2002-02-04 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87
88 # come up with a format, use a few guesses for variables
89 case ":${class}:${fmt}:${print}:" in
90 :[vV]::: )
91 if [ "${returntype}" = int ]
92 then
93 fmt="%d"
94 print="${macro}"
95 elif [ "${returntype}" = long ]
96 then
97 fmt="%ld"
98 print="${macro}"
99 fi
100 ;;
101 esac
102 test "${fmt}" || fmt="%ld"
103 test "${print}" || print="(long) ${macro}"
104
105 case "${invalid_p}" in
106 0 ) valid_p=1 ;;
107 "" )
108 if [ -n "${predefault}" ]
109 then
110 #invalid_p="gdbarch->${function} == ${predefault}"
111 valid_p="gdbarch->${function} != ${predefault}"
112 else
113 #invalid_p="gdbarch->${function} == 0"
114 valid_p="gdbarch->${function} != 0"
115 fi
116 ;;
117 * ) valid_p="!(${invalid_p})"
118 esac
119
120 # PREDEFAULT is a valid fallback definition of MEMBER when
121 # multi-arch is not enabled. This ensures that the
122 # default value, when multi-arch is the same as the
123 # default value when not multi-arch. POSTDEFAULT is
124 # always a valid definition of MEMBER as this again
125 # ensures consistency.
126
127 if [ -n "${postdefault}" ]
128 then
129 fallbackdefault="${postdefault}"
130 elif [ -n "${predefault}" ]
131 then
132 fallbackdefault="${predefault}"
133 else
134 fallbackdefault="0"
135 fi
136
137 #NOT YET: See gdbarch.log for basic verification of
138 # database
139
140 break
141 fi
142 done
143 if [ -n "${class}" ]
144 then
145 true
146 else
147 false
148 fi
149 }
150
151
152 fallback_default_p ()
153 {
154 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
155 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
156 }
157
158 class_is_variable_p ()
159 {
160 case "${class}" in
161 *v* | *V* ) true ;;
162 * ) false ;;
163 esac
164 }
165
166 class_is_function_p ()
167 {
168 case "${class}" in
169 *f* | *F* | *m* | *M* ) true ;;
170 * ) false ;;
171 esac
172 }
173
174 class_is_multiarch_p ()
175 {
176 case "${class}" in
177 *m* | *M* ) true ;;
178 * ) false ;;
179 esac
180 }
181
182 class_is_predicate_p ()
183 {
184 case "${class}" in
185 *F* | *V* | *M* ) true ;;
186 * ) false ;;
187 esac
188 }
189
190 class_is_info_p ()
191 {
192 case "${class}" in
193 *i* ) true ;;
194 * ) false ;;
195 esac
196 }
197
198
199 # dump out/verify the doco
200 for field in ${read}
201 do
202 case ${field} in
203
204 class ) : ;;
205
206 # # -> line disable
207 # f -> function
208 # hiding a function
209 # F -> function + predicate
210 # hiding a function + predicate to test function validity
211 # v -> variable
212 # hiding a variable
213 # V -> variable + predicate
214 # hiding a variable + predicate to test variables validity
215 # i -> set from info
216 # hiding something from the ``struct info'' object
217 # m -> multi-arch function
218 # hiding a multi-arch function (parameterised with the architecture)
219 # M -> multi-arch function + predicate
220 # hiding a multi-arch function + predicate to test function validity
221
222 level ) : ;;
223
224 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
225 # LEVEL is a predicate on checking that a given method is
226 # initialized (using INVALID_P).
227
228 macro ) : ;;
229
230 # The name of the MACRO that this method is to be accessed by.
231
232 returntype ) : ;;
233
234 # For functions, the return type; for variables, the data type
235
236 function ) : ;;
237
238 # For functions, the member function name; for variables, the
239 # variable name. Member function names are always prefixed with
240 # ``gdbarch_'' for name-space purity.
241
242 formal ) : ;;
243
244 # The formal argument list. It is assumed that the formal
245 # argument list includes the actual name of each list element.
246 # A function with no arguments shall have ``void'' as the
247 # formal argument list.
248
249 actual ) : ;;
250
251 # The list of actual arguments. The arguments specified shall
252 # match the FORMAL list given above. Functions with out
253 # arguments leave this blank.
254
255 attrib ) : ;;
256
257 # Any GCC attributes that should be attached to the function
258 # declaration. At present this field is unused.
259
260 staticdefault ) : ;;
261
262 # To help with the GDB startup a static gdbarch object is
263 # created. STATICDEFAULT is the value to insert into that
264 # static gdbarch object. Since this a static object only
265 # simple expressions can be used.
266
267 # If STATICDEFAULT is empty, zero is used.
268
269 predefault ) : ;;
270
271 # An initial value to assign to MEMBER of the freshly
272 # malloc()ed gdbarch object. After initialization, the
273 # freshly malloc()ed object is passed to the target
274 # architecture code for further updates.
275
276 # If PREDEFAULT is empty, zero is used.
277
278 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
279 # INVALID_P are specified, PREDEFAULT will be used as the
280 # default for the non- multi-arch target.
281
282 # A zero PREDEFAULT function will force the fallback to call
283 # internal_error().
284
285 # Variable declarations can refer to ``gdbarch'' which will
286 # contain the current architecture. Care should be taken.
287
288 postdefault ) : ;;
289
290 # A value to assign to MEMBER of the new gdbarch object should
291 # the target architecture code fail to change the PREDEFAULT
292 # value.
293
294 # If POSTDEFAULT is empty, no post update is performed.
295
296 # If both INVALID_P and POSTDEFAULT are non-empty then
297 # INVALID_P will be used to determine if MEMBER should be
298 # changed to POSTDEFAULT.
299
300 # If a non-empty POSTDEFAULT and a zero INVALID_P are
301 # specified, POSTDEFAULT will be used as the default for the
302 # non- multi-arch target (regardless of the value of
303 # PREDEFAULT).
304
305 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 invalid_p ) : ;;
311
312 # A predicate equation that validates MEMBER. Non-zero is
313 # returned if the code creating the new architecture failed to
314 # initialize MEMBER or the initialized the member is invalid.
315 # If POSTDEFAULT is non-empty then MEMBER will be updated to
316 # that value. If POSTDEFAULT is empty then internal_error()
317 # is called.
318
319 # If INVALID_P is empty, a check that MEMBER is no longer
320 # equal to PREDEFAULT is used.
321
322 # The expression ``0'' disables the INVALID_P check making
323 # PREDEFAULT a legitimate value.
324
325 # See also PREDEFAULT and POSTDEFAULT.
326
327 fmt ) : ;;
328
329 # printf style format string that can be used to print out the
330 # MEMBER. Sometimes "%s" is useful. For functions, this is
331 # ignored and the function address is printed.
332
333 # If FMT is empty, ``%ld'' is used.
334
335 print ) : ;;
336
337 # An optional equation that casts MEMBER to a value suitable
338 # for formatting by FMT.
339
340 # If PRINT is empty, ``(long)'' is used.
341
342 print_p ) : ;;
343
344 # An optional indicator for any predicte to wrap around the
345 # print member code.
346
347 # () -> Call a custom function to do the dump.
348 # exp -> Wrap print up in ``if (${print_p}) ...
349 # ``'' -> No predicate
350
351 # If PRINT_P is empty, ``1'' is always used.
352
353 description ) : ;;
354
355 # Currently unused.
356
357 *) exit 1;;
358 esac
359 done
360
361
362 function_list ()
363 {
364 # See below (DOCO) for description of each field
365 cat <<EOF
366 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
367 #
368 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
369 # Number of bits in a char or unsigned char for the target machine.
370 # Just like CHAR_BIT in <limits.h> but describes the target machine.
371 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
372 #
373 # Number of bits in a short or unsigned short for the target machine.
374 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
375 # Number of bits in an int or unsigned int for the target machine.
376 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
377 # Number of bits in a long or unsigned long for the target machine.
378 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
379 # Number of bits in a long long or unsigned long long for the target
380 # machine.
381 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
382 # Number of bits in a float for the target machine.
383 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
384 # Number of bits in a double for the target machine.
385 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
386 # Number of bits in a long double for the target machine.
387 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
388 # For most targets, a pointer on the target and its representation as an
389 # address in GDB have the same size and "look the same". For such a
390 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
391 # / addr_bit will be set from it.
392 #
393 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
394 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
395 #
396 # ptr_bit is the size of a pointer on the target
397 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
398 # addr_bit is the size of a target address as represented in gdb
399 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
400 # Number of bits in a BFD_VMA for the target object file format.
401 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
402 #
403 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
404 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
405 #
406 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
407 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
408 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
409 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
410 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
411 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
412 # Function for getting target's idea of a frame pointer. FIXME: GDB's
413 # whole scheme for dealing with "frames" and "frame pointers" needs a
414 # serious shakedown.
415 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
416 #
417 M:::void:register_read:int regnum, char *buf:regnum, buf:
418 M:::void:register_write:int regnum, char *buf:regnum, buf:
419 #
420 v:2:NUM_REGS:int:num_regs::::0:-1
421 # This macro gives the number of pseudo-registers that live in the
422 # register namespace but do not get fetched or stored on the target.
423 # These pseudo-registers may be aliases for other registers,
424 # combinations of other registers, or they may be computed by GDB.
425 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
426 v:2:SP_REGNUM:int:sp_regnum::::0:-1
427 v:2:FP_REGNUM:int:fp_regnum::::0:-1
428 v:2:PC_REGNUM:int:pc_regnum::::0:-1
429 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
430 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
431 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
436 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
437 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
438 # Convert from an sdb register number to an internal gdb register number.
439 # This should be defined in tm.h, if REGISTER_NAMES is not set up
440 # to map one to one onto the sdb register numbers.
441 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
442 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
443 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
444 v:2:REGISTER_SIZE:int:register_size::::0:-1
445 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
446 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
447 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
448 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
449 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
450 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
451 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
452 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
453 # MAP a GDB RAW register number onto a simulator register number. See
454 # also include/...-sim.h.
455 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
456 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
457 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
458 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
459 #
460 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
461 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
462 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
463 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
464 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
465 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
466 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
467 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
468 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
469 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
470 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
471 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
472 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
473 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
474 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
475 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
476 #
477 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
478 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
479 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
480 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
481 #
482 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
483 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
484 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
485 # This function is called when the value of a pseudo-register needs to
486 # be updated. Typically it will be defined on a per-architecture
487 # basis.
488 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
489 # This function is called when the value of a pseudo-register needs to
490 # be set or stored. Typically it will be defined on a
491 # per-architecture basis.
492 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
493 #
494 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
495 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
496 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
497 #
498 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
499 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
500 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
501 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
502 F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
503 f:2:POP_FRAME:void:pop_frame:void:-:::0
504 #
505 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
506 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
507 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
508 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
509 #
510 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
511 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
512 #
513 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
514 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
515 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
516 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
517 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
518 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
519 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
520 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
521 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
522 #
523 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
524 #
525 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
526 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
527 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
528 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
529 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
530 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
531 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
532 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
533 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
534 #
535 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
536 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
537 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
538 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
539 v:2:PARM_BOUNDARY:int:parm_boundary
540 #
541 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
542 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
543 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
544 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
545 # On some machines there are bits in addresses which are not really
546 # part of the address, but are used by the kernel, the hardware, etc.
547 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
548 # we get a "real" address such as one would find in a symbol table.
549 # This is used only for addresses of instructions, and even then I'm
550 # not sure it's used in all contexts. It exists to deal with there
551 # being a few stray bits in the PC which would mislead us, not as some
552 # sort of generic thing to handle alignment or segmentation (it's
553 # possible it should be in TARGET_READ_PC instead).
554 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
555 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
556 # ADDR_BITS_REMOVE.
557 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
558 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
559 # the target needs software single step. An ISA method to implement it.
560 #
561 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
562 # using the breakpoint system instead of blatting memory directly (as with rs6000).
563 #
564 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
565 # single step. If not, then implement single step using breakpoints.
566 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
567 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
568 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
569 # For SVR4 shared libraries, each call goes through a small piece of
570 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
571 # to nonzero if we are current stopped in one of these.
572 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
573 # A target might have problems with watchpoints as soon as the stack
574 # frame of the current function has been destroyed. This mostly happens
575 # as the first action in a funtion's epilogue. in_function_epilogue_p()
576 # is defined to return a non-zero value if either the given addr is one
577 # instruction after the stack destroying instruction up to the trailing
578 # return instruction or if we can figure out that the stack frame has
579 # already been invalidated regardless of the value of addr. Targets
580 # which don't suffer from that problem could just let this functionality
581 # untouched.
582 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
583 # Given a vector of command-line arguments, return a newly allocated
584 # string which, when passed to the create_inferior function, will be
585 # parsed (on Unix systems, by the shell) to yield the same vector.
586 # This function should call error() if the argument vector is not
587 # representable for this target or if this target does not support
588 # command-line arguments.
589 # ARGC is the number of elements in the vector.
590 # ARGV is an array of strings, one per argument.
591 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
592 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
593 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
594 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
595 EOF
596 }
597
598 #
599 # The .log file
600 #
601 exec > new-gdbarch.log
602 function_list | while do_read
603 do
604 cat <<EOF
605 ${class} ${macro}(${actual})
606 ${returntype} ${function} ($formal)${attrib}
607 EOF
608 for r in ${read}
609 do
610 eval echo \"\ \ \ \ ${r}=\${${r}}\"
611 done
612 # #fallbackdefault=${fallbackdefault}
613 # #valid_p=${valid_p}
614 #EOF
615 if class_is_predicate_p && fallback_default_p
616 then
617 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
618 kill $$
619 exit 1
620 fi
621 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
622 then
623 echo "Error: postdefault is useless when invalid_p=0" 1>&2
624 kill $$
625 exit 1
626 fi
627 if class_is_multiarch_p
628 then
629 if class_is_predicate_p ; then :
630 elif test "x${predefault}" = "x"
631 then
632 echo "Error: pure multi-arch function must have a predefault" 1>&2
633 kill $$
634 exit 1
635 fi
636 fi
637 echo ""
638 done
639
640 exec 1>&2
641 compare_new gdbarch.log
642
643
644 copyright ()
645 {
646 cat <<EOF
647 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
648
649 /* Dynamic architecture support for GDB, the GNU debugger.
650 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
651
652 This file is part of GDB.
653
654 This program is free software; you can redistribute it and/or modify
655 it under the terms of the GNU General Public License as published by
656 the Free Software Foundation; either version 2 of the License, or
657 (at your option) any later version.
658
659 This program is distributed in the hope that it will be useful,
660 but WITHOUT ANY WARRANTY; without even the implied warranty of
661 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
662 GNU General Public License for more details.
663
664 You should have received a copy of the GNU General Public License
665 along with this program; if not, write to the Free Software
666 Foundation, Inc., 59 Temple Place - Suite 330,
667 Boston, MA 02111-1307, USA. */
668
669 /* This file was created with the aid of \`\`gdbarch.sh''.
670
671 The Bourne shell script \`\`gdbarch.sh'' creates the files
672 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
673 against the existing \`\`gdbarch.[hc]''. Any differences found
674 being reported.
675
676 If editing this file, please also run gdbarch.sh and merge any
677 changes into that script. Conversely, when making sweeping changes
678 to this file, modifying gdbarch.sh and using its output may prove
679 easier. */
680
681 EOF
682 }
683
684 #
685 # The .h file
686 #
687
688 exec > new-gdbarch.h
689 copyright
690 cat <<EOF
691 #ifndef GDBARCH_H
692 #define GDBARCH_H
693
694 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
695 #if !GDB_MULTI_ARCH
696 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
697 #endif
698
699 struct frame_info;
700 struct value;
701 struct objfile;
702 struct minimal_symbol;
703
704 extern struct gdbarch *current_gdbarch;
705
706
707 /* If any of the following are defined, the target wasn't correctly
708 converted. */
709
710 #if GDB_MULTI_ARCH
711 #if defined (EXTRA_FRAME_INFO)
712 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
713 #endif
714 #endif
715
716 #if GDB_MULTI_ARCH
717 #if defined (FRAME_FIND_SAVED_REGS)
718 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
719 #endif
720 #endif
721
722 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
723 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
724 #endif
725 EOF
726
727 # function typedef's
728 printf "\n"
729 printf "\n"
730 printf "/* The following are pre-initialized by GDBARCH. */\n"
731 function_list | while do_read
732 do
733 if class_is_info_p
734 then
735 printf "\n"
736 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
737 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
738 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
739 printf "#error \"Non multi-arch definition of ${macro}\"\n"
740 printf "#endif\n"
741 printf "#if GDB_MULTI_ARCH\n"
742 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
743 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
744 printf "#endif\n"
745 printf "#endif\n"
746 fi
747 done
748
749 # function typedef's
750 printf "\n"
751 printf "\n"
752 printf "/* The following are initialized by the target dependent code. */\n"
753 function_list | while do_read
754 do
755 if [ -n "${comment}" ]
756 then
757 echo "${comment}" | sed \
758 -e '2 s,#,/*,' \
759 -e '3,$ s,#, ,' \
760 -e '$ s,$, */,'
761 fi
762 if class_is_multiarch_p
763 then
764 if class_is_predicate_p
765 then
766 printf "\n"
767 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
768 fi
769 else
770 if class_is_predicate_p
771 then
772 printf "\n"
773 printf "#if defined (${macro})\n"
774 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
775 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
776 printf "#if !defined (${macro}_P)\n"
777 printf "#define ${macro}_P() (1)\n"
778 printf "#endif\n"
779 printf "#endif\n"
780 printf "\n"
781 printf "/* Default predicate for non- multi-arch targets. */\n"
782 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
783 printf "#define ${macro}_P() (0)\n"
784 printf "#endif\n"
785 printf "\n"
786 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
787 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
788 printf "#error \"Non multi-arch definition of ${macro}\"\n"
789 printf "#endif\n"
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
791 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
792 printf "#endif\n"
793 fi
794 fi
795 if class_is_variable_p
796 then
797 if fallback_default_p || class_is_predicate_p
798 then
799 printf "\n"
800 printf "/* Default (value) for non- multi-arch platforms. */\n"
801 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
802 echo "#define ${macro} (${fallbackdefault})" \
803 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
804 printf "#endif\n"
805 fi
806 printf "\n"
807 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
808 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
809 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
810 printf "#error \"Non multi-arch definition of ${macro}\"\n"
811 printf "#endif\n"
812 printf "#if GDB_MULTI_ARCH\n"
813 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
814 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
815 printf "#endif\n"
816 printf "#endif\n"
817 fi
818 if class_is_function_p
819 then
820 if class_is_multiarch_p ; then :
821 elif fallback_default_p || class_is_predicate_p
822 then
823 printf "\n"
824 printf "/* Default (function) for non- multi-arch platforms. */\n"
825 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
826 if [ "x${fallbackdefault}" = "x0" ]
827 then
828 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
829 else
830 # FIXME: Should be passing current_gdbarch through!
831 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
832 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
833 fi
834 printf "#endif\n"
835 fi
836 printf "\n"
837 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
838 then
839 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
840 elif class_is_multiarch_p
841 then
842 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
843 else
844 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
845 fi
846 if [ "x${formal}" = "xvoid" ]
847 then
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 else
850 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
851 fi
852 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
853 if class_is_multiarch_p ; then :
854 else
855 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#endif\n"
858 printf "#if GDB_MULTI_ARCH\n"
859 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
860 if [ "x${actual}" = "x" ]
861 then
862 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
863 elif [ "x${actual}" = "x-" ]
864 then
865 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
866 else
867 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
868 fi
869 printf "#endif\n"
870 printf "#endif\n"
871 fi
872 fi
873 done
874
875 # close it off
876 cat <<EOF
877
878 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
879
880
881 /* Mechanism for co-ordinating the selection of a specific
882 architecture.
883
884 GDB targets (*-tdep.c) can register an interest in a specific
885 architecture. Other GDB components can register a need to maintain
886 per-architecture data.
887
888 The mechanisms below ensures that there is only a loose connection
889 between the set-architecture command and the various GDB
890 components. Each component can independently register their need
891 to maintain architecture specific data with gdbarch.
892
893 Pragmatics:
894
895 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
896 didn't scale.
897
898 The more traditional mega-struct containing architecture specific
899 data for all the various GDB components was also considered. Since
900 GDB is built from a variable number of (fairly independent)
901 components it was determined that the global aproach was not
902 applicable. */
903
904
905 /* Register a new architectural family with GDB.
906
907 Register support for the specified ARCHITECTURE with GDB. When
908 gdbarch determines that the specified architecture has been
909 selected, the corresponding INIT function is called.
910
911 --
912
913 The INIT function takes two parameters: INFO which contains the
914 information available to gdbarch about the (possibly new)
915 architecture; ARCHES which is a list of the previously created
916 \`\`struct gdbarch'' for this architecture.
917
918 The INIT function parameter INFO shall, as far as possible, be
919 pre-initialized with information obtained from INFO.ABFD or
920 previously selected architecture (if similar).
921
922 The INIT function shall return any of: NULL - indicating that it
923 doesn't recognize the selected architecture; an existing \`\`struct
924 gdbarch'' from the ARCHES list - indicating that the new
925 architecture is just a synonym for an earlier architecture (see
926 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
927 - that describes the selected architecture (see gdbarch_alloc()).
928
929 The DUMP_TDEP function shall print out all target specific values.
930 Care should be taken to ensure that the function works in both the
931 multi-arch and non- multi-arch cases. */
932
933 struct gdbarch_list
934 {
935 struct gdbarch *gdbarch;
936 struct gdbarch_list *next;
937 };
938
939 struct gdbarch_info
940 {
941 /* Use default: NULL (ZERO). */
942 const struct bfd_arch_info *bfd_arch_info;
943
944 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
945 int byte_order;
946
947 /* Use default: NULL (ZERO). */
948 bfd *abfd;
949
950 /* Use default: NULL (ZERO). */
951 struct gdbarch_tdep_info *tdep_info;
952 };
953
954 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
955 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
956
957 /* DEPRECATED - use gdbarch_register() */
958 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
959
960 extern void gdbarch_register (enum bfd_architecture architecture,
961 gdbarch_init_ftype *,
962 gdbarch_dump_tdep_ftype *);
963
964
965 /* Return a freshly allocated, NULL terminated, array of the valid
966 architecture names. Since architectures are registered during the
967 _initialize phase this function only returns useful information
968 once initialization has been completed. */
969
970 extern const char **gdbarch_printable_names (void);
971
972
973 /* Helper function. Search the list of ARCHES for a GDBARCH that
974 matches the information provided by INFO. */
975
976 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
977
978
979 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
980 basic initialization using values obtained from the INFO andTDEP
981 parameters. set_gdbarch_*() functions are called to complete the
982 initialization of the object. */
983
984 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
985
986
987 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
988 It is assumed that the caller freeds the \`\`struct
989 gdbarch_tdep''. */
990
991 extern void gdbarch_free (struct gdbarch *);
992
993
994 /* Helper function. Force an update of the current architecture.
995
996 The actual architecture selected is determined by INFO, \`\`(gdb) set
997 architecture'' et.al., the existing architecture and BFD's default
998 architecture. INFO should be initialized to zero and then selected
999 fields should be updated.
1000
1001 Returns non-zero if the update succeeds */
1002
1003 extern int gdbarch_update_p (struct gdbarch_info info);
1004
1005
1006
1007 /* Register per-architecture data-pointer.
1008
1009 Reserve space for a per-architecture data-pointer. An identifier
1010 for the reserved data-pointer is returned. That identifer should
1011 be saved in a local static variable.
1012
1013 The per-architecture data-pointer can be initialized in one of two
1014 ways: The value can be set explicitly using a call to
1015 set_gdbarch_data(); the value can be set implicitly using the value
1016 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1017 called after the basic architecture vector has been created.
1018
1019 When a previously created architecture is re-selected, the
1020 per-architecture data-pointer for that previous architecture is
1021 restored. INIT() is not called.
1022
1023 During initialization, multiple assignments of the data-pointer are
1024 allowed, non-NULL values are deleted by calling FREE(). If the
1025 architecture is deleted using gdbarch_free() all non-NULL data
1026 pointers are also deleted using FREE().
1027
1028 Multiple registrarants for any architecture are allowed (and
1029 strongly encouraged). */
1030
1031 struct gdbarch_data;
1032
1033 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1034 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1035 void *pointer);
1036 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1037 gdbarch_data_free_ftype *free);
1038 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1039 struct gdbarch_data *data,
1040 void *pointer);
1041
1042 extern void *gdbarch_data (struct gdbarch_data*);
1043
1044
1045 /* Register per-architecture memory region.
1046
1047 Provide a memory-region swap mechanism. Per-architecture memory
1048 region are created. These memory regions are swapped whenever the
1049 architecture is changed. For a new architecture, the memory region
1050 is initialized with zero (0) and the INIT function is called.
1051
1052 Memory regions are swapped / initialized in the order that they are
1053 registered. NULL DATA and/or INIT values can be specified.
1054
1055 New code should use register_gdbarch_data(). */
1056
1057 typedef void (gdbarch_swap_ftype) (void);
1058 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1059 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1060
1061
1062
1063 /* The target-system-dependent byte order is dynamic */
1064
1065 extern int target_byte_order;
1066 #ifndef TARGET_BYTE_ORDER
1067 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1068 #endif
1069
1070 extern int target_byte_order_auto;
1071 #ifndef TARGET_BYTE_ORDER_AUTO
1072 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1073 #endif
1074
1075
1076
1077 /* The target-system-dependent BFD architecture is dynamic */
1078
1079 extern int target_architecture_auto;
1080 #ifndef TARGET_ARCHITECTURE_AUTO
1081 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1082 #endif
1083
1084 extern const struct bfd_arch_info *target_architecture;
1085 #ifndef TARGET_ARCHITECTURE
1086 #define TARGET_ARCHITECTURE (target_architecture + 0)
1087 #endif
1088
1089
1090 /* The target-system-dependent disassembler is semi-dynamic */
1091
1092 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1093 unsigned int len, disassemble_info *info);
1094
1095 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1096 disassemble_info *info);
1097
1098 extern void dis_asm_print_address (bfd_vma addr,
1099 disassemble_info *info);
1100
1101 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1102 extern disassemble_info tm_print_insn_info;
1103 #ifndef TARGET_PRINT_INSN_INFO
1104 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1105 #endif
1106
1107
1108
1109 /* Set the dynamic target-system-dependent parameters (architecture,
1110 byte-order, ...) using information found in the BFD */
1111
1112 extern void set_gdbarch_from_file (bfd *);
1113
1114
1115 /* Initialize the current architecture to the "first" one we find on
1116 our list. */
1117
1118 extern void initialize_current_architecture (void);
1119
1120 /* For non-multiarched targets, do any initialization of the default
1121 gdbarch object necessary after the _initialize_MODULE functions
1122 have run. */
1123 extern void initialize_non_multiarch ();
1124
1125 /* gdbarch trace variable */
1126 extern int gdbarch_debug;
1127
1128 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1129
1130 #endif
1131 EOF
1132 exec 1>&2
1133 #../move-if-change new-gdbarch.h gdbarch.h
1134 compare_new gdbarch.h
1135
1136
1137 #
1138 # C file
1139 #
1140
1141 exec > new-gdbarch.c
1142 copyright
1143 cat <<EOF
1144
1145 #include "defs.h"
1146 #include "arch-utils.h"
1147
1148 #if GDB_MULTI_ARCH
1149 #include "gdbcmd.h"
1150 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1151 #else
1152 /* Just include everything in sight so that the every old definition
1153 of macro is visible. */
1154 #include "gdb_string.h"
1155 #include <ctype.h>
1156 #include "symtab.h"
1157 #include "frame.h"
1158 #include "inferior.h"
1159 #include "breakpoint.h"
1160 #include "gdb_wait.h"
1161 #include "gdbcore.h"
1162 #include "gdbcmd.h"
1163 #include "target.h"
1164 #include "gdbthread.h"
1165 #include "annotate.h"
1166 #include "symfile.h" /* for overlay functions */
1167 #include "value.h" /* For old tm.h/nm.h macros. */
1168 #endif
1169 #include "symcat.h"
1170
1171 #include "floatformat.h"
1172
1173 #include "gdb_assert.h"
1174 #include "gdb-events.h"
1175
1176 /* Static function declarations */
1177
1178 static void verify_gdbarch (struct gdbarch *gdbarch);
1179 static void alloc_gdbarch_data (struct gdbarch *);
1180 static void init_gdbarch_data (struct gdbarch *);
1181 static void free_gdbarch_data (struct gdbarch *);
1182 static void init_gdbarch_swap (struct gdbarch *);
1183 static void swapout_gdbarch_swap (struct gdbarch *);
1184 static void swapin_gdbarch_swap (struct gdbarch *);
1185
1186 /* Convenience macro for allocting typesafe memory. */
1187
1188 #ifndef XMALLOC
1189 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1190 #endif
1191
1192
1193 /* Non-zero if we want to trace architecture code. */
1194
1195 #ifndef GDBARCH_DEBUG
1196 #define GDBARCH_DEBUG 0
1197 #endif
1198 int gdbarch_debug = GDBARCH_DEBUG;
1199
1200 EOF
1201
1202 # gdbarch open the gdbarch object
1203 printf "\n"
1204 printf "/* Maintain the struct gdbarch object */\n"
1205 printf "\n"
1206 printf "struct gdbarch\n"
1207 printf "{\n"
1208 printf " /* basic architectural information */\n"
1209 function_list | while do_read
1210 do
1211 if class_is_info_p
1212 then
1213 printf " ${returntype} ${function};\n"
1214 fi
1215 done
1216 printf "\n"
1217 printf " /* target specific vector. */\n"
1218 printf " struct gdbarch_tdep *tdep;\n"
1219 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1220 printf "\n"
1221 printf " /* per-architecture data-pointers */\n"
1222 printf " unsigned nr_data;\n"
1223 printf " void **data;\n"
1224 printf "\n"
1225 printf " /* per-architecture swap-regions */\n"
1226 printf " struct gdbarch_swap *swap;\n"
1227 printf "\n"
1228 cat <<EOF
1229 /* Multi-arch values.
1230
1231 When extending this structure you must:
1232
1233 Add the field below.
1234
1235 Declare set/get functions and define the corresponding
1236 macro in gdbarch.h.
1237
1238 gdbarch_alloc(): If zero/NULL is not a suitable default,
1239 initialize the new field.
1240
1241 verify_gdbarch(): Confirm that the target updated the field
1242 correctly.
1243
1244 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1245 field is dumped out
1246
1247 \`\`startup_gdbarch()'': Append an initial value to the static
1248 variable (base values on the host's c-type system).
1249
1250 get_gdbarch(): Implement the set/get functions (probably using
1251 the macro's as shortcuts).
1252
1253 */
1254
1255 EOF
1256 function_list | while do_read
1257 do
1258 if class_is_variable_p
1259 then
1260 printf " ${returntype} ${function};\n"
1261 elif class_is_function_p
1262 then
1263 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1264 fi
1265 done
1266 printf "};\n"
1267
1268 # A pre-initialized vector
1269 printf "\n"
1270 printf "\n"
1271 cat <<EOF
1272 /* The default architecture uses host values (for want of a better
1273 choice). */
1274 EOF
1275 printf "\n"
1276 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1277 printf "\n"
1278 printf "struct gdbarch startup_gdbarch =\n"
1279 printf "{\n"
1280 printf " /* basic architecture information */\n"
1281 function_list | while do_read
1282 do
1283 if class_is_info_p
1284 then
1285 printf " ${staticdefault},\n"
1286 fi
1287 done
1288 cat <<EOF
1289 /* target specific vector and its dump routine */
1290 NULL, NULL,
1291 /*per-architecture data-pointers and swap regions */
1292 0, NULL, NULL,
1293 /* Multi-arch values */
1294 EOF
1295 function_list | while do_read
1296 do
1297 if class_is_function_p || class_is_variable_p
1298 then
1299 printf " ${staticdefault},\n"
1300 fi
1301 done
1302 cat <<EOF
1303 /* startup_gdbarch() */
1304 };
1305
1306 struct gdbarch *current_gdbarch = &startup_gdbarch;
1307
1308 /* Do any initialization needed for a non-multiarch configuration
1309 after the _initialize_MODULE functions have been run. */
1310 void
1311 initialize_non_multiarch ()
1312 {
1313 alloc_gdbarch_data (&startup_gdbarch);
1314 init_gdbarch_data (&startup_gdbarch);
1315 }
1316 EOF
1317
1318 # Create a new gdbarch struct
1319 printf "\n"
1320 printf "\n"
1321 cat <<EOF
1322 /* Create a new \`\`struct gdbarch'' based on information provided by
1323 \`\`struct gdbarch_info''. */
1324 EOF
1325 printf "\n"
1326 cat <<EOF
1327 struct gdbarch *
1328 gdbarch_alloc (const struct gdbarch_info *info,
1329 struct gdbarch_tdep *tdep)
1330 {
1331 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1332 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1333 the current local architecture and not the previous global
1334 architecture. This ensures that the new architectures initial
1335 values are not influenced by the previous architecture. Once
1336 everything is parameterised with gdbarch, this will go away. */
1337 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1338 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1339
1340 alloc_gdbarch_data (current_gdbarch);
1341
1342 current_gdbarch->tdep = tdep;
1343 EOF
1344 printf "\n"
1345 function_list | while do_read
1346 do
1347 if class_is_info_p
1348 then
1349 printf " current_gdbarch->${function} = info->${function};\n"
1350 fi
1351 done
1352 printf "\n"
1353 printf " /* Force the explicit initialization of these. */\n"
1354 function_list | while do_read
1355 do
1356 if class_is_function_p || class_is_variable_p
1357 then
1358 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1359 then
1360 printf " current_gdbarch->${function} = ${predefault};\n"
1361 fi
1362 fi
1363 done
1364 cat <<EOF
1365 /* gdbarch_alloc() */
1366
1367 return current_gdbarch;
1368 }
1369 EOF
1370
1371 # Free a gdbarch struct.
1372 printf "\n"
1373 printf "\n"
1374 cat <<EOF
1375 /* Free a gdbarch struct. This should never happen in normal
1376 operation --- once you've created a gdbarch, you keep it around.
1377 However, if an architecture's init function encounters an error
1378 building the structure, it may need to clean up a partially
1379 constructed gdbarch. */
1380
1381 void
1382 gdbarch_free (struct gdbarch *arch)
1383 {
1384 gdb_assert (arch != NULL);
1385 free_gdbarch_data (arch);
1386 xfree (arch);
1387 }
1388 EOF
1389
1390 # verify a new architecture
1391 printf "\n"
1392 printf "\n"
1393 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1394 printf "\n"
1395 cat <<EOF
1396 static void
1397 verify_gdbarch (struct gdbarch *gdbarch)
1398 {
1399 struct ui_file *log;
1400 struct cleanup *cleanups;
1401 long dummy;
1402 char *buf;
1403 /* Only perform sanity checks on a multi-arch target. */
1404 if (!GDB_MULTI_ARCH)
1405 return;
1406 log = mem_fileopen ();
1407 cleanups = make_cleanup_ui_file_delete (log);
1408 /* fundamental */
1409 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1410 fprintf_unfiltered (log, "\n\tbyte-order");
1411 if (gdbarch->bfd_arch_info == NULL)
1412 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1413 /* Check those that need to be defined for the given multi-arch level. */
1414 EOF
1415 function_list | while do_read
1416 do
1417 if class_is_function_p || class_is_variable_p
1418 then
1419 if [ "x${invalid_p}" = "x0" ]
1420 then
1421 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1422 elif class_is_predicate_p
1423 then
1424 printf " /* Skip verify of ${function}, has predicate */\n"
1425 # FIXME: See do_read for potential simplification
1426 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1427 then
1428 printf " if (${invalid_p})\n"
1429 printf " gdbarch->${function} = ${postdefault};\n"
1430 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1431 then
1432 printf " if (gdbarch->${function} == ${predefault})\n"
1433 printf " gdbarch->${function} = ${postdefault};\n"
1434 elif [ -n "${postdefault}" ]
1435 then
1436 printf " if (gdbarch->${function} == 0)\n"
1437 printf " gdbarch->${function} = ${postdefault};\n"
1438 elif [ -n "${invalid_p}" ]
1439 then
1440 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1441 printf " && (${invalid_p}))\n"
1442 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1443 elif [ -n "${predefault}" ]
1444 then
1445 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1446 printf " && (gdbarch->${function} == ${predefault}))\n"
1447 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1448 fi
1449 fi
1450 done
1451 cat <<EOF
1452 buf = ui_file_xstrdup (log, &dummy);
1453 make_cleanup (xfree, buf);
1454 if (strlen (buf) > 0)
1455 internal_error (__FILE__, __LINE__,
1456 "verify_gdbarch: the following are invalid ...%s",
1457 buf);
1458 do_cleanups (cleanups);
1459 }
1460 EOF
1461
1462 # dump the structure
1463 printf "\n"
1464 printf "\n"
1465 cat <<EOF
1466 /* Print out the details of the current architecture. */
1467
1468 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1469 just happens to match the global variable \`\`current_gdbarch''. That
1470 way macros refering to that variable get the local and not the global
1471 version - ulgh. Once everything is parameterised with gdbarch, this
1472 will go away. */
1473
1474 void
1475 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1476 {
1477 fprintf_unfiltered (file,
1478 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1479 GDB_MULTI_ARCH);
1480 EOF
1481 function_list | sort -t: +2 | while do_read
1482 do
1483 # multiarch functions don't have macros.
1484 if class_is_multiarch_p
1485 then
1486 printf " if (GDB_MULTI_ARCH)\n"
1487 printf " fprintf_unfiltered (file,\n"
1488 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1489 printf " (long) current_gdbarch->${function});\n"
1490 continue
1491 fi
1492 # Print the macro definition.
1493 printf "#ifdef ${macro}\n"
1494 if [ "x${returntype}" = "xvoid" ]
1495 then
1496 printf "#if GDB_MULTI_ARCH\n"
1497 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1498 fi
1499 if class_is_function_p
1500 then
1501 printf " fprintf_unfiltered (file,\n"
1502 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1503 printf " \"${macro}(${actual})\",\n"
1504 printf " XSTRING (${macro} (${actual})));\n"
1505 else
1506 printf " fprintf_unfiltered (file,\n"
1507 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1508 printf " XSTRING (${macro}));\n"
1509 fi
1510 # Print the architecture vector value
1511 if [ "x${returntype}" = "xvoid" ]
1512 then
1513 printf "#endif\n"
1514 fi
1515 if [ "x${print_p}" = "x()" ]
1516 then
1517 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1518 elif [ "x${print_p}" = "x0" ]
1519 then
1520 printf " /* skip print of ${macro}, print_p == 0. */\n"
1521 elif [ -n "${print_p}" ]
1522 then
1523 printf " if (${print_p})\n"
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1526 printf " ${print});\n"
1527 elif class_is_function_p
1528 then
1529 printf " if (GDB_MULTI_ARCH)\n"
1530 printf " fprintf_unfiltered (file,\n"
1531 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1532 printf " (long) current_gdbarch->${function}\n"
1533 printf " /*${macro} ()*/);\n"
1534 else
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1537 printf " ${print});\n"
1538 fi
1539 printf "#endif\n"
1540 done
1541 cat <<EOF
1542 if (current_gdbarch->dump_tdep != NULL)
1543 current_gdbarch->dump_tdep (current_gdbarch, file);
1544 }
1545 EOF
1546
1547
1548 # GET/SET
1549 printf "\n"
1550 cat <<EOF
1551 struct gdbarch_tdep *
1552 gdbarch_tdep (struct gdbarch *gdbarch)
1553 {
1554 if (gdbarch_debug >= 2)
1555 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1556 return gdbarch->tdep;
1557 }
1558 EOF
1559 printf "\n"
1560 function_list | while do_read
1561 do
1562 if class_is_predicate_p
1563 then
1564 printf "\n"
1565 printf "int\n"
1566 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1567 printf "{\n"
1568 if [ -n "${valid_p}" ]
1569 then
1570 printf " return ${valid_p};\n"
1571 else
1572 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1573 fi
1574 printf "}\n"
1575 fi
1576 if class_is_function_p
1577 then
1578 printf "\n"
1579 printf "${returntype}\n"
1580 if [ "x${formal}" = "xvoid" ]
1581 then
1582 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1583 else
1584 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1585 fi
1586 printf "{\n"
1587 printf " if (gdbarch->${function} == 0)\n"
1588 printf " internal_error (__FILE__, __LINE__,\n"
1589 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1590 printf " if (gdbarch_debug >= 2)\n"
1591 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1592 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1593 then
1594 if class_is_multiarch_p
1595 then
1596 params="gdbarch"
1597 else
1598 params=""
1599 fi
1600 else
1601 if class_is_multiarch_p
1602 then
1603 params="gdbarch, ${actual}"
1604 else
1605 params="${actual}"
1606 fi
1607 fi
1608 if [ "x${returntype}" = "xvoid" ]
1609 then
1610 printf " gdbarch->${function} (${params});\n"
1611 else
1612 printf " return gdbarch->${function} (${params});\n"
1613 fi
1614 printf "}\n"
1615 printf "\n"
1616 printf "void\n"
1617 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1618 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1619 printf "{\n"
1620 printf " gdbarch->${function} = ${function};\n"
1621 printf "}\n"
1622 elif class_is_variable_p
1623 then
1624 printf "\n"
1625 printf "${returntype}\n"
1626 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1627 printf "{\n"
1628 if [ "x${invalid_p}" = "x0" ]
1629 then
1630 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1631 elif [ -n "${invalid_p}" ]
1632 then
1633 printf " if (${invalid_p})\n"
1634 printf " internal_error (__FILE__, __LINE__,\n"
1635 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1636 elif [ -n "${predefault}" ]
1637 then
1638 printf " if (gdbarch->${function} == ${predefault})\n"
1639 printf " internal_error (__FILE__, __LINE__,\n"
1640 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1641 fi
1642 printf " if (gdbarch_debug >= 2)\n"
1643 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1644 printf " return gdbarch->${function};\n"
1645 printf "}\n"
1646 printf "\n"
1647 printf "void\n"
1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1649 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1650 printf "{\n"
1651 printf " gdbarch->${function} = ${function};\n"
1652 printf "}\n"
1653 elif class_is_info_p
1654 then
1655 printf "\n"
1656 printf "${returntype}\n"
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1658 printf "{\n"
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661 printf " return gdbarch->${function};\n"
1662 printf "}\n"
1663 fi
1664 done
1665
1666 # All the trailing guff
1667 cat <<EOF
1668
1669
1670 /* Keep a registry of per-architecture data-pointers required by GDB
1671 modules. */
1672
1673 struct gdbarch_data
1674 {
1675 unsigned index;
1676 gdbarch_data_init_ftype *init;
1677 gdbarch_data_free_ftype *free;
1678 };
1679
1680 struct gdbarch_data_registration
1681 {
1682 struct gdbarch_data *data;
1683 struct gdbarch_data_registration *next;
1684 };
1685
1686 struct gdbarch_data_registry
1687 {
1688 unsigned nr;
1689 struct gdbarch_data_registration *registrations;
1690 };
1691
1692 struct gdbarch_data_registry gdbarch_data_registry =
1693 {
1694 0, NULL,
1695 };
1696
1697 struct gdbarch_data *
1698 register_gdbarch_data (gdbarch_data_init_ftype *init,
1699 gdbarch_data_free_ftype *free)
1700 {
1701 struct gdbarch_data_registration **curr;
1702 for (curr = &gdbarch_data_registry.registrations;
1703 (*curr) != NULL;
1704 curr = &(*curr)->next);
1705 (*curr) = XMALLOC (struct gdbarch_data_registration);
1706 (*curr)->next = NULL;
1707 (*curr)->data = XMALLOC (struct gdbarch_data);
1708 (*curr)->data->index = gdbarch_data_registry.nr++;
1709 (*curr)->data->init = init;
1710 (*curr)->data->free = free;
1711 return (*curr)->data;
1712 }
1713
1714
1715 /* Walk through all the registered users initializing each in turn. */
1716
1717 static void
1718 init_gdbarch_data (struct gdbarch *gdbarch)
1719 {
1720 struct gdbarch_data_registration *rego;
1721 for (rego = gdbarch_data_registry.registrations;
1722 rego != NULL;
1723 rego = rego->next)
1724 {
1725 struct gdbarch_data *data = rego->data;
1726 gdb_assert (data->index < gdbarch->nr_data);
1727 if (data->init != NULL)
1728 {
1729 void *pointer = data->init (gdbarch);
1730 set_gdbarch_data (gdbarch, data, pointer);
1731 }
1732 }
1733 }
1734
1735 /* Create/delete the gdbarch data vector. */
1736
1737 static void
1738 alloc_gdbarch_data (struct gdbarch *gdbarch)
1739 {
1740 gdb_assert (gdbarch->data == NULL);
1741 gdbarch->nr_data = gdbarch_data_registry.nr;
1742 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1743 }
1744
1745 static void
1746 free_gdbarch_data (struct gdbarch *gdbarch)
1747 {
1748 struct gdbarch_data_registration *rego;
1749 gdb_assert (gdbarch->data != NULL);
1750 for (rego = gdbarch_data_registry.registrations;
1751 rego != NULL;
1752 rego = rego->next)
1753 {
1754 struct gdbarch_data *data = rego->data;
1755 gdb_assert (data->index < gdbarch->nr_data);
1756 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1757 {
1758 data->free (gdbarch, gdbarch->data[data->index]);
1759 gdbarch->data[data->index] = NULL;
1760 }
1761 }
1762 xfree (gdbarch->data);
1763 gdbarch->data = NULL;
1764 }
1765
1766
1767 /* Initialize the current value of thee specified per-architecture
1768 data-pointer. */
1769
1770 void
1771 set_gdbarch_data (struct gdbarch *gdbarch,
1772 struct gdbarch_data *data,
1773 void *pointer)
1774 {
1775 gdb_assert (data->index < gdbarch->nr_data);
1776 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1777 data->free (gdbarch, gdbarch->data[data->index]);
1778 gdbarch->data[data->index] = pointer;
1779 }
1780
1781 /* Return the current value of the specified per-architecture
1782 data-pointer. */
1783
1784 void *
1785 gdbarch_data (struct gdbarch_data *data)
1786 {
1787 gdb_assert (data->index < current_gdbarch->nr_data);
1788 return current_gdbarch->data[data->index];
1789 }
1790
1791
1792
1793 /* Keep a registry of swapped data required by GDB modules. */
1794
1795 struct gdbarch_swap
1796 {
1797 void *swap;
1798 struct gdbarch_swap_registration *source;
1799 struct gdbarch_swap *next;
1800 };
1801
1802 struct gdbarch_swap_registration
1803 {
1804 void *data;
1805 unsigned long sizeof_data;
1806 gdbarch_swap_ftype *init;
1807 struct gdbarch_swap_registration *next;
1808 };
1809
1810 struct gdbarch_swap_registry
1811 {
1812 int nr;
1813 struct gdbarch_swap_registration *registrations;
1814 };
1815
1816 struct gdbarch_swap_registry gdbarch_swap_registry =
1817 {
1818 0, NULL,
1819 };
1820
1821 void
1822 register_gdbarch_swap (void *data,
1823 unsigned long sizeof_data,
1824 gdbarch_swap_ftype *init)
1825 {
1826 struct gdbarch_swap_registration **rego;
1827 for (rego = &gdbarch_swap_registry.registrations;
1828 (*rego) != NULL;
1829 rego = &(*rego)->next);
1830 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1831 (*rego)->next = NULL;
1832 (*rego)->init = init;
1833 (*rego)->data = data;
1834 (*rego)->sizeof_data = sizeof_data;
1835 }
1836
1837
1838 static void
1839 init_gdbarch_swap (struct gdbarch *gdbarch)
1840 {
1841 struct gdbarch_swap_registration *rego;
1842 struct gdbarch_swap **curr = &gdbarch->swap;
1843 for (rego = gdbarch_swap_registry.registrations;
1844 rego != NULL;
1845 rego = rego->next)
1846 {
1847 if (rego->data != NULL)
1848 {
1849 (*curr) = XMALLOC (struct gdbarch_swap);
1850 (*curr)->source = rego;
1851 (*curr)->swap = xmalloc (rego->sizeof_data);
1852 (*curr)->next = NULL;
1853 memset (rego->data, 0, rego->sizeof_data);
1854 curr = &(*curr)->next;
1855 }
1856 if (rego->init != NULL)
1857 rego->init ();
1858 }
1859 }
1860
1861 static void
1862 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1863 {
1864 struct gdbarch_swap *curr;
1865 for (curr = gdbarch->swap;
1866 curr != NULL;
1867 curr = curr->next)
1868 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1869 }
1870
1871 static void
1872 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1873 {
1874 struct gdbarch_swap *curr;
1875 for (curr = gdbarch->swap;
1876 curr != NULL;
1877 curr = curr->next)
1878 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1879 }
1880
1881
1882 /* Keep a registry of the architectures known by GDB. */
1883
1884 struct gdbarch_registration
1885 {
1886 enum bfd_architecture bfd_architecture;
1887 gdbarch_init_ftype *init;
1888 gdbarch_dump_tdep_ftype *dump_tdep;
1889 struct gdbarch_list *arches;
1890 struct gdbarch_registration *next;
1891 };
1892
1893 static struct gdbarch_registration *gdbarch_registry = NULL;
1894
1895 static void
1896 append_name (const char ***buf, int *nr, const char *name)
1897 {
1898 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1899 (*buf)[*nr] = name;
1900 *nr += 1;
1901 }
1902
1903 const char **
1904 gdbarch_printable_names (void)
1905 {
1906 if (GDB_MULTI_ARCH)
1907 {
1908 /* Accumulate a list of names based on the registed list of
1909 architectures. */
1910 enum bfd_architecture a;
1911 int nr_arches = 0;
1912 const char **arches = NULL;
1913 struct gdbarch_registration *rego;
1914 for (rego = gdbarch_registry;
1915 rego != NULL;
1916 rego = rego->next)
1917 {
1918 const struct bfd_arch_info *ap;
1919 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1920 if (ap == NULL)
1921 internal_error (__FILE__, __LINE__,
1922 "gdbarch_architecture_names: multi-arch unknown");
1923 do
1924 {
1925 append_name (&arches, &nr_arches, ap->printable_name);
1926 ap = ap->next;
1927 }
1928 while (ap != NULL);
1929 }
1930 append_name (&arches, &nr_arches, NULL);
1931 return arches;
1932 }
1933 else
1934 /* Just return all the architectures that BFD knows. Assume that
1935 the legacy architecture framework supports them. */
1936 return bfd_arch_list ();
1937 }
1938
1939
1940 void
1941 gdbarch_register (enum bfd_architecture bfd_architecture,
1942 gdbarch_init_ftype *init,
1943 gdbarch_dump_tdep_ftype *dump_tdep)
1944 {
1945 struct gdbarch_registration **curr;
1946 const struct bfd_arch_info *bfd_arch_info;
1947 /* Check that BFD recognizes this architecture */
1948 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1949 if (bfd_arch_info == NULL)
1950 {
1951 internal_error (__FILE__, __LINE__,
1952 "gdbarch: Attempt to register unknown architecture (%d)",
1953 bfd_architecture);
1954 }
1955 /* Check that we haven't seen this architecture before */
1956 for (curr = &gdbarch_registry;
1957 (*curr) != NULL;
1958 curr = &(*curr)->next)
1959 {
1960 if (bfd_architecture == (*curr)->bfd_architecture)
1961 internal_error (__FILE__, __LINE__,
1962 "gdbarch: Duplicate registraration of architecture (%s)",
1963 bfd_arch_info->printable_name);
1964 }
1965 /* log it */
1966 if (gdbarch_debug)
1967 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1968 bfd_arch_info->printable_name,
1969 (long) init);
1970 /* Append it */
1971 (*curr) = XMALLOC (struct gdbarch_registration);
1972 (*curr)->bfd_architecture = bfd_architecture;
1973 (*curr)->init = init;
1974 (*curr)->dump_tdep = dump_tdep;
1975 (*curr)->arches = NULL;
1976 (*curr)->next = NULL;
1977 /* When non- multi-arch, install whatever target dump routine we've
1978 been provided - hopefully that routine has been written correctly
1979 and works regardless of multi-arch. */
1980 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1981 && startup_gdbarch.dump_tdep == NULL)
1982 startup_gdbarch.dump_tdep = dump_tdep;
1983 }
1984
1985 void
1986 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1987 gdbarch_init_ftype *init)
1988 {
1989 gdbarch_register (bfd_architecture, init, NULL);
1990 }
1991
1992
1993 /* Look for an architecture using gdbarch_info. Base search on only
1994 BFD_ARCH_INFO and BYTE_ORDER. */
1995
1996 struct gdbarch_list *
1997 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1998 const struct gdbarch_info *info)
1999 {
2000 for (; arches != NULL; arches = arches->next)
2001 {
2002 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2003 continue;
2004 if (info->byte_order != arches->gdbarch->byte_order)
2005 continue;
2006 return arches;
2007 }
2008 return NULL;
2009 }
2010
2011
2012 /* Update the current architecture. Return ZERO if the update request
2013 failed. */
2014
2015 int
2016 gdbarch_update_p (struct gdbarch_info info)
2017 {
2018 struct gdbarch *new_gdbarch;
2019 struct gdbarch_list **list;
2020 struct gdbarch_registration *rego;
2021
2022 /* Fill in missing parts of the INFO struct using a number of
2023 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2024
2025 /* \`\`(gdb) set architecture ...'' */
2026 if (info.bfd_arch_info == NULL
2027 && !TARGET_ARCHITECTURE_AUTO)
2028 info.bfd_arch_info = TARGET_ARCHITECTURE;
2029 if (info.bfd_arch_info == NULL
2030 && info.abfd != NULL
2031 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2032 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2033 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2034 if (info.bfd_arch_info == NULL)
2035 info.bfd_arch_info = TARGET_ARCHITECTURE;
2036
2037 /* \`\`(gdb) set byte-order ...'' */
2038 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2039 && !TARGET_BYTE_ORDER_AUTO)
2040 info.byte_order = TARGET_BYTE_ORDER;
2041 /* From the INFO struct. */
2042 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2043 && info.abfd != NULL)
2044 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2045 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2046 : BFD_ENDIAN_UNKNOWN);
2047 /* From the current target. */
2048 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2049 info.byte_order = TARGET_BYTE_ORDER;
2050
2051 /* Must have found some sort of architecture. */
2052 gdb_assert (info.bfd_arch_info != NULL);
2053
2054 if (gdbarch_debug)
2055 {
2056 fprintf_unfiltered (gdb_stdlog,
2057 "gdbarch_update: info.bfd_arch_info %s\n",
2058 (info.bfd_arch_info != NULL
2059 ? info.bfd_arch_info->printable_name
2060 : "(null)"));
2061 fprintf_unfiltered (gdb_stdlog,
2062 "gdbarch_update: info.byte_order %d (%s)\n",
2063 info.byte_order,
2064 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2065 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2066 : "default"));
2067 fprintf_unfiltered (gdb_stdlog,
2068 "gdbarch_update: info.abfd 0x%lx\n",
2069 (long) info.abfd);
2070 fprintf_unfiltered (gdb_stdlog,
2071 "gdbarch_update: info.tdep_info 0x%lx\n",
2072 (long) info.tdep_info);
2073 }
2074
2075 /* Find the target that knows about this architecture. */
2076 for (rego = gdbarch_registry;
2077 rego != NULL;
2078 rego = rego->next)
2079 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2080 break;
2081 if (rego == NULL)
2082 {
2083 if (gdbarch_debug)
2084 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2085 return 0;
2086 }
2087
2088 /* Ask the target for a replacement architecture. */
2089 new_gdbarch = rego->init (info, rego->arches);
2090
2091 /* Did the target like it? No. Reject the change. */
2092 if (new_gdbarch == NULL)
2093 {
2094 if (gdbarch_debug)
2095 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2096 return 0;
2097 }
2098
2099 /* Did the architecture change? No. Do nothing. */
2100 if (current_gdbarch == new_gdbarch)
2101 {
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2104 (long) new_gdbarch,
2105 new_gdbarch->bfd_arch_info->printable_name);
2106 return 1;
2107 }
2108
2109 /* Swap all data belonging to the old target out */
2110 swapout_gdbarch_swap (current_gdbarch);
2111
2112 /* Is this a pre-existing architecture? Yes. Swap it in. */
2113 for (list = &rego->arches;
2114 (*list) != NULL;
2115 list = &(*list)->next)
2116 {
2117 if ((*list)->gdbarch == new_gdbarch)
2118 {
2119 if (gdbarch_debug)
2120 fprintf_unfiltered (gdb_stdlog,
2121 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2122 (long) new_gdbarch,
2123 new_gdbarch->bfd_arch_info->printable_name);
2124 current_gdbarch = new_gdbarch;
2125 swapin_gdbarch_swap (new_gdbarch);
2126 architecture_changed_event ();
2127 return 1;
2128 }
2129 }
2130
2131 /* Append this new architecture to this targets list. */
2132 (*list) = XMALLOC (struct gdbarch_list);
2133 (*list)->next = NULL;
2134 (*list)->gdbarch = new_gdbarch;
2135
2136 /* Switch to this new architecture. Dump it out. */
2137 current_gdbarch = new_gdbarch;
2138 if (gdbarch_debug)
2139 {
2140 fprintf_unfiltered (gdb_stdlog,
2141 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2142 (long) new_gdbarch,
2143 new_gdbarch->bfd_arch_info->printable_name);
2144 }
2145
2146 /* Check that the newly installed architecture is valid. Plug in
2147 any post init values. */
2148 new_gdbarch->dump_tdep = rego->dump_tdep;
2149 verify_gdbarch (new_gdbarch);
2150
2151 /* Initialize the per-architecture memory (swap) areas.
2152 CURRENT_GDBARCH must be update before these modules are
2153 called. */
2154 init_gdbarch_swap (new_gdbarch);
2155
2156 /* Initialize the per-architecture data-pointer of all parties that
2157 registered an interest in this architecture. CURRENT_GDBARCH
2158 must be updated before these modules are called. */
2159 init_gdbarch_data (new_gdbarch);
2160 architecture_changed_event ();
2161
2162 if (gdbarch_debug)
2163 gdbarch_dump (current_gdbarch, gdb_stdlog);
2164
2165 return 1;
2166 }
2167
2168
2169 /* Disassembler */
2170
2171 /* Pointer to the target-dependent disassembly function. */
2172 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2173 disassemble_info tm_print_insn_info;
2174
2175
2176 extern void _initialize_gdbarch (void);
2177
2178 void
2179 _initialize_gdbarch (void)
2180 {
2181 struct cmd_list_element *c;
2182
2183 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2184 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2185 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2186 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2187 tm_print_insn_info.print_address_func = dis_asm_print_address;
2188
2189 add_show_from_set (add_set_cmd ("arch",
2190 class_maintenance,
2191 var_zinteger,
2192 (char *)&gdbarch_debug,
2193 "Set architecture debugging.\\n\\
2194 When non-zero, architecture debugging is enabled.", &setdebuglist),
2195 &showdebuglist);
2196 c = add_set_cmd ("archdebug",
2197 class_maintenance,
2198 var_zinteger,
2199 (char *)&gdbarch_debug,
2200 "Set architecture debugging.\\n\\
2201 When non-zero, architecture debugging is enabled.", &setlist);
2202
2203 deprecate_cmd (c, "set debug arch");
2204 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2205 }
2206 EOF
2207
2208 # close things off
2209 exec 1>&2
2210 #../move-if-change new-gdbarch.c gdbarch.c
2211 compare_new gdbarch.c
This page took 0.088494 seconds and 4 git commands to generate.