULL);
2075 return arches;
2076 }
2077
2078
2079 void
2080 gdbarch_register (enum bfd_architecture bfd_architecture,
2081 gdbarch_init_ftype *init,
2082 gdbarch_dump_tdep_ftype *dump_tdep)
2083 {
2084 struct gdbarch_registration **curr;
2085 const struct bfd_arch_info *bfd_arch_info;
2086
2087 /* Check that BFD recognizes this architecture */
2088 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2089 if (bfd_arch_info == NULL)
2090 {
2091 internal_error (__FILE__, __LINE__,
2092 _("gdbarch: Attempt to register "
2093 "unknown architecture (%d)"),
2094 bfd_architecture);
2095 }
2096 /* Check that we haven't seen this architecture before. */
2097 for (curr = &gdbarch_registry;
2098 (*curr) != NULL;
2099 curr = &(*curr)->next)
2100 {
2101 if (bfd_architecture == (*curr)->bfd_architecture)
2102 internal_error (__FILE__, __LINE__,
2103 _("gdbarch: Duplicate registration "
2104 "of architecture (%s)"),
2105 bfd_arch_info->printable_name);
2106 }
2107 /* log it */
2108 if (gdbarch_debug)
2109 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2110 bfd_arch_info->printable_name,
2111 host_address_to_string (init));
2112 /* Append it */
2113 (*curr) = XMALLOC (struct gdbarch_registration);
2114 (*curr)->bfd_architecture = bfd_architecture;
2115 (*curr)->init = init;
2116 (*curr)->dump_tdep = dump_tdep;
2117 (*curr)->arches = NULL;
2118 (*curr)->next = NULL;
2119 }
2120
2121 void
2122 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2123 gdbarch_init_ftype *init)
2124 {
2125 gdbarch_register (bfd_architecture, init, NULL);
2126 }
2127
2128
2129 /* Look for an architecture using gdbarch_info. */
2130
2131 struct gdbarch_list *
2132 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2133 const struct gdbarch_info *info)
2134 {
2135 for (; arches != NULL; arches = arches->next)
2136 {
2137 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2138 continue;
2139 if (info->byte_order != arches->gdbarch->byte_order)
2140 continue;
2141 if (info->osabi != arches->gdbarch->osabi)
2142 continue;
2143 if (info->target_desc != arches->gdbarch->target_desc)
2144 continue;
2145 return arches;
2146 }
2147 return NULL;
2148 }
2149
2150
2151 /* Find an architecture that matches the specified INFO. Create a new
2152 architecture if needed. Return that new architecture. */
2153
2154 struct gdbarch *
2155 gdbarch_find_by_info (struct gdbarch_info info)
2156 {
2157 struct gdbarch *new_gdbarch;
2158 struct gdbarch_registration *rego;
2159
2160 /* Fill in missing parts of the INFO struct using a number of
2161 sources: "set ..."; INFOabfd supplied; and the global
2162 defaults. */
2163 gdbarch_info_fill (&info);
2164
2165 /* Must have found some sort of architecture. */
2166 gdb_assert (info.bfd_arch_info != NULL);
2167
2168 if (gdbarch_debug)
2169 {
2170 fprintf_unfiltered (gdb_stdlog,
2171 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2172 (info.bfd_arch_info != NULL
2173 ? info.bfd_arch_info->printable_name
2174 : "(null)"));
2175 fprintf_unfiltered (gdb_stdlog,
2176 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2177 info.byte_order,
2178 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2179 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2180 : "default"));
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2183 info.osabi, gdbarch_osabi_name (info.osabi));
2184 fprintf_unfiltered (gdb_stdlog,
2185 "gdbarch_find_by_info: info.abfd %s\n",
2186 host_address_to_string (info.abfd));
2187 fprintf_unfiltered (gdb_stdlog,
2188 "gdbarch_find_by_info: info.tdep_info %s\n",
2189 host_address_to_string (info.tdep_info));
2190 }
2191
2192 /* Find the tdep code that knows about this architecture. */
2193 for (rego = gdbarch_registry;
2194 rego != NULL;
2195 rego = rego->next)
2196 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2197 break;
2198 if (rego == NULL)
2199 {
2200 if (gdbarch_debug)
2201 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2202 "No matching architecture\n");
2203 return 0;
2204 }
2205
2206 /* Ask the tdep code for an architecture that matches "info". */
2207 new_gdbarch = rego->init (info, rego->arches);
2208
2209 /* Did the tdep code like it? No. Reject the change and revert to
2210 the old architecture. */
2211 if (new_gdbarch == NULL)
2212 {
2213 if (gdbarch_debug)
2214 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2215 "Target rejected architecture\n");
2216 return NULL;
2217 }
2218
2219 /* Is this a pre-existing architecture (as determined by already
2220 being initialized)? Move it to the front of the architecture
2221 list (keeping the list sorted Most Recently Used). */
2222 if (new_gdbarch->initialized_p)
2223 {
2224 struct gdbarch_list **list;
2225 struct gdbarch_list *this;
2226 if (gdbarch_debug)
2227 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2228 "Previous architecture %s (%s) selected\n",
2229 host_address_to_string (new_gdbarch),
2230 new_gdbarch->bfd_arch_info->printable_name);
2231 /* Find the existing arch in the list. */
2232 for (list = &rego->arches;
2233 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2234 list = &(*list)->next);
2235 /* It had better be in the list of architectures. */
2236 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2237 /* Unlink THIS. */
2238 this = (*list);
2239 (*list) = this->next;
2240 /* Insert THIS at the front. */
2241 this->next = rego->arches;
2242 rego->arches = this;
2243 /* Return it. */
2244 return new_gdbarch;
2245 }
2246
2247 /* It's a new architecture. */
2248 if (gdbarch_debug)
2249 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2250 "New architecture %s (%s) selected\n",
2251 host_address_to_string (new_gdbarch),
2252 new_gdbarch->bfd_arch_info->printable_name);
2253
2254 /* Insert the new architecture into the front of the architecture
2255 list (keep the list sorted Most Recently Used). */
2256 {
2257 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2258 this->next = rego->arches;
2259 this->gdbarch = new_gdbarch;
2260 rego->arches = this;
2261 }
2262
2263 /* Check that the newly installed architecture is valid. Plug in
2264 any post init values. */
2265 new_gdbarch->dump_tdep = rego->dump_tdep;
2266 verify_gdbarch (new_gdbarch);
2267 new_gdbarch->initialized_p = 1;
2268
2269 if (gdbarch_debug)
2270 gdbarch_dump (new_gdbarch, gdb_stdlog);
2271
2272 return new_gdbarch;
2273 }
2274
2275 /* Make the specified architecture current. */
2276
2277 void
2278 set_target_gdbarch (struct gdbarch *new_gdbarch)
2279 {
2280 gdb_assert (new_gdbarch != NULL);
2281 gdb_assert (new_gdbarch->initialized_p);
2282 current_inferior ()->gdbarch = new_gdbarch;
2283 observer_notify_architecture_changed (new_gdbarch);
2284 registers_changed ();
2285 }
2286
2287 /* Return the current inferior's arch. */
2288
2289 struct gdbarch *
2290 target_gdbarch (void)
2291 {
2292 return current_inferior ()->gdbarch;
2293 }
2294
2295 extern void _initialize_gdbarch (void);
2296
2297 void
2298 _initialize_gdbarch (void)
2299 {
2300 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2301 Set architecture debugging."), _("\\
2302 Show architecture debugging."), _("\\
2303 When non-zero, architecture debugging is enabled."),
2304 NULL,
2305 show_gdbarch_debug,
2306 &setdebuglist, &showdebuglist);
2307 }
2308 EOF
2309
2310 # close things off
2311 exec 1>&2
2312 #../move-if-change new-gdbarch.c gdbarch.c
2313 compare_new gdbarch.c
This page took 0.114871 seconds and 4 git commands to generate.