ChangeLog:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
425 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426 # Convert from an sdb register number to an internal gdb register number.
427 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:unwind_dummy_id:struct frame_info *info:info
438 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # It has been suggested that this, well actually its predecessor,
474 # should take the type/value of the function to be called and not the
475 # return type. This is left as an exercise for the reader.
476
477 M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
478
479 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
480 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
481 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
482 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
483 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
484 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
485 v:CORE_ADDR:decr_pc_after_break:::0:::0
486
487 # A function can be addressed by either it's "pointer" (possibly a
488 # descriptor address) or "entry point" (first executable instruction).
489 # The method "convert_from_func_ptr_addr" converting the former to the
490 # latter. gdbarch_deprecated_function_start_offset is being used to implement
491 # a simplified subset of that functionality - the function's address
492 # corresponds to the "function pointer" and the function's start
493 # corresponds to the "function entry point" - and hence is redundant.
494
495 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
496
497 # Return the remote protocol register number associated with this
498 # register. Normally the identity mapping.
499 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
500
501 # Fetch the target specific address used to represent a load module.
502 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
503 #
504 v:CORE_ADDR:frame_args_skip:::0:::0
505 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
506 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
507 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
508 # frame-base. Enable frame-base before frame-unwind.
509 F:int:frame_num_args:struct frame_info *frame:frame
510 #
511 M:CORE_ADDR:frame_align:CORE_ADDR address:address
512 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
513 v:int:frame_red_zone_size
514 #
515 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
516 # On some machines there are bits in addresses which are not really
517 # part of the address, but are used by the kernel, the hardware, etc.
518 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
519 # we get a "real" address such as one would find in a symbol table.
520 # This is used only for addresses of instructions, and even then I'm
521 # not sure it's used in all contexts. It exists to deal with there
522 # being a few stray bits in the PC which would mislead us, not as some
523 # sort of generic thing to handle alignment or segmentation (it's
524 # possible it should be in TARGET_READ_PC instead).
525 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
526 # It is not at all clear why gdbarch_smash_text_address is not folded into
527 # gdbarch_addr_bits_remove.
528 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
529
530 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
531 # indicates if the target needs software single step. An ISA method to
532 # implement it.
533 #
534 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
535 # breakpoints using the breakpoint system instead of blatting memory directly
536 # (as with rs6000).
537 #
538 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
539 # target can single step. If not, then implement single step using breakpoints.
540 #
541 # A return value of 1 means that the software_single_step breakpoints
542 # were inserted; 0 means they were not.
543 F:int:software_single_step:struct frame_info *frame:frame
544
545 # Return non-zero if the processor is executing a delay slot and a
546 # further single-step is needed before the instruction finishes.
547 M:int:single_step_through_delay:struct frame_info *frame:frame
548 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
549 # disassembler. Perhaps objdump can handle it?
550 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
551 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
552
553
554 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
555 # evaluates non-zero, this is the address where the debugger will place
556 # a step-resume breakpoint to get us past the dynamic linker.
557 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
558 # Some systems also have trampoline code for returning from shared libs.
559 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
560
561 # A target might have problems with watchpoints as soon as the stack
562 # frame of the current function has been destroyed. This mostly happens
563 # as the first action in a funtion's epilogue. in_function_epilogue_p()
564 # is defined to return a non-zero value if either the given addr is one
565 # instruction after the stack destroying instruction up to the trailing
566 # return instruction or if we can figure out that the stack frame has
567 # already been invalidated regardless of the value of addr. Targets
568 # which don't suffer from that problem could just let this functionality
569 # untouched.
570 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
571 # Given a vector of command-line arguments, return a newly allocated
572 # string which, when passed to the create_inferior function, will be
573 # parsed (on Unix systems, by the shell) to yield the same vector.
574 # This function should call error() if the argument vector is not
575 # representable for this target or if this target does not support
576 # command-line arguments.
577 # ARGC is the number of elements in the vector.
578 # ARGV is an array of strings, one per argument.
579 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
580 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
581 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
582 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
583 v:int:cannot_step_breakpoint:::0:0::0
584 v:int:have_nonsteppable_watchpoint:::0:0::0
585 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
586 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
587 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
588 # Is a register in a group
589 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
590 # Fetch the pointer to the ith function argument.
591 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
592
593 # Return the appropriate register set for a core file section with
594 # name SECT_NAME and size SECT_SIZE.
595 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
596
597 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
598 # core file into buffer READBUF with length LEN.
599 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
600
601 # If the elements of C++ vtables are in-place function descriptors rather
602 # than normal function pointers (which may point to code or a descriptor),
603 # set this to one.
604 v:int:vtable_function_descriptors:::0:0::0
605
606 # Set if the least significant bit of the delta is used instead of the least
607 # significant bit of the pfn for pointers to virtual member functions.
608 v:int:vbit_in_delta:::0:0::0
609
610 # Advance PC to next instruction in order to skip a permanent breakpoint.
611 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
612
613 # Refresh overlay mapped state for section OSECT.
614 F:void:overlay_update:struct obj_section *osect:osect
615
616 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
617
618 # Handle special encoding of static variables in stabs debug info.
619 F:char *:static_transform_name:char *name:name
620 # Set if the address in N_SO or N_FUN stabs may be zero.
621 v:int:sofun_address_maybe_missing:::0:0::0
622 EOF
623 }
624
625 #
626 # The .log file
627 #
628 exec > new-gdbarch.log
629 function_list | while do_read
630 do
631 cat <<EOF
632 ${class} ${returntype} ${function} ($formal)
633 EOF
634 for r in ${read}
635 do
636 eval echo \"\ \ \ \ ${r}=\${${r}}\"
637 done
638 if class_is_predicate_p && fallback_default_p
639 then
640 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
641 kill $$
642 exit 1
643 fi
644 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
645 then
646 echo "Error: postdefault is useless when invalid_p=0" 1>&2
647 kill $$
648 exit 1
649 fi
650 if class_is_multiarch_p
651 then
652 if class_is_predicate_p ; then :
653 elif test "x${predefault}" = "x"
654 then
655 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
656 kill $$
657 exit 1
658 fi
659 fi
660 echo ""
661 done
662
663 exec 1>&2
664 compare_new gdbarch.log
665
666
667 copyright ()
668 {
669 cat <<EOF
670 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
671
672 /* Dynamic architecture support for GDB, the GNU debugger.
673
674 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
675 Free Software Foundation, Inc.
676
677 This file is part of GDB.
678
679 This program is free software; you can redistribute it and/or modify
680 it under the terms of the GNU General Public License as published by
681 the Free Software Foundation; either version 3 of the License, or
682 (at your option) any later version.
683
684 This program is distributed in the hope that it will be useful,
685 but WITHOUT ANY WARRANTY; without even the implied warranty of
686 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
687 GNU General Public License for more details.
688
689 You should have received a copy of the GNU General Public License
690 along with this program. If not, see <http://www.gnu.org/licenses/>. */
691
692 /* This file was created with the aid of \`\`gdbarch.sh''.
693
694 The Bourne shell script \`\`gdbarch.sh'' creates the files
695 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
696 against the existing \`\`gdbarch.[hc]''. Any differences found
697 being reported.
698
699 If editing this file, please also run gdbarch.sh and merge any
700 changes into that script. Conversely, when making sweeping changes
701 to this file, modifying gdbarch.sh and using its output may prove
702 easier. */
703
704 EOF
705 }
706
707 #
708 # The .h file
709 #
710
711 exec > new-gdbarch.h
712 copyright
713 cat <<EOF
714 #ifndef GDBARCH_H
715 #define GDBARCH_H
716
717 struct floatformat;
718 struct ui_file;
719 struct frame_info;
720 struct value;
721 struct objfile;
722 struct obj_section;
723 struct minimal_symbol;
724 struct regcache;
725 struct reggroup;
726 struct regset;
727 struct disassemble_info;
728 struct target_ops;
729 struct obstack;
730 struct bp_target_info;
731 struct target_desc;
732
733 extern struct gdbarch *current_gdbarch;
734 EOF
735
736 # function typedef's
737 printf "\n"
738 printf "\n"
739 printf "/* The following are pre-initialized by GDBARCH. */\n"
740 function_list | while do_read
741 do
742 if class_is_info_p
743 then
744 printf "\n"
745 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
746 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
747 fi
748 done
749
750 # function typedef's
751 printf "\n"
752 printf "\n"
753 printf "/* The following are initialized by the target dependent code. */\n"
754 function_list | while do_read
755 do
756 if [ -n "${comment}" ]
757 then
758 echo "${comment}" | sed \
759 -e '2 s,#,/*,' \
760 -e '3,$ s,#, ,' \
761 -e '$ s,$, */,'
762 fi
763
764 if class_is_predicate_p
765 then
766 printf "\n"
767 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
768 fi
769 if class_is_variable_p
770 then
771 printf "\n"
772 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
773 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
774 fi
775 if class_is_function_p
776 then
777 printf "\n"
778 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
779 then
780 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
781 elif class_is_multiarch_p
782 then
783 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
784 else
785 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
786 fi
787 if [ "x${formal}" = "xvoid" ]
788 then
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790 else
791 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
792 fi
793 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
794 fi
795 done
796
797 # close it off
798 cat <<EOF
799
800 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
801
802
803 /* Mechanism for co-ordinating the selection of a specific
804 architecture.
805
806 GDB targets (*-tdep.c) can register an interest in a specific
807 architecture. Other GDB components can register a need to maintain
808 per-architecture data.
809
810 The mechanisms below ensures that there is only a loose connection
811 between the set-architecture command and the various GDB
812 components. Each component can independently register their need
813 to maintain architecture specific data with gdbarch.
814
815 Pragmatics:
816
817 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
818 didn't scale.
819
820 The more traditional mega-struct containing architecture specific
821 data for all the various GDB components was also considered. Since
822 GDB is built from a variable number of (fairly independent)
823 components it was determined that the global aproach was not
824 applicable. */
825
826
827 /* Register a new architectural family with GDB.
828
829 Register support for the specified ARCHITECTURE with GDB. When
830 gdbarch determines that the specified architecture has been
831 selected, the corresponding INIT function is called.
832
833 --
834
835 The INIT function takes two parameters: INFO which contains the
836 information available to gdbarch about the (possibly new)
837 architecture; ARCHES which is a list of the previously created
838 \`\`struct gdbarch'' for this architecture.
839
840 The INFO parameter is, as far as possible, be pre-initialized with
841 information obtained from INFO.ABFD or the global defaults.
842
843 The ARCHES parameter is a linked list (sorted most recently used)
844 of all the previously created architures for this architecture
845 family. The (possibly NULL) ARCHES->gdbarch can used to access
846 values from the previously selected architecture for this
847 architecture family. The global \`\`current_gdbarch'' shall not be
848 used.
849
850 The INIT function shall return any of: NULL - indicating that it
851 doesn't recognize the selected architecture; an existing \`\`struct
852 gdbarch'' from the ARCHES list - indicating that the new
853 architecture is just a synonym for an earlier architecture (see
854 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
855 - that describes the selected architecture (see gdbarch_alloc()).
856
857 The DUMP_TDEP function shall print out all target specific values.
858 Care should be taken to ensure that the function works in both the
859 multi-arch and non- multi-arch cases. */
860
861 struct gdbarch_list
862 {
863 struct gdbarch *gdbarch;
864 struct gdbarch_list *next;
865 };
866
867 struct gdbarch_info
868 {
869 /* Use default: NULL (ZERO). */
870 const struct bfd_arch_info *bfd_arch_info;
871
872 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
873 int byte_order;
874
875 /* Use default: NULL (ZERO). */
876 bfd *abfd;
877
878 /* Use default: NULL (ZERO). */
879 struct gdbarch_tdep_info *tdep_info;
880
881 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
882 enum gdb_osabi osabi;
883
884 /* Use default: NULL (ZERO). */
885 const struct target_desc *target_desc;
886 };
887
888 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
889 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
890
891 /* DEPRECATED - use gdbarch_register() */
892 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
893
894 extern void gdbarch_register (enum bfd_architecture architecture,
895 gdbarch_init_ftype *,
896 gdbarch_dump_tdep_ftype *);
897
898
899 /* Return a freshly allocated, NULL terminated, array of the valid
900 architecture names. Since architectures are registered during the
901 _initialize phase this function only returns useful information
902 once initialization has been completed. */
903
904 extern const char **gdbarch_printable_names (void);
905
906
907 /* Helper function. Search the list of ARCHES for a GDBARCH that
908 matches the information provided by INFO. */
909
910 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
911
912
913 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
914 basic initialization using values obtained from the INFO and TDEP
915 parameters. set_gdbarch_*() functions are called to complete the
916 initialization of the object. */
917
918 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
919
920
921 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
922 It is assumed that the caller freeds the \`\`struct
923 gdbarch_tdep''. */
924
925 extern void gdbarch_free (struct gdbarch *);
926
927
928 /* Helper function. Allocate memory from the \`\`struct gdbarch''
929 obstack. The memory is freed when the corresponding architecture
930 is also freed. */
931
932 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
933 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
934 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
935
936
937 /* Helper function. Force an update of the current architecture.
938
939 The actual architecture selected is determined by INFO, \`\`(gdb) set
940 architecture'' et.al., the existing architecture and BFD's default
941 architecture. INFO should be initialized to zero and then selected
942 fields should be updated.
943
944 Returns non-zero if the update succeeds */
945
946 extern int gdbarch_update_p (struct gdbarch_info info);
947
948
949 /* Helper function. Find an architecture matching info.
950
951 INFO should be initialized using gdbarch_info_init, relevant fields
952 set, and then finished using gdbarch_info_fill.
953
954 Returns the corresponding architecture, or NULL if no matching
955 architecture was found. "current_gdbarch" is not updated. */
956
957 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
958
959
960 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
961
962 FIXME: kettenis/20031124: Of the functions that follow, only
963 gdbarch_from_bfd is supposed to survive. The others will
964 dissappear since in the future GDB will (hopefully) be truly
965 multi-arch. However, for now we're still stuck with the concept of
966 a single active architecture. */
967
968 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
969
970
971 /* Register per-architecture data-pointer.
972
973 Reserve space for a per-architecture data-pointer. An identifier
974 for the reserved data-pointer is returned. That identifer should
975 be saved in a local static variable.
976
977 Memory for the per-architecture data shall be allocated using
978 gdbarch_obstack_zalloc. That memory will be deleted when the
979 corresponding architecture object is deleted.
980
981 When a previously created architecture is re-selected, the
982 per-architecture data-pointer for that previous architecture is
983 restored. INIT() is not re-called.
984
985 Multiple registrarants for any architecture are allowed (and
986 strongly encouraged). */
987
988 struct gdbarch_data;
989
990 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
991 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
992 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
993 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
994 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
995 struct gdbarch_data *data,
996 void *pointer);
997
998 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
999
1000
1001 /* Set the dynamic target-system-dependent parameters (architecture,
1002 byte-order, ...) using information found in the BFD */
1003
1004 extern void set_gdbarch_from_file (bfd *);
1005
1006
1007 /* Initialize the current architecture to the "first" one we find on
1008 our list. */
1009
1010 extern void initialize_current_architecture (void);
1011
1012 /* gdbarch trace variable */
1013 extern int gdbarch_debug;
1014
1015 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1016
1017 #endif
1018 EOF
1019 exec 1>&2
1020 #../move-if-change new-gdbarch.h gdbarch.h
1021 compare_new gdbarch.h
1022
1023
1024 #
1025 # C file
1026 #
1027
1028 exec > new-gdbarch.c
1029 copyright
1030 cat <<EOF
1031
1032 #include "defs.h"
1033 #include "arch-utils.h"
1034
1035 #include "gdbcmd.h"
1036 #include "inferior.h"
1037 #include "symcat.h"
1038
1039 #include "floatformat.h"
1040
1041 #include "gdb_assert.h"
1042 #include "gdb_string.h"
1043 #include "gdb-events.h"
1044 #include "reggroups.h"
1045 #include "osabi.h"
1046 #include "gdb_obstack.h"
1047
1048 /* Static function declarations */
1049
1050 static void alloc_gdbarch_data (struct gdbarch *);
1051
1052 /* Non-zero if we want to trace architecture code. */
1053
1054 #ifndef GDBARCH_DEBUG
1055 #define GDBARCH_DEBUG 0
1056 #endif
1057 int gdbarch_debug = GDBARCH_DEBUG;
1058 static void
1059 show_gdbarch_debug (struct ui_file *file, int from_tty,
1060 struct cmd_list_element *c, const char *value)
1061 {
1062 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1063 }
1064
1065 static const char *
1066 pformat (const struct floatformat **format)
1067 {
1068 if (format == NULL)
1069 return "(null)";
1070 else
1071 /* Just print out one of them - this is only for diagnostics. */
1072 return format[0]->name;
1073 }
1074
1075 EOF
1076
1077 # gdbarch open the gdbarch object
1078 printf "\n"
1079 printf "/* Maintain the struct gdbarch object */\n"
1080 printf "\n"
1081 printf "struct gdbarch\n"
1082 printf "{\n"
1083 printf " /* Has this architecture been fully initialized? */\n"
1084 printf " int initialized_p;\n"
1085 printf "\n"
1086 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1087 printf " struct obstack *obstack;\n"
1088 printf "\n"
1089 printf " /* basic architectural information */\n"
1090 function_list | while do_read
1091 do
1092 if class_is_info_p
1093 then
1094 printf " ${returntype} ${function};\n"
1095 fi
1096 done
1097 printf "\n"
1098 printf " /* target specific vector. */\n"
1099 printf " struct gdbarch_tdep *tdep;\n"
1100 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1101 printf "\n"
1102 printf " /* per-architecture data-pointers */\n"
1103 printf " unsigned nr_data;\n"
1104 printf " void **data;\n"
1105 printf "\n"
1106 printf " /* per-architecture swap-regions */\n"
1107 printf " struct gdbarch_swap *swap;\n"
1108 printf "\n"
1109 cat <<EOF
1110 /* Multi-arch values.
1111
1112 When extending this structure you must:
1113
1114 Add the field below.
1115
1116 Declare set/get functions and define the corresponding
1117 macro in gdbarch.h.
1118
1119 gdbarch_alloc(): If zero/NULL is not a suitable default,
1120 initialize the new field.
1121
1122 verify_gdbarch(): Confirm that the target updated the field
1123 correctly.
1124
1125 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1126 field is dumped out
1127
1128 \`\`startup_gdbarch()'': Append an initial value to the static
1129 variable (base values on the host's c-type system).
1130
1131 get_gdbarch(): Implement the set/get functions (probably using
1132 the macro's as shortcuts).
1133
1134 */
1135
1136 EOF
1137 function_list | while do_read
1138 do
1139 if class_is_variable_p
1140 then
1141 printf " ${returntype} ${function};\n"
1142 elif class_is_function_p
1143 then
1144 printf " gdbarch_${function}_ftype *${function};\n"
1145 fi
1146 done
1147 printf "};\n"
1148
1149 # A pre-initialized vector
1150 printf "\n"
1151 printf "\n"
1152 cat <<EOF
1153 /* The default architecture uses host values (for want of a better
1154 choice). */
1155 EOF
1156 printf "\n"
1157 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1158 printf "\n"
1159 printf "struct gdbarch startup_gdbarch =\n"
1160 printf "{\n"
1161 printf " 1, /* Always initialized. */\n"
1162 printf " NULL, /* The obstack. */\n"
1163 printf " /* basic architecture information */\n"
1164 function_list | while do_read
1165 do
1166 if class_is_info_p
1167 then
1168 printf " ${staticdefault}, /* ${function} */\n"
1169 fi
1170 done
1171 cat <<EOF
1172 /* target specific vector and its dump routine */
1173 NULL, NULL,
1174 /*per-architecture data-pointers and swap regions */
1175 0, NULL, NULL,
1176 /* Multi-arch values */
1177 EOF
1178 function_list | while do_read
1179 do
1180 if class_is_function_p || class_is_variable_p
1181 then
1182 printf " ${staticdefault}, /* ${function} */\n"
1183 fi
1184 done
1185 cat <<EOF
1186 /* startup_gdbarch() */
1187 };
1188
1189 struct gdbarch *current_gdbarch = &startup_gdbarch;
1190 EOF
1191
1192 # Create a new gdbarch struct
1193 cat <<EOF
1194
1195 /* Create a new \`\`struct gdbarch'' based on information provided by
1196 \`\`struct gdbarch_info''. */
1197 EOF
1198 printf "\n"
1199 cat <<EOF
1200 struct gdbarch *
1201 gdbarch_alloc (const struct gdbarch_info *info,
1202 struct gdbarch_tdep *tdep)
1203 {
1204 struct gdbarch *gdbarch;
1205
1206 /* Create an obstack for allocating all the per-architecture memory,
1207 then use that to allocate the architecture vector. */
1208 struct obstack *obstack = XMALLOC (struct obstack);
1209 obstack_init (obstack);
1210 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1211 memset (gdbarch, 0, sizeof (*gdbarch));
1212 gdbarch->obstack = obstack;
1213
1214 alloc_gdbarch_data (gdbarch);
1215
1216 gdbarch->tdep = tdep;
1217 EOF
1218 printf "\n"
1219 function_list | while do_read
1220 do
1221 if class_is_info_p
1222 then
1223 printf " gdbarch->${function} = info->${function};\n"
1224 fi
1225 done
1226 printf "\n"
1227 printf " /* Force the explicit initialization of these. */\n"
1228 function_list | while do_read
1229 do
1230 if class_is_function_p || class_is_variable_p
1231 then
1232 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1233 then
1234 printf " gdbarch->${function} = ${predefault};\n"
1235 fi
1236 fi
1237 done
1238 cat <<EOF
1239 /* gdbarch_alloc() */
1240
1241 return gdbarch;
1242 }
1243 EOF
1244
1245 # Free a gdbarch struct.
1246 printf "\n"
1247 printf "\n"
1248 cat <<EOF
1249 /* Allocate extra space using the per-architecture obstack. */
1250
1251 void *
1252 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1253 {
1254 void *data = obstack_alloc (arch->obstack, size);
1255 memset (data, 0, size);
1256 return data;
1257 }
1258
1259
1260 /* Free a gdbarch struct. This should never happen in normal
1261 operation --- once you've created a gdbarch, you keep it around.
1262 However, if an architecture's init function encounters an error
1263 building the structure, it may need to clean up a partially
1264 constructed gdbarch. */
1265
1266 void
1267 gdbarch_free (struct gdbarch *arch)
1268 {
1269 struct obstack *obstack;
1270 gdb_assert (arch != NULL);
1271 gdb_assert (!arch->initialized_p);
1272 obstack = arch->obstack;
1273 obstack_free (obstack, 0); /* Includes the ARCH. */
1274 xfree (obstack);
1275 }
1276 EOF
1277
1278 # verify a new architecture
1279 cat <<EOF
1280
1281
1282 /* Ensure that all values in a GDBARCH are reasonable. */
1283
1284 static void
1285 verify_gdbarch (struct gdbarch *gdbarch)
1286 {
1287 struct ui_file *log;
1288 struct cleanup *cleanups;
1289 long dummy;
1290 char *buf;
1291 log = mem_fileopen ();
1292 cleanups = make_cleanup_ui_file_delete (log);
1293 /* fundamental */
1294 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1295 fprintf_unfiltered (log, "\n\tbyte-order");
1296 if (gdbarch->bfd_arch_info == NULL)
1297 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1298 /* Check those that need to be defined for the given multi-arch level. */
1299 EOF
1300 function_list | while do_read
1301 do
1302 if class_is_function_p || class_is_variable_p
1303 then
1304 if [ "x${invalid_p}" = "x0" ]
1305 then
1306 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1307 elif class_is_predicate_p
1308 then
1309 printf " /* Skip verify of ${function}, has predicate */\n"
1310 # FIXME: See do_read for potential simplification
1311 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1312 then
1313 printf " if (${invalid_p})\n"
1314 printf " gdbarch->${function} = ${postdefault};\n"
1315 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1316 then
1317 printf " if (gdbarch->${function} == ${predefault})\n"
1318 printf " gdbarch->${function} = ${postdefault};\n"
1319 elif [ -n "${postdefault}" ]
1320 then
1321 printf " if (gdbarch->${function} == 0)\n"
1322 printf " gdbarch->${function} = ${postdefault};\n"
1323 elif [ -n "${invalid_p}" ]
1324 then
1325 printf " if (${invalid_p})\n"
1326 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1327 elif [ -n "${predefault}" ]
1328 then
1329 printf " if (gdbarch->${function} == ${predefault})\n"
1330 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1331 fi
1332 fi
1333 done
1334 cat <<EOF
1335 buf = ui_file_xstrdup (log, &dummy);
1336 make_cleanup (xfree, buf);
1337 if (strlen (buf) > 0)
1338 internal_error (__FILE__, __LINE__,
1339 _("verify_gdbarch: the following are invalid ...%s"),
1340 buf);
1341 do_cleanups (cleanups);
1342 }
1343 EOF
1344
1345 # dump the structure
1346 printf "\n"
1347 printf "\n"
1348 cat <<EOF
1349 /* Print out the details of the current architecture. */
1350
1351 void
1352 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1353 {
1354 const char *gdb_nm_file = "<not-defined>";
1355 #if defined (GDB_NM_FILE)
1356 gdb_nm_file = GDB_NM_FILE;
1357 #endif
1358 fprintf_unfiltered (file,
1359 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1360 gdb_nm_file);
1361 EOF
1362 function_list | sort -t: -k 3 | while do_read
1363 do
1364 # First the predicate
1365 if class_is_predicate_p
1366 then
1367 printf " fprintf_unfiltered (file,\n"
1368 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1369 printf " gdbarch_${function}_p (gdbarch));\n"
1370 fi
1371 # Print the corresponding value.
1372 if class_is_function_p
1373 then
1374 printf " fprintf_unfiltered (file,\n"
1375 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1376 printf " (long) gdbarch->${function});\n"
1377 else
1378 # It is a variable
1379 case "${print}:${returntype}" in
1380 :CORE_ADDR )
1381 fmt="0x%s"
1382 print="paddr_nz (gdbarch->${function})"
1383 ;;
1384 :* )
1385 fmt="%s"
1386 print="paddr_d (gdbarch->${function})"
1387 ;;
1388 * )
1389 fmt="%s"
1390 ;;
1391 esac
1392 printf " fprintf_unfiltered (file,\n"
1393 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1394 printf " ${print});\n"
1395 fi
1396 done
1397 cat <<EOF
1398 if (gdbarch->dump_tdep != NULL)
1399 gdbarch->dump_tdep (gdbarch, file);
1400 }
1401 EOF
1402
1403
1404 # GET/SET
1405 printf "\n"
1406 cat <<EOF
1407 struct gdbarch_tdep *
1408 gdbarch_tdep (struct gdbarch *gdbarch)
1409 {
1410 if (gdbarch_debug >= 2)
1411 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1412 return gdbarch->tdep;
1413 }
1414 EOF
1415 printf "\n"
1416 function_list | while do_read
1417 do
1418 if class_is_predicate_p
1419 then
1420 printf "\n"
1421 printf "int\n"
1422 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1423 printf "{\n"
1424 printf " gdb_assert (gdbarch != NULL);\n"
1425 printf " return ${predicate};\n"
1426 printf "}\n"
1427 fi
1428 if class_is_function_p
1429 then
1430 printf "\n"
1431 printf "${returntype}\n"
1432 if [ "x${formal}" = "xvoid" ]
1433 then
1434 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1435 else
1436 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1437 fi
1438 printf "{\n"
1439 printf " gdb_assert (gdbarch != NULL);\n"
1440 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1441 if class_is_predicate_p && test -n "${predefault}"
1442 then
1443 # Allow a call to a function with a predicate.
1444 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1445 fi
1446 printf " if (gdbarch_debug >= 2)\n"
1447 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1448 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1449 then
1450 if class_is_multiarch_p
1451 then
1452 params="gdbarch"
1453 else
1454 params=""
1455 fi
1456 else
1457 if class_is_multiarch_p
1458 then
1459 params="gdbarch, ${actual}"
1460 else
1461 params="${actual}"
1462 fi
1463 fi
1464 if [ "x${returntype}" = "xvoid" ]
1465 then
1466 printf " gdbarch->${function} (${params});\n"
1467 else
1468 printf " return gdbarch->${function} (${params});\n"
1469 fi
1470 printf "}\n"
1471 printf "\n"
1472 printf "void\n"
1473 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1474 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1475 printf "{\n"
1476 printf " gdbarch->${function} = ${function};\n"
1477 printf "}\n"
1478 elif class_is_variable_p
1479 then
1480 printf "\n"
1481 printf "${returntype}\n"
1482 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1483 printf "{\n"
1484 printf " gdb_assert (gdbarch != NULL);\n"
1485 if [ "x${invalid_p}" = "x0" ]
1486 then
1487 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1488 elif [ -n "${invalid_p}" ]
1489 then
1490 printf " /* Check variable is valid. */\n"
1491 printf " gdb_assert (!(${invalid_p}));\n"
1492 elif [ -n "${predefault}" ]
1493 then
1494 printf " /* Check variable changed from pre-default. */\n"
1495 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1496 fi
1497 printf " if (gdbarch_debug >= 2)\n"
1498 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1499 printf " return gdbarch->${function};\n"
1500 printf "}\n"
1501 printf "\n"
1502 printf "void\n"
1503 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1504 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1505 printf "{\n"
1506 printf " gdbarch->${function} = ${function};\n"
1507 printf "}\n"
1508 elif class_is_info_p
1509 then
1510 printf "\n"
1511 printf "${returntype}\n"
1512 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1513 printf "{\n"
1514 printf " gdb_assert (gdbarch != NULL);\n"
1515 printf " if (gdbarch_debug >= 2)\n"
1516 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1517 printf " return gdbarch->${function};\n"
1518 printf "}\n"
1519 fi
1520 done
1521
1522 # All the trailing guff
1523 cat <<EOF
1524
1525
1526 /* Keep a registry of per-architecture data-pointers required by GDB
1527 modules. */
1528
1529 struct gdbarch_data
1530 {
1531 unsigned index;
1532 int init_p;
1533 gdbarch_data_pre_init_ftype *pre_init;
1534 gdbarch_data_post_init_ftype *post_init;
1535 };
1536
1537 struct gdbarch_data_registration
1538 {
1539 struct gdbarch_data *data;
1540 struct gdbarch_data_registration *next;
1541 };
1542
1543 struct gdbarch_data_registry
1544 {
1545 unsigned nr;
1546 struct gdbarch_data_registration *registrations;
1547 };
1548
1549 struct gdbarch_data_registry gdbarch_data_registry =
1550 {
1551 0, NULL,
1552 };
1553
1554 static struct gdbarch_data *
1555 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1556 gdbarch_data_post_init_ftype *post_init)
1557 {
1558 struct gdbarch_data_registration **curr;
1559 /* Append the new registraration. */
1560 for (curr = &gdbarch_data_registry.registrations;
1561 (*curr) != NULL;
1562 curr = &(*curr)->next);
1563 (*curr) = XMALLOC (struct gdbarch_data_registration);
1564 (*curr)->next = NULL;
1565 (*curr)->data = XMALLOC (struct gdbarch_data);
1566 (*curr)->data->index = gdbarch_data_registry.nr++;
1567 (*curr)->data->pre_init = pre_init;
1568 (*curr)->data->post_init = post_init;
1569 (*curr)->data->init_p = 1;
1570 return (*curr)->data;
1571 }
1572
1573 struct gdbarch_data *
1574 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1575 {
1576 return gdbarch_data_register (pre_init, NULL);
1577 }
1578
1579 struct gdbarch_data *
1580 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1581 {
1582 return gdbarch_data_register (NULL, post_init);
1583 }
1584
1585 /* Create/delete the gdbarch data vector. */
1586
1587 static void
1588 alloc_gdbarch_data (struct gdbarch *gdbarch)
1589 {
1590 gdb_assert (gdbarch->data == NULL);
1591 gdbarch->nr_data = gdbarch_data_registry.nr;
1592 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1593 }
1594
1595 /* Initialize the current value of the specified per-architecture
1596 data-pointer. */
1597
1598 void
1599 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1600 struct gdbarch_data *data,
1601 void *pointer)
1602 {
1603 gdb_assert (data->index < gdbarch->nr_data);
1604 gdb_assert (gdbarch->data[data->index] == NULL);
1605 gdb_assert (data->pre_init == NULL);
1606 gdbarch->data[data->index] = pointer;
1607 }
1608
1609 /* Return the current value of the specified per-architecture
1610 data-pointer. */
1611
1612 void *
1613 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1614 {
1615 gdb_assert (data->index < gdbarch->nr_data);
1616 if (gdbarch->data[data->index] == NULL)
1617 {
1618 /* The data-pointer isn't initialized, call init() to get a
1619 value. */
1620 if (data->pre_init != NULL)
1621 /* Mid architecture creation: pass just the obstack, and not
1622 the entire architecture, as that way it isn't possible for
1623 pre-init code to refer to undefined architecture
1624 fields. */
1625 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1626 else if (gdbarch->initialized_p
1627 && data->post_init != NULL)
1628 /* Post architecture creation: pass the entire architecture
1629 (as all fields are valid), but be careful to also detect
1630 recursive references. */
1631 {
1632 gdb_assert (data->init_p);
1633 data->init_p = 0;
1634 gdbarch->data[data->index] = data->post_init (gdbarch);
1635 data->init_p = 1;
1636 }
1637 else
1638 /* The architecture initialization hasn't completed - punt -
1639 hope that the caller knows what they are doing. Once
1640 deprecated_set_gdbarch_data has been initialized, this can be
1641 changed to an internal error. */
1642 return NULL;
1643 gdb_assert (gdbarch->data[data->index] != NULL);
1644 }
1645 return gdbarch->data[data->index];
1646 }
1647
1648
1649 /* Keep a registry of the architectures known by GDB. */
1650
1651 struct gdbarch_registration
1652 {
1653 enum bfd_architecture bfd_architecture;
1654 gdbarch_init_ftype *init;
1655 gdbarch_dump_tdep_ftype *dump_tdep;
1656 struct gdbarch_list *arches;
1657 struct gdbarch_registration *next;
1658 };
1659
1660 static struct gdbarch_registration *gdbarch_registry = NULL;
1661
1662 static void
1663 append_name (const char ***buf, int *nr, const char *name)
1664 {
1665 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1666 (*buf)[*nr] = name;
1667 *nr += 1;
1668 }
1669
1670 const char **
1671 gdbarch_printable_names (void)
1672 {
1673 /* Accumulate a list of names based on the registed list of
1674 architectures. */
1675 enum bfd_architecture a;
1676 int nr_arches = 0;
1677 const char **arches = NULL;
1678 struct gdbarch_registration *rego;
1679 for (rego = gdbarch_registry;
1680 rego != NULL;
1681 rego = rego->next)
1682 {
1683 const struct bfd_arch_info *ap;
1684 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1685 if (ap == NULL)
1686 internal_error (__FILE__, __LINE__,
1687 _("gdbarch_architecture_names: multi-arch unknown"));
1688 do
1689 {
1690 append_name (&arches, &nr_arches, ap->printable_name);
1691 ap = ap->next;
1692 }
1693 while (ap != NULL);
1694 }
1695 append_name (&arches, &nr_arches, NULL);
1696 return arches;
1697 }
1698
1699
1700 void
1701 gdbarch_register (enum bfd_architecture bfd_architecture,
1702 gdbarch_init_ftype *init,
1703 gdbarch_dump_tdep_ftype *dump_tdep)
1704 {
1705 struct gdbarch_registration **curr;
1706 const struct bfd_arch_info *bfd_arch_info;
1707 /* Check that BFD recognizes this architecture */
1708 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1709 if (bfd_arch_info == NULL)
1710 {
1711 internal_error (__FILE__, __LINE__,
1712 _("gdbarch: Attempt to register unknown architecture (%d)"),
1713 bfd_architecture);
1714 }
1715 /* Check that we haven't seen this architecture before */
1716 for (curr = &gdbarch_registry;
1717 (*curr) != NULL;
1718 curr = &(*curr)->next)
1719 {
1720 if (bfd_architecture == (*curr)->bfd_architecture)
1721 internal_error (__FILE__, __LINE__,
1722 _("gdbarch: Duplicate registraration of architecture (%s)"),
1723 bfd_arch_info->printable_name);
1724 }
1725 /* log it */
1726 if (gdbarch_debug)
1727 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1728 bfd_arch_info->printable_name,
1729 (long) init);
1730 /* Append it */
1731 (*curr) = XMALLOC (struct gdbarch_registration);
1732 (*curr)->bfd_architecture = bfd_architecture;
1733 (*curr)->init = init;
1734 (*curr)->dump_tdep = dump_tdep;
1735 (*curr)->arches = NULL;
1736 (*curr)->next = NULL;
1737 }
1738
1739 void
1740 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1741 gdbarch_init_ftype *init)
1742 {
1743 gdbarch_register (bfd_architecture, init, NULL);
1744 }
1745
1746
1747 /* Look for an architecture using gdbarch_info. */
1748
1749 struct gdbarch_list *
1750 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1751 const struct gdbarch_info *info)
1752 {
1753 for (; arches != NULL; arches = arches->next)
1754 {
1755 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1756 continue;
1757 if (info->byte_order != arches->gdbarch->byte_order)
1758 continue;
1759 if (info->osabi != arches->gdbarch->osabi)
1760 continue;
1761 if (info->target_desc != arches->gdbarch->target_desc)
1762 continue;
1763 return arches;
1764 }
1765 return NULL;
1766 }
1767
1768
1769 /* Find an architecture that matches the specified INFO. Create a new
1770 architecture if needed. Return that new architecture. Assumes
1771 that there is no current architecture. */
1772
1773 static struct gdbarch *
1774 find_arch_by_info (struct gdbarch_info info)
1775 {
1776 struct gdbarch *new_gdbarch;
1777 struct gdbarch_registration *rego;
1778
1779 /* The existing architecture has been swapped out - all this code
1780 works from a clean slate. */
1781 gdb_assert (current_gdbarch == NULL);
1782
1783 /* Fill in missing parts of the INFO struct using a number of
1784 sources: "set ..."; INFOabfd supplied; and the global
1785 defaults. */
1786 gdbarch_info_fill (&info);
1787
1788 /* Must have found some sort of architecture. */
1789 gdb_assert (info.bfd_arch_info != NULL);
1790
1791 if (gdbarch_debug)
1792 {
1793 fprintf_unfiltered (gdb_stdlog,
1794 "find_arch_by_info: info.bfd_arch_info %s\n",
1795 (info.bfd_arch_info != NULL
1796 ? info.bfd_arch_info->printable_name
1797 : "(null)"));
1798 fprintf_unfiltered (gdb_stdlog,
1799 "find_arch_by_info: info.byte_order %d (%s)\n",
1800 info.byte_order,
1801 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1802 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1803 : "default"));
1804 fprintf_unfiltered (gdb_stdlog,
1805 "find_arch_by_info: info.osabi %d (%s)\n",
1806 info.osabi, gdbarch_osabi_name (info.osabi));
1807 fprintf_unfiltered (gdb_stdlog,
1808 "find_arch_by_info: info.abfd 0x%lx\n",
1809 (long) info.abfd);
1810 fprintf_unfiltered (gdb_stdlog,
1811 "find_arch_by_info: info.tdep_info 0x%lx\n",
1812 (long) info.tdep_info);
1813 }
1814
1815 /* Find the tdep code that knows about this architecture. */
1816 for (rego = gdbarch_registry;
1817 rego != NULL;
1818 rego = rego->next)
1819 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1820 break;
1821 if (rego == NULL)
1822 {
1823 if (gdbarch_debug)
1824 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1825 "No matching architecture\n");
1826 return 0;
1827 }
1828
1829 /* Ask the tdep code for an architecture that matches "info". */
1830 new_gdbarch = rego->init (info, rego->arches);
1831
1832 /* Did the tdep code like it? No. Reject the change and revert to
1833 the old architecture. */
1834 if (new_gdbarch == NULL)
1835 {
1836 if (gdbarch_debug)
1837 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1838 "Target rejected architecture\n");
1839 return NULL;
1840 }
1841
1842 /* Is this a pre-existing architecture (as determined by already
1843 being initialized)? Move it to the front of the architecture
1844 list (keeping the list sorted Most Recently Used). */
1845 if (new_gdbarch->initialized_p)
1846 {
1847 struct gdbarch_list **list;
1848 struct gdbarch_list *this;
1849 if (gdbarch_debug)
1850 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1851 "Previous architecture 0x%08lx (%s) selected\n",
1852 (long) new_gdbarch,
1853 new_gdbarch->bfd_arch_info->printable_name);
1854 /* Find the existing arch in the list. */
1855 for (list = &rego->arches;
1856 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1857 list = &(*list)->next);
1858 /* It had better be in the list of architectures. */
1859 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1860 /* Unlink THIS. */
1861 this = (*list);
1862 (*list) = this->next;
1863 /* Insert THIS at the front. */
1864 this->next = rego->arches;
1865 rego->arches = this;
1866 /* Return it. */
1867 return new_gdbarch;
1868 }
1869
1870 /* It's a new architecture. */
1871 if (gdbarch_debug)
1872 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1873 "New architecture 0x%08lx (%s) selected\n",
1874 (long) new_gdbarch,
1875 new_gdbarch->bfd_arch_info->printable_name);
1876
1877 /* Insert the new architecture into the front of the architecture
1878 list (keep the list sorted Most Recently Used). */
1879 {
1880 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1881 this->next = rego->arches;
1882 this->gdbarch = new_gdbarch;
1883 rego->arches = this;
1884 }
1885
1886 /* Check that the newly installed architecture is valid. Plug in
1887 any post init values. */
1888 new_gdbarch->dump_tdep = rego->dump_tdep;
1889 verify_gdbarch (new_gdbarch);
1890 new_gdbarch->initialized_p = 1;
1891
1892 if (gdbarch_debug)
1893 gdbarch_dump (new_gdbarch, gdb_stdlog);
1894
1895 return new_gdbarch;
1896 }
1897
1898 struct gdbarch *
1899 gdbarch_find_by_info (struct gdbarch_info info)
1900 {
1901 struct gdbarch *new_gdbarch;
1902
1903 /* Save the previously selected architecture, setting the global to
1904 NULL. This stops things like gdbarch->init() trying to use the
1905 previous architecture's configuration. The previous architecture
1906 may not even be of the same architecture family. The most recent
1907 architecture of the same family is found at the head of the
1908 rego->arches list. */
1909 struct gdbarch *old_gdbarch = current_gdbarch;
1910 current_gdbarch = NULL;
1911
1912 /* Find the specified architecture. */
1913 new_gdbarch = find_arch_by_info (info);
1914
1915 /* Restore the existing architecture. */
1916 gdb_assert (current_gdbarch == NULL);
1917 current_gdbarch = old_gdbarch;
1918
1919 return new_gdbarch;
1920 }
1921
1922 /* Make the specified architecture current. */
1923
1924 void
1925 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1926 {
1927 gdb_assert (new_gdbarch != NULL);
1928 gdb_assert (current_gdbarch != NULL);
1929 gdb_assert (new_gdbarch->initialized_p);
1930 current_gdbarch = new_gdbarch;
1931 architecture_changed_event ();
1932 reinit_frame_cache ();
1933 }
1934
1935 extern void _initialize_gdbarch (void);
1936
1937 void
1938 _initialize_gdbarch (void)
1939 {
1940 struct cmd_list_element *c;
1941
1942 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1943 Set architecture debugging."), _("\\
1944 Show architecture debugging."), _("\\
1945 When non-zero, architecture debugging is enabled."),
1946 NULL,
1947 show_gdbarch_debug,
1948 &setdebuglist, &showdebuglist);
1949 }
1950 EOF
1951
1952 # close things off
1953 exec 1>&2
1954 #../move-if-change new-gdbarch.c gdbarch.c
1955 compare_new gdbarch.c
This page took 0.070359 seconds and 4 git commands to generate.