* gdbarch.sh (convert_register_p): Add gdbarch as parameter.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``current_gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
346 # Number of bits in a char or unsigned char for the target machine.
347 # Just like CHAR_BIT in <limits.h> but describes the target machine.
348 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
349 #
350 # Number of bits in a short or unsigned short for the target machine.
351 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
352 # Number of bits in an int or unsigned int for the target machine.
353 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
354 # Number of bits in a long or unsigned long for the target machine.
355 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
356 # Number of bits in a long long or unsigned long long for the target
357 # machine.
358 v:int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
359
360 # The ABI default bit-size and format for "float", "double", and "long
361 # double". These bit/format pairs should eventually be combined into
362 # a single object. For the moment, just initialize them as a pair.
363 # Each format describes both the big and little endian layouts (if
364 # useful).
365
366 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
367 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
368 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
369 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
370 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
371 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
372
373 # For most targets, a pointer on the target and its representation as an
374 # address in GDB have the same size and "look the same". For such a
375 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
376 # / addr_bit will be set from it.
377 #
378 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
379 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
380 # as well.
381 #
382 # ptr_bit is the size of a pointer on the target
383 v:int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
384 # addr_bit is the size of a target address as represented in gdb
385 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
386 #
387 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
388 v:int:char_signed:::1:-1:1
389 #
390 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
391 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
392 # Function for getting target's idea of a frame pointer. FIXME: GDB's
393 # whole scheme for dealing with "frames" and "frame pointers" needs a
394 # serious shakedown.
395 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
396 #
397 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
398 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
399 #
400 v:int:num_regs:::0:-1
401 # This macro gives the number of pseudo-registers that live in the
402 # register namespace but do not get fetched or stored on the target.
403 # These pseudo-registers may be aliases for other registers,
404 # combinations of other registers, or they may be computed by GDB.
405 v:int:num_pseudo_regs:::0:0::0
406
407 # GDB's standard (or well known) register numbers. These can map onto
408 # a real register or a pseudo (computed) register or not be defined at
409 # all (-1).
410 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
411 v:int:sp_regnum:::-1:-1::0
412 v:int:pc_regnum:::-1:-1::0
413 v:int:ps_regnum:::-1:-1::0
414 v:int:fp0_regnum:::0:-1::0
415 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
416 f:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
417 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
418 f:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
419 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
420 f:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
421 # Convert from an sdb register number to an internal gdb register number.
422 f:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
423 f:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
424 m:const char *:register_name:int regnr:regnr::0
425
426 # Return the type of a register specified by the architecture. Only
427 # the register cache should call this function directly; others should
428 # use "register_type".
429 M:struct type *:register_type:int reg_nr:reg_nr
430
431 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
432 M:struct frame_id:unwind_dummy_id:struct frame_info *info:info
433 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
434 # deprecated_fp_regnum.
435 v:int:deprecated_fp_regnum:::-1:-1::0
436
437 # See gdbint.texinfo. See infcall.c.
438 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
439 v:int:call_dummy_location::::AT_ENTRY_POINT::0
440 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
441
442 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
443 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
444 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
445 # MAP a GDB RAW register number onto a simulator register number. See
446 # also include/...-sim.h.
447 f:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
448 f:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
449 f:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
450 # setjmp/longjmp support.
451 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
452 #
453 v:int:believe_pcc_promotion:::::::
454 #
455 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
456 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
457 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
458 # Construct a value representing the contents of register REGNUM in
459 # frame FRAME, interpreted as type TYPE. The routine needs to
460 # allocate and return a struct value with all value attributes
461 # (but not the value contents) filled in.
462 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
463 #
464 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
465 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
466 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
467
468 # It has been suggested that this, well actually its predecessor,
469 # should take the type/value of the function to be called and not the
470 # return type. This is left as an exercise for the reader.
471
472 M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
473
474 f:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
475 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
476 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
477 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
478 f:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
479 f:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
480 v:CORE_ADDR:decr_pc_after_break:::0:::0
481
482 # A function can be addressed by either it's "pointer" (possibly a
483 # descriptor address) or "entry point" (first executable instruction).
484 # The method "convert_from_func_ptr_addr" converting the former to the
485 # latter. gdbarch_deprecated_function_start_offset is being used to implement
486 # a simplified subset of that functionality - the function's address
487 # corresponds to the "function pointer" and the function's start
488 # corresponds to the "function entry point" - and hence is redundant.
489
490 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
491
492 # Return the remote protocol register number associated with this
493 # register. Normally the identity mapping.
494 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
495
496 # Fetch the target specific address used to represent a load module.
497 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
498 #
499 v:CORE_ADDR:frame_args_skip:::0:::0
500 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
501 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
502 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
503 # frame-base. Enable frame-base before frame-unwind.
504 F:int:frame_num_args:struct frame_info *frame:frame
505 #
506 M:CORE_ADDR:frame_align:CORE_ADDR address:address
507 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
508 v:int:frame_red_zone_size
509 #
510 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
511 # On some machines there are bits in addresses which are not really
512 # part of the address, but are used by the kernel, the hardware, etc.
513 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
514 # we get a "real" address such as one would find in a symbol table.
515 # This is used only for addresses of instructions, and even then I'm
516 # not sure it's used in all contexts. It exists to deal with there
517 # being a few stray bits in the PC which would mislead us, not as some
518 # sort of generic thing to handle alignment or segmentation (it's
519 # possible it should be in TARGET_READ_PC instead).
520 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
521 # It is not at all clear why gdbarch_smash_text_address is not folded into
522 # gdbarch_addr_bits_remove.
523 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
524
525 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
526 # indicates if the target needs software single step. An ISA method to
527 # implement it.
528 #
529 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
530 # breakpoints using the breakpoint system instead of blatting memory directly
531 # (as with rs6000).
532 #
533 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
534 # target can single step. If not, then implement single step using breakpoints.
535 #
536 # A return value of 1 means that the software_single_step breakpoints
537 # were inserted; 0 means they were not.
538 F:int:software_single_step:struct frame_info *frame:frame
539
540 # Return non-zero if the processor is executing a delay slot and a
541 # further single-step is needed before the instruction finishes.
542 M:int:single_step_through_delay:struct frame_info *frame:frame
543 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
544 # disassembler. Perhaps objdump can handle it?
545 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
546 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
547
548
549 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
550 # evaluates non-zero, this is the address where the debugger will place
551 # a step-resume breakpoint to get us past the dynamic linker.
552 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
553 # Some systems also have trampoline code for returning from shared libs.
554 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
555
556 # A target might have problems with watchpoints as soon as the stack
557 # frame of the current function has been destroyed. This mostly happens
558 # as the first action in a funtion's epilogue. in_function_epilogue_p()
559 # is defined to return a non-zero value if either the given addr is one
560 # instruction after the stack destroying instruction up to the trailing
561 # return instruction or if we can figure out that the stack frame has
562 # already been invalidated regardless of the value of addr. Targets
563 # which don't suffer from that problem could just let this functionality
564 # untouched.
565 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
566 # Given a vector of command-line arguments, return a newly allocated
567 # string which, when passed to the create_inferior function, will be
568 # parsed (on Unix systems, by the shell) to yield the same vector.
569 # This function should call error() if the argument vector is not
570 # representable for this target or if this target does not support
571 # command-line arguments.
572 # ARGC is the number of elements in the vector.
573 # ARGV is an array of strings, one per argument.
574 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
575 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
576 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
577 v:const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
578 v:int:cannot_step_breakpoint:::0:0::0
579 v:int:have_nonsteppable_watchpoint:::0:0::0
580 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
581 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
582 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
583 # Is a register in a group
584 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
585 # Fetch the pointer to the ith function argument.
586 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
587
588 # Return the appropriate register set for a core file section with
589 # name SECT_NAME and size SECT_SIZE.
590 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
591
592 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
593 # core file into buffer READBUF with length LEN.
594 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
595
596 # If the elements of C++ vtables are in-place function descriptors rather
597 # than normal function pointers (which may point to code or a descriptor),
598 # set this to one.
599 v:int:vtable_function_descriptors:::0:0::0
600
601 # Set if the least significant bit of the delta is used instead of the least
602 # significant bit of the pfn for pointers to virtual member functions.
603 v:int:vbit_in_delta:::0:0::0
604
605 # Advance PC to next instruction in order to skip a permanent breakpoint.
606 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
607
608 # Refresh overlay mapped state for section OSECT.
609 F:void:overlay_update:struct obj_section *osect:osect
610
611 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
612
613 # Handle special encoding of static variables in stabs debug info.
614 F:char *:static_transform_name:char *name:name
615 # Set if the address in N_SO or N_FUN stabs may be zero.
616 v:int:sofun_address_maybe_missing:::0:0::0
617 EOF
618 }
619
620 #
621 # The .log file
622 #
623 exec > new-gdbarch.log
624 function_list | while do_read
625 do
626 cat <<EOF
627 ${class} ${returntype} ${function} ($formal)
628 EOF
629 for r in ${read}
630 do
631 eval echo \"\ \ \ \ ${r}=\${${r}}\"
632 done
633 if class_is_predicate_p && fallback_default_p
634 then
635 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
636 kill $$
637 exit 1
638 fi
639 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
640 then
641 echo "Error: postdefault is useless when invalid_p=0" 1>&2
642 kill $$
643 exit 1
644 fi
645 if class_is_multiarch_p
646 then
647 if class_is_predicate_p ; then :
648 elif test "x${predefault}" = "x"
649 then
650 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
651 kill $$
652 exit 1
653 fi
654 fi
655 echo ""
656 done
657
658 exec 1>&2
659 compare_new gdbarch.log
660
661
662 copyright ()
663 {
664 cat <<EOF
665 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
666
667 /* Dynamic architecture support for GDB, the GNU debugger.
668
669 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
670 Free Software Foundation, Inc.
671
672 This file is part of GDB.
673
674 This program is free software; you can redistribute it and/or modify
675 it under the terms of the GNU General Public License as published by
676 the Free Software Foundation; either version 3 of the License, or
677 (at your option) any later version.
678
679 This program is distributed in the hope that it will be useful,
680 but WITHOUT ANY WARRANTY; without even the implied warranty of
681 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
682 GNU General Public License for more details.
683
684 You should have received a copy of the GNU General Public License
685 along with this program. If not, see <http://www.gnu.org/licenses/>. */
686
687 /* This file was created with the aid of \`\`gdbarch.sh''.
688
689 The Bourne shell script \`\`gdbarch.sh'' creates the files
690 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
691 against the existing \`\`gdbarch.[hc]''. Any differences found
692 being reported.
693
694 If editing this file, please also run gdbarch.sh and merge any
695 changes into that script. Conversely, when making sweeping changes
696 to this file, modifying gdbarch.sh and using its output may prove
697 easier. */
698
699 EOF
700 }
701
702 #
703 # The .h file
704 #
705
706 exec > new-gdbarch.h
707 copyright
708 cat <<EOF
709 #ifndef GDBARCH_H
710 #define GDBARCH_H
711
712 struct floatformat;
713 struct ui_file;
714 struct frame_info;
715 struct value;
716 struct objfile;
717 struct obj_section;
718 struct minimal_symbol;
719 struct regcache;
720 struct reggroup;
721 struct regset;
722 struct disassemble_info;
723 struct target_ops;
724 struct obstack;
725 struct bp_target_info;
726 struct target_desc;
727
728 extern struct gdbarch *current_gdbarch;
729 EOF
730
731 # function typedef's
732 printf "\n"
733 printf "\n"
734 printf "/* The following are pre-initialized by GDBARCH. */\n"
735 function_list | while do_read
736 do
737 if class_is_info_p
738 then
739 printf "\n"
740 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
741 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
742 fi
743 done
744
745 # function typedef's
746 printf "\n"
747 printf "\n"
748 printf "/* The following are initialized by the target dependent code. */\n"
749 function_list | while do_read
750 do
751 if [ -n "${comment}" ]
752 then
753 echo "${comment}" | sed \
754 -e '2 s,#,/*,' \
755 -e '3,$ s,#, ,' \
756 -e '$ s,$, */,'
757 fi
758
759 if class_is_predicate_p
760 then
761 printf "\n"
762 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
763 fi
764 if class_is_variable_p
765 then
766 printf "\n"
767 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
768 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
769 fi
770 if class_is_function_p
771 then
772 printf "\n"
773 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
774 then
775 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
776 elif class_is_multiarch_p
777 then
778 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
779 else
780 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
781 fi
782 if [ "x${formal}" = "xvoid" ]
783 then
784 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
785 else
786 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
787 fi
788 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
789 fi
790 done
791
792 # close it off
793 cat <<EOF
794
795 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
796
797
798 /* Mechanism for co-ordinating the selection of a specific
799 architecture.
800
801 GDB targets (*-tdep.c) can register an interest in a specific
802 architecture. Other GDB components can register a need to maintain
803 per-architecture data.
804
805 The mechanisms below ensures that there is only a loose connection
806 between the set-architecture command and the various GDB
807 components. Each component can independently register their need
808 to maintain architecture specific data with gdbarch.
809
810 Pragmatics:
811
812 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
813 didn't scale.
814
815 The more traditional mega-struct containing architecture specific
816 data for all the various GDB components was also considered. Since
817 GDB is built from a variable number of (fairly independent)
818 components it was determined that the global aproach was not
819 applicable. */
820
821
822 /* Register a new architectural family with GDB.
823
824 Register support for the specified ARCHITECTURE with GDB. When
825 gdbarch determines that the specified architecture has been
826 selected, the corresponding INIT function is called.
827
828 --
829
830 The INIT function takes two parameters: INFO which contains the
831 information available to gdbarch about the (possibly new)
832 architecture; ARCHES which is a list of the previously created
833 \`\`struct gdbarch'' for this architecture.
834
835 The INFO parameter is, as far as possible, be pre-initialized with
836 information obtained from INFO.ABFD or the global defaults.
837
838 The ARCHES parameter is a linked list (sorted most recently used)
839 of all the previously created architures for this architecture
840 family. The (possibly NULL) ARCHES->gdbarch can used to access
841 values from the previously selected architecture for this
842 architecture family. The global \`\`current_gdbarch'' shall not be
843 used.
844
845 The INIT function shall return any of: NULL - indicating that it
846 doesn't recognize the selected architecture; an existing \`\`struct
847 gdbarch'' from the ARCHES list - indicating that the new
848 architecture is just a synonym for an earlier architecture (see
849 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
850 - that describes the selected architecture (see gdbarch_alloc()).
851
852 The DUMP_TDEP function shall print out all target specific values.
853 Care should be taken to ensure that the function works in both the
854 multi-arch and non- multi-arch cases. */
855
856 struct gdbarch_list
857 {
858 struct gdbarch *gdbarch;
859 struct gdbarch_list *next;
860 };
861
862 struct gdbarch_info
863 {
864 /* Use default: NULL (ZERO). */
865 const struct bfd_arch_info *bfd_arch_info;
866
867 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
868 int byte_order;
869
870 /* Use default: NULL (ZERO). */
871 bfd *abfd;
872
873 /* Use default: NULL (ZERO). */
874 struct gdbarch_tdep_info *tdep_info;
875
876 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
877 enum gdb_osabi osabi;
878
879 /* Use default: NULL (ZERO). */
880 const struct target_desc *target_desc;
881 };
882
883 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
884 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
885
886 /* DEPRECATED - use gdbarch_register() */
887 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
888
889 extern void gdbarch_register (enum bfd_architecture architecture,
890 gdbarch_init_ftype *,
891 gdbarch_dump_tdep_ftype *);
892
893
894 /* Return a freshly allocated, NULL terminated, array of the valid
895 architecture names. Since architectures are registered during the
896 _initialize phase this function only returns useful information
897 once initialization has been completed. */
898
899 extern const char **gdbarch_printable_names (void);
900
901
902 /* Helper function. Search the list of ARCHES for a GDBARCH that
903 matches the information provided by INFO. */
904
905 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
906
907
908 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
909 basic initialization using values obtained from the INFO and TDEP
910 parameters. set_gdbarch_*() functions are called to complete the
911 initialization of the object. */
912
913 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
914
915
916 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
917 It is assumed that the caller freeds the \`\`struct
918 gdbarch_tdep''. */
919
920 extern void gdbarch_free (struct gdbarch *);
921
922
923 /* Helper function. Allocate memory from the \`\`struct gdbarch''
924 obstack. The memory is freed when the corresponding architecture
925 is also freed. */
926
927 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
928 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
929 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
930
931
932 /* Helper function. Force an update of the current architecture.
933
934 The actual architecture selected is determined by INFO, \`\`(gdb) set
935 architecture'' et.al., the existing architecture and BFD's default
936 architecture. INFO should be initialized to zero and then selected
937 fields should be updated.
938
939 Returns non-zero if the update succeeds */
940
941 extern int gdbarch_update_p (struct gdbarch_info info);
942
943
944 /* Helper function. Find an architecture matching info.
945
946 INFO should be initialized using gdbarch_info_init, relevant fields
947 set, and then finished using gdbarch_info_fill.
948
949 Returns the corresponding architecture, or NULL if no matching
950 architecture was found. "current_gdbarch" is not updated. */
951
952 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
953
954
955 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
956
957 FIXME: kettenis/20031124: Of the functions that follow, only
958 gdbarch_from_bfd is supposed to survive. The others will
959 dissappear since in the future GDB will (hopefully) be truly
960 multi-arch. However, for now we're still stuck with the concept of
961 a single active architecture. */
962
963 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
964
965
966 /* Register per-architecture data-pointer.
967
968 Reserve space for a per-architecture data-pointer. An identifier
969 for the reserved data-pointer is returned. That identifer should
970 be saved in a local static variable.
971
972 Memory for the per-architecture data shall be allocated using
973 gdbarch_obstack_zalloc. That memory will be deleted when the
974 corresponding architecture object is deleted.
975
976 When a previously created architecture is re-selected, the
977 per-architecture data-pointer for that previous architecture is
978 restored. INIT() is not re-called.
979
980 Multiple registrarants for any architecture are allowed (and
981 strongly encouraged). */
982
983 struct gdbarch_data;
984
985 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
986 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
987 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
988 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
989 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
990 struct gdbarch_data *data,
991 void *pointer);
992
993 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
994
995
996 /* Set the dynamic target-system-dependent parameters (architecture,
997 byte-order, ...) using information found in the BFD */
998
999 extern void set_gdbarch_from_file (bfd *);
1000
1001
1002 /* Initialize the current architecture to the "first" one we find on
1003 our list. */
1004
1005 extern void initialize_current_architecture (void);
1006
1007 /* gdbarch trace variable */
1008 extern int gdbarch_debug;
1009
1010 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1011
1012 #endif
1013 EOF
1014 exec 1>&2
1015 #../move-if-change new-gdbarch.h gdbarch.h
1016 compare_new gdbarch.h
1017
1018
1019 #
1020 # C file
1021 #
1022
1023 exec > new-gdbarch.c
1024 copyright
1025 cat <<EOF
1026
1027 #include "defs.h"
1028 #include "arch-utils.h"
1029
1030 #include "gdbcmd.h"
1031 #include "inferior.h"
1032 #include "symcat.h"
1033
1034 #include "floatformat.h"
1035
1036 #include "gdb_assert.h"
1037 #include "gdb_string.h"
1038 #include "gdb-events.h"
1039 #include "reggroups.h"
1040 #include "osabi.h"
1041 #include "gdb_obstack.h"
1042
1043 /* Static function declarations */
1044
1045 static void alloc_gdbarch_data (struct gdbarch *);
1046
1047 /* Non-zero if we want to trace architecture code. */
1048
1049 #ifndef GDBARCH_DEBUG
1050 #define GDBARCH_DEBUG 0
1051 #endif
1052 int gdbarch_debug = GDBARCH_DEBUG;
1053 static void
1054 show_gdbarch_debug (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1058 }
1059
1060 static const char *
1061 pformat (const struct floatformat **format)
1062 {
1063 if (format == NULL)
1064 return "(null)";
1065 else
1066 /* Just print out one of them - this is only for diagnostics. */
1067 return format[0]->name;
1068 }
1069
1070 EOF
1071
1072 # gdbarch open the gdbarch object
1073 printf "\n"
1074 printf "/* Maintain the struct gdbarch object */\n"
1075 printf "\n"
1076 printf "struct gdbarch\n"
1077 printf "{\n"
1078 printf " /* Has this architecture been fully initialized? */\n"
1079 printf " int initialized_p;\n"
1080 printf "\n"
1081 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1082 printf " struct obstack *obstack;\n"
1083 printf "\n"
1084 printf " /* basic architectural information */\n"
1085 function_list | while do_read
1086 do
1087 if class_is_info_p
1088 then
1089 printf " ${returntype} ${function};\n"
1090 fi
1091 done
1092 printf "\n"
1093 printf " /* target specific vector. */\n"
1094 printf " struct gdbarch_tdep *tdep;\n"
1095 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1096 printf "\n"
1097 printf " /* per-architecture data-pointers */\n"
1098 printf " unsigned nr_data;\n"
1099 printf " void **data;\n"
1100 printf "\n"
1101 printf " /* per-architecture swap-regions */\n"
1102 printf " struct gdbarch_swap *swap;\n"
1103 printf "\n"
1104 cat <<EOF
1105 /* Multi-arch values.
1106
1107 When extending this structure you must:
1108
1109 Add the field below.
1110
1111 Declare set/get functions and define the corresponding
1112 macro in gdbarch.h.
1113
1114 gdbarch_alloc(): If zero/NULL is not a suitable default,
1115 initialize the new field.
1116
1117 verify_gdbarch(): Confirm that the target updated the field
1118 correctly.
1119
1120 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1121 field is dumped out
1122
1123 \`\`startup_gdbarch()'': Append an initial value to the static
1124 variable (base values on the host's c-type system).
1125
1126 get_gdbarch(): Implement the set/get functions (probably using
1127 the macro's as shortcuts).
1128
1129 */
1130
1131 EOF
1132 function_list | while do_read
1133 do
1134 if class_is_variable_p
1135 then
1136 printf " ${returntype} ${function};\n"
1137 elif class_is_function_p
1138 then
1139 printf " gdbarch_${function}_ftype *${function};\n"
1140 fi
1141 done
1142 printf "};\n"
1143
1144 # A pre-initialized vector
1145 printf "\n"
1146 printf "\n"
1147 cat <<EOF
1148 /* The default architecture uses host values (for want of a better
1149 choice). */
1150 EOF
1151 printf "\n"
1152 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1153 printf "\n"
1154 printf "struct gdbarch startup_gdbarch =\n"
1155 printf "{\n"
1156 printf " 1, /* Always initialized. */\n"
1157 printf " NULL, /* The obstack. */\n"
1158 printf " /* basic architecture information */\n"
1159 function_list | while do_read
1160 do
1161 if class_is_info_p
1162 then
1163 printf " ${staticdefault}, /* ${function} */\n"
1164 fi
1165 done
1166 cat <<EOF
1167 /* target specific vector and its dump routine */
1168 NULL, NULL,
1169 /*per-architecture data-pointers and swap regions */
1170 0, NULL, NULL,
1171 /* Multi-arch values */
1172 EOF
1173 function_list | while do_read
1174 do
1175 if class_is_function_p || class_is_variable_p
1176 then
1177 printf " ${staticdefault}, /* ${function} */\n"
1178 fi
1179 done
1180 cat <<EOF
1181 /* startup_gdbarch() */
1182 };
1183
1184 struct gdbarch *current_gdbarch = &startup_gdbarch;
1185 EOF
1186
1187 # Create a new gdbarch struct
1188 cat <<EOF
1189
1190 /* Create a new \`\`struct gdbarch'' based on information provided by
1191 \`\`struct gdbarch_info''. */
1192 EOF
1193 printf "\n"
1194 cat <<EOF
1195 struct gdbarch *
1196 gdbarch_alloc (const struct gdbarch_info *info,
1197 struct gdbarch_tdep *tdep)
1198 {
1199 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1200 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1201 the current local architecture and not the previous global
1202 architecture. This ensures that the new architectures initial
1203 values are not influenced by the previous architecture. Once
1204 everything is parameterised with gdbarch, this will go away. */
1205 struct gdbarch *current_gdbarch;
1206
1207 /* Create an obstack for allocating all the per-architecture memory,
1208 then use that to allocate the architecture vector. */
1209 struct obstack *obstack = XMALLOC (struct obstack);
1210 obstack_init (obstack);
1211 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1212 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1213 current_gdbarch->obstack = obstack;
1214
1215 alloc_gdbarch_data (current_gdbarch);
1216
1217 current_gdbarch->tdep = tdep;
1218 EOF
1219 printf "\n"
1220 function_list | while do_read
1221 do
1222 if class_is_info_p
1223 then
1224 printf " current_gdbarch->${function} = info->${function};\n"
1225 fi
1226 done
1227 printf "\n"
1228 printf " /* Force the explicit initialization of these. */\n"
1229 function_list | while do_read
1230 do
1231 if class_is_function_p || class_is_variable_p
1232 then
1233 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1234 then
1235 printf " current_gdbarch->${function} = ${predefault};\n"
1236 fi
1237 fi
1238 done
1239 cat <<EOF
1240 /* gdbarch_alloc() */
1241
1242 return current_gdbarch;
1243 }
1244 EOF
1245
1246 # Free a gdbarch struct.
1247 printf "\n"
1248 printf "\n"
1249 cat <<EOF
1250 /* Allocate extra space using the per-architecture obstack. */
1251
1252 void *
1253 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1254 {
1255 void *data = obstack_alloc (arch->obstack, size);
1256 memset (data, 0, size);
1257 return data;
1258 }
1259
1260
1261 /* Free a gdbarch struct. This should never happen in normal
1262 operation --- once you've created a gdbarch, you keep it around.
1263 However, if an architecture's init function encounters an error
1264 building the structure, it may need to clean up a partially
1265 constructed gdbarch. */
1266
1267 void
1268 gdbarch_free (struct gdbarch *arch)
1269 {
1270 struct obstack *obstack;
1271 gdb_assert (arch != NULL);
1272 gdb_assert (!arch->initialized_p);
1273 obstack = arch->obstack;
1274 obstack_free (obstack, 0); /* Includes the ARCH. */
1275 xfree (obstack);
1276 }
1277 EOF
1278
1279 # verify a new architecture
1280 cat <<EOF
1281
1282
1283 /* Ensure that all values in a GDBARCH are reasonable. */
1284
1285 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1286 just happens to match the global variable \`\`current_gdbarch''. That
1287 way macros refering to that variable get the local and not the global
1288 version - ulgh. Once everything is parameterised with gdbarch, this
1289 will go away. */
1290
1291 static void
1292 verify_gdbarch (struct gdbarch *current_gdbarch)
1293 {
1294 struct ui_file *log;
1295 struct cleanup *cleanups;
1296 long dummy;
1297 char *buf;
1298 log = mem_fileopen ();
1299 cleanups = make_cleanup_ui_file_delete (log);
1300 /* fundamental */
1301 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1302 fprintf_unfiltered (log, "\n\tbyte-order");
1303 if (current_gdbarch->bfd_arch_info == NULL)
1304 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1305 /* Check those that need to be defined for the given multi-arch level. */
1306 EOF
1307 function_list | while do_read
1308 do
1309 if class_is_function_p || class_is_variable_p
1310 then
1311 if [ "x${invalid_p}" = "x0" ]
1312 then
1313 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1314 elif class_is_predicate_p
1315 then
1316 printf " /* Skip verify of ${function}, has predicate */\n"
1317 # FIXME: See do_read for potential simplification
1318 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1319 then
1320 printf " if (${invalid_p})\n"
1321 printf " current_gdbarch->${function} = ${postdefault};\n"
1322 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1323 then
1324 printf " if (current_gdbarch->${function} == ${predefault})\n"
1325 printf " current_gdbarch->${function} = ${postdefault};\n"
1326 elif [ -n "${postdefault}" ]
1327 then
1328 printf " if (current_gdbarch->${function} == 0)\n"
1329 printf " current_gdbarch->${function} = ${postdefault};\n"
1330 elif [ -n "${invalid_p}" ]
1331 then
1332 printf " if (${invalid_p})\n"
1333 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1334 elif [ -n "${predefault}" ]
1335 then
1336 printf " if (current_gdbarch->${function} == ${predefault})\n"
1337 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1338 fi
1339 fi
1340 done
1341 cat <<EOF
1342 buf = ui_file_xstrdup (log, &dummy);
1343 make_cleanup (xfree, buf);
1344 if (strlen (buf) > 0)
1345 internal_error (__FILE__, __LINE__,
1346 _("verify_gdbarch: the following are invalid ...%s"),
1347 buf);
1348 do_cleanups (cleanups);
1349 }
1350 EOF
1351
1352 # dump the structure
1353 printf "\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* Print out the details of the current architecture. */
1357
1358 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1359 just happens to match the global variable \`\`current_gdbarch''. That
1360 way macros refering to that variable get the local and not the global
1361 version - ulgh. Once everything is parameterised with gdbarch, this
1362 will go away. */
1363
1364 void
1365 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1366 {
1367 const char *gdb_xm_file = "<not-defined>";
1368 const char *gdb_nm_file = "<not-defined>";
1369 const char *gdb_tm_file = "<not-defined>";
1370 #if defined (GDB_XM_FILE)
1371 gdb_xm_file = GDB_XM_FILE;
1372 #endif
1373 fprintf_unfiltered (file,
1374 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1375 gdb_xm_file);
1376 #if defined (GDB_NM_FILE)
1377 gdb_nm_file = GDB_NM_FILE;
1378 #endif
1379 fprintf_unfiltered (file,
1380 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1381 gdb_nm_file);
1382 #if defined (GDB_TM_FILE)
1383 gdb_tm_file = GDB_TM_FILE;
1384 #endif
1385 fprintf_unfiltered (file,
1386 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1387 gdb_tm_file);
1388 EOF
1389 function_list | sort -t: -k 3 | while do_read
1390 do
1391 # First the predicate
1392 if class_is_predicate_p
1393 then
1394 printf " fprintf_unfiltered (file,\n"
1395 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1396 printf " gdbarch_${function}_p (current_gdbarch));\n"
1397 fi
1398 # Print the corresponding value.
1399 if class_is_function_p
1400 then
1401 printf " fprintf_unfiltered (file,\n"
1402 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1403 printf " (long) current_gdbarch->${function});\n"
1404 else
1405 # It is a variable
1406 case "${print}:${returntype}" in
1407 :CORE_ADDR )
1408 fmt="0x%s"
1409 print="paddr_nz (current_gdbarch->${function})"
1410 ;;
1411 :* )
1412 fmt="%s"
1413 print="paddr_d (current_gdbarch->${function})"
1414 ;;
1415 * )
1416 fmt="%s"
1417 ;;
1418 esac
1419 printf " fprintf_unfiltered (file,\n"
1420 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1421 printf " ${print});\n"
1422 fi
1423 done
1424 cat <<EOF
1425 if (current_gdbarch->dump_tdep != NULL)
1426 current_gdbarch->dump_tdep (current_gdbarch, file);
1427 }
1428 EOF
1429
1430
1431 # GET/SET
1432 printf "\n"
1433 cat <<EOF
1434 struct gdbarch_tdep *
1435 gdbarch_tdep (struct gdbarch *gdbarch)
1436 {
1437 if (gdbarch_debug >= 2)
1438 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1439 return gdbarch->tdep;
1440 }
1441 EOF
1442 printf "\n"
1443 function_list | while do_read
1444 do
1445 if class_is_predicate_p
1446 then
1447 printf "\n"
1448 printf "int\n"
1449 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1450 printf "{\n"
1451 printf " gdb_assert (gdbarch != NULL);\n"
1452 printf " return ${predicate};\n"
1453 printf "}\n"
1454 fi
1455 if class_is_function_p
1456 then
1457 printf "\n"
1458 printf "${returntype}\n"
1459 if [ "x${formal}" = "xvoid" ]
1460 then
1461 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1462 else
1463 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1464 fi
1465 printf "{\n"
1466 printf " gdb_assert (gdbarch != NULL);\n"
1467 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1468 if class_is_predicate_p && test -n "${predefault}"
1469 then
1470 # Allow a call to a function with a predicate.
1471 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1472 fi
1473 printf " if (gdbarch_debug >= 2)\n"
1474 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1475 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1476 then
1477 if class_is_multiarch_p
1478 then
1479 params="gdbarch"
1480 else
1481 params=""
1482 fi
1483 else
1484 if class_is_multiarch_p
1485 then
1486 params="gdbarch, ${actual}"
1487 else
1488 params="${actual}"
1489 fi
1490 fi
1491 if [ "x${returntype}" = "xvoid" ]
1492 then
1493 printf " gdbarch->${function} (${params});\n"
1494 else
1495 printf " return gdbarch->${function} (${params});\n"
1496 fi
1497 printf "}\n"
1498 printf "\n"
1499 printf "void\n"
1500 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1501 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1502 printf "{\n"
1503 printf " gdbarch->${function} = ${function};\n"
1504 printf "}\n"
1505 elif class_is_variable_p
1506 then
1507 printf "\n"
1508 printf "${returntype}\n"
1509 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1510 printf "{\n"
1511 printf " gdb_assert (gdbarch != NULL);\n"
1512 if [ "x${invalid_p}" = "x0" ]
1513 then
1514 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1515 elif [ -n "${invalid_p}" ]
1516 then
1517 printf " /* Check variable is valid. */\n"
1518 printf " gdb_assert (!(${invalid_p}));\n"
1519 elif [ -n "${predefault}" ]
1520 then
1521 printf " /* Check variable changed from pre-default. */\n"
1522 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1523 fi
1524 printf " if (gdbarch_debug >= 2)\n"
1525 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1526 printf " return gdbarch->${function};\n"
1527 printf "}\n"
1528 printf "\n"
1529 printf "void\n"
1530 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1531 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1532 printf "{\n"
1533 printf " gdbarch->${function} = ${function};\n"
1534 printf "}\n"
1535 elif class_is_info_p
1536 then
1537 printf "\n"
1538 printf "${returntype}\n"
1539 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1540 printf "{\n"
1541 printf " gdb_assert (gdbarch != NULL);\n"
1542 printf " if (gdbarch_debug >= 2)\n"
1543 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1544 printf " return gdbarch->${function};\n"
1545 printf "}\n"
1546 fi
1547 done
1548
1549 # All the trailing guff
1550 cat <<EOF
1551
1552
1553 /* Keep a registry of per-architecture data-pointers required by GDB
1554 modules. */
1555
1556 struct gdbarch_data
1557 {
1558 unsigned index;
1559 int init_p;
1560 gdbarch_data_pre_init_ftype *pre_init;
1561 gdbarch_data_post_init_ftype *post_init;
1562 };
1563
1564 struct gdbarch_data_registration
1565 {
1566 struct gdbarch_data *data;
1567 struct gdbarch_data_registration *next;
1568 };
1569
1570 struct gdbarch_data_registry
1571 {
1572 unsigned nr;
1573 struct gdbarch_data_registration *registrations;
1574 };
1575
1576 struct gdbarch_data_registry gdbarch_data_registry =
1577 {
1578 0, NULL,
1579 };
1580
1581 static struct gdbarch_data *
1582 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1583 gdbarch_data_post_init_ftype *post_init)
1584 {
1585 struct gdbarch_data_registration **curr;
1586 /* Append the new registraration. */
1587 for (curr = &gdbarch_data_registry.registrations;
1588 (*curr) != NULL;
1589 curr = &(*curr)->next);
1590 (*curr) = XMALLOC (struct gdbarch_data_registration);
1591 (*curr)->next = NULL;
1592 (*curr)->data = XMALLOC (struct gdbarch_data);
1593 (*curr)->data->index = gdbarch_data_registry.nr++;
1594 (*curr)->data->pre_init = pre_init;
1595 (*curr)->data->post_init = post_init;
1596 (*curr)->data->init_p = 1;
1597 return (*curr)->data;
1598 }
1599
1600 struct gdbarch_data *
1601 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1602 {
1603 return gdbarch_data_register (pre_init, NULL);
1604 }
1605
1606 struct gdbarch_data *
1607 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1608 {
1609 return gdbarch_data_register (NULL, post_init);
1610 }
1611
1612 /* Create/delete the gdbarch data vector. */
1613
1614 static void
1615 alloc_gdbarch_data (struct gdbarch *gdbarch)
1616 {
1617 gdb_assert (gdbarch->data == NULL);
1618 gdbarch->nr_data = gdbarch_data_registry.nr;
1619 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1620 }
1621
1622 /* Initialize the current value of the specified per-architecture
1623 data-pointer. */
1624
1625 void
1626 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1627 struct gdbarch_data *data,
1628 void *pointer)
1629 {
1630 gdb_assert (data->index < gdbarch->nr_data);
1631 gdb_assert (gdbarch->data[data->index] == NULL);
1632 gdb_assert (data->pre_init == NULL);
1633 gdbarch->data[data->index] = pointer;
1634 }
1635
1636 /* Return the current value of the specified per-architecture
1637 data-pointer. */
1638
1639 void *
1640 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1641 {
1642 gdb_assert (data->index < gdbarch->nr_data);
1643 if (gdbarch->data[data->index] == NULL)
1644 {
1645 /* The data-pointer isn't initialized, call init() to get a
1646 value. */
1647 if (data->pre_init != NULL)
1648 /* Mid architecture creation: pass just the obstack, and not
1649 the entire architecture, as that way it isn't possible for
1650 pre-init code to refer to undefined architecture
1651 fields. */
1652 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1653 else if (gdbarch->initialized_p
1654 && data->post_init != NULL)
1655 /* Post architecture creation: pass the entire architecture
1656 (as all fields are valid), but be careful to also detect
1657 recursive references. */
1658 {
1659 gdb_assert (data->init_p);
1660 data->init_p = 0;
1661 gdbarch->data[data->index] = data->post_init (gdbarch);
1662 data->init_p = 1;
1663 }
1664 else
1665 /* The architecture initialization hasn't completed - punt -
1666 hope that the caller knows what they are doing. Once
1667 deprecated_set_gdbarch_data has been initialized, this can be
1668 changed to an internal error. */
1669 return NULL;
1670 gdb_assert (gdbarch->data[data->index] != NULL);
1671 }
1672 return gdbarch->data[data->index];
1673 }
1674
1675
1676 /* Keep a registry of the architectures known by GDB. */
1677
1678 struct gdbarch_registration
1679 {
1680 enum bfd_architecture bfd_architecture;
1681 gdbarch_init_ftype *init;
1682 gdbarch_dump_tdep_ftype *dump_tdep;
1683 struct gdbarch_list *arches;
1684 struct gdbarch_registration *next;
1685 };
1686
1687 static struct gdbarch_registration *gdbarch_registry = NULL;
1688
1689 static void
1690 append_name (const char ***buf, int *nr, const char *name)
1691 {
1692 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1693 (*buf)[*nr] = name;
1694 *nr += 1;
1695 }
1696
1697 const char **
1698 gdbarch_printable_names (void)
1699 {
1700 /* Accumulate a list of names based on the registed list of
1701 architectures. */
1702 enum bfd_architecture a;
1703 int nr_arches = 0;
1704 const char **arches = NULL;
1705 struct gdbarch_registration *rego;
1706 for (rego = gdbarch_registry;
1707 rego != NULL;
1708 rego = rego->next)
1709 {
1710 const struct bfd_arch_info *ap;
1711 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1712 if (ap == NULL)
1713 internal_error (__FILE__, __LINE__,
1714 _("gdbarch_architecture_names: multi-arch unknown"));
1715 do
1716 {
1717 append_name (&arches, &nr_arches, ap->printable_name);
1718 ap = ap->next;
1719 }
1720 while (ap != NULL);
1721 }
1722 append_name (&arches, &nr_arches, NULL);
1723 return arches;
1724 }
1725
1726
1727 void
1728 gdbarch_register (enum bfd_architecture bfd_architecture,
1729 gdbarch_init_ftype *init,
1730 gdbarch_dump_tdep_ftype *dump_tdep)
1731 {
1732 struct gdbarch_registration **curr;
1733 const struct bfd_arch_info *bfd_arch_info;
1734 /* Check that BFD recognizes this architecture */
1735 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1736 if (bfd_arch_info == NULL)
1737 {
1738 internal_error (__FILE__, __LINE__,
1739 _("gdbarch: Attempt to register unknown architecture (%d)"),
1740 bfd_architecture);
1741 }
1742 /* Check that we haven't seen this architecture before */
1743 for (curr = &gdbarch_registry;
1744 (*curr) != NULL;
1745 curr = &(*curr)->next)
1746 {
1747 if (bfd_architecture == (*curr)->bfd_architecture)
1748 internal_error (__FILE__, __LINE__,
1749 _("gdbarch: Duplicate registraration of architecture (%s)"),
1750 bfd_arch_info->printable_name);
1751 }
1752 /* log it */
1753 if (gdbarch_debug)
1754 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1755 bfd_arch_info->printable_name,
1756 (long) init);
1757 /* Append it */
1758 (*curr) = XMALLOC (struct gdbarch_registration);
1759 (*curr)->bfd_architecture = bfd_architecture;
1760 (*curr)->init = init;
1761 (*curr)->dump_tdep = dump_tdep;
1762 (*curr)->arches = NULL;
1763 (*curr)->next = NULL;
1764 }
1765
1766 void
1767 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1768 gdbarch_init_ftype *init)
1769 {
1770 gdbarch_register (bfd_architecture, init, NULL);
1771 }
1772
1773
1774 /* Look for an architecture using gdbarch_info. */
1775
1776 struct gdbarch_list *
1777 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1778 const struct gdbarch_info *info)
1779 {
1780 for (; arches != NULL; arches = arches->next)
1781 {
1782 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1783 continue;
1784 if (info->byte_order != arches->gdbarch->byte_order)
1785 continue;
1786 if (info->osabi != arches->gdbarch->osabi)
1787 continue;
1788 if (info->target_desc != arches->gdbarch->target_desc)
1789 continue;
1790 return arches;
1791 }
1792 return NULL;
1793 }
1794
1795
1796 /* Find an architecture that matches the specified INFO. Create a new
1797 architecture if needed. Return that new architecture. Assumes
1798 that there is no current architecture. */
1799
1800 static struct gdbarch *
1801 find_arch_by_info (struct gdbarch_info info)
1802 {
1803 struct gdbarch *new_gdbarch;
1804 struct gdbarch_registration *rego;
1805
1806 /* The existing architecture has been swapped out - all this code
1807 works from a clean slate. */
1808 gdb_assert (current_gdbarch == NULL);
1809
1810 /* Fill in missing parts of the INFO struct using a number of
1811 sources: "set ..."; INFOabfd supplied; and the global
1812 defaults. */
1813 gdbarch_info_fill (&info);
1814
1815 /* Must have found some sort of architecture. */
1816 gdb_assert (info.bfd_arch_info != NULL);
1817
1818 if (gdbarch_debug)
1819 {
1820 fprintf_unfiltered (gdb_stdlog,
1821 "find_arch_by_info: info.bfd_arch_info %s\n",
1822 (info.bfd_arch_info != NULL
1823 ? info.bfd_arch_info->printable_name
1824 : "(null)"));
1825 fprintf_unfiltered (gdb_stdlog,
1826 "find_arch_by_info: info.byte_order %d (%s)\n",
1827 info.byte_order,
1828 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1829 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1830 : "default"));
1831 fprintf_unfiltered (gdb_stdlog,
1832 "find_arch_by_info: info.osabi %d (%s)\n",
1833 info.osabi, gdbarch_osabi_name (info.osabi));
1834 fprintf_unfiltered (gdb_stdlog,
1835 "find_arch_by_info: info.abfd 0x%lx\n",
1836 (long) info.abfd);
1837 fprintf_unfiltered (gdb_stdlog,
1838 "find_arch_by_info: info.tdep_info 0x%lx\n",
1839 (long) info.tdep_info);
1840 }
1841
1842 /* Find the tdep code that knows about this architecture. */
1843 for (rego = gdbarch_registry;
1844 rego != NULL;
1845 rego = rego->next)
1846 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1847 break;
1848 if (rego == NULL)
1849 {
1850 if (gdbarch_debug)
1851 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1852 "No matching architecture\n");
1853 return 0;
1854 }
1855
1856 /* Ask the tdep code for an architecture that matches "info". */
1857 new_gdbarch = rego->init (info, rego->arches);
1858
1859 /* Did the tdep code like it? No. Reject the change and revert to
1860 the old architecture. */
1861 if (new_gdbarch == NULL)
1862 {
1863 if (gdbarch_debug)
1864 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1865 "Target rejected architecture\n");
1866 return NULL;
1867 }
1868
1869 /* Is this a pre-existing architecture (as determined by already
1870 being initialized)? Move it to the front of the architecture
1871 list (keeping the list sorted Most Recently Used). */
1872 if (new_gdbarch->initialized_p)
1873 {
1874 struct gdbarch_list **list;
1875 struct gdbarch_list *this;
1876 if (gdbarch_debug)
1877 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1878 "Previous architecture 0x%08lx (%s) selected\n",
1879 (long) new_gdbarch,
1880 new_gdbarch->bfd_arch_info->printable_name);
1881 /* Find the existing arch in the list. */
1882 for (list = &rego->arches;
1883 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1884 list = &(*list)->next);
1885 /* It had better be in the list of architectures. */
1886 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1887 /* Unlink THIS. */
1888 this = (*list);
1889 (*list) = this->next;
1890 /* Insert THIS at the front. */
1891 this->next = rego->arches;
1892 rego->arches = this;
1893 /* Return it. */
1894 return new_gdbarch;
1895 }
1896
1897 /* It's a new architecture. */
1898 if (gdbarch_debug)
1899 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1900 "New architecture 0x%08lx (%s) selected\n",
1901 (long) new_gdbarch,
1902 new_gdbarch->bfd_arch_info->printable_name);
1903
1904 /* Insert the new architecture into the front of the architecture
1905 list (keep the list sorted Most Recently Used). */
1906 {
1907 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1908 this->next = rego->arches;
1909 this->gdbarch = new_gdbarch;
1910 rego->arches = this;
1911 }
1912
1913 /* Check that the newly installed architecture is valid. Plug in
1914 any post init values. */
1915 new_gdbarch->dump_tdep = rego->dump_tdep;
1916 verify_gdbarch (new_gdbarch);
1917 new_gdbarch->initialized_p = 1;
1918
1919 if (gdbarch_debug)
1920 gdbarch_dump (new_gdbarch, gdb_stdlog);
1921
1922 return new_gdbarch;
1923 }
1924
1925 struct gdbarch *
1926 gdbarch_find_by_info (struct gdbarch_info info)
1927 {
1928 struct gdbarch *new_gdbarch;
1929
1930 /* Save the previously selected architecture, setting the global to
1931 NULL. This stops things like gdbarch->init() trying to use the
1932 previous architecture's configuration. The previous architecture
1933 may not even be of the same architecture family. The most recent
1934 architecture of the same family is found at the head of the
1935 rego->arches list. */
1936 struct gdbarch *old_gdbarch = current_gdbarch;
1937 current_gdbarch = NULL;
1938
1939 /* Find the specified architecture. */
1940 new_gdbarch = find_arch_by_info (info);
1941
1942 /* Restore the existing architecture. */
1943 gdb_assert (current_gdbarch == NULL);
1944 current_gdbarch = old_gdbarch;
1945
1946 return new_gdbarch;
1947 }
1948
1949 /* Make the specified architecture current. */
1950
1951 void
1952 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1953 {
1954 gdb_assert (new_gdbarch != NULL);
1955 gdb_assert (current_gdbarch != NULL);
1956 gdb_assert (new_gdbarch->initialized_p);
1957 current_gdbarch = new_gdbarch;
1958 architecture_changed_event ();
1959 reinit_frame_cache ();
1960 }
1961
1962 extern void _initialize_gdbarch (void);
1963
1964 void
1965 _initialize_gdbarch (void)
1966 {
1967 struct cmd_list_element *c;
1968
1969 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1970 Set architecture debugging."), _("\\
1971 Show architecture debugging."), _("\\
1972 When non-zero, architecture debugging is enabled."),
1973 NULL,
1974 show_gdbarch_debug,
1975 &setdebuglist, &showdebuglist);
1976 }
1977 EOF
1978
1979 # close things off
1980 exec 1>&2
1981 #../move-if-change new-gdbarch.c gdbarch.c
1982 compare_new gdbarch.c
This page took 0.07441 seconds and 4 git commands to generate.