* dwarf2read.c (read_tag_const_type, read_tag_volatile_type):
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998-2000 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 [ "${class}" = "v" -o "${class}" = "V" ]
141 }
142
143 class_is_function_p ()
144 {
145 [ "${class}" = "f" -o "${class}" = "F" ]
146 }
147
148 class_is_predicate_p ()
149 {
150 [ "${class}" = "F" -o "${class}" = "V" ]
151 }
152
153 class_is_info_p ()
154 {
155 [ "${class}" = "i" ]
156 }
157
158
159 # dump out/verify the doco
160 for field in ${read}
161 do
162 case ${field} in
163
164 class ) : ;;
165
166 # # -> line disable
167 # f -> function
168 # hiding a function
169 # F -> function + predicate
170 # hiding a function + predicate to test function validity
171 # v -> variable
172 # hiding a variable
173 # V -> variable + predicate
174 # hiding a variable + predicate to test variables validity
175 # i -> set from info
176 # hiding something from the ``struct info'' object
177
178 level ) : ;;
179
180 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
181 # LEVEL is a predicate on checking that a given method is
182 # initialized (using INVALID_P).
183
184 macro ) : ;;
185
186 # The name of the MACRO that this method is to be accessed by.
187
188 returntype ) : ;;
189
190 # For functions, the return type; for variables, the data type
191
192 function ) : ;;
193
194 # For functions, the member function name; for variables, the
195 # variable name. Member function names are always prefixed with
196 # ``gdbarch_'' for name-space purity.
197
198 formal ) : ;;
199
200 # The formal argument list. It is assumed that the formal
201 # argument list includes the actual name of each list element.
202 # A function with no arguments shall have ``void'' as the
203 # formal argument list.
204
205 actual ) : ;;
206
207 # The list of actual arguments. The arguments specified shall
208 # match the FORMAL list given above. Functions with out
209 # arguments leave this blank.
210
211 attrib ) : ;;
212
213 # Any GCC attributes that should be attached to the function
214 # declaration. At present this field is unused.
215
216 staticdefault ) : ;;
217
218 # To help with the GDB startup a static gdbarch object is
219 # created. STATICDEFAULT is the value to insert into that
220 # static gdbarch object. Since this a static object only
221 # simple expressions can be used.
222
223 # If STATICDEFAULT is empty, zero is used.
224
225 predefault ) : ;;
226
227 # A initial value to assign to MEMBER of the freshly
228 # malloc()ed gdbarch object. After the gdbarch object has
229 # been initialized using PREDEFAULT, it is passed to the
230 # target code for further updates.
231
232 # If PREDEFAULT is empty, zero is used.
233
234 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
235 # INVALID_P will be used as default values when when
236 # multi-arch is disabled. Specify a zero PREDEFAULT function
237 # to make that fallback call internal_error().
238
239 # Variable declarations can refer to ``gdbarch'' which will
240 # contain the current architecture. Care should be taken.
241
242 postdefault ) : ;;
243
244 # A value to assign to MEMBER of the new gdbarch object should
245 # the target code fail to change the PREDEFAULT value. Also
246 # use POSTDEFAULT as the fallback value for the non-
247 # multi-arch case.
248
249 # If POSTDEFAULT is empty, no post update is performed.
250
251 # If both INVALID_P and POSTDEFAULT are non-empty then
252 # INVALID_P will be used to determine if MEMBER should be
253 # changed to POSTDEFAULT.
254
255 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
256
257 # Variable declarations can refer to ``gdbarch'' which will
258 # contain the current architecture. Care should be taken.
259
260 invalid_p ) : ;;
261
262 # A predicate equation that validates MEMBER. Non-zero is
263 # returned if the code creating the new architecture failed to
264 # initialize MEMBER or the initialized the member is invalid.
265 # If POSTDEFAULT is non-empty then MEMBER will be updated to
266 # that value. If POSTDEFAULT is empty then internal_error()
267 # is called.
268
269 # If INVALID_P is empty, a check that MEMBER is no longer
270 # equal to PREDEFAULT is used.
271
272 # The expression ``0'' disables the INVALID_P check making
273 # PREDEFAULT a legitimate value.
274
275 # See also PREDEFAULT and POSTDEFAULT.
276
277 fmt ) : ;;
278
279 # printf style format string that can be used to print out the
280 # MEMBER. Sometimes "%s" is useful. For functions, this is
281 # ignored and the function address is printed.
282
283 # If FMT is empty, ``%ld'' is used.
284
285 print ) : ;;
286
287 # An optional equation that casts MEMBER to a value suitable
288 # for formatting by FMT.
289
290 # If PRINT is empty, ``(long)'' is used.
291
292 print_p ) : ;;
293
294 # An optional indicator for any predicte to wrap around the
295 # print member code.
296
297 # () -> Call a custom function to do the dump.
298 # exp -> Wrap print up in ``if (${print_p}) ...
299 # ``'' -> No predicate
300
301 # If PRINT_P is empty, ``1'' is always used.
302
303 description ) : ;;
304
305 # Currently unused.
306
307 *) exit 1;;
308 esac
309 done
310
311
312 function_list ()
313 {
314 # See below (DOCO) for description of each field
315 cat <<EOF
316 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
317 #
318 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
319 # Number of bits in a char or unsigned char for the target machine.
320 # Just like CHAR_BIT in <limits.h> but describes the target machine.
321 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
322 #
323 # Number of bits in a short or unsigned short for the target machine.
324 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
325 # Number of bits in an int or unsigned int for the target machine.
326 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
327 # Number of bits in a long or unsigned long for the target machine.
328 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
329 # Number of bits in a long long or unsigned long long for the target
330 # machine.
331 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
332 # Number of bits in a float for the target machine.
333 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
334 # Number of bits in a double for the target machine.
335 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
336 # Number of bits in a long double for the target machine.
337 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
338 # For most targets, a pointer on the target and its representation as an
339 # address in GDB have the same size and "look the same". For such a
340 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
341 # / addr_bit will be set from it.
342 #
343 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
344 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
345 #
346 # ptr_bit is the size of a pointer on the target
347 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
348 # addr_bit is the size of a target address as represented in gdb
349 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
350 # Number of bits in a BFD_VMA for the target object file format.
351 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
352 #
353 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
354 #
355 f::TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:generic_target_read_pc::0
356 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:generic_target_write_pc::0
357 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
358 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
359 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
360 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
361 #
362 v:2:NUM_REGS:int:num_regs::::0:-1
363 # This macro gives the number of pseudo-registers that live in the
364 # register namespace but do not get fetched or stored on the target.
365 # These pseudo-registers may be aliases for other registers,
366 # combinations of other registers, or they may be computed by GDB.
367 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
368 v:2:SP_REGNUM:int:sp_regnum::::0:-1
369 v:2:FP_REGNUM:int:fp_regnum::::0:-1
370 v:2:PC_REGNUM:int:pc_regnum::::0:-1
371 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
372 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
373 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
374 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
375 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
376 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
377 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
378 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
379 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
380 # Convert from an sdb register number to an internal gdb register number.
381 # This should be defined in tm.h, if REGISTER_NAMES is not set up
382 # to map one to one onto the sdb register numbers.
383 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
384 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
385 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
386 v:2:REGISTER_SIZE:int:register_size::::0:-1
387 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
388 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
389 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
390 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
391 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
392 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
393 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
394 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
395 # MAP a GDB RAW register number onto a simulator register number. See
396 # also include/...-sim.h.
397 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
398 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
399 #
400 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
401 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
402 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
403 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
404 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
405 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
406 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
407 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
408 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
409 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
410 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
411 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
412 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
413 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
414 #
415 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
416 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
417 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
418 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
419 #
420 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
421 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
422 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
423 # This function is called when the value of a pseudo-register needs to
424 # be updated. Typically it will be defined on a per-architecture
425 # basis.
426 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
427 # This function is called when the value of a pseudo-register needs to
428 # be set or stored. Typically it will be defined on a
429 # per-architecture basis.
430 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
431 #
432 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
433 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
434 #
435 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
436 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
437 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
438 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
439 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
440 f:2:POP_FRAME:void:pop_frame:void:-:::0
441 #
442 # I wish that these would just go away....
443 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
444 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
445 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
446 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
447 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
448 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
449 #
450 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
451 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
452 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
453 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
454 #
455 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
456 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
457 #
458 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
459 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
460 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
461 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
462 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
463 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
464 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
465 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
466 #
467 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
468 #
469 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
470 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
471 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
472 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
473 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
474 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
475 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
476 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
477 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
478 #
479 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
480 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
481 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
482 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
483 v:2:PARM_BOUNDARY:int:parm_boundary
484 #
485 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
486 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
487 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
488 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
489 EOF
490 }
491
492 #
493 # The .log file
494 #
495 exec > new-gdbarch.log
496 function_list | while do_read
497 do
498 cat <<EOF
499 ${class} ${macro}(${actual})
500 ${returntype} ${function} ($formal)${attrib}
501 EOF
502 for r in ${read}
503 do
504 eval echo \"\ \ \ \ ${r}=\${${r}}\"
505 done
506 # #fallbackdefault=${fallbackdefault}
507 # #valid_p=${valid_p}
508 #EOF
509 if class_is_predicate_p && fallback_default_p
510 then
511 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
512 kill $$
513 exit 1
514 fi
515 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
516 then
517 echo "Error: postdefault is useless when invalid_p=0" 1>&2
518 kill $$
519 exit 1
520 fi
521 echo ""
522 done
523
524 exec 1>&2
525 compare_new gdbarch.log
526
527
528 copyright ()
529 {
530 cat <<EOF
531 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
532
533 /* Dynamic architecture support for GDB, the GNU debugger.
534 Copyright 1998-1999, Free Software Foundation, Inc.
535
536 This file is part of GDB.
537
538 This program is free software; you can redistribute it and/or modify
539 it under the terms of the GNU General Public License as published by
540 the Free Software Foundation; either version 2 of the License, or
541 (at your option) any later version.
542
543 This program is distributed in the hope that it will be useful,
544 but WITHOUT ANY WARRANTY; without even the implied warranty of
545 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
546 GNU General Public License for more details.
547
548 You should have received a copy of the GNU General Public License
549 along with this program; if not, write to the Free Software
550 Foundation, Inc., 59 Temple Place - Suite 330,
551 Boston, MA 02111-1307, USA. */
552
553 /* This file was created with the aid of \`\`gdbarch.sh''.
554
555 The Bourne shell script \`\`gdbarch.sh'' creates the files
556 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
557 against the existing \`\`gdbarch.[hc]''. Any differences found
558 being reported.
559
560 If editing this file, please also run gdbarch.sh and merge any
561 changes into that script. Conversely, when making sweeping changes
562 to this file, modifying gdbarch.sh and using its output may prove
563 easier. */
564
565 EOF
566 }
567
568 #
569 # The .h file
570 #
571
572 exec > new-gdbarch.h
573 copyright
574 cat <<EOF
575 #ifndef GDBARCH_H
576 #define GDBARCH_H
577
578 struct frame_info;
579 struct value;
580
581
582 extern struct gdbarch *current_gdbarch;
583
584
585 /* If any of the following are defined, the target wasn't correctly
586 converted. */
587
588 #if GDB_MULTI_ARCH
589 #if defined (EXTRA_FRAME_INFO)
590 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
591 #endif
592 #endif
593
594 #if GDB_MULTI_ARCH
595 #if defined (FRAME_FIND_SAVED_REGS)
596 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
597 #endif
598 #endif
599 EOF
600
601 # function typedef's
602 printf "\n"
603 printf "\n"
604 printf "/* The following are pre-initialized by GDBARCH. */\n"
605 function_list | while do_read
606 do
607 if class_is_info_p
608 then
609 printf "\n"
610 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
611 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
612 printf "#if GDB_MULTI_ARCH\n"
613 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
614 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
615 printf "#endif\n"
616 printf "#endif\n"
617 fi
618 done
619
620 # function typedef's
621 printf "\n"
622 printf "\n"
623 printf "/* The following are initialized by the target dependent code. */\n"
624 function_list | while do_read
625 do
626 if [ "${comment}" ]
627 then
628 echo "${comment}" | sed \
629 -e '2 s,#,/*,' \
630 -e '3,$ s,#, ,' \
631 -e '$ s,$, */,'
632 fi
633 if class_is_predicate_p
634 then
635 printf "\n"
636 printf "#if defined (${macro})\n"
637 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
638 # printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
639 printf "#define ${macro}_P() (1)\n"
640 printf "#endif\n"
641 printf "\n"
642 printf "/* Default predicate for non- multi-arch targets. */\n"
643 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
644 printf "#define ${macro}_P() (0)\n"
645 printf "#endif\n"
646 printf "\n"
647 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
648 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
649 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
650 printf "#endif\n"
651 fi
652 if class_is_variable_p
653 then
654 if fallback_default_p || class_is_predicate_p
655 then
656 printf "\n"
657 printf "/* Default (value) for non- multi-arch platforms. */\n"
658 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
659 echo "#define ${macro} (${fallbackdefault})" \
660 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
661 printf "#endif\n"
662 fi
663 printf "\n"
664 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
665 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
666 printf "#if GDB_MULTI_ARCH\n"
667 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
668 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
669 printf "#endif\n"
670 printf "#endif\n"
671 fi
672 if class_is_function_p
673 then
674 if fallback_default_p || class_is_predicate_p
675 then
676 printf "\n"
677 printf "/* Default (function) for non- multi-arch platforms. */\n"
678 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
679 if [ "${fallbackdefault}" = "0" ]
680 then
681 printf "#define ${macro}(${actual}) (internal_error (\"${macro}\"), 0)\n"
682 else
683 # FIXME: Should be passing current_gdbarch through!
684 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
685 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
686 fi
687 printf "#endif\n"
688 fi
689 printf "\n"
690 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
691 if [ "${formal}" = "void" ]
692 then
693 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
694 else
695 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
696 fi
697 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
698 printf "#if GDB_MULTI_ARCH\n"
699 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
700 if [ "${actual}" = "" ]
701 then
702 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
703 elif [ "${actual}" = "-" ]
704 then
705 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
706 else
707 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
708 fi
709 printf "#endif\n"
710 printf "#endif\n"
711 fi
712 done
713
714 # close it off
715 cat <<EOF
716
717 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
718
719
720 /* Mechanism for co-ordinating the selection of a specific
721 architecture.
722
723 GDB targets (*-tdep.c) can register an interest in a specific
724 architecture. Other GDB components can register a need to maintain
725 per-architecture data.
726
727 The mechanisms below ensures that there is only a loose connection
728 between the set-architecture command and the various GDB
729 components. Each component can independently register their need
730 to maintain architecture specific data with gdbarch.
731
732 Pragmatics:
733
734 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
735 didn't scale.
736
737 The more traditional mega-struct containing architecture specific
738 data for all the various GDB components was also considered. Since
739 GDB is built from a variable number of (fairly independent)
740 components it was determined that the global aproach was not
741 applicable. */
742
743
744 /* Register a new architectural family with GDB.
745
746 Register support for the specified ARCHITECTURE with GDB. When
747 gdbarch determines that the specified architecture has been
748 selected, the corresponding INIT function is called.
749
750 --
751
752 The INIT function takes two parameters: INFO which contains the
753 information available to gdbarch about the (possibly new)
754 architecture; ARCHES which is a list of the previously created
755 \`\`struct gdbarch'' for this architecture.
756
757 The INIT function parameter INFO shall, as far as possible, be
758 pre-initialized with information obtained from INFO.ABFD or
759 previously selected architecture (if similar). INIT shall ensure
760 that the INFO.BYTE_ORDER is non-zero.
761
762 The INIT function shall return any of: NULL - indicating that it
763 doesn't recognize the selected architecture; an existing \`\`struct
764 gdbarch'' from the ARCHES list - indicating that the new
765 architecture is just a synonym for an earlier architecture (see
766 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
767 - that describes the selected architecture (see gdbarch_alloc()).
768
769 The DUMP_TDEP function shall print out all target specific values.
770 Care should be taken to ensure that the function works in both the
771 multi-arch and non- multi-arch cases. */
772
773 struct gdbarch_list
774 {
775 struct gdbarch *gdbarch;
776 struct gdbarch_list *next;
777 };
778
779 struct gdbarch_info
780 {
781 /* Use default: bfd_arch_unknown (ZERO). */
782 enum bfd_architecture bfd_architecture;
783
784 /* Use default: NULL (ZERO). */
785 const struct bfd_arch_info *bfd_arch_info;
786
787 /* Use default: 0 (ZERO). */
788 int byte_order;
789
790 /* Use default: NULL (ZERO). */
791 bfd *abfd;
792
793 /* Use default: NULL (ZERO). */
794 struct gdbarch_tdep_info *tdep_info;
795 };
796
797 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
798 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
799
800 /* DEPRECATED - use gdbarch_register() */
801 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
802
803 extern void gdbarch_register (enum bfd_architecture architecture,
804 gdbarch_init_ftype *,
805 gdbarch_dump_tdep_ftype *);
806
807
808 /* Return a freshly allocated, NULL terminated, array of the valid
809 architecture names. Since architectures are registered during the
810 _initialize phase this function only returns useful information
811 once initialization has been completed. */
812
813 extern const char **gdbarch_printable_names (void);
814
815
816 /* Helper function. Search the list of ARCHES for a GDBARCH that
817 matches the information provided by INFO. */
818
819 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
820
821
822 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
823 basic initialization using values obtained from the INFO andTDEP
824 parameters. set_gdbarch_*() functions are called to complete the
825 initialization of the object. */
826
827 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
828
829
830 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
831 It is assumed that the caller freeds the \`\`struct
832 gdbarch_tdep''. */
833
834 extern void gdbarch_free (struct gdbarch *);
835
836
837 /* Helper function. Force an update of the current architecture. Used
838 by legacy targets that have added their own target specific
839 architecture manipulation commands.
840
841 The INFO parameter shall be fully initialized (\`\`memset (&INFO,
842 sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
843 is called. gdbarch_update_p() shall initialize any \`\`default''
844 fields using information obtained from the previous architecture or
845 INFO.ABFD (if specified) before calling the corresponding
846 architectures INIT function.
847
848 Returns non-zero if the update succeeds */
849
850 extern int gdbarch_update_p (struct gdbarch_info info);
851
852
853
854 /* Register per-architecture data-pointer.
855
856 Reserve space for a per-architecture data-pointer. An identifier
857 for the reserved data-pointer is returned. That identifer should
858 be saved in a local static.
859
860 When a new architecture is selected, INIT() is called. When a
861 previous architecture is re-selected, the per-architecture
862 data-pointer for that previous architecture is restored (INIT() is
863 not called).
864
865 INIT() shall return the initial value for the per-architecture
866 data-pointer for the current architecture.
867
868 Multiple registrarants for any architecture are allowed (and
869 strongly encouraged). */
870
871 typedef void *(gdbarch_data_ftype) (void);
872 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_ftype *init);
873
874 /* Return the value of the per-architecture data-pointer for the
875 current architecture. */
876
877 extern void *gdbarch_data (struct gdbarch_data*);
878
879
880
881 /* Register per-architecture memory region.
882
883 Provide a memory-region swap mechanism. Per-architecture memory
884 region are created. These memory regions are swapped whenever the
885 architecture is changed. For a new architecture, the memory region
886 is initialized with zero (0) and the INIT function is called.
887
888 Memory regions are swapped / initialized in the order that they are
889 registered. NULL DATA and/or INIT values can be specified.
890
891 New code should use register_gdbarch_data(). */
892
893 typedef void (gdbarch_swap_ftype) (void);
894 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
895 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
896
897
898
899 /* The target-system-dependent byte order is dynamic */
900
901 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
902 is selectable at runtime. The user can use the \`\`set endian''
903 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
904 target_byte_order should be auto-detected (from the program image
905 say). */
906
907 #if GDB_MULTI_ARCH
908 /* Multi-arch GDB is always bi-endian. */
909 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
910 #endif
911
912 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
913 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
914 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
915 #ifdef TARGET_BYTE_ORDER_SELECTABLE
916 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
917 #else
918 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
919 #endif
920 #endif
921
922 extern int target_byte_order;
923 #ifdef TARGET_BYTE_ORDER_SELECTABLE
924 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
925 and expect defs.h to re-define TARGET_BYTE_ORDER. */
926 #undef TARGET_BYTE_ORDER
927 #endif
928 #ifndef TARGET_BYTE_ORDER
929 #define TARGET_BYTE_ORDER (target_byte_order + 0)
930 #endif
931
932 extern int target_byte_order_auto;
933 #ifndef TARGET_BYTE_ORDER_AUTO
934 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
935 #endif
936
937
938
939 /* The target-system-dependent BFD architecture is dynamic */
940
941 extern int target_architecture_auto;
942 #ifndef TARGET_ARCHITECTURE_AUTO
943 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
944 #endif
945
946 extern const struct bfd_arch_info *target_architecture;
947 #ifndef TARGET_ARCHITECTURE
948 #define TARGET_ARCHITECTURE (target_architecture + 0)
949 #endif
950
951
952 /* The target-system-dependent disassembler is semi-dynamic */
953
954 #include "dis-asm.h" /* Get defs for disassemble_info */
955
956 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
957 unsigned int len, disassemble_info *info);
958
959 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
960 disassemble_info *info);
961
962 extern void dis_asm_print_address (bfd_vma addr,
963 disassemble_info *info);
964
965 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
966 extern disassemble_info tm_print_insn_info;
967 #ifndef TARGET_PRINT_INSN
968 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
969 #endif
970 #ifndef TARGET_PRINT_INSN_INFO
971 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
972 #endif
973
974
975
976 /* Explicit test for D10V architecture.
977 USE of these macro's is *STRONGLY* discouraged. */
978
979 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
980
981
982 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
983 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
984 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
985 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error ("gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
986 #else
987 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
988 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
989 #endif
990 #endif
991
992
993 /* Set the dynamic target-system-dependent parameters (architecture,
994 byte-order, ...) using information found in the BFD */
995
996 extern void set_gdbarch_from_file (bfd *);
997
998
999 /* Initialize the current architecture to the "first" one we find on
1000 our list. */
1001
1002 extern void initialize_current_architecture (void);
1003
1004
1005 /* gdbarch trace variable */
1006 extern int gdbarch_debug;
1007
1008 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1009
1010 #endif
1011 EOF
1012 exec 1>&2
1013 #../move-if-change new-gdbarch.h gdbarch.h
1014 compare_new gdbarch.h
1015
1016
1017 #
1018 # C file
1019 #
1020
1021 exec > new-gdbarch.c
1022 copyright
1023 cat <<EOF
1024
1025 #include "defs.h"
1026 #include "arch-utils.h"
1027
1028 #if GDB_MULTI_ARCH
1029 #include "gdbcmd.h"
1030 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1031 #else
1032 /* Just include everything in sight so that the every old definition
1033 of macro is visible. */
1034 #include "gdb_string.h"
1035 #include <ctype.h>
1036 #include "symtab.h"
1037 #include "frame.h"
1038 #include "inferior.h"
1039 #include "breakpoint.h"
1040 #include "gdb_wait.h"
1041 #include "gdbcore.h"
1042 #include "gdbcmd.h"
1043 #include "target.h"
1044 #include "gdbthread.h"
1045 #include "annotate.h"
1046 #include "symfile.h" /* for overlay functions */
1047 #endif
1048 #include "symcat.h"
1049
1050 #include "floatformat.h"
1051
1052 /* Static function declarations */
1053
1054 static void verify_gdbarch (struct gdbarch *gdbarch);
1055 static void init_gdbarch_data (struct gdbarch *);
1056 static void init_gdbarch_swap (struct gdbarch *);
1057 static void swapout_gdbarch_swap (struct gdbarch *);
1058 static void swapin_gdbarch_swap (struct gdbarch *);
1059
1060 /* Convenience macro for allocting typesafe memory. */
1061
1062 #ifndef XMALLOC
1063 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1064 #endif
1065
1066
1067 /* Non-zero if we want to trace architecture code. */
1068
1069 #ifndef GDBARCH_DEBUG
1070 #define GDBARCH_DEBUG 0
1071 #endif
1072 int gdbarch_debug = GDBARCH_DEBUG;
1073
1074 EOF
1075
1076 # gdbarch open the gdbarch object
1077 printf "\n"
1078 printf "/* Maintain the struct gdbarch object */\n"
1079 printf "\n"
1080 printf "struct gdbarch\n"
1081 printf "{\n"
1082 printf " /* basic architectural information */\n"
1083 function_list | while do_read
1084 do
1085 if class_is_info_p
1086 then
1087 printf " ${returntype} ${function};\n"
1088 fi
1089 done
1090 printf "\n"
1091 printf " /* target specific vector. */\n"
1092 printf " struct gdbarch_tdep *tdep;\n"
1093 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1094 printf "\n"
1095 printf " /* per-architecture data-pointers */\n"
1096 printf " int nr_data;\n"
1097 printf " void **data;\n"
1098 printf "\n"
1099 printf " /* per-architecture swap-regions */\n"
1100 printf " struct gdbarch_swap *swap;\n"
1101 printf "\n"
1102 cat <<EOF
1103 /* Multi-arch values.
1104
1105 When extending this structure you must:
1106
1107 Add the field below.
1108
1109 Declare set/get functions and define the corresponding
1110 macro in gdbarch.h.
1111
1112 gdbarch_alloc(): If zero/NULL is not a suitable default,
1113 initialize the new field.
1114
1115 verify_gdbarch(): Confirm that the target updated the field
1116 correctly.
1117
1118 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1119 field is dumped out
1120
1121 \`\`startup_gdbarch()'': Append an initial value to the static
1122 variable (base values on the host's c-type system).
1123
1124 get_gdbarch(): Implement the set/get functions (probably using
1125 the macro's as shortcuts).
1126
1127 */
1128
1129 EOF
1130 function_list | while do_read
1131 do
1132 if class_is_variable_p
1133 then
1134 printf " ${returntype} ${function};\n"
1135 elif class_is_function_p
1136 then
1137 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1138 fi
1139 done
1140 printf "};\n"
1141
1142 # A pre-initialized vector
1143 printf "\n"
1144 printf "\n"
1145 cat <<EOF
1146 /* The default architecture uses host values (for want of a better
1147 choice). */
1148 EOF
1149 printf "\n"
1150 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1151 printf "\n"
1152 printf "struct gdbarch startup_gdbarch =\n"
1153 printf "{\n"
1154 printf " /* basic architecture information */\n"
1155 function_list | while do_read
1156 do
1157 if class_is_info_p
1158 then
1159 printf " ${staticdefault},\n"
1160 fi
1161 done
1162 cat <<EOF
1163 /* target specific vector and its dump routine */
1164 NULL, NULL,
1165 /*per-architecture data-pointers and swap regions */
1166 0, NULL, NULL,
1167 /* Multi-arch values */
1168 EOF
1169 function_list | while do_read
1170 do
1171 if class_is_function_p || class_is_variable_p
1172 then
1173 printf " ${staticdefault},\n"
1174 fi
1175 done
1176 cat <<EOF
1177 /* startup_gdbarch() */
1178 };
1179
1180 struct gdbarch *current_gdbarch = &startup_gdbarch;
1181 EOF
1182
1183 # Create a new gdbarch struct
1184 printf "\n"
1185 printf "\n"
1186 cat <<EOF
1187 /* Create a new \`\`struct gdbarch'' based on information provided by
1188 \`\`struct gdbarch_info''. */
1189 EOF
1190 printf "\n"
1191 cat <<EOF
1192 struct gdbarch *
1193 gdbarch_alloc (const struct gdbarch_info *info,
1194 struct gdbarch_tdep *tdep)
1195 {
1196 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1197 memset (gdbarch, 0, sizeof (*gdbarch));
1198
1199 gdbarch->tdep = tdep;
1200 EOF
1201 printf "\n"
1202 function_list | while do_read
1203 do
1204 if class_is_info_p
1205 then
1206 printf " gdbarch->${function} = info->${function};\n"
1207 fi
1208 done
1209 printf "\n"
1210 printf " /* Force the explicit initialization of these. */\n"
1211 function_list | while do_read
1212 do
1213 if class_is_function_p || class_is_variable_p
1214 then
1215 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1216 then
1217 printf " gdbarch->${function} = ${predefault};\n"
1218 fi
1219 fi
1220 done
1221 cat <<EOF
1222 /* gdbarch_alloc() */
1223
1224 return gdbarch;
1225 }
1226 EOF
1227
1228 # Free a gdbarch struct.
1229 printf "\n"
1230 printf "\n"
1231 cat <<EOF
1232 /* Free a gdbarch struct. This should never happen in normal
1233 operation --- once you've created a gdbarch, you keep it around.
1234 However, if an architecture's init function encounters an error
1235 building the structure, it may need to clean up a partially
1236 constructed gdbarch. */
1237
1238 void
1239 gdbarch_free (struct gdbarch *arch)
1240 {
1241 /* At the moment, this is trivial. */
1242 free (arch);
1243 }
1244 EOF
1245
1246 # verify a new architecture
1247 printf "\n"
1248 printf "\n"
1249 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1250 printf "\n"
1251 cat <<EOF
1252 static void
1253 verify_gdbarch (struct gdbarch *gdbarch)
1254 {
1255 /* Only perform sanity checks on a multi-arch target. */
1256 if (!GDB_MULTI_ARCH)
1257 return;
1258 /* fundamental */
1259 if (gdbarch->byte_order == 0)
1260 internal_error ("verify_gdbarch: byte-order unset");
1261 if (gdbarch->bfd_arch_info == NULL)
1262 internal_error ("verify_gdbarch: bfd_arch_info unset");
1263 /* Check those that need to be defined for the given multi-arch level. */
1264 EOF
1265 function_list | while do_read
1266 do
1267 if class_is_function_p || class_is_variable_p
1268 then
1269 if [ "${invalid_p}" = "0" ]
1270 then
1271 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1272 elif class_is_predicate_p
1273 then
1274 printf " /* Skip verify of ${function}, has predicate */\n"
1275 # FIXME: See do_read for potential simplification
1276 elif [ "${invalid_p}" -a "${postdefault}" ]
1277 then
1278 printf " if (${invalid_p})\n"
1279 printf " gdbarch->${function} = ${postdefault};\n"
1280 elif [ "${predefault}" -a "${postdefault}" ]
1281 then
1282 printf " if (gdbarch->${function} == ${predefault})\n"
1283 printf " gdbarch->${function} = ${postdefault};\n"
1284 elif [ "${postdefault}" ]
1285 then
1286 printf " if (gdbarch->${function} == 0)\n"
1287 printf " gdbarch->${function} = ${postdefault};\n"
1288 elif [ "${invalid_p}" ]
1289 then
1290 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1291 printf " && (${invalid_p}))\n"
1292 printf " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1293 elif [ "${predefault}" ]
1294 then
1295 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1296 printf " && (gdbarch->${function} == ${predefault}))\n"
1297 printf " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1298 fi
1299 fi
1300 done
1301 cat <<EOF
1302 }
1303 EOF
1304
1305 # dump the structure
1306 printf "\n"
1307 printf "\n"
1308 cat <<EOF
1309 /* Print out the details of the current architecture. */
1310
1311 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1312 just happens to match the global variable \`\`current_gdbarch''. That
1313 way macros refering to that variable get the local and not the global
1314 version - ulgh. Once everything is parameterised with gdbarch, this
1315 will go away. */
1316
1317 void
1318 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1319 {
1320 fprintf_unfiltered (file,
1321 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1322 GDB_MULTI_ARCH);
1323 EOF
1324 function_list | while do_read
1325 do
1326 if [ "${returntype}" = "void" ]
1327 then
1328 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1329 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1330 else
1331 printf "#ifdef ${macro}\n"
1332 fi
1333 if class_is_function_p
1334 then
1335 printf " fprintf_unfiltered (file,\n"
1336 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1337 printf " \"${macro}(${actual})\",\n"
1338 printf " XSTRING (${macro} (${actual})));\n"
1339 else
1340 printf " fprintf_unfiltered (file,\n"
1341 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1342 printf " XSTRING (${macro}));\n"
1343 fi
1344 printf "#endif\n"
1345 done
1346 function_list | while do_read
1347 do
1348 printf "#ifdef ${macro}\n"
1349 if [ "${print_p}" = "()" ]
1350 then
1351 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1352 elif [ "${print_p}" = "0" ]
1353 then
1354 printf " /* skip print of ${macro}, print_p == 0. */\n"
1355 elif [ "${print_p}" ]
1356 then
1357 printf " if (${print_p})\n"
1358 printf " fprintf_unfiltered (file,\n"
1359 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1360 printf " ${print});\n"
1361 elif class_is_function_p
1362 then
1363 printf " if (GDB_MULTI_ARCH)\n"
1364 printf " fprintf_unfiltered (file,\n"
1365 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1366 printf " (long) current_gdbarch->${function}\n"
1367 printf " /*${macro} ()*/);\n"
1368 else
1369 printf " fprintf_unfiltered (file,\n"
1370 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1371 printf " ${print});\n"
1372 fi
1373 printf "#endif\n"
1374 done
1375 cat <<EOF
1376 if (current_gdbarch->dump_tdep != NULL)
1377 current_gdbarch->dump_tdep (current_gdbarch, file);
1378 }
1379 EOF
1380
1381
1382 # GET/SET
1383 printf "\n"
1384 cat <<EOF
1385 struct gdbarch_tdep *
1386 gdbarch_tdep (struct gdbarch *gdbarch)
1387 {
1388 if (gdbarch_debug >= 2)
1389 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1390 return gdbarch->tdep;
1391 }
1392 EOF
1393 printf "\n"
1394 function_list | while do_read
1395 do
1396 if class_is_predicate_p
1397 then
1398 printf "\n"
1399 printf "int\n"
1400 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1401 printf "{\n"
1402 if [ "${valid_p}" ]
1403 then
1404 printf " return ${valid_p};\n"
1405 else
1406 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1407 fi
1408 printf "}\n"
1409 fi
1410 if class_is_function_p
1411 then
1412 printf "\n"
1413 printf "${returntype}\n"
1414 if [ "${formal}" = "void" ]
1415 then
1416 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1417 else
1418 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1419 fi
1420 printf "{\n"
1421 printf " if (gdbarch->${function} == 0)\n"
1422 printf " internal_error (\"gdbarch: gdbarch_${function} invalid\");\n"
1423 printf " if (gdbarch_debug >= 2)\n"
1424 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1425 test "${actual}" = "-" && actual=""
1426 if [ "${returntype}" = "void" ]
1427 then
1428 printf " gdbarch->${function} (${actual});\n"
1429 else
1430 printf " return gdbarch->${function} (${actual});\n"
1431 fi
1432 printf "}\n"
1433 printf "\n"
1434 printf "void\n"
1435 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1436 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1437 printf "{\n"
1438 printf " gdbarch->${function} = ${function};\n"
1439 printf "}\n"
1440 elif class_is_variable_p
1441 then
1442 printf "\n"
1443 printf "${returntype}\n"
1444 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1445 printf "{\n"
1446 if [ "${invalid_p}" = "0" ]
1447 then
1448 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1449 elif [ "${invalid_p}" ]
1450 then
1451 printf " if (${invalid_p})\n"
1452 printf " internal_error (\"gdbarch: gdbarch_${function} invalid\");\n"
1453 elif [ "${predefault}" ]
1454 then
1455 printf " if (gdbarch->${function} == ${predefault})\n"
1456 printf " internal_error (\"gdbarch: gdbarch_${function} invalid\");\n"
1457 fi
1458 printf " if (gdbarch_debug >= 2)\n"
1459 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1460 printf " return gdbarch->${function};\n"
1461 printf "}\n"
1462 printf "\n"
1463 printf "void\n"
1464 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1465 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1466 printf "{\n"
1467 printf " gdbarch->${function} = ${function};\n"
1468 printf "}\n"
1469 elif class_is_info_p
1470 then
1471 printf "\n"
1472 printf "${returntype}\n"
1473 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1474 printf "{\n"
1475 printf " if (gdbarch_debug >= 2)\n"
1476 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1477 printf " return gdbarch->${function};\n"
1478 printf "}\n"
1479 fi
1480 done
1481
1482 # All the trailing guff
1483 cat <<EOF
1484
1485
1486 /* Keep a registry of per-architecture data-pointers required by GDB
1487 modules. */
1488
1489 struct gdbarch_data
1490 {
1491 int index;
1492 };
1493
1494 struct gdbarch_data_registration
1495 {
1496 gdbarch_data_ftype *init;
1497 struct gdbarch_data *data;
1498 struct gdbarch_data_registration *next;
1499 };
1500
1501 struct gdbarch_data_registry
1502 {
1503 int nr;
1504 struct gdbarch_data_registration *registrations;
1505 };
1506
1507 struct gdbarch_data_registry gdbarch_data_registry =
1508 {
1509 0, NULL,
1510 };
1511
1512 struct gdbarch_data *
1513 register_gdbarch_data (gdbarch_data_ftype *init)
1514 {
1515 struct gdbarch_data_registration **curr;
1516 for (curr = &gdbarch_data_registry.registrations;
1517 (*curr) != NULL;
1518 curr = &(*curr)->next);
1519 (*curr) = XMALLOC (struct gdbarch_data_registration);
1520 (*curr)->next = NULL;
1521 (*curr)->init = init;
1522 (*curr)->data = XMALLOC (struct gdbarch_data);
1523 (*curr)->data->index = gdbarch_data_registry.nr++;
1524 return (*curr)->data;
1525 }
1526
1527
1528 /* Walk through all the registered users initializing each in turn. */
1529
1530 static void
1531 init_gdbarch_data (struct gdbarch *gdbarch)
1532 {
1533 struct gdbarch_data_registration *rego;
1534 gdbarch->nr_data = gdbarch_data_registry.nr + 1;
1535 gdbarch->data = xmalloc (sizeof (void*) * gdbarch->nr_data);
1536 for (rego = gdbarch_data_registry.registrations;
1537 rego != NULL;
1538 rego = rego->next)
1539 {
1540 if (rego->data->index < gdbarch->nr_data)
1541 gdbarch->data[rego->data->index] = rego->init ();
1542 }
1543 }
1544
1545
1546 /* Return the current value of the specified per-architecture
1547 data-pointer. */
1548
1549 void *
1550 gdbarch_data (struct gdbarch_data *data)
1551 {
1552 if (data->index >= current_gdbarch->nr_data)
1553 internal_error ("gdbarch_data: request for non-existant data.");
1554 return current_gdbarch->data[data->index];
1555 }
1556
1557
1558
1559 /* Keep a registry of swapped data required by GDB modules. */
1560
1561 struct gdbarch_swap
1562 {
1563 void *swap;
1564 struct gdbarch_swap_registration *source;
1565 struct gdbarch_swap *next;
1566 };
1567
1568 struct gdbarch_swap_registration
1569 {
1570 void *data;
1571 unsigned long sizeof_data;
1572 gdbarch_swap_ftype *init;
1573 struct gdbarch_swap_registration *next;
1574 };
1575
1576 struct gdbarch_swap_registry
1577 {
1578 int nr;
1579 struct gdbarch_swap_registration *registrations;
1580 };
1581
1582 struct gdbarch_swap_registry gdbarch_swap_registry =
1583 {
1584 0, NULL,
1585 };
1586
1587 void
1588 register_gdbarch_swap (void *data,
1589 unsigned long sizeof_data,
1590 gdbarch_swap_ftype *init)
1591 {
1592 struct gdbarch_swap_registration **rego;
1593 for (rego = &gdbarch_swap_registry.registrations;
1594 (*rego) != NULL;
1595 rego = &(*rego)->next);
1596 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1597 (*rego)->next = NULL;
1598 (*rego)->init = init;
1599 (*rego)->data = data;
1600 (*rego)->sizeof_data = sizeof_data;
1601 }
1602
1603
1604 static void
1605 init_gdbarch_swap (struct gdbarch *gdbarch)
1606 {
1607 struct gdbarch_swap_registration *rego;
1608 struct gdbarch_swap **curr = &gdbarch->swap;
1609 for (rego = gdbarch_swap_registry.registrations;
1610 rego != NULL;
1611 rego = rego->next)
1612 {
1613 if (rego->data != NULL)
1614 {
1615 (*curr) = XMALLOC (struct gdbarch_swap);
1616 (*curr)->source = rego;
1617 (*curr)->swap = xmalloc (rego->sizeof_data);
1618 (*curr)->next = NULL;
1619 memset (rego->data, 0, rego->sizeof_data);
1620 curr = &(*curr)->next;
1621 }
1622 if (rego->init != NULL)
1623 rego->init ();
1624 }
1625 }
1626
1627 static void
1628 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1629 {
1630 struct gdbarch_swap *curr;
1631 for (curr = gdbarch->swap;
1632 curr != NULL;
1633 curr = curr->next)
1634 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1635 }
1636
1637 static void
1638 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1639 {
1640 struct gdbarch_swap *curr;
1641 for (curr = gdbarch->swap;
1642 curr != NULL;
1643 curr = curr->next)
1644 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1645 }
1646
1647
1648 /* Keep a registry of the architectures known by GDB. */
1649
1650 struct gdbarch_registration
1651 {
1652 enum bfd_architecture bfd_architecture;
1653 gdbarch_init_ftype *init;
1654 gdbarch_dump_tdep_ftype *dump_tdep;
1655 struct gdbarch_list *arches;
1656 struct gdbarch_registration *next;
1657 };
1658
1659 static struct gdbarch_registration *gdbarch_registry = NULL;
1660
1661 static void
1662 append_name (const char ***buf, int *nr, const char *name)
1663 {
1664 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1665 (*buf)[*nr] = name;
1666 *nr += 1;
1667 }
1668
1669 const char **
1670 gdbarch_printable_names (void)
1671 {
1672 if (GDB_MULTI_ARCH)
1673 {
1674 /* Accumulate a list of names based on the registed list of
1675 architectures. */
1676 enum bfd_architecture a;
1677 int nr_arches = 0;
1678 const char **arches = NULL;
1679 struct gdbarch_registration *rego;
1680 for (rego = gdbarch_registry;
1681 rego != NULL;
1682 rego = rego->next)
1683 {
1684 const struct bfd_arch_info *ap;
1685 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1686 if (ap == NULL)
1687 internal_error ("gdbarch_architecture_names: multi-arch unknown");
1688 do
1689 {
1690 append_name (&arches, &nr_arches, ap->printable_name);
1691 ap = ap->next;
1692 }
1693 while (ap != NULL);
1694 }
1695 append_name (&arches, &nr_arches, NULL);
1696 return arches;
1697 }
1698 else
1699 /* Just return all the architectures that BFD knows. Assume that
1700 the legacy architecture framework supports them. */
1701 return bfd_arch_list ();
1702 }
1703
1704
1705 void
1706 gdbarch_register (enum bfd_architecture bfd_architecture,
1707 gdbarch_init_ftype *init,
1708 gdbarch_dump_tdep_ftype *dump_tdep)
1709 {
1710 struct gdbarch_registration **curr;
1711 const struct bfd_arch_info *bfd_arch_info;
1712 /* Check that BFD recognizes this architecture */
1713 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1714 if (bfd_arch_info == NULL)
1715 {
1716 internal_error ("gdbarch: Attempt to register unknown architecture (%d)", bfd_architecture);
1717 }
1718 /* Check that we haven't seen this architecture before */
1719 for (curr = &gdbarch_registry;
1720 (*curr) != NULL;
1721 curr = &(*curr)->next)
1722 {
1723 if (bfd_architecture == (*curr)->bfd_architecture)
1724 internal_error ("gdbarch: Duplicate registraration of architecture (%s)",
1725 bfd_arch_info->printable_name);
1726 }
1727 /* log it */
1728 if (gdbarch_debug)
1729 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1730 bfd_arch_info->printable_name,
1731 (long) init);
1732 /* Append it */
1733 (*curr) = XMALLOC (struct gdbarch_registration);
1734 (*curr)->bfd_architecture = bfd_architecture;
1735 (*curr)->init = init;
1736 (*curr)->dump_tdep = dump_tdep;
1737 (*curr)->arches = NULL;
1738 (*curr)->next = NULL;
1739 /* When non- multi-arch, install whatever target dump routine we've
1740 been provided - hopefully that routine has been written correctly
1741 and works regardless of multi-arch. */
1742 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1743 && startup_gdbarch.dump_tdep == NULL)
1744 startup_gdbarch.dump_tdep = dump_tdep;
1745 }
1746
1747 void
1748 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1749 gdbarch_init_ftype *init)
1750 {
1751 gdbarch_register (bfd_architecture, init, NULL);
1752 }
1753
1754
1755 /* Look for an architecture using gdbarch_info. Base search on only
1756 BFD_ARCH_INFO and BYTE_ORDER. */
1757
1758 struct gdbarch_list *
1759 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1760 const struct gdbarch_info *info)
1761 {
1762 for (; arches != NULL; arches = arches->next)
1763 {
1764 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1765 continue;
1766 if (info->byte_order != arches->gdbarch->byte_order)
1767 continue;
1768 return arches;
1769 }
1770 return NULL;
1771 }
1772
1773
1774 /* Update the current architecture. Return ZERO if the update request
1775 failed. */
1776
1777 int
1778 gdbarch_update_p (struct gdbarch_info info)
1779 {
1780 struct gdbarch *new_gdbarch;
1781 struct gdbarch_list **list;
1782 struct gdbarch_registration *rego;
1783
1784 /* Fill in any missing bits. Most important is the bfd_architecture
1785 which is used to select the target architecture. */
1786 if (info.bfd_architecture == bfd_arch_unknown)
1787 {
1788 if (info.bfd_arch_info != NULL)
1789 info.bfd_architecture = info.bfd_arch_info->arch;
1790 else if (info.abfd != NULL)
1791 info.bfd_architecture = bfd_get_arch (info.abfd);
1792 /* FIXME - should query BFD for its default architecture. */
1793 else
1794 info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
1795 }
1796 if (info.bfd_arch_info == NULL)
1797 {
1798 if (target_architecture_auto && info.abfd != NULL)
1799 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1800 else
1801 info.bfd_arch_info = current_gdbarch->bfd_arch_info;
1802 }
1803 if (info.byte_order == 0)
1804 {
1805 if (target_byte_order_auto && info.abfd != NULL)
1806 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1807 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1808 : 0);
1809 else
1810 info.byte_order = current_gdbarch->byte_order;
1811 /* FIXME - should query BFD for its default byte-order. */
1812 }
1813 /* A default for abfd? */
1814
1815 /* Find the target that knows about this architecture. */
1816 for (rego = gdbarch_registry;
1817 rego != NULL;
1818 rego = rego->next)
1819 if (rego->bfd_architecture == info.bfd_architecture)
1820 break;
1821 if (rego == NULL)
1822 {
1823 if (gdbarch_debug)
1824 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1825 return 0;
1826 }
1827
1828 if (gdbarch_debug)
1829 {
1830 fprintf_unfiltered (gdb_stdlog,
1831 "gdbarch_update: info.bfd_architecture %d (%s)\\n",
1832 info.bfd_architecture,
1833 bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
1834 fprintf_unfiltered (gdb_stdlog,
1835 "gdbarch_update: info.bfd_arch_info %s\\n",
1836 (info.bfd_arch_info != NULL
1837 ? info.bfd_arch_info->printable_name
1838 : "(null)"));
1839 fprintf_unfiltered (gdb_stdlog,
1840 "gdbarch_update: info.byte_order %d (%s)\\n",
1841 info.byte_order,
1842 (info.byte_order == BIG_ENDIAN ? "big"
1843 : info.byte_order == LITTLE_ENDIAN ? "little"
1844 : "default"));
1845 fprintf_unfiltered (gdb_stdlog,
1846 "gdbarch_update: info.abfd 0x%lx\\n",
1847 (long) info.abfd);
1848 fprintf_unfiltered (gdb_stdlog,
1849 "gdbarch_update: info.tdep_info 0x%lx\\n",
1850 (long) info.tdep_info);
1851 }
1852
1853 /* Ask the target for a replacement architecture. */
1854 new_gdbarch = rego->init (info, rego->arches);
1855
1856 /* Did the target like it? No. Reject the change. */
1857 if (new_gdbarch == NULL)
1858 {
1859 if (gdbarch_debug)
1860 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
1861 return 0;
1862 }
1863
1864 /* Did the architecture change? No. Do nothing. */
1865 if (current_gdbarch == new_gdbarch)
1866 {
1867 if (gdbarch_debug)
1868 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
1869 (long) new_gdbarch,
1870 new_gdbarch->bfd_arch_info->printable_name);
1871 return 1;
1872 }
1873
1874 /* Swap all data belonging to the old target out */
1875 swapout_gdbarch_swap (current_gdbarch);
1876
1877 /* Is this a pre-existing architecture? Yes. Swap it in. */
1878 for (list = &rego->arches;
1879 (*list) != NULL;
1880 list = &(*list)->next)
1881 {
1882 if ((*list)->gdbarch == new_gdbarch)
1883 {
1884 if (gdbarch_debug)
1885 fprintf_unfiltered (gdb_stdlog,
1886 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
1887 (long) new_gdbarch,
1888 new_gdbarch->bfd_arch_info->printable_name);
1889 current_gdbarch = new_gdbarch;
1890 swapin_gdbarch_swap (new_gdbarch);
1891 return 1;
1892 }
1893 }
1894
1895 /* Append this new architecture to this targets list. */
1896 (*list) = XMALLOC (struct gdbarch_list);
1897 (*list)->next = NULL;
1898 (*list)->gdbarch = new_gdbarch;
1899
1900 /* Switch to this new architecture. Dump it out. */
1901 current_gdbarch = new_gdbarch;
1902 if (gdbarch_debug)
1903 {
1904 fprintf_unfiltered (gdb_stdlog,
1905 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
1906 (long) new_gdbarch,
1907 new_gdbarch->bfd_arch_info->printable_name);
1908 }
1909
1910 /* Check that the newly installed architecture is valid. Plug in
1911 any post init values. */
1912 new_gdbarch->dump_tdep = rego->dump_tdep;
1913 verify_gdbarch (new_gdbarch);
1914
1915 /* Initialize the per-architecture memory (swap) areas.
1916 CURRENT_GDBARCH must be update before these modules are
1917 called. */
1918 init_gdbarch_swap (new_gdbarch);
1919
1920 /* Initialize the per-architecture data-pointer of all parties that
1921 registered an interest in this architecture. CURRENT_GDBARCH
1922 must be updated before these modules are called. */
1923 init_gdbarch_data (new_gdbarch);
1924
1925 if (gdbarch_debug)
1926 gdbarch_dump (current_gdbarch, gdb_stdlog);
1927
1928 return 1;
1929 }
1930
1931
1932 /* Disassembler */
1933
1934 /* Pointer to the target-dependent disassembly function. */
1935 int (*tm_print_insn) (bfd_vma, disassemble_info *);
1936 disassemble_info tm_print_insn_info;
1937
1938
1939 extern void _initialize_gdbarch (void);
1940
1941 void
1942 _initialize_gdbarch (void)
1943 {
1944 struct cmd_list_element *c;
1945
1946 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
1947 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
1948 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
1949 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
1950 tm_print_insn_info.print_address_func = dis_asm_print_address;
1951
1952 add_show_from_set (add_set_cmd ("arch",
1953 class_maintenance,
1954 var_zinteger,
1955 (char *)&gdbarch_debug,
1956 "Set architecture debugging.\\n\\
1957 When non-zero, architecture debugging is enabled.", &setdebuglist),
1958 &showdebuglist);
1959 c = add_set_cmd ("archdebug",
1960 class_maintenance,
1961 var_zinteger,
1962 (char *)&gdbarch_debug,
1963 "Set architecture debugging.\\n\\
1964 When non-zero, architecture debugging is enabled.", &setlist);
1965
1966 deprecate_cmd (c, "set debug arch");
1967 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
1968 }
1969 EOF
1970
1971 # close things off
1972 exec 1>&2
1973 #../move-if-change new-gdbarch.c gdbarch.c
1974 compare_new gdbarch.c
This page took 0.075728 seconds and 4 git commands to generate.