* README: Update references to writing code for GDB.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
491 #
492 v:int:believe_pcc_promotion:::::::
493 #
494 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
496 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
497 # Construct a value representing the contents of register REGNUM in
498 # frame FRAME, interpreted as type TYPE. The routine needs to
499 # allocate and return a struct value with all value attributes
500 # (but not the value contents) filled in.
501 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
502 #
503 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
504 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
505 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
506
507 # Return the return-value convention that will be used by FUNCTION
508 # to return a value of type VALTYPE. FUNCTION may be NULL in which
509 # case the return convention is computed based only on VALTYPE.
510 #
511 # If READBUF is not NULL, extract the return value and save it in this buffer.
512 #
513 # If WRITEBUF is not NULL, it contains a return value which will be
514 # stored into the appropriate register. This can be used when we want
515 # to force the value returned by a function (see the "return" command
516 # for instance).
517 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
518
519 # Return true if the return value of function is stored in the first hidden
520 # parameter. In theory, this feature should be language-dependent, specified
521 # by language and its ABI, such as C++. Unfortunately, compiler may
522 # implement it to a target-dependent feature. So that we need such hook here
523 # to be aware of this in GDB.
524 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
525
526 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
527 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
528 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
529 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
530 # Return the adjusted address and kind to use for Z0/Z1 packets.
531 # KIND is usually the memory length of the breakpoint, but may have a
532 # different target-specific meaning.
533 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
534 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
535 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
536 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
537 v:CORE_ADDR:decr_pc_after_break:::0:::0
538
539 # A function can be addressed by either it's "pointer" (possibly a
540 # descriptor address) or "entry point" (first executable instruction).
541 # The method "convert_from_func_ptr_addr" converting the former to the
542 # latter. gdbarch_deprecated_function_start_offset is being used to implement
543 # a simplified subset of that functionality - the function's address
544 # corresponds to the "function pointer" and the function's start
545 # corresponds to the "function entry point" - and hence is redundant.
546
547 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
548
549 # Return the remote protocol register number associated with this
550 # register. Normally the identity mapping.
551 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
552
553 # Fetch the target specific address used to represent a load module.
554 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
555 #
556 v:CORE_ADDR:frame_args_skip:::0:::0
557 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
558 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
559 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
560 # frame-base. Enable frame-base before frame-unwind.
561 F:int:frame_num_args:struct frame_info *frame:frame
562 #
563 M:CORE_ADDR:frame_align:CORE_ADDR address:address
564 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
565 v:int:frame_red_zone_size
566 #
567 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
568 # On some machines there are bits in addresses which are not really
569 # part of the address, but are used by the kernel, the hardware, etc.
570 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
571 # we get a "real" address such as one would find in a symbol table.
572 # This is used only for addresses of instructions, and even then I'm
573 # not sure it's used in all contexts. It exists to deal with there
574 # being a few stray bits in the PC which would mislead us, not as some
575 # sort of generic thing to handle alignment or segmentation (it's
576 # possible it should be in TARGET_READ_PC instead).
577 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
578
579 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
580 # indicates if the target needs software single step. An ISA method to
581 # implement it.
582 #
583 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
584 # breakpoints using the breakpoint system instead of blatting memory directly
585 # (as with rs6000).
586 #
587 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
588 # target can single step. If not, then implement single step using breakpoints.
589 #
590 # A return value of 1 means that the software_single_step breakpoints
591 # were inserted; 0 means they were not.
592 F:int:software_single_step:struct frame_info *frame:frame
593
594 # Return non-zero if the processor is executing a delay slot and a
595 # further single-step is needed before the instruction finishes.
596 M:int:single_step_through_delay:struct frame_info *frame:frame
597 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
598 # disassembler. Perhaps objdump can handle it?
599 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
600 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
601
602
603 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
604 # evaluates non-zero, this is the address where the debugger will place
605 # a step-resume breakpoint to get us past the dynamic linker.
606 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
607 # Some systems also have trampoline code for returning from shared libs.
608 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
609
610 # A target might have problems with watchpoints as soon as the stack
611 # frame of the current function has been destroyed. This mostly happens
612 # as the first action in a funtion's epilogue. in_function_epilogue_p()
613 # is defined to return a non-zero value if either the given addr is one
614 # instruction after the stack destroying instruction up to the trailing
615 # return instruction or if we can figure out that the stack frame has
616 # already been invalidated regardless of the value of addr. Targets
617 # which don't suffer from that problem could just let this functionality
618 # untouched.
619 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
620 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
621 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
622 v:int:cannot_step_breakpoint:::0:0::0
623 v:int:have_nonsteppable_watchpoint:::0:0::0
624 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
625 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
626 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
627 # Is a register in a group
628 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
629 # Fetch the pointer to the ith function argument.
630 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
631
632 # Return the appropriate register set for a core file section with
633 # name SECT_NAME and size SECT_SIZE.
634 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
635
636 # Supported register notes in a core file.
637 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
638
639 # Create core file notes
640 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
641
642 # The elfcore writer hook to use to write Linux prpsinfo notes to core
643 # files. Most Linux architectures use the same prpsinfo32 or
644 # prpsinfo64 layouts, and so won't need to provide this hook, as we
645 # call the Linux generic routines in bfd to write prpsinfo notes by
646 # default.
647 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
648
649 # Find core file memory regions
650 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
651
652 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
653 # core file into buffer READBUF with length LEN.
654 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
655
656 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
657 # libraries list from core file into buffer READBUF with length LEN.
658 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
659
660 # How the core target converts a PTID from a core file to a string.
661 M:char *:core_pid_to_str:ptid_t ptid:ptid
662
663 # BFD target to use when generating a core file.
664 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
665
666 # If the elements of C++ vtables are in-place function descriptors rather
667 # than normal function pointers (which may point to code or a descriptor),
668 # set this to one.
669 v:int:vtable_function_descriptors:::0:0::0
670
671 # Set if the least significant bit of the delta is used instead of the least
672 # significant bit of the pfn for pointers to virtual member functions.
673 v:int:vbit_in_delta:::0:0::0
674
675 # Advance PC to next instruction in order to skip a permanent breakpoint.
676 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
677
678 # The maximum length of an instruction on this architecture in bytes.
679 V:ULONGEST:max_insn_length:::0:0
680
681 # Copy the instruction at FROM to TO, and make any adjustments
682 # necessary to single-step it at that address.
683 #
684 # REGS holds the state the thread's registers will have before
685 # executing the copied instruction; the PC in REGS will refer to FROM,
686 # not the copy at TO. The caller should update it to point at TO later.
687 #
688 # Return a pointer to data of the architecture's choice to be passed
689 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
690 # the instruction's effects have been completely simulated, with the
691 # resulting state written back to REGS.
692 #
693 # For a general explanation of displaced stepping and how GDB uses it,
694 # see the comments in infrun.c.
695 #
696 # The TO area is only guaranteed to have space for
697 # gdbarch_max_insn_length (arch) bytes, so this function must not
698 # write more bytes than that to that area.
699 #
700 # If you do not provide this function, GDB assumes that the
701 # architecture does not support displaced stepping.
702 #
703 # If your architecture doesn't need to adjust instructions before
704 # single-stepping them, consider using simple_displaced_step_copy_insn
705 # here.
706 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
707
708 # Return true if GDB should use hardware single-stepping to execute
709 # the displaced instruction identified by CLOSURE. If false,
710 # GDB will simply restart execution at the displaced instruction
711 # location, and it is up to the target to ensure GDB will receive
712 # control again (e.g. by placing a software breakpoint instruction
713 # into the displaced instruction buffer).
714 #
715 # The default implementation returns false on all targets that
716 # provide a gdbarch_software_single_step routine, and true otherwise.
717 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
718
719 # Fix up the state resulting from successfully single-stepping a
720 # displaced instruction, to give the result we would have gotten from
721 # stepping the instruction in its original location.
722 #
723 # REGS is the register state resulting from single-stepping the
724 # displaced instruction.
725 #
726 # CLOSURE is the result from the matching call to
727 # gdbarch_displaced_step_copy_insn.
728 #
729 # If you provide gdbarch_displaced_step_copy_insn.but not this
730 # function, then GDB assumes that no fixup is needed after
731 # single-stepping the instruction.
732 #
733 # For a general explanation of displaced stepping and how GDB uses it,
734 # see the comments in infrun.c.
735 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
736
737 # Free a closure returned by gdbarch_displaced_step_copy_insn.
738 #
739 # If you provide gdbarch_displaced_step_copy_insn, you must provide
740 # this function as well.
741 #
742 # If your architecture uses closures that don't need to be freed, then
743 # you can use simple_displaced_step_free_closure here.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
748
749 # Return the address of an appropriate place to put displaced
750 # instructions while we step over them. There need only be one such
751 # place, since we're only stepping one thread over a breakpoint at a
752 # time.
753 #
754 # For a general explanation of displaced stepping and how GDB uses it,
755 # see the comments in infrun.c.
756 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
757
758 # Relocate an instruction to execute at a different address. OLDLOC
759 # is the address in the inferior memory where the instruction to
760 # relocate is currently at. On input, TO points to the destination
761 # where we want the instruction to be copied (and possibly adjusted)
762 # to. On output, it points to one past the end of the resulting
763 # instruction(s). The effect of executing the instruction at TO shall
764 # be the same as if executing it at FROM. For example, call
765 # instructions that implicitly push the return address on the stack
766 # should be adjusted to return to the instruction after OLDLOC;
767 # relative branches, and other PC-relative instructions need the
768 # offset adjusted; etc.
769 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
770
771 # Refresh overlay mapped state for section OSECT.
772 F:void:overlay_update:struct obj_section *osect:osect
773
774 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
775
776 # Handle special encoding of static variables in stabs debug info.
777 F:const char *:static_transform_name:const char *name:name
778 # Set if the address in N_SO or N_FUN stabs may be zero.
779 v:int:sofun_address_maybe_missing:::0:0::0
780
781 # Parse the instruction at ADDR storing in the record execution log
782 # the registers REGCACHE and memory ranges that will be affected when
783 # the instruction executes, along with their current values.
784 # Return -1 if something goes wrong, 0 otherwise.
785 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
786
787 # Save process state after a signal.
788 # Return -1 if something goes wrong, 0 otherwise.
789 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
790
791 # Signal translation: translate inferior's signal (target's) number
792 # into GDB's representation. The implementation of this method must
793 # be host independent. IOW, don't rely on symbols of the NAT_FILE
794 # header (the nm-*.h files), the host <signal.h> header, or similar
795 # headers. This is mainly used when cross-debugging core files ---
796 # "Live" targets hide the translation behind the target interface
797 # (target_wait, target_resume, etc.).
798 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
799
800 # Signal translation: translate the GDB's internal signal number into
801 # the inferior's signal (target's) representation. The implementation
802 # of this method must be host independent. IOW, don't rely on symbols
803 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
804 # header, or similar headers.
805 # Return the target signal number if found, or -1 if the GDB internal
806 # signal number is invalid.
807 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
808
809 # Extra signal info inspection.
810 #
811 # Return a type suitable to inspect extra signal information.
812 M:struct type *:get_siginfo_type:void:
813
814 # Record architecture-specific information from the symbol table.
815 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
816
817 # Function for the 'catch syscall' feature.
818
819 # Get architecture-specific system calls information from registers.
820 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
821
822 # SystemTap related fields and functions.
823
824 # Prefix used to mark an integer constant on the architecture's assembly
825 # For example, on x86 integer constants are written as:
826 #
827 # \$10 ;; integer constant 10
828 #
829 # in this case, this prefix would be the character \`\$\'.
830 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
831
832 # Suffix used to mark an integer constant on the architecture's assembly.
833 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
834
835 # Prefix used to mark a register name on the architecture's assembly.
836 # For example, on x86 the register name is written as:
837 #
838 # \%eax ;; register eax
839 #
840 # in this case, this prefix would be the character \`\%\'.
841 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
842
843 # Suffix used to mark a register name on the architecture's assembly
844 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
845
846 # Prefix used to mark a register indirection on the architecture's assembly.
847 # For example, on x86 the register indirection is written as:
848 #
849 # \(\%eax\) ;; indirecting eax
850 #
851 # in this case, this prefix would be the charater \`\(\'.
852 #
853 # Please note that we use the indirection prefix also for register
854 # displacement, e.g., \`4\(\%eax\)\' on x86.
855 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
856
857 # Suffix used to mark a register indirection on the architecture's assembly.
858 # For example, on x86 the register indirection is written as:
859 #
860 # \(\%eax\) ;; indirecting eax
861 #
862 # in this case, this prefix would be the charater \`\)\'.
863 #
864 # Please note that we use the indirection suffix also for register
865 # displacement, e.g., \`4\(\%eax\)\' on x86.
866 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
867
868 # Prefix used to name a register using GDB's nomenclature.
869 #
870 # For example, on PPC a register is represented by a number in the assembly
871 # language (e.g., \`10\' is the 10th general-purpose register). However,
872 # inside GDB this same register has an \`r\' appended to its name, so the 10th
873 # register would be represented as \`r10\' internally.
874 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
875
876 # Suffix used to name a register using GDB's nomenclature.
877 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
878
879 # Check if S is a single operand.
880 #
881 # Single operands can be:
882 # \- Literal integers, e.g. \`\$10\' on x86
883 # \- Register access, e.g. \`\%eax\' on x86
884 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
885 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
886 #
887 # This function should check for these patterns on the string
888 # and return 1 if some were found, or zero otherwise. Please try to match
889 # as much info as you can from the string, i.e., if you have to match
890 # something like \`\(\%\', do not match just the \`\(\'.
891 M:int:stap_is_single_operand:const char *s:s
892
893 # Function used to handle a "special case" in the parser.
894 #
895 # A "special case" is considered to be an unknown token, i.e., a token
896 # that the parser does not know how to parse. A good example of special
897 # case would be ARM's register displacement syntax:
898 #
899 # [R0, #4] ;; displacing R0 by 4
900 #
901 # Since the parser assumes that a register displacement is of the form:
902 #
903 # <number> <indirection_prefix> <register_name> <indirection_suffix>
904 #
905 # it means that it will not be able to recognize and parse this odd syntax.
906 # Therefore, we should add a special case function that will handle this token.
907 #
908 # This function should generate the proper expression form of the expression
909 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
910 # and so on). It should also return 1 if the parsing was successful, or zero
911 # if the token was not recognized as a special token (in this case, returning
912 # zero means that the special parser is deferring the parsing to the generic
913 # parser), and should advance the buffer pointer (p->arg).
914 M:int:stap_parse_special_token:struct stap_parse_info *p:p
915
916
917 # True if the list of shared libraries is one and only for all
918 # processes, as opposed to a list of shared libraries per inferior.
919 # This usually means that all processes, although may or may not share
920 # an address space, will see the same set of symbols at the same
921 # addresses.
922 v:int:has_global_solist:::0:0::0
923
924 # On some targets, even though each inferior has its own private
925 # address space, the debug interface takes care of making breakpoints
926 # visible to all address spaces automatically. For such cases,
927 # this property should be set to true.
928 v:int:has_global_breakpoints:::0:0::0
929
930 # True if inferiors share an address space (e.g., uClinux).
931 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
932
933 # True if a fast tracepoint can be set at an address.
934 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
935
936 # Return the "auto" target charset.
937 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
938 # Return the "auto" target wide charset.
939 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
940
941 # If non-empty, this is a file extension that will be opened in place
942 # of the file extension reported by the shared library list.
943 #
944 # This is most useful for toolchains that use a post-linker tool,
945 # where the names of the files run on the target differ in extension
946 # compared to the names of the files GDB should load for debug info.
947 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
948
949 # If true, the target OS has DOS-based file system semantics. That
950 # is, absolute paths include a drive name, and the backslash is
951 # considered a directory separator.
952 v:int:has_dos_based_file_system:::0:0::0
953
954 # Generate bytecodes to collect the return address in a frame.
955 # Since the bytecodes run on the target, possibly with GDB not even
956 # connected, the full unwinding machinery is not available, and
957 # typically this function will issue bytecodes for one or more likely
958 # places that the return address may be found.
959 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
960
961 # Implement the "info proc" command.
962 M:void:info_proc:char *args, enum info_proc_what what:args, what
963
964 # Implement the "info proc" command for core files. Noe that there
965 # are two "info_proc"-like methods on gdbarch -- one for core files,
966 # one for live targets.
967 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
968
969 # Iterate over all objfiles in the order that makes the most sense
970 # for the architecture to make global symbol searches.
971 #
972 # CB is a callback function where OBJFILE is the objfile to be searched,
973 # and CB_DATA a pointer to user-defined data (the same data that is passed
974 # when calling this gdbarch method). The iteration stops if this function
975 # returns nonzero.
976 #
977 # CB_DATA is a pointer to some user-defined data to be passed to
978 # the callback.
979 #
980 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
981 # inspected when the symbol search was requested.
982 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
983
984 # Ravenscar arch-dependent ops.
985 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
986 EOF
987 }
988
989 #
990 # The .log file
991 #
992 exec > new-gdbarch.log
993 function_list | while do_read
994 do
995 cat <<EOF
996 ${class} ${returntype} ${function} ($formal)
997 EOF
998 for r in ${read}
999 do
1000 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1001 done
1002 if class_is_predicate_p && fallback_default_p
1003 then
1004 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1005 kill $$
1006 exit 1
1007 fi
1008 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1009 then
1010 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1011 kill $$
1012 exit 1
1013 fi
1014 if class_is_multiarch_p
1015 then
1016 if class_is_predicate_p ; then :
1017 elif test "x${predefault}" = "x"
1018 then
1019 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1020 kill $$
1021 exit 1
1022 fi
1023 fi
1024 echo ""
1025 done
1026
1027 exec 1>&2
1028 compare_new gdbarch.log
1029
1030
1031 copyright ()
1032 {
1033 cat <<EOF
1034 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1035 /* vi:set ro: */
1036
1037 /* Dynamic architecture support for GDB, the GNU debugger.
1038
1039 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1040
1041 This file is part of GDB.
1042
1043 This program is free software; you can redistribute it and/or modify
1044 it under the terms of the GNU General Public License as published by
1045 the Free Software Foundation; either version 3 of the License, or
1046 (at your option) any later version.
1047
1048 This program is distributed in the hope that it will be useful,
1049 but WITHOUT ANY WARRANTY; without even the implied warranty of
1050 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1051 GNU General Public License for more details.
1052
1053 You should have received a copy of the GNU General Public License
1054 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1055
1056 /* This file was created with the aid of \`\`gdbarch.sh''.
1057
1058 The Bourne shell script \`\`gdbarch.sh'' creates the files
1059 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1060 against the existing \`\`gdbarch.[hc]''. Any differences found
1061 being reported.
1062
1063 If editing this file, please also run gdbarch.sh and merge any
1064 changes into that script. Conversely, when making sweeping changes
1065 to this file, modifying gdbarch.sh and using its output may prove
1066 easier. */
1067
1068 EOF
1069 }
1070
1071 #
1072 # The .h file
1073 #
1074
1075 exec > new-gdbarch.h
1076 copyright
1077 cat <<EOF
1078 #ifndef GDBARCH_H
1079 #define GDBARCH_H
1080
1081 struct floatformat;
1082 struct ui_file;
1083 struct frame_info;
1084 struct value;
1085 struct objfile;
1086 struct obj_section;
1087 struct minimal_symbol;
1088 struct regcache;
1089 struct reggroup;
1090 struct regset;
1091 struct disassemble_info;
1092 struct target_ops;
1093 struct obstack;
1094 struct bp_target_info;
1095 struct target_desc;
1096 struct displaced_step_closure;
1097 struct core_regset_section;
1098 struct syscall;
1099 struct agent_expr;
1100 struct axs_value;
1101 struct stap_parse_info;
1102 struct ravenscar_arch_ops;
1103 struct elf_internal_linux_prpsinfo;
1104
1105 /* The architecture associated with the inferior through the
1106 connection to the target.
1107
1108 The architecture vector provides some information that is really a
1109 property of the inferior, accessed through a particular target:
1110 ptrace operations; the layout of certain RSP packets; the solib_ops
1111 vector; etc. To differentiate architecture accesses to
1112 per-inferior/target properties from
1113 per-thread/per-frame/per-objfile properties, accesses to
1114 per-inferior/target properties should be made through this
1115 gdbarch. */
1116
1117 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1118 extern struct gdbarch *target_gdbarch (void);
1119
1120 /* The initial, default architecture. It uses host values (for want of a better
1121 choice). */
1122 extern struct gdbarch startup_gdbarch;
1123
1124
1125 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1126 gdbarch method. */
1127
1128 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1129 (struct objfile *objfile, void *cb_data);
1130 EOF
1131
1132 # function typedef's
1133 printf "\n"
1134 printf "\n"
1135 printf "/* The following are pre-initialized by GDBARCH. */\n"
1136 function_list | while do_read
1137 do
1138 if class_is_info_p
1139 then
1140 printf "\n"
1141 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1142 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1143 fi
1144 done
1145
1146 # function typedef's
1147 printf "\n"
1148 printf "\n"
1149 printf "/* The following are initialized by the target dependent code. */\n"
1150 function_list | while do_read
1151 do
1152 if [ -n "${comment}" ]
1153 then
1154 echo "${comment}" | sed \
1155 -e '2 s,#,/*,' \
1156 -e '3,$ s,#, ,' \
1157 -e '$ s,$, */,'
1158 fi
1159
1160 if class_is_predicate_p
1161 then
1162 printf "\n"
1163 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1164 fi
1165 if class_is_variable_p
1166 then
1167 printf "\n"
1168 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1169 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1170 fi
1171 if class_is_function_p
1172 then
1173 printf "\n"
1174 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1175 then
1176 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1177 elif class_is_multiarch_p
1178 then
1179 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1180 else
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1182 fi
1183 if [ "x${formal}" = "xvoid" ]
1184 then
1185 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1186 else
1187 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1188 fi
1189 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1190 fi
1191 done
1192
1193 # close it off
1194 cat <<EOF
1195
1196 /* Definition for an unknown syscall, used basically in error-cases. */
1197 #define UNKNOWN_SYSCALL (-1)
1198
1199 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1200
1201
1202 /* Mechanism for co-ordinating the selection of a specific
1203 architecture.
1204
1205 GDB targets (*-tdep.c) can register an interest in a specific
1206 architecture. Other GDB components can register a need to maintain
1207 per-architecture data.
1208
1209 The mechanisms below ensures that there is only a loose connection
1210 between the set-architecture command and the various GDB
1211 components. Each component can independently register their need
1212 to maintain architecture specific data with gdbarch.
1213
1214 Pragmatics:
1215
1216 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1217 didn't scale.
1218
1219 The more traditional mega-struct containing architecture specific
1220 data for all the various GDB components was also considered. Since
1221 GDB is built from a variable number of (fairly independent)
1222 components it was determined that the global aproach was not
1223 applicable. */
1224
1225
1226 /* Register a new architectural family with GDB.
1227
1228 Register support for the specified ARCHITECTURE with GDB. When
1229 gdbarch determines that the specified architecture has been
1230 selected, the corresponding INIT function is called.
1231
1232 --
1233
1234 The INIT function takes two parameters: INFO which contains the
1235 information available to gdbarch about the (possibly new)
1236 architecture; ARCHES which is a list of the previously created
1237 \`\`struct gdbarch'' for this architecture.
1238
1239 The INFO parameter is, as far as possible, be pre-initialized with
1240 information obtained from INFO.ABFD or the global defaults.
1241
1242 The ARCHES parameter is a linked list (sorted most recently used)
1243 of all the previously created architures for this architecture
1244 family. The (possibly NULL) ARCHES->gdbarch can used to access
1245 values from the previously selected architecture for this
1246 architecture family.
1247
1248 The INIT function shall return any of: NULL - indicating that it
1249 doesn't recognize the selected architecture; an existing \`\`struct
1250 gdbarch'' from the ARCHES list - indicating that the new
1251 architecture is just a synonym for an earlier architecture (see
1252 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1253 - that describes the selected architecture (see gdbarch_alloc()).
1254
1255 The DUMP_TDEP function shall print out all target specific values.
1256 Care should be taken to ensure that the function works in both the
1257 multi-arch and non- multi-arch cases. */
1258
1259 struct gdbarch_list
1260 {
1261 struct gdbarch *gdbarch;
1262 struct gdbarch_list *next;
1263 };
1264
1265 struct gdbarch_info
1266 {
1267 /* Use default: NULL (ZERO). */
1268 const struct bfd_arch_info *bfd_arch_info;
1269
1270 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1271 int byte_order;
1272
1273 int byte_order_for_code;
1274
1275 /* Use default: NULL (ZERO). */
1276 bfd *abfd;
1277
1278 /* Use default: NULL (ZERO). */
1279 struct gdbarch_tdep_info *tdep_info;
1280
1281 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1282 enum gdb_osabi osabi;
1283
1284 /* Use default: NULL (ZERO). */
1285 const struct target_desc *target_desc;
1286 };
1287
1288 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1289 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1290
1291 /* DEPRECATED - use gdbarch_register() */
1292 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1293
1294 extern void gdbarch_register (enum bfd_architecture architecture,
1295 gdbarch_init_ftype *,
1296 gdbarch_dump_tdep_ftype *);
1297
1298
1299 /* Return a freshly allocated, NULL terminated, array of the valid
1300 architecture names. Since architectures are registered during the
1301 _initialize phase this function only returns useful information
1302 once initialization has been completed. */
1303
1304 extern const char **gdbarch_printable_names (void);
1305
1306
1307 /* Helper function. Search the list of ARCHES for a GDBARCH that
1308 matches the information provided by INFO. */
1309
1310 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1311
1312
1313 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1314 basic initialization using values obtained from the INFO and TDEP
1315 parameters. set_gdbarch_*() functions are called to complete the
1316 initialization of the object. */
1317
1318 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1319
1320
1321 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1322 It is assumed that the caller freeds the \`\`struct
1323 gdbarch_tdep''. */
1324
1325 extern void gdbarch_free (struct gdbarch *);
1326
1327
1328 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1329 obstack. The memory is freed when the corresponding architecture
1330 is also freed. */
1331
1332 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1333 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1334 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1335
1336
1337 /* Helper function. Force an update of the current architecture.
1338
1339 The actual architecture selected is determined by INFO, \`\`(gdb) set
1340 architecture'' et.al., the existing architecture and BFD's default
1341 architecture. INFO should be initialized to zero and then selected
1342 fields should be updated.
1343
1344 Returns non-zero if the update succeeds. */
1345
1346 extern int gdbarch_update_p (struct gdbarch_info info);
1347
1348
1349 /* Helper function. Find an architecture matching info.
1350
1351 INFO should be initialized using gdbarch_info_init, relevant fields
1352 set, and then finished using gdbarch_info_fill.
1353
1354 Returns the corresponding architecture, or NULL if no matching
1355 architecture was found. */
1356
1357 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1358
1359
1360 /* Helper function. Set the target gdbarch to "gdbarch". */
1361
1362 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1363
1364
1365 /* Register per-architecture data-pointer.
1366
1367 Reserve space for a per-architecture data-pointer. An identifier
1368 for the reserved data-pointer is returned. That identifer should
1369 be saved in a local static variable.
1370
1371 Memory for the per-architecture data shall be allocated using
1372 gdbarch_obstack_zalloc. That memory will be deleted when the
1373 corresponding architecture object is deleted.
1374
1375 When a previously created architecture is re-selected, the
1376 per-architecture data-pointer for that previous architecture is
1377 restored. INIT() is not re-called.
1378
1379 Multiple registrarants for any architecture are allowed (and
1380 strongly encouraged). */
1381
1382 struct gdbarch_data;
1383
1384 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1385 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1386 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1387 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1388 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1389 struct gdbarch_data *data,
1390 void *pointer);
1391
1392 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1393
1394
1395 /* Set the dynamic target-system-dependent parameters (architecture,
1396 byte-order, ...) using information found in the BFD. */
1397
1398 extern void set_gdbarch_from_file (bfd *);
1399
1400
1401 /* Initialize the current architecture to the "first" one we find on
1402 our list. */
1403
1404 extern void initialize_current_architecture (void);
1405
1406 /* gdbarch trace variable */
1407 extern unsigned int gdbarch_debug;
1408
1409 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1410
1411 #endif
1412 EOF
1413 exec 1>&2
1414 #../move-if-change new-gdbarch.h gdbarch.h
1415 compare_new gdbarch.h
1416
1417
1418 #
1419 # C file
1420 #
1421
1422 exec > new-gdbarch.c
1423 copyright
1424 cat <<EOF
1425
1426 #include "defs.h"
1427 #include "arch-utils.h"
1428
1429 #include "gdbcmd.h"
1430 #include "inferior.h"
1431 #include "symcat.h"
1432
1433 #include "floatformat.h"
1434
1435 #include "gdb_assert.h"
1436 #include "gdb_string.h"
1437 #include "reggroups.h"
1438 #include "osabi.h"
1439 #include "gdb_obstack.h"
1440 #include "observer.h"
1441 #include "regcache.h"
1442 #include "objfiles.h"
1443
1444 /* Static function declarations */
1445
1446 static void alloc_gdbarch_data (struct gdbarch *);
1447
1448 /* Non-zero if we want to trace architecture code. */
1449
1450 #ifndef GDBARCH_DEBUG
1451 #define GDBARCH_DEBUG 0
1452 #endif
1453 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1454 static void
1455 show_gdbarch_debug (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c, const char *value)
1457 {
1458 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1459 }
1460
1461 static const char *
1462 pformat (const struct floatformat **format)
1463 {
1464 if (format == NULL)
1465 return "(null)";
1466 else
1467 /* Just print out one of them - this is only for diagnostics. */
1468 return format[0]->name;
1469 }
1470
1471 static const char *
1472 pstring (const char *string)
1473 {
1474 if (string == NULL)
1475 return "(null)";
1476 return string;
1477 }
1478
1479 EOF
1480
1481 # gdbarch open the gdbarch object
1482 printf "\n"
1483 printf "/* Maintain the struct gdbarch object. */\n"
1484 printf "\n"
1485 printf "struct gdbarch\n"
1486 printf "{\n"
1487 printf " /* Has this architecture been fully initialized? */\n"
1488 printf " int initialized_p;\n"
1489 printf "\n"
1490 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1491 printf " struct obstack *obstack;\n"
1492 printf "\n"
1493 printf " /* basic architectural information. */\n"
1494 function_list | while do_read
1495 do
1496 if class_is_info_p
1497 then
1498 printf " ${returntype} ${function};\n"
1499 fi
1500 done
1501 printf "\n"
1502 printf " /* target specific vector. */\n"
1503 printf " struct gdbarch_tdep *tdep;\n"
1504 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1505 printf "\n"
1506 printf " /* per-architecture data-pointers. */\n"
1507 printf " unsigned nr_data;\n"
1508 printf " void **data;\n"
1509 printf "\n"
1510 cat <<EOF
1511 /* Multi-arch values.
1512
1513 When extending this structure you must:
1514
1515 Add the field below.
1516
1517 Declare set/get functions and define the corresponding
1518 macro in gdbarch.h.
1519
1520 gdbarch_alloc(): If zero/NULL is not a suitable default,
1521 initialize the new field.
1522
1523 verify_gdbarch(): Confirm that the target updated the field
1524 correctly.
1525
1526 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1527 field is dumped out
1528
1529 \`\`startup_gdbarch()'': Append an initial value to the static
1530 variable (base values on the host's c-type system).
1531
1532 get_gdbarch(): Implement the set/get functions (probably using
1533 the macro's as shortcuts).
1534
1535 */
1536
1537 EOF
1538 function_list | while do_read
1539 do
1540 if class_is_variable_p
1541 then
1542 printf " ${returntype} ${function};\n"
1543 elif class_is_function_p
1544 then
1545 printf " gdbarch_${function}_ftype *${function};\n"
1546 fi
1547 done
1548 printf "};\n"
1549
1550 # A pre-initialized vector
1551 printf "\n"
1552 printf "\n"
1553 cat <<EOF
1554 /* The default architecture uses host values (for want of a better
1555 choice). */
1556 EOF
1557 printf "\n"
1558 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1559 printf "\n"
1560 printf "struct gdbarch startup_gdbarch =\n"
1561 printf "{\n"
1562 printf " 1, /* Always initialized. */\n"
1563 printf " NULL, /* The obstack. */\n"
1564 printf " /* basic architecture information. */\n"
1565 function_list | while do_read
1566 do
1567 if class_is_info_p
1568 then
1569 printf " ${staticdefault}, /* ${function} */\n"
1570 fi
1571 done
1572 cat <<EOF
1573 /* target specific vector and its dump routine. */
1574 NULL, NULL,
1575 /*per-architecture data-pointers. */
1576 0, NULL,
1577 /* Multi-arch values */
1578 EOF
1579 function_list | while do_read
1580 do
1581 if class_is_function_p || class_is_variable_p
1582 then
1583 printf " ${staticdefault}, /* ${function} */\n"
1584 fi
1585 done
1586 cat <<EOF
1587 /* startup_gdbarch() */
1588 };
1589
1590 EOF
1591
1592 # Create a new gdbarch struct
1593 cat <<EOF
1594
1595 /* Create a new \`\`struct gdbarch'' based on information provided by
1596 \`\`struct gdbarch_info''. */
1597 EOF
1598 printf "\n"
1599 cat <<EOF
1600 struct gdbarch *
1601 gdbarch_alloc (const struct gdbarch_info *info,
1602 struct gdbarch_tdep *tdep)
1603 {
1604 struct gdbarch *gdbarch;
1605
1606 /* Create an obstack for allocating all the per-architecture memory,
1607 then use that to allocate the architecture vector. */
1608 struct obstack *obstack = XMALLOC (struct obstack);
1609 obstack_init (obstack);
1610 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1611 memset (gdbarch, 0, sizeof (*gdbarch));
1612 gdbarch->obstack = obstack;
1613
1614 alloc_gdbarch_data (gdbarch);
1615
1616 gdbarch->tdep = tdep;
1617 EOF
1618 printf "\n"
1619 function_list | while do_read
1620 do
1621 if class_is_info_p
1622 then
1623 printf " gdbarch->${function} = info->${function};\n"
1624 fi
1625 done
1626 printf "\n"
1627 printf " /* Force the explicit initialization of these. */\n"
1628 function_list | while do_read
1629 do
1630 if class_is_function_p || class_is_variable_p
1631 then
1632 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1633 then
1634 printf " gdbarch->${function} = ${predefault};\n"
1635 fi
1636 fi
1637 done
1638 cat <<EOF
1639 /* gdbarch_alloc() */
1640
1641 return gdbarch;
1642 }
1643 EOF
1644
1645 # Free a gdbarch struct.
1646 printf "\n"
1647 printf "\n"
1648 cat <<EOF
1649 /* Allocate extra space using the per-architecture obstack. */
1650
1651 void *
1652 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1653 {
1654 void *data = obstack_alloc (arch->obstack, size);
1655
1656 memset (data, 0, size);
1657 return data;
1658 }
1659
1660
1661 /* Free a gdbarch struct. This should never happen in normal
1662 operation --- once you've created a gdbarch, you keep it around.
1663 However, if an architecture's init function encounters an error
1664 building the structure, it may need to clean up a partially
1665 constructed gdbarch. */
1666
1667 void
1668 gdbarch_free (struct gdbarch *arch)
1669 {
1670 struct obstack *obstack;
1671
1672 gdb_assert (arch != NULL);
1673 gdb_assert (!arch->initialized_p);
1674 obstack = arch->obstack;
1675 obstack_free (obstack, 0); /* Includes the ARCH. */
1676 xfree (obstack);
1677 }
1678 EOF
1679
1680 # verify a new architecture
1681 cat <<EOF
1682
1683
1684 /* Ensure that all values in a GDBARCH are reasonable. */
1685
1686 static void
1687 verify_gdbarch (struct gdbarch *gdbarch)
1688 {
1689 struct ui_file *log;
1690 struct cleanup *cleanups;
1691 long length;
1692 char *buf;
1693
1694 log = mem_fileopen ();
1695 cleanups = make_cleanup_ui_file_delete (log);
1696 /* fundamental */
1697 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1698 fprintf_unfiltered (log, "\n\tbyte-order");
1699 if (gdbarch->bfd_arch_info == NULL)
1700 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1701 /* Check those that need to be defined for the given multi-arch level. */
1702 EOF
1703 function_list | while do_read
1704 do
1705 if class_is_function_p || class_is_variable_p
1706 then
1707 if [ "x${invalid_p}" = "x0" ]
1708 then
1709 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1710 elif class_is_predicate_p
1711 then
1712 printf " /* Skip verify of ${function}, has predicate. */\n"
1713 # FIXME: See do_read for potential simplification
1714 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1715 then
1716 printf " if (${invalid_p})\n"
1717 printf " gdbarch->${function} = ${postdefault};\n"
1718 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1719 then
1720 printf " if (gdbarch->${function} == ${predefault})\n"
1721 printf " gdbarch->${function} = ${postdefault};\n"
1722 elif [ -n "${postdefault}" ]
1723 then
1724 printf " if (gdbarch->${function} == 0)\n"
1725 printf " gdbarch->${function} = ${postdefault};\n"
1726 elif [ -n "${invalid_p}" ]
1727 then
1728 printf " if (${invalid_p})\n"
1729 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1730 elif [ -n "${predefault}" ]
1731 then
1732 printf " if (gdbarch->${function} == ${predefault})\n"
1733 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1734 fi
1735 fi
1736 done
1737 cat <<EOF
1738 buf = ui_file_xstrdup (log, &length);
1739 make_cleanup (xfree, buf);
1740 if (length > 0)
1741 internal_error (__FILE__, __LINE__,
1742 _("verify_gdbarch: the following are invalid ...%s"),
1743 buf);
1744 do_cleanups (cleanups);
1745 }
1746 EOF
1747
1748 # dump the structure
1749 printf "\n"
1750 printf "\n"
1751 cat <<EOF
1752 /* Print out the details of the current architecture. */
1753
1754 void
1755 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1756 {
1757 const char *gdb_nm_file = "<not-defined>";
1758
1759 #if defined (GDB_NM_FILE)
1760 gdb_nm_file = GDB_NM_FILE;
1761 #endif
1762 fprintf_unfiltered (file,
1763 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1764 gdb_nm_file);
1765 EOF
1766 function_list | sort -t: -k 3 | while do_read
1767 do
1768 # First the predicate
1769 if class_is_predicate_p
1770 then
1771 printf " fprintf_unfiltered (file,\n"
1772 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1773 printf " gdbarch_${function}_p (gdbarch));\n"
1774 fi
1775 # Print the corresponding value.
1776 if class_is_function_p
1777 then
1778 printf " fprintf_unfiltered (file,\n"
1779 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1780 printf " host_address_to_string (gdbarch->${function}));\n"
1781 else
1782 # It is a variable
1783 case "${print}:${returntype}" in
1784 :CORE_ADDR )
1785 fmt="%s"
1786 print="core_addr_to_string_nz (gdbarch->${function})"
1787 ;;
1788 :* )
1789 fmt="%s"
1790 print="plongest (gdbarch->${function})"
1791 ;;
1792 * )
1793 fmt="%s"
1794 ;;
1795 esac
1796 printf " fprintf_unfiltered (file,\n"
1797 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1798 printf " ${print});\n"
1799 fi
1800 done
1801 cat <<EOF
1802 if (gdbarch->dump_tdep != NULL)
1803 gdbarch->dump_tdep (gdbarch, file);
1804 }
1805 EOF
1806
1807
1808 # GET/SET
1809 printf "\n"
1810 cat <<EOF
1811 struct gdbarch_tdep *
1812 gdbarch_tdep (struct gdbarch *gdbarch)
1813 {
1814 if (gdbarch_debug >= 2)
1815 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1816 return gdbarch->tdep;
1817 }
1818 EOF
1819 printf "\n"
1820 function_list | while do_read
1821 do
1822 if class_is_predicate_p
1823 then
1824 printf "\n"
1825 printf "int\n"
1826 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1827 printf "{\n"
1828 printf " gdb_assert (gdbarch != NULL);\n"
1829 printf " return ${predicate};\n"
1830 printf "}\n"
1831 fi
1832 if class_is_function_p
1833 then
1834 printf "\n"
1835 printf "${returntype}\n"
1836 if [ "x${formal}" = "xvoid" ]
1837 then
1838 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1839 else
1840 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1841 fi
1842 printf "{\n"
1843 printf " gdb_assert (gdbarch != NULL);\n"
1844 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1845 if class_is_predicate_p && test -n "${predefault}"
1846 then
1847 # Allow a call to a function with a predicate.
1848 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1849 fi
1850 printf " if (gdbarch_debug >= 2)\n"
1851 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1852 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1853 then
1854 if class_is_multiarch_p
1855 then
1856 params="gdbarch"
1857 else
1858 params=""
1859 fi
1860 else
1861 if class_is_multiarch_p
1862 then
1863 params="gdbarch, ${actual}"
1864 else
1865 params="${actual}"
1866 fi
1867 fi
1868 if [ "x${returntype}" = "xvoid" ]
1869 then
1870 printf " gdbarch->${function} (${params});\n"
1871 else
1872 printf " return gdbarch->${function} (${params});\n"
1873 fi
1874 printf "}\n"
1875 printf "\n"
1876 printf "void\n"
1877 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1878 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1879 printf "{\n"
1880 printf " gdbarch->${function} = ${function};\n"
1881 printf "}\n"
1882 elif class_is_variable_p
1883 then
1884 printf "\n"
1885 printf "${returntype}\n"
1886 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1887 printf "{\n"
1888 printf " gdb_assert (gdbarch != NULL);\n"
1889 if [ "x${invalid_p}" = "x0" ]
1890 then
1891 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1892 elif [ -n "${invalid_p}" ]
1893 then
1894 printf " /* Check variable is valid. */\n"
1895 printf " gdb_assert (!(${invalid_p}));\n"
1896 elif [ -n "${predefault}" ]
1897 then
1898 printf " /* Check variable changed from pre-default. */\n"
1899 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1900 fi
1901 printf " if (gdbarch_debug >= 2)\n"
1902 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1903 printf " return gdbarch->${function};\n"
1904 printf "}\n"
1905 printf "\n"
1906 printf "void\n"
1907 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1908 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1909 printf "{\n"
1910 printf " gdbarch->${function} = ${function};\n"
1911 printf "}\n"
1912 elif class_is_info_p
1913 then
1914 printf "\n"
1915 printf "${returntype}\n"
1916 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1917 printf "{\n"
1918 printf " gdb_assert (gdbarch != NULL);\n"
1919 printf " if (gdbarch_debug >= 2)\n"
1920 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1921 printf " return gdbarch->${function};\n"
1922 printf "}\n"
1923 fi
1924 done
1925
1926 # All the trailing guff
1927 cat <<EOF
1928
1929
1930 /* Keep a registry of per-architecture data-pointers required by GDB
1931 modules. */
1932
1933 struct gdbarch_data
1934 {
1935 unsigned index;
1936 int init_p;
1937 gdbarch_data_pre_init_ftype *pre_init;
1938 gdbarch_data_post_init_ftype *post_init;
1939 };
1940
1941 struct gdbarch_data_registration
1942 {
1943 struct gdbarch_data *data;
1944 struct gdbarch_data_registration *next;
1945 };
1946
1947 struct gdbarch_data_registry
1948 {
1949 unsigned nr;
1950 struct gdbarch_data_registration *registrations;
1951 };
1952
1953 struct gdbarch_data_registry gdbarch_data_registry =
1954 {
1955 0, NULL,
1956 };
1957
1958 static struct gdbarch_data *
1959 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1960 gdbarch_data_post_init_ftype *post_init)
1961 {
1962 struct gdbarch_data_registration **curr;
1963
1964 /* Append the new registration. */
1965 for (curr = &gdbarch_data_registry.registrations;
1966 (*curr) != NULL;
1967 curr = &(*curr)->next);
1968 (*curr) = XMALLOC (struct gdbarch_data_registration);
1969 (*curr)->next = NULL;
1970 (*curr)->data = XMALLOC (struct gdbarch_data);
1971 (*curr)->data->index = gdbarch_data_registry.nr++;
1972 (*curr)->data->pre_init = pre_init;
1973 (*curr)->data->post_init = post_init;
1974 (*curr)->data->init_p = 1;
1975 return (*curr)->data;
1976 }
1977
1978 struct gdbarch_data *
1979 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1980 {
1981 return gdbarch_data_register (pre_init, NULL);
1982 }
1983
1984 struct gdbarch_data *
1985 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1986 {
1987 return gdbarch_data_register (NULL, post_init);
1988 }
1989
1990 /* Create/delete the gdbarch data vector. */
1991
1992 static void
1993 alloc_gdbarch_data (struct gdbarch *gdbarch)
1994 {
1995 gdb_assert (gdbarch->data == NULL);
1996 gdbarch->nr_data = gdbarch_data_registry.nr;
1997 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1998 }
1999
2000 /* Initialize the current value of the specified per-architecture
2001 data-pointer. */
2002
2003 void
2004 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2005 struct gdbarch_data *data,
2006 void *pointer)
2007 {
2008 gdb_assert (data->index < gdbarch->nr_data);
2009 gdb_assert (gdbarch->data[data->index] == NULL);
2010 gdb_assert (data->pre_init == NULL);
2011 gdbarch->data[data->index] = pointer;
2012 }
2013
2014 /* Return the current value of the specified per-architecture
2015 data-pointer. */
2016
2017 void *
2018 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2019 {
2020 gdb_assert (data->index < gdbarch->nr_data);
2021 if (gdbarch->data[data->index] == NULL)
2022 {
2023 /* The data-pointer isn't initialized, call init() to get a
2024 value. */
2025 if (data->pre_init != NULL)
2026 /* Mid architecture creation: pass just the obstack, and not
2027 the entire architecture, as that way it isn't possible for
2028 pre-init code to refer to undefined architecture
2029 fields. */
2030 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2031 else if (gdbarch->initialized_p
2032 && data->post_init != NULL)
2033 /* Post architecture creation: pass the entire architecture
2034 (as all fields are valid), but be careful to also detect
2035 recursive references. */
2036 {
2037 gdb_assert (data->init_p);
2038 data->init_p = 0;
2039 gdbarch->data[data->index] = data->post_init (gdbarch);
2040 data->init_p = 1;
2041 }
2042 else
2043 /* The architecture initialization hasn't completed - punt -
2044 hope that the caller knows what they are doing. Once
2045 deprecated_set_gdbarch_data has been initialized, this can be
2046 changed to an internal error. */
2047 return NULL;
2048 gdb_assert (gdbarch->data[data->index] != NULL);
2049 }
2050 return gdbarch->data[data->index];
2051 }
2052
2053
2054 /* Keep a registry of the architectures known by GDB. */
2055
2056 struct gdbarch_registration
2057 {
2058 enum bfd_architecture bfd_architecture;
2059 gdbarch_init_ftype *init;
2060 gdbarch_dump_tdep_ftype *dump_tdep;
2061 struct gdbarch_list *arches;
2062 struct gdbarch_registration *next;
2063 };
2064
2065 static struct gdbarch_registration *gdbarch_registry = NULL;
2066
2067 static void
2068 append_name (const char ***buf, int *nr, const char *name)
2069 {
2070 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2071 (*buf)[*nr] = name;
2072 *nr += 1;
2073 }
2074
2075 const char **
2076 gdbarch_printable_names (void)
2077 {
2078 /* Accumulate a list of names based on the registed list of
2079 architectures. */
2080 int nr_arches = 0;
2081 const char **arches = NULL;
2082 struct gdbarch_registration *rego;
2083
2084 for (rego = gdbarch_registry;
2085 rego != NULL;
2086 rego = rego->next)
2087 {
2088 const struct bfd_arch_info *ap;
2089 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2090 if (ap == NULL)
2091 internal_error (__FILE__, __LINE__,
2092 _("gdbarch_architecture_names: multi-arch unknown"));
2093 do
2094 {
2095 append_name (&arches, &nr_arches, ap->printable_name);
2096 ap = ap->next;
2097 }
2098 while (ap != NULL);
2099 }
2100 append_name (&arches, &nr_arches, NULL);
2101 return arches;
2102 }
2103
2104
2105 void
2106 gdbarch_register (enum bfd_architecture bfd_architecture,
2107 gdbarch_init_ftype *init,
2108 gdbarch_dump_tdep_ftype *dump_tdep)
2109 {
2110 struct gdbarch_registration **curr;
2111 const struct bfd_arch_info *bfd_arch_info;
2112
2113 /* Check that BFD recognizes this architecture */
2114 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2115 if (bfd_arch_info == NULL)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 _("gdbarch: Attempt to register "
2119 "unknown architecture (%d)"),
2120 bfd_architecture);
2121 }
2122 /* Check that we haven't seen this architecture before. */
2123 for (curr = &gdbarch_registry;
2124 (*curr) != NULL;
2125 curr = &(*curr)->next)
2126 {
2127 if (bfd_architecture == (*curr)->bfd_architecture)
2128 internal_error (__FILE__, __LINE__,
2129 _("gdbarch: Duplicate registration "
2130 "of architecture (%s)"),
2131 bfd_arch_info->printable_name);
2132 }
2133 /* log it */
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2136 bfd_arch_info->printable_name,
2137 host_address_to_string (init));
2138 /* Append it */
2139 (*curr) = XMALLOC (struct gdbarch_registration);
2140 (*curr)->bfd_architecture = bfd_architecture;
2141 (*curr)->init = init;
2142 (*curr)->dump_tdep = dump_tdep;
2143 (*curr)->arches = NULL;
2144 (*curr)->next = NULL;
2145 }
2146
2147 void
2148 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2149 gdbarch_init_ftype *init)
2150 {
2151 gdbarch_register (bfd_architecture, init, NULL);
2152 }
2153
2154
2155 /* Look for an architecture using gdbarch_info. */
2156
2157 struct gdbarch_list *
2158 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2159 const struct gdbarch_info *info)
2160 {
2161 for (; arches != NULL; arches = arches->next)
2162 {
2163 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2164 continue;
2165 if (info->byte_order != arches->gdbarch->byte_order)
2166 continue;
2167 if (info->osabi != arches->gdbarch->osabi)
2168 continue;
2169 if (info->target_desc != arches->gdbarch->target_desc)
2170 continue;
2171 return arches;
2172 }
2173 return NULL;
2174 }
2175
2176
2177 /* Find an architecture that matches the specified INFO. Create a new
2178 architecture if needed. Return that new architecture. */
2179
2180 struct gdbarch *
2181 gdbarch_find_by_info (struct gdbarch_info info)
2182 {
2183 struct gdbarch *new_gdbarch;
2184 struct gdbarch_registration *rego;
2185
2186 /* Fill in missing parts of the INFO struct using a number of
2187 sources: "set ..."; INFOabfd supplied; and the global
2188 defaults. */
2189 gdbarch_info_fill (&info);
2190
2191 /* Must have found some sort of architecture. */
2192 gdb_assert (info.bfd_arch_info != NULL);
2193
2194 if (gdbarch_debug)
2195 {
2196 fprintf_unfiltered (gdb_stdlog,
2197 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2198 (info.bfd_arch_info != NULL
2199 ? info.bfd_arch_info->printable_name
2200 : "(null)"));
2201 fprintf_unfiltered (gdb_stdlog,
2202 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2203 info.byte_order,
2204 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2205 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2206 : "default"));
2207 fprintf_unfiltered (gdb_stdlog,
2208 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2209 info.osabi, gdbarch_osabi_name (info.osabi));
2210 fprintf_unfiltered (gdb_stdlog,
2211 "gdbarch_find_by_info: info.abfd %s\n",
2212 host_address_to_string (info.abfd));
2213 fprintf_unfiltered (gdb_stdlog,
2214 "gdbarch_find_by_info: info.tdep_info %s\n",
2215 host_address_to_string (info.tdep_info));
2216 }
2217
2218 /* Find the tdep code that knows about this architecture. */
2219 for (rego = gdbarch_registry;
2220 rego != NULL;
2221 rego = rego->next)
2222 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2223 break;
2224 if (rego == NULL)
2225 {
2226 if (gdbarch_debug)
2227 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2228 "No matching architecture\n");
2229 return 0;
2230 }
2231
2232 /* Ask the tdep code for an architecture that matches "info". */
2233 new_gdbarch = rego->init (info, rego->arches);
2234
2235 /* Did the tdep code like it? No. Reject the change and revert to
2236 the old architecture. */
2237 if (new_gdbarch == NULL)
2238 {
2239 if (gdbarch_debug)
2240 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2241 "Target rejected architecture\n");
2242 return NULL;
2243 }
2244
2245 /* Is this a pre-existing architecture (as determined by already
2246 being initialized)? Move it to the front of the architecture
2247 list (keeping the list sorted Most Recently Used). */
2248 if (new_gdbarch->initialized_p)
2249 {
2250 struct gdbarch_list **list;
2251 struct gdbarch_list *this;
2252 if (gdbarch_debug)
2253 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2254 "Previous architecture %s (%s) selected\n",
2255 host_address_to_string (new_gdbarch),
2256 new_gdbarch->bfd_arch_info->printable_name);
2257 /* Find the existing arch in the list. */
2258 for (list = &rego->arches;
2259 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2260 list = &(*list)->next);
2261 /* It had better be in the list of architectures. */
2262 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2263 /* Unlink THIS. */
2264 this = (*list);
2265 (*list) = this->next;
2266 /* Insert THIS at the front. */
2267 this->next = rego->arches;
2268 rego->arches = this;
2269 /* Return it. */
2270 return new_gdbarch;
2271 }
2272
2273 /* It's a new architecture. */
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2276 "New architecture %s (%s) selected\n",
2277 host_address_to_string (new_gdbarch),
2278 new_gdbarch->bfd_arch_info->printable_name);
2279
2280 /* Insert the new architecture into the front of the architecture
2281 list (keep the list sorted Most Recently Used). */
2282 {
2283 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2284 this->next = rego->arches;
2285 this->gdbarch = new_gdbarch;
2286 rego->arches = this;
2287 }
2288
2289 /* Check that the newly installed architecture is valid. Plug in
2290 any post init values. */
2291 new_gdbarch->dump_tdep = rego->dump_tdep;
2292 verify_gdbarch (new_gdbarch);
2293 new_gdbarch->initialized_p = 1;
2294
2295 if (gdbarch_debug)
2296 gdbarch_dump (new_gdbarch, gdb_stdlog);
2297
2298 return new_gdbarch;
2299 }
2300
2301 /* Make the specified architecture current. */
2302
2303 void
2304 set_target_gdbarch (struct gdbarch *new_gdbarch)
2305 {
2306 gdb_assert (new_gdbarch != NULL);
2307 gdb_assert (new_gdbarch->initialized_p);
2308 current_inferior ()->gdbarch = new_gdbarch;
2309 observer_notify_architecture_changed (new_gdbarch);
2310 registers_changed ();
2311 }
2312
2313 /* Return the current inferior's arch. */
2314
2315 struct gdbarch *
2316 target_gdbarch (void)
2317 {
2318 return current_inferior ()->gdbarch;
2319 }
2320
2321 extern void _initialize_gdbarch (void);
2322
2323 void
2324 _initialize_gdbarch (void)
2325 {
2326 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2327 Set architecture debugging."), _("\\
2328 Show architecture debugging."), _("\\
2329 When non-zero, architecture debugging is enabled."),
2330 NULL,
2331 show_gdbarch_debug,
2332 &setdebuglist, &showdebuglist);
2333 }
2334 EOF
2335
2336 # close things off
2337 exec 1>&2
2338 #../move-if-change new-gdbarch.c gdbarch.c
2339 compare_new gdbarch.c
This page took 0.100163 seconds and 4 git commands to generate.