Document the get_longjmp_target gdbarch method.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
534 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
535 # Return the adjusted address and kind to use for Z0/Z1 packets.
536 # KIND is usually the memory length of the breakpoint, but may have a
537 # different target-specific meaning.
538 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
539 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
540 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
542 v:CORE_ADDR:decr_pc_after_break:::0:::0
543
544 # A function can be addressed by either it's "pointer" (possibly a
545 # descriptor address) or "entry point" (first executable instruction).
546 # The method "convert_from_func_ptr_addr" converting the former to the
547 # latter. gdbarch_deprecated_function_start_offset is being used to implement
548 # a simplified subset of that functionality - the function's address
549 # corresponds to the "function pointer" and the function's start
550 # corresponds to the "function entry point" - and hence is redundant.
551
552 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
553
554 # Return the remote protocol register number associated with this
555 # register. Normally the identity mapping.
556 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
557
558 # Fetch the target specific address used to represent a load module.
559 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
560 #
561 v:CORE_ADDR:frame_args_skip:::0:::0
562 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
564 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565 # frame-base. Enable frame-base before frame-unwind.
566 F:int:frame_num_args:struct frame_info *frame:frame
567 #
568 M:CORE_ADDR:frame_align:CORE_ADDR address:address
569 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570 v:int:frame_red_zone_size
571 #
572 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
573 # On some machines there are bits in addresses which are not really
574 # part of the address, but are used by the kernel, the hardware, etc.
575 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
576 # we get a "real" address such as one would find in a symbol table.
577 # This is used only for addresses of instructions, and even then I'm
578 # not sure it's used in all contexts. It exists to deal with there
579 # being a few stray bits in the PC which would mislead us, not as some
580 # sort of generic thing to handle alignment or segmentation (it's
581 # possible it should be in TARGET_READ_PC instead).
582 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
583
584 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
585 # indicates if the target needs software single step. An ISA method to
586 # implement it.
587 #
588 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589 # breakpoints using the breakpoint system instead of blatting memory directly
590 # (as with rs6000).
591 #
592 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593 # target can single step. If not, then implement single step using breakpoints.
594 #
595 # A return value of 1 means that the software_single_step breakpoints
596 # were inserted; 0 means they were not.
597 F:int:software_single_step:struct frame_info *frame:frame
598
599 # Return non-zero if the processor is executing a delay slot and a
600 # further single-step is needed before the instruction finishes.
601 M:int:single_step_through_delay:struct frame_info *frame:frame
602 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
603 # disassembler. Perhaps objdump can handle it?
604 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
606
607
608 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
609 # evaluates non-zero, this is the address where the debugger will place
610 # a step-resume breakpoint to get us past the dynamic linker.
611 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
612 # Some systems also have trampoline code for returning from shared libs.
613 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
614
615 # A target might have problems with watchpoints as soon as the stack
616 # frame of the current function has been destroyed. This mostly happens
617 # as the first action in a funtion's epilogue. in_function_epilogue_p()
618 # is defined to return a non-zero value if either the given addr is one
619 # instruction after the stack destroying instruction up to the trailing
620 # return instruction or if we can figure out that the stack frame has
621 # already been invalidated regardless of the value of addr. Targets
622 # which don't suffer from that problem could just let this functionality
623 # untouched.
624 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
625 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
627 v:int:cannot_step_breakpoint:::0:0::0
628 v:int:have_nonsteppable_watchpoint:::0:0::0
629 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
632 # Is a register in a group
633 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
634 # Fetch the pointer to the ith function argument.
635 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
636
637 # Return the appropriate register set for a core file section with
638 # name SECT_NAME and size SECT_SIZE.
639 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
640
641 # Supported register notes in a core file.
642 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
643
644 # Create core file notes
645 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
646
647 # The elfcore writer hook to use to write Linux prpsinfo notes to core
648 # files. Most Linux architectures use the same prpsinfo32 or
649 # prpsinfo64 layouts, and so won't need to provide this hook, as we
650 # call the Linux generic routines in bfd to write prpsinfo notes by
651 # default.
652 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
653
654 # Find core file memory regions
655 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
656
657 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658 # core file into buffer READBUF with length LEN.
659 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
660
661 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662 # libraries list from core file into buffer READBUF with length LEN.
663 M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
664
665 # How the core target converts a PTID from a core file to a string.
666 M:char *:core_pid_to_str:ptid_t ptid:ptid
667
668 # BFD target to use when generating a core file.
669 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
670
671 # If the elements of C++ vtables are in-place function descriptors rather
672 # than normal function pointers (which may point to code or a descriptor),
673 # set this to one.
674 v:int:vtable_function_descriptors:::0:0::0
675
676 # Set if the least significant bit of the delta is used instead of the least
677 # significant bit of the pfn for pointers to virtual member functions.
678 v:int:vbit_in_delta:::0:0::0
679
680 # Advance PC to next instruction in order to skip a permanent breakpoint.
681 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
682
683 # The maximum length of an instruction on this architecture in bytes.
684 V:ULONGEST:max_insn_length:::0:0
685
686 # Copy the instruction at FROM to TO, and make any adjustments
687 # necessary to single-step it at that address.
688 #
689 # REGS holds the state the thread's registers will have before
690 # executing the copied instruction; the PC in REGS will refer to FROM,
691 # not the copy at TO. The caller should update it to point at TO later.
692 #
693 # Return a pointer to data of the architecture's choice to be passed
694 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695 # the instruction's effects have been completely simulated, with the
696 # resulting state written back to REGS.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 #
701 # The TO area is only guaranteed to have space for
702 # gdbarch_max_insn_length (arch) bytes, so this function must not
703 # write more bytes than that to that area.
704 #
705 # If you do not provide this function, GDB assumes that the
706 # architecture does not support displaced stepping.
707 #
708 # If your architecture doesn't need to adjust instructions before
709 # single-stepping them, consider using simple_displaced_step_copy_insn
710 # here.
711 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
712
713 # Return true if GDB should use hardware single-stepping to execute
714 # the displaced instruction identified by CLOSURE. If false,
715 # GDB will simply restart execution at the displaced instruction
716 # location, and it is up to the target to ensure GDB will receive
717 # control again (e.g. by placing a software breakpoint instruction
718 # into the displaced instruction buffer).
719 #
720 # The default implementation returns false on all targets that
721 # provide a gdbarch_software_single_step routine, and true otherwise.
722 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
723
724 # Fix up the state resulting from successfully single-stepping a
725 # displaced instruction, to give the result we would have gotten from
726 # stepping the instruction in its original location.
727 #
728 # REGS is the register state resulting from single-stepping the
729 # displaced instruction.
730 #
731 # CLOSURE is the result from the matching call to
732 # gdbarch_displaced_step_copy_insn.
733 #
734 # If you provide gdbarch_displaced_step_copy_insn.but not this
735 # function, then GDB assumes that no fixup is needed after
736 # single-stepping the instruction.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
741
742 # Free a closure returned by gdbarch_displaced_step_copy_insn.
743 #
744 # If you provide gdbarch_displaced_step_copy_insn, you must provide
745 # this function as well.
746 #
747 # If your architecture uses closures that don't need to be freed, then
748 # you can use simple_displaced_step_free_closure here.
749 #
750 # For a general explanation of displaced stepping and how GDB uses it,
751 # see the comments in infrun.c.
752 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
753
754 # Return the address of an appropriate place to put displaced
755 # instructions while we step over them. There need only be one such
756 # place, since we're only stepping one thread over a breakpoint at a
757 # time.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
762
763 # Relocate an instruction to execute at a different address. OLDLOC
764 # is the address in the inferior memory where the instruction to
765 # relocate is currently at. On input, TO points to the destination
766 # where we want the instruction to be copied (and possibly adjusted)
767 # to. On output, it points to one past the end of the resulting
768 # instruction(s). The effect of executing the instruction at TO shall
769 # be the same as if executing it at FROM. For example, call
770 # instructions that implicitly push the return address on the stack
771 # should be adjusted to return to the instruction after OLDLOC;
772 # relative branches, and other PC-relative instructions need the
773 # offset adjusted; etc.
774 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
775
776 # Refresh overlay mapped state for section OSECT.
777 F:void:overlay_update:struct obj_section *osect:osect
778
779 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
780
781 # Handle special encoding of static variables in stabs debug info.
782 F:const char *:static_transform_name:const char *name:name
783 # Set if the address in N_SO or N_FUN stabs may be zero.
784 v:int:sofun_address_maybe_missing:::0:0::0
785
786 # Parse the instruction at ADDR storing in the record execution log
787 # the registers REGCACHE and memory ranges that will be affected when
788 # the instruction executes, along with their current values.
789 # Return -1 if something goes wrong, 0 otherwise.
790 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
791
792 # Save process state after a signal.
793 # Return -1 if something goes wrong, 0 otherwise.
794 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
795
796 # Signal translation: translate inferior's signal (target's) number
797 # into GDB's representation. The implementation of this method must
798 # be host independent. IOW, don't rely on symbols of the NAT_FILE
799 # header (the nm-*.h files), the host <signal.h> header, or similar
800 # headers. This is mainly used when cross-debugging core files ---
801 # "Live" targets hide the translation behind the target interface
802 # (target_wait, target_resume, etc.).
803 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
804
805 # Signal translation: translate the GDB's internal signal number into
806 # the inferior's signal (target's) representation. The implementation
807 # of this method must be host independent. IOW, don't rely on symbols
808 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809 # header, or similar headers.
810 # Return the target signal number if found, or -1 if the GDB internal
811 # signal number is invalid.
812 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
813
814 # Extra signal info inspection.
815 #
816 # Return a type suitable to inspect extra signal information.
817 M:struct type *:get_siginfo_type:void:
818
819 # Record architecture-specific information from the symbol table.
820 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
821
822 # Function for the 'catch syscall' feature.
823
824 # Get architecture-specific system calls information from registers.
825 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
826
827 # SystemTap related fields and functions.
828
829 # Prefix used to mark an integer constant on the architecture's assembly
830 # For example, on x86 integer constants are written as:
831 #
832 # \$10 ;; integer constant 10
833 #
834 # in this case, this prefix would be the character \`\$\'.
835 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
836
837 # Suffix used to mark an integer constant on the architecture's assembly.
838 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
839
840 # Prefix used to mark a register name on the architecture's assembly.
841 # For example, on x86 the register name is written as:
842 #
843 # \%eax ;; register eax
844 #
845 # in this case, this prefix would be the character \`\%\'.
846 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
847
848 # Suffix used to mark a register name on the architecture's assembly
849 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
850
851 # Prefix used to mark a register indirection on the architecture's assembly.
852 # For example, on x86 the register indirection is written as:
853 #
854 # \(\%eax\) ;; indirecting eax
855 #
856 # in this case, this prefix would be the charater \`\(\'.
857 #
858 # Please note that we use the indirection prefix also for register
859 # displacement, e.g., \`4\(\%eax\)\' on x86.
860 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
861
862 # Suffix used to mark a register indirection on the architecture's assembly.
863 # For example, on x86 the register indirection is written as:
864 #
865 # \(\%eax\) ;; indirecting eax
866 #
867 # in this case, this prefix would be the charater \`\)\'.
868 #
869 # Please note that we use the indirection suffix also for register
870 # displacement, e.g., \`4\(\%eax\)\' on x86.
871 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
872
873 # Prefix used to name a register using GDB's nomenclature.
874 #
875 # For example, on PPC a register is represented by a number in the assembly
876 # language (e.g., \`10\' is the 10th general-purpose register). However,
877 # inside GDB this same register has an \`r\' appended to its name, so the 10th
878 # register would be represented as \`r10\' internally.
879 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
880
881 # Suffix used to name a register using GDB's nomenclature.
882 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
883
884 # Check if S is a single operand.
885 #
886 # Single operands can be:
887 # \- Literal integers, e.g. \`\$10\' on x86
888 # \- Register access, e.g. \`\%eax\' on x86
889 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
890 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
891 #
892 # This function should check for these patterns on the string
893 # and return 1 if some were found, or zero otherwise. Please try to match
894 # as much info as you can from the string, i.e., if you have to match
895 # something like \`\(\%\', do not match just the \`\(\'.
896 M:int:stap_is_single_operand:const char *s:s
897
898 # Function used to handle a "special case" in the parser.
899 #
900 # A "special case" is considered to be an unknown token, i.e., a token
901 # that the parser does not know how to parse. A good example of special
902 # case would be ARM's register displacement syntax:
903 #
904 # [R0, #4] ;; displacing R0 by 4
905 #
906 # Since the parser assumes that a register displacement is of the form:
907 #
908 # <number> <indirection_prefix> <register_name> <indirection_suffix>
909 #
910 # it means that it will not be able to recognize and parse this odd syntax.
911 # Therefore, we should add a special case function that will handle this token.
912 #
913 # This function should generate the proper expression form of the expression
914 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
915 # and so on). It should also return 1 if the parsing was successful, or zero
916 # if the token was not recognized as a special token (in this case, returning
917 # zero means that the special parser is deferring the parsing to the generic
918 # parser), and should advance the buffer pointer (p->arg).
919 M:int:stap_parse_special_token:struct stap_parse_info *p:p
920
921
922 # True if the list of shared libraries is one and only for all
923 # processes, as opposed to a list of shared libraries per inferior.
924 # This usually means that all processes, although may or may not share
925 # an address space, will see the same set of symbols at the same
926 # addresses.
927 v:int:has_global_solist:::0:0::0
928
929 # On some targets, even though each inferior has its own private
930 # address space, the debug interface takes care of making breakpoints
931 # visible to all address spaces automatically. For such cases,
932 # this property should be set to true.
933 v:int:has_global_breakpoints:::0:0::0
934
935 # True if inferiors share an address space (e.g., uClinux).
936 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
937
938 # True if a fast tracepoint can be set at an address.
939 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
940
941 # Return the "auto" target charset.
942 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
943 # Return the "auto" target wide charset.
944 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
945
946 # If non-empty, this is a file extension that will be opened in place
947 # of the file extension reported by the shared library list.
948 #
949 # This is most useful for toolchains that use a post-linker tool,
950 # where the names of the files run on the target differ in extension
951 # compared to the names of the files GDB should load for debug info.
952 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
953
954 # If true, the target OS has DOS-based file system semantics. That
955 # is, absolute paths include a drive name, and the backslash is
956 # considered a directory separator.
957 v:int:has_dos_based_file_system:::0:0::0
958
959 # Generate bytecodes to collect the return address in a frame.
960 # Since the bytecodes run on the target, possibly with GDB not even
961 # connected, the full unwinding machinery is not available, and
962 # typically this function will issue bytecodes for one or more likely
963 # places that the return address may be found.
964 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
965
966 # Implement the "info proc" command.
967 M:void:info_proc:char *args, enum info_proc_what what:args, what
968
969 # Implement the "info proc" command for core files. Noe that there
970 # are two "info_proc"-like methods on gdbarch -- one for core files,
971 # one for live targets.
972 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
973
974 # Iterate over all objfiles in the order that makes the most sense
975 # for the architecture to make global symbol searches.
976 #
977 # CB is a callback function where OBJFILE is the objfile to be searched,
978 # and CB_DATA a pointer to user-defined data (the same data that is passed
979 # when calling this gdbarch method). The iteration stops if this function
980 # returns nonzero.
981 #
982 # CB_DATA is a pointer to some user-defined data to be passed to
983 # the callback.
984 #
985 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
986 # inspected when the symbol search was requested.
987 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
988
989 # Ravenscar arch-dependent ops.
990 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
991 EOF
992 }
993
994 #
995 # The .log file
996 #
997 exec > new-gdbarch.log
998 function_list | while do_read
999 do
1000 cat <<EOF
1001 ${class} ${returntype} ${function} ($formal)
1002 EOF
1003 for r in ${read}
1004 do
1005 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1006 done
1007 if class_is_predicate_p && fallback_default_p
1008 then
1009 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1010 kill $$
1011 exit 1
1012 fi
1013 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1014 then
1015 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1016 kill $$
1017 exit 1
1018 fi
1019 if class_is_multiarch_p
1020 then
1021 if class_is_predicate_p ; then :
1022 elif test "x${predefault}" = "x"
1023 then
1024 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1025 kill $$
1026 exit 1
1027 fi
1028 fi
1029 echo ""
1030 done
1031
1032 exec 1>&2
1033 compare_new gdbarch.log
1034
1035
1036 copyright ()
1037 {
1038 cat <<EOF
1039 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1040 /* vi:set ro: */
1041
1042 /* Dynamic architecture support for GDB, the GNU debugger.
1043
1044 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1045
1046 This file is part of GDB.
1047
1048 This program is free software; you can redistribute it and/or modify
1049 it under the terms of the GNU General Public License as published by
1050 the Free Software Foundation; either version 3 of the License, or
1051 (at your option) any later version.
1052
1053 This program is distributed in the hope that it will be useful,
1054 but WITHOUT ANY WARRANTY; without even the implied warranty of
1055 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1056 GNU General Public License for more details.
1057
1058 You should have received a copy of the GNU General Public License
1059 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1060
1061 /* This file was created with the aid of \`\`gdbarch.sh''.
1062
1063 The Bourne shell script \`\`gdbarch.sh'' creates the files
1064 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1065 against the existing \`\`gdbarch.[hc]''. Any differences found
1066 being reported.
1067
1068 If editing this file, please also run gdbarch.sh and merge any
1069 changes into that script. Conversely, when making sweeping changes
1070 to this file, modifying gdbarch.sh and using its output may prove
1071 easier. */
1072
1073 EOF
1074 }
1075
1076 #
1077 # The .h file
1078 #
1079
1080 exec > new-gdbarch.h
1081 copyright
1082 cat <<EOF
1083 #ifndef GDBARCH_H
1084 #define GDBARCH_H
1085
1086 struct floatformat;
1087 struct ui_file;
1088 struct frame_info;
1089 struct value;
1090 struct objfile;
1091 struct obj_section;
1092 struct minimal_symbol;
1093 struct regcache;
1094 struct reggroup;
1095 struct regset;
1096 struct disassemble_info;
1097 struct target_ops;
1098 struct obstack;
1099 struct bp_target_info;
1100 struct target_desc;
1101 struct displaced_step_closure;
1102 struct core_regset_section;
1103 struct syscall;
1104 struct agent_expr;
1105 struct axs_value;
1106 struct stap_parse_info;
1107 struct ravenscar_arch_ops;
1108 struct elf_internal_linux_prpsinfo;
1109
1110 /* The architecture associated with the inferior through the
1111 connection to the target.
1112
1113 The architecture vector provides some information that is really a
1114 property of the inferior, accessed through a particular target:
1115 ptrace operations; the layout of certain RSP packets; the solib_ops
1116 vector; etc. To differentiate architecture accesses to
1117 per-inferior/target properties from
1118 per-thread/per-frame/per-objfile properties, accesses to
1119 per-inferior/target properties should be made through this
1120 gdbarch. */
1121
1122 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1123 extern struct gdbarch *target_gdbarch (void);
1124
1125 /* The initial, default architecture. It uses host values (for want of a better
1126 choice). */
1127 extern struct gdbarch startup_gdbarch;
1128
1129
1130 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1131 gdbarch method. */
1132
1133 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1134 (struct objfile *objfile, void *cb_data);
1135 EOF
1136
1137 # function typedef's
1138 printf "\n"
1139 printf "\n"
1140 printf "/* The following are pre-initialized by GDBARCH. */\n"
1141 function_list | while do_read
1142 do
1143 if class_is_info_p
1144 then
1145 printf "\n"
1146 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1147 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1148 fi
1149 done
1150
1151 # function typedef's
1152 printf "\n"
1153 printf "\n"
1154 printf "/* The following are initialized by the target dependent code. */\n"
1155 function_list | while do_read
1156 do
1157 if [ -n "${comment}" ]
1158 then
1159 echo "${comment}" | sed \
1160 -e '2 s,#,/*,' \
1161 -e '3,$ s,#, ,' \
1162 -e '$ s,$, */,'
1163 fi
1164
1165 if class_is_predicate_p
1166 then
1167 printf "\n"
1168 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1169 fi
1170 if class_is_variable_p
1171 then
1172 printf "\n"
1173 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1174 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1175 fi
1176 if class_is_function_p
1177 then
1178 printf "\n"
1179 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1180 then
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1182 elif class_is_multiarch_p
1183 then
1184 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1185 else
1186 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1187 fi
1188 if [ "x${formal}" = "xvoid" ]
1189 then
1190 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1191 else
1192 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1193 fi
1194 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1195 fi
1196 done
1197
1198 # close it off
1199 cat <<EOF
1200
1201 /* Definition for an unknown syscall, used basically in error-cases. */
1202 #define UNKNOWN_SYSCALL (-1)
1203
1204 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1205
1206
1207 /* Mechanism for co-ordinating the selection of a specific
1208 architecture.
1209
1210 GDB targets (*-tdep.c) can register an interest in a specific
1211 architecture. Other GDB components can register a need to maintain
1212 per-architecture data.
1213
1214 The mechanisms below ensures that there is only a loose connection
1215 between the set-architecture command and the various GDB
1216 components. Each component can independently register their need
1217 to maintain architecture specific data with gdbarch.
1218
1219 Pragmatics:
1220
1221 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1222 didn't scale.
1223
1224 The more traditional mega-struct containing architecture specific
1225 data for all the various GDB components was also considered. Since
1226 GDB is built from a variable number of (fairly independent)
1227 components it was determined that the global aproach was not
1228 applicable. */
1229
1230
1231 /* Register a new architectural family with GDB.
1232
1233 Register support for the specified ARCHITECTURE with GDB. When
1234 gdbarch determines that the specified architecture has been
1235 selected, the corresponding INIT function is called.
1236
1237 --
1238
1239 The INIT function takes two parameters: INFO which contains the
1240 information available to gdbarch about the (possibly new)
1241 architecture; ARCHES which is a list of the previously created
1242 \`\`struct gdbarch'' for this architecture.
1243
1244 The INFO parameter is, as far as possible, be pre-initialized with
1245 information obtained from INFO.ABFD or the global defaults.
1246
1247 The ARCHES parameter is a linked list (sorted most recently used)
1248 of all the previously created architures for this architecture
1249 family. The (possibly NULL) ARCHES->gdbarch can used to access
1250 values from the previously selected architecture for this
1251 architecture family.
1252
1253 The INIT function shall return any of: NULL - indicating that it
1254 doesn't recognize the selected architecture; an existing \`\`struct
1255 gdbarch'' from the ARCHES list - indicating that the new
1256 architecture is just a synonym for an earlier architecture (see
1257 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1258 - that describes the selected architecture (see gdbarch_alloc()).
1259
1260 The DUMP_TDEP function shall print out all target specific values.
1261 Care should be taken to ensure that the function works in both the
1262 multi-arch and non- multi-arch cases. */
1263
1264 struct gdbarch_list
1265 {
1266 struct gdbarch *gdbarch;
1267 struct gdbarch_list *next;
1268 };
1269
1270 struct gdbarch_info
1271 {
1272 /* Use default: NULL (ZERO). */
1273 const struct bfd_arch_info *bfd_arch_info;
1274
1275 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1276 int byte_order;
1277
1278 int byte_order_for_code;
1279
1280 /* Use default: NULL (ZERO). */
1281 bfd *abfd;
1282
1283 /* Use default: NULL (ZERO). */
1284 struct gdbarch_tdep_info *tdep_info;
1285
1286 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1287 enum gdb_osabi osabi;
1288
1289 /* Use default: NULL (ZERO). */
1290 const struct target_desc *target_desc;
1291 };
1292
1293 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1294 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1295
1296 /* DEPRECATED - use gdbarch_register() */
1297 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1298
1299 extern void gdbarch_register (enum bfd_architecture architecture,
1300 gdbarch_init_ftype *,
1301 gdbarch_dump_tdep_ftype *);
1302
1303
1304 /* Return a freshly allocated, NULL terminated, array of the valid
1305 architecture names. Since architectures are registered during the
1306 _initialize phase this function only returns useful information
1307 once initialization has been completed. */
1308
1309 extern const char **gdbarch_printable_names (void);
1310
1311
1312 /* Helper function. Search the list of ARCHES for a GDBARCH that
1313 matches the information provided by INFO. */
1314
1315 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1316
1317
1318 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1319 basic initialization using values obtained from the INFO and TDEP
1320 parameters. set_gdbarch_*() functions are called to complete the
1321 initialization of the object. */
1322
1323 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1324
1325
1326 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1327 It is assumed that the caller freeds the \`\`struct
1328 gdbarch_tdep''. */
1329
1330 extern void gdbarch_free (struct gdbarch *);
1331
1332
1333 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1334 obstack. The memory is freed when the corresponding architecture
1335 is also freed. */
1336
1337 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1338 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1339 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1340
1341
1342 /* Helper function. Force an update of the current architecture.
1343
1344 The actual architecture selected is determined by INFO, \`\`(gdb) set
1345 architecture'' et.al., the existing architecture and BFD's default
1346 architecture. INFO should be initialized to zero and then selected
1347 fields should be updated.
1348
1349 Returns non-zero if the update succeeds. */
1350
1351 extern int gdbarch_update_p (struct gdbarch_info info);
1352
1353
1354 /* Helper function. Find an architecture matching info.
1355
1356 INFO should be initialized using gdbarch_info_init, relevant fields
1357 set, and then finished using gdbarch_info_fill.
1358
1359 Returns the corresponding architecture, or NULL if no matching
1360 architecture was found. */
1361
1362 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1363
1364
1365 /* Helper function. Set the target gdbarch to "gdbarch". */
1366
1367 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1368
1369
1370 /* Register per-architecture data-pointer.
1371
1372 Reserve space for a per-architecture data-pointer. An identifier
1373 for the reserved data-pointer is returned. That identifer should
1374 be saved in a local static variable.
1375
1376 Memory for the per-architecture data shall be allocated using
1377 gdbarch_obstack_zalloc. That memory will be deleted when the
1378 corresponding architecture object is deleted.
1379
1380 When a previously created architecture is re-selected, the
1381 per-architecture data-pointer for that previous architecture is
1382 restored. INIT() is not re-called.
1383
1384 Multiple registrarants for any architecture are allowed (and
1385 strongly encouraged). */
1386
1387 struct gdbarch_data;
1388
1389 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1390 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1391 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1392 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1393 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1394 struct gdbarch_data *data,
1395 void *pointer);
1396
1397 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1398
1399
1400 /* Set the dynamic target-system-dependent parameters (architecture,
1401 byte-order, ...) using information found in the BFD. */
1402
1403 extern void set_gdbarch_from_file (bfd *);
1404
1405
1406 /* Initialize the current architecture to the "first" one we find on
1407 our list. */
1408
1409 extern void initialize_current_architecture (void);
1410
1411 /* gdbarch trace variable */
1412 extern unsigned int gdbarch_debug;
1413
1414 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1415
1416 #endif
1417 EOF
1418 exec 1>&2
1419 #../move-if-change new-gdbarch.h gdbarch.h
1420 compare_new gdbarch.h
1421
1422
1423 #
1424 # C file
1425 #
1426
1427 exec > new-gdbarch.c
1428 copyright
1429 cat <<EOF
1430
1431 #include "defs.h"
1432 #include "arch-utils.h"
1433
1434 #include "gdbcmd.h"
1435 #include "inferior.h"
1436 #include "symcat.h"
1437
1438 #include "floatformat.h"
1439
1440 #include "gdb_assert.h"
1441 #include "gdb_string.h"
1442 #include "reggroups.h"
1443 #include "osabi.h"
1444 #include "gdb_obstack.h"
1445 #include "observer.h"
1446 #include "regcache.h"
1447 #include "objfiles.h"
1448
1449 /* Static function declarations */
1450
1451 static void alloc_gdbarch_data (struct gdbarch *);
1452
1453 /* Non-zero if we want to trace architecture code. */
1454
1455 #ifndef GDBARCH_DEBUG
1456 #define GDBARCH_DEBUG 0
1457 #endif
1458 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1459 static void
1460 show_gdbarch_debug (struct ui_file *file, int from_tty,
1461 struct cmd_list_element *c, const char *value)
1462 {
1463 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1464 }
1465
1466 static const char *
1467 pformat (const struct floatformat **format)
1468 {
1469 if (format == NULL)
1470 return "(null)";
1471 else
1472 /* Just print out one of them - this is only for diagnostics. */
1473 return format[0]->name;
1474 }
1475
1476 static const char *
1477 pstring (const char *string)
1478 {
1479 if (string == NULL)
1480 return "(null)";
1481 return string;
1482 }
1483
1484 EOF
1485
1486 # gdbarch open the gdbarch object
1487 printf "\n"
1488 printf "/* Maintain the struct gdbarch object. */\n"
1489 printf "\n"
1490 printf "struct gdbarch\n"
1491 printf "{\n"
1492 printf " /* Has this architecture been fully initialized? */\n"
1493 printf " int initialized_p;\n"
1494 printf "\n"
1495 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1496 printf " struct obstack *obstack;\n"
1497 printf "\n"
1498 printf " /* basic architectural information. */\n"
1499 function_list | while do_read
1500 do
1501 if class_is_info_p
1502 then
1503 printf " ${returntype} ${function};\n"
1504 fi
1505 done
1506 printf "\n"
1507 printf " /* target specific vector. */\n"
1508 printf " struct gdbarch_tdep *tdep;\n"
1509 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1510 printf "\n"
1511 printf " /* per-architecture data-pointers. */\n"
1512 printf " unsigned nr_data;\n"
1513 printf " void **data;\n"
1514 printf "\n"
1515 cat <<EOF
1516 /* Multi-arch values.
1517
1518 When extending this structure you must:
1519
1520 Add the field below.
1521
1522 Declare set/get functions and define the corresponding
1523 macro in gdbarch.h.
1524
1525 gdbarch_alloc(): If zero/NULL is not a suitable default,
1526 initialize the new field.
1527
1528 verify_gdbarch(): Confirm that the target updated the field
1529 correctly.
1530
1531 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1532 field is dumped out
1533
1534 \`\`startup_gdbarch()'': Append an initial value to the static
1535 variable (base values on the host's c-type system).
1536
1537 get_gdbarch(): Implement the set/get functions (probably using
1538 the macro's as shortcuts).
1539
1540 */
1541
1542 EOF
1543 function_list | while do_read
1544 do
1545 if class_is_variable_p
1546 then
1547 printf " ${returntype} ${function};\n"
1548 elif class_is_function_p
1549 then
1550 printf " gdbarch_${function}_ftype *${function};\n"
1551 fi
1552 done
1553 printf "};\n"
1554
1555 # A pre-initialized vector
1556 printf "\n"
1557 printf "\n"
1558 cat <<EOF
1559 /* The default architecture uses host values (for want of a better
1560 choice). */
1561 EOF
1562 printf "\n"
1563 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1564 printf "\n"
1565 printf "struct gdbarch startup_gdbarch =\n"
1566 printf "{\n"
1567 printf " 1, /* Always initialized. */\n"
1568 printf " NULL, /* The obstack. */\n"
1569 printf " /* basic architecture information. */\n"
1570 function_list | while do_read
1571 do
1572 if class_is_info_p
1573 then
1574 printf " ${staticdefault}, /* ${function} */\n"
1575 fi
1576 done
1577 cat <<EOF
1578 /* target specific vector and its dump routine. */
1579 NULL, NULL,
1580 /*per-architecture data-pointers. */
1581 0, NULL,
1582 /* Multi-arch values */
1583 EOF
1584 function_list | while do_read
1585 do
1586 if class_is_function_p || class_is_variable_p
1587 then
1588 printf " ${staticdefault}, /* ${function} */\n"
1589 fi
1590 done
1591 cat <<EOF
1592 /* startup_gdbarch() */
1593 };
1594
1595 EOF
1596
1597 # Create a new gdbarch struct
1598 cat <<EOF
1599
1600 /* Create a new \`\`struct gdbarch'' based on information provided by
1601 \`\`struct gdbarch_info''. */
1602 EOF
1603 printf "\n"
1604 cat <<EOF
1605 struct gdbarch *
1606 gdbarch_alloc (const struct gdbarch_info *info,
1607 struct gdbarch_tdep *tdep)
1608 {
1609 struct gdbarch *gdbarch;
1610
1611 /* Create an obstack for allocating all the per-architecture memory,
1612 then use that to allocate the architecture vector. */
1613 struct obstack *obstack = XMALLOC (struct obstack);
1614 obstack_init (obstack);
1615 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1616 memset (gdbarch, 0, sizeof (*gdbarch));
1617 gdbarch->obstack = obstack;
1618
1619 alloc_gdbarch_data (gdbarch);
1620
1621 gdbarch->tdep = tdep;
1622 EOF
1623 printf "\n"
1624 function_list | while do_read
1625 do
1626 if class_is_info_p
1627 then
1628 printf " gdbarch->${function} = info->${function};\n"
1629 fi
1630 done
1631 printf "\n"
1632 printf " /* Force the explicit initialization of these. */\n"
1633 function_list | while do_read
1634 do
1635 if class_is_function_p || class_is_variable_p
1636 then
1637 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1638 then
1639 printf " gdbarch->${function} = ${predefault};\n"
1640 fi
1641 fi
1642 done
1643 cat <<EOF
1644 /* gdbarch_alloc() */
1645
1646 return gdbarch;
1647 }
1648 EOF
1649
1650 # Free a gdbarch struct.
1651 printf "\n"
1652 printf "\n"
1653 cat <<EOF
1654 /* Allocate extra space using the per-architecture obstack. */
1655
1656 void *
1657 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1658 {
1659 void *data = obstack_alloc (arch->obstack, size);
1660
1661 memset (data, 0, size);
1662 return data;
1663 }
1664
1665
1666 /* Free a gdbarch struct. This should never happen in normal
1667 operation --- once you've created a gdbarch, you keep it around.
1668 However, if an architecture's init function encounters an error
1669 building the structure, it may need to clean up a partially
1670 constructed gdbarch. */
1671
1672 void
1673 gdbarch_free (struct gdbarch *arch)
1674 {
1675 struct obstack *obstack;
1676
1677 gdb_assert (arch != NULL);
1678 gdb_assert (!arch->initialized_p);
1679 obstack = arch->obstack;
1680 obstack_free (obstack, 0); /* Includes the ARCH. */
1681 xfree (obstack);
1682 }
1683 EOF
1684
1685 # verify a new architecture
1686 cat <<EOF
1687
1688
1689 /* Ensure that all values in a GDBARCH are reasonable. */
1690
1691 static void
1692 verify_gdbarch (struct gdbarch *gdbarch)
1693 {
1694 struct ui_file *log;
1695 struct cleanup *cleanups;
1696 long length;
1697 char *buf;
1698
1699 log = mem_fileopen ();
1700 cleanups = make_cleanup_ui_file_delete (log);
1701 /* fundamental */
1702 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1703 fprintf_unfiltered (log, "\n\tbyte-order");
1704 if (gdbarch->bfd_arch_info == NULL)
1705 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1706 /* Check those that need to be defined for the given multi-arch level. */
1707 EOF
1708 function_list | while do_read
1709 do
1710 if class_is_function_p || class_is_variable_p
1711 then
1712 if [ "x${invalid_p}" = "x0" ]
1713 then
1714 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1715 elif class_is_predicate_p
1716 then
1717 printf " /* Skip verify of ${function}, has predicate. */\n"
1718 # FIXME: See do_read for potential simplification
1719 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1720 then
1721 printf " if (${invalid_p})\n"
1722 printf " gdbarch->${function} = ${postdefault};\n"
1723 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1724 then
1725 printf " if (gdbarch->${function} == ${predefault})\n"
1726 printf " gdbarch->${function} = ${postdefault};\n"
1727 elif [ -n "${postdefault}" ]
1728 then
1729 printf " if (gdbarch->${function} == 0)\n"
1730 printf " gdbarch->${function} = ${postdefault};\n"
1731 elif [ -n "${invalid_p}" ]
1732 then
1733 printf " if (${invalid_p})\n"
1734 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1735 elif [ -n "${predefault}" ]
1736 then
1737 printf " if (gdbarch->${function} == ${predefault})\n"
1738 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1739 fi
1740 fi
1741 done
1742 cat <<EOF
1743 buf = ui_file_xstrdup (log, &length);
1744 make_cleanup (xfree, buf);
1745 if (length > 0)
1746 internal_error (__FILE__, __LINE__,
1747 _("verify_gdbarch: the following are invalid ...%s"),
1748 buf);
1749 do_cleanups (cleanups);
1750 }
1751 EOF
1752
1753 # dump the structure
1754 printf "\n"
1755 printf "\n"
1756 cat <<EOF
1757 /* Print out the details of the current architecture. */
1758
1759 void
1760 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1761 {
1762 const char *gdb_nm_file = "<not-defined>";
1763
1764 #if defined (GDB_NM_FILE)
1765 gdb_nm_file = GDB_NM_FILE;
1766 #endif
1767 fprintf_unfiltered (file,
1768 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1769 gdb_nm_file);
1770 EOF
1771 function_list | sort -t: -k 3 | while do_read
1772 do
1773 # First the predicate
1774 if class_is_predicate_p
1775 then
1776 printf " fprintf_unfiltered (file,\n"
1777 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1778 printf " gdbarch_${function}_p (gdbarch));\n"
1779 fi
1780 # Print the corresponding value.
1781 if class_is_function_p
1782 then
1783 printf " fprintf_unfiltered (file,\n"
1784 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1785 printf " host_address_to_string (gdbarch->${function}));\n"
1786 else
1787 # It is a variable
1788 case "${print}:${returntype}" in
1789 :CORE_ADDR )
1790 fmt="%s"
1791 print="core_addr_to_string_nz (gdbarch->${function})"
1792 ;;
1793 :* )
1794 fmt="%s"
1795 print="plongest (gdbarch->${function})"
1796 ;;
1797 * )
1798 fmt="%s"
1799 ;;
1800 esac
1801 printf " fprintf_unfiltered (file,\n"
1802 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1803 printf " ${print});\n"
1804 fi
1805 done
1806 cat <<EOF
1807 if (gdbarch->dump_tdep != NULL)
1808 gdbarch->dump_tdep (gdbarch, file);
1809 }
1810 EOF
1811
1812
1813 # GET/SET
1814 printf "\n"
1815 cat <<EOF
1816 struct gdbarch_tdep *
1817 gdbarch_tdep (struct gdbarch *gdbarch)
1818 {
1819 if (gdbarch_debug >= 2)
1820 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1821 return gdbarch->tdep;
1822 }
1823 EOF
1824 printf "\n"
1825 function_list | while do_read
1826 do
1827 if class_is_predicate_p
1828 then
1829 printf "\n"
1830 printf "int\n"
1831 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1832 printf "{\n"
1833 printf " gdb_assert (gdbarch != NULL);\n"
1834 printf " return ${predicate};\n"
1835 printf "}\n"
1836 fi
1837 if class_is_function_p
1838 then
1839 printf "\n"
1840 printf "${returntype}\n"
1841 if [ "x${formal}" = "xvoid" ]
1842 then
1843 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1844 else
1845 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1846 fi
1847 printf "{\n"
1848 printf " gdb_assert (gdbarch != NULL);\n"
1849 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1850 if class_is_predicate_p && test -n "${predefault}"
1851 then
1852 # Allow a call to a function with a predicate.
1853 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1854 fi
1855 printf " if (gdbarch_debug >= 2)\n"
1856 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1857 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1858 then
1859 if class_is_multiarch_p
1860 then
1861 params="gdbarch"
1862 else
1863 params=""
1864 fi
1865 else
1866 if class_is_multiarch_p
1867 then
1868 params="gdbarch, ${actual}"
1869 else
1870 params="${actual}"
1871 fi
1872 fi
1873 if [ "x${returntype}" = "xvoid" ]
1874 then
1875 printf " gdbarch->${function} (${params});\n"
1876 else
1877 printf " return gdbarch->${function} (${params});\n"
1878 fi
1879 printf "}\n"
1880 printf "\n"
1881 printf "void\n"
1882 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1883 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1884 printf "{\n"
1885 printf " gdbarch->${function} = ${function};\n"
1886 printf "}\n"
1887 elif class_is_variable_p
1888 then
1889 printf "\n"
1890 printf "${returntype}\n"
1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 printf "{\n"
1893 printf " gdb_assert (gdbarch != NULL);\n"
1894 if [ "x${invalid_p}" = "x0" ]
1895 then
1896 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1897 elif [ -n "${invalid_p}" ]
1898 then
1899 printf " /* Check variable is valid. */\n"
1900 printf " gdb_assert (!(${invalid_p}));\n"
1901 elif [ -n "${predefault}" ]
1902 then
1903 printf " /* Check variable changed from pre-default. */\n"
1904 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1905 fi
1906 printf " if (gdbarch_debug >= 2)\n"
1907 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1908 printf " return gdbarch->${function};\n"
1909 printf "}\n"
1910 printf "\n"
1911 printf "void\n"
1912 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1913 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1914 printf "{\n"
1915 printf " gdbarch->${function} = ${function};\n"
1916 printf "}\n"
1917 elif class_is_info_p
1918 then
1919 printf "\n"
1920 printf "${returntype}\n"
1921 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1922 printf "{\n"
1923 printf " gdb_assert (gdbarch != NULL);\n"
1924 printf " if (gdbarch_debug >= 2)\n"
1925 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1926 printf " return gdbarch->${function};\n"
1927 printf "}\n"
1928 fi
1929 done
1930
1931 # All the trailing guff
1932 cat <<EOF
1933
1934
1935 /* Keep a registry of per-architecture data-pointers required by GDB
1936 modules. */
1937
1938 struct gdbarch_data
1939 {
1940 unsigned index;
1941 int init_p;
1942 gdbarch_data_pre_init_ftype *pre_init;
1943 gdbarch_data_post_init_ftype *post_init;
1944 };
1945
1946 struct gdbarch_data_registration
1947 {
1948 struct gdbarch_data *data;
1949 struct gdbarch_data_registration *next;
1950 };
1951
1952 struct gdbarch_data_registry
1953 {
1954 unsigned nr;
1955 struct gdbarch_data_registration *registrations;
1956 };
1957
1958 struct gdbarch_data_registry gdbarch_data_registry =
1959 {
1960 0, NULL,
1961 };
1962
1963 static struct gdbarch_data *
1964 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1965 gdbarch_data_post_init_ftype *post_init)
1966 {
1967 struct gdbarch_data_registration **curr;
1968
1969 /* Append the new registration. */
1970 for (curr = &gdbarch_data_registry.registrations;
1971 (*curr) != NULL;
1972 curr = &(*curr)->next);
1973 (*curr) = XMALLOC (struct gdbarch_data_registration);
1974 (*curr)->next = NULL;
1975 (*curr)->data = XMALLOC (struct gdbarch_data);
1976 (*curr)->data->index = gdbarch_data_registry.nr++;
1977 (*curr)->data->pre_init = pre_init;
1978 (*curr)->data->post_init = post_init;
1979 (*curr)->data->init_p = 1;
1980 return (*curr)->data;
1981 }
1982
1983 struct gdbarch_data *
1984 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1985 {
1986 return gdbarch_data_register (pre_init, NULL);
1987 }
1988
1989 struct gdbarch_data *
1990 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1991 {
1992 return gdbarch_data_register (NULL, post_init);
1993 }
1994
1995 /* Create/delete the gdbarch data vector. */
1996
1997 static void
1998 alloc_gdbarch_data (struct gdbarch *gdbarch)
1999 {
2000 gdb_assert (gdbarch->data == NULL);
2001 gdbarch->nr_data = gdbarch_data_registry.nr;
2002 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2003 }
2004
2005 /* Initialize the current value of the specified per-architecture
2006 data-pointer. */
2007
2008 void
2009 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2010 struct gdbarch_data *data,
2011 void *pointer)
2012 {
2013 gdb_assert (data->index < gdbarch->nr_data);
2014 gdb_assert (gdbarch->data[data->index] == NULL);
2015 gdb_assert (data->pre_init == NULL);
2016 gdbarch->data[data->index] = pointer;
2017 }
2018
2019 /* Return the current value of the specified per-architecture
2020 data-pointer. */
2021
2022 void *
2023 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2024 {
2025 gdb_assert (data->index < gdbarch->nr_data);
2026 if (gdbarch->data[data->index] == NULL)
2027 {
2028 /* The data-pointer isn't initialized, call init() to get a
2029 value. */
2030 if (data->pre_init != NULL)
2031 /* Mid architecture creation: pass just the obstack, and not
2032 the entire architecture, as that way it isn't possible for
2033 pre-init code to refer to undefined architecture
2034 fields. */
2035 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2036 else if (gdbarch->initialized_p
2037 && data->post_init != NULL)
2038 /* Post architecture creation: pass the entire architecture
2039 (as all fields are valid), but be careful to also detect
2040 recursive references. */
2041 {
2042 gdb_assert (data->init_p);
2043 data->init_p = 0;
2044 gdbarch->data[data->index] = data->post_init (gdbarch);
2045 data->init_p = 1;
2046 }
2047 else
2048 /* The architecture initialization hasn't completed - punt -
2049 hope that the caller knows what they are doing. Once
2050 deprecated_set_gdbarch_data has been initialized, this can be
2051 changed to an internal error. */
2052 return NULL;
2053 gdb_assert (gdbarch->data[data->index] != NULL);
2054 }
2055 return gdbarch->data[data->index];
2056 }
2057
2058
2059 /* Keep a registry of the architectures known by GDB. */
2060
2061 struct gdbarch_registration
2062 {
2063 enum bfd_architecture bfd_architecture;
2064 gdbarch_init_ftype *init;
2065 gdbarch_dump_tdep_ftype *dump_tdep;
2066 struct gdbarch_list *arches;
2067 struct gdbarch_registration *next;
2068 };
2069
2070 static struct gdbarch_registration *gdbarch_registry = NULL;
2071
2072 static void
2073 append_name (const char ***buf, int *nr, const char *name)
2074 {
2075 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2076 (*buf)[*nr] = name;
2077 *nr += 1;
2078 }
2079
2080 const char **
2081 gdbarch_printable_names (void)
2082 {
2083 /* Accumulate a list of names based on the registed list of
2084 architectures. */
2085 int nr_arches = 0;
2086 const char **arches = NULL;
2087 struct gdbarch_registration *rego;
2088
2089 for (rego = gdbarch_registry;
2090 rego != NULL;
2091 rego = rego->next)
2092 {
2093 const struct bfd_arch_info *ap;
2094 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2095 if (ap == NULL)
2096 internal_error (__FILE__, __LINE__,
2097 _("gdbarch_architecture_names: multi-arch unknown"));
2098 do
2099 {
2100 append_name (&arches, &nr_arches, ap->printable_name);
2101 ap = ap->next;
2102 }
2103 while (ap != NULL);
2104 }
2105 append_name (&arches, &nr_arches, NULL);
2106 return arches;
2107 }
2108
2109
2110 void
2111 gdbarch_register (enum bfd_architecture bfd_architecture,
2112 gdbarch_init_ftype *init,
2113 gdbarch_dump_tdep_ftype *dump_tdep)
2114 {
2115 struct gdbarch_registration **curr;
2116 const struct bfd_arch_info *bfd_arch_info;
2117
2118 /* Check that BFD recognizes this architecture */
2119 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2120 if (bfd_arch_info == NULL)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 _("gdbarch: Attempt to register "
2124 "unknown architecture (%d)"),
2125 bfd_architecture);
2126 }
2127 /* Check that we haven't seen this architecture before. */
2128 for (curr = &gdbarch_registry;
2129 (*curr) != NULL;
2130 curr = &(*curr)->next)
2131 {
2132 if (bfd_architecture == (*curr)->bfd_architecture)
2133 internal_error (__FILE__, __LINE__,
2134 _("gdbarch: Duplicate registration "
2135 "of architecture (%s)"),
2136 bfd_arch_info->printable_name);
2137 }
2138 /* log it */
2139 if (gdbarch_debug)
2140 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2141 bfd_arch_info->printable_name,
2142 host_address_to_string (init));
2143 /* Append it */
2144 (*curr) = XMALLOC (struct gdbarch_registration);
2145 (*curr)->bfd_architecture = bfd_architecture;
2146 (*curr)->init = init;
2147 (*curr)->dump_tdep = dump_tdep;
2148 (*curr)->arches = NULL;
2149 (*curr)->next = NULL;
2150 }
2151
2152 void
2153 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2154 gdbarch_init_ftype *init)
2155 {
2156 gdbarch_register (bfd_architecture, init, NULL);
2157 }
2158
2159
2160 /* Look for an architecture using gdbarch_info. */
2161
2162 struct gdbarch_list *
2163 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2164 const struct gdbarch_info *info)
2165 {
2166 for (; arches != NULL; arches = arches->next)
2167 {
2168 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2169 continue;
2170 if (info->byte_order != arches->gdbarch->byte_order)
2171 continue;
2172 if (info->osabi != arches->gdbarch->osabi)
2173 continue;
2174 if (info->target_desc != arches->gdbarch->target_desc)
2175 continue;
2176 return arches;
2177 }
2178 return NULL;
2179 }
2180
2181
2182 /* Find an architecture that matches the specified INFO. Create a new
2183 architecture if needed. Return that new architecture. */
2184
2185 struct gdbarch *
2186 gdbarch_find_by_info (struct gdbarch_info info)
2187 {
2188 struct gdbarch *new_gdbarch;
2189 struct gdbarch_registration *rego;
2190
2191 /* Fill in missing parts of the INFO struct using a number of
2192 sources: "set ..."; INFOabfd supplied; and the global
2193 defaults. */
2194 gdbarch_info_fill (&info);
2195
2196 /* Must have found some sort of architecture. */
2197 gdb_assert (info.bfd_arch_info != NULL);
2198
2199 if (gdbarch_debug)
2200 {
2201 fprintf_unfiltered (gdb_stdlog,
2202 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2203 (info.bfd_arch_info != NULL
2204 ? info.bfd_arch_info->printable_name
2205 : "(null)"));
2206 fprintf_unfiltered (gdb_stdlog,
2207 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2208 info.byte_order,
2209 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2210 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2211 : "default"));
2212 fprintf_unfiltered (gdb_stdlog,
2213 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2214 info.osabi, gdbarch_osabi_name (info.osabi));
2215 fprintf_unfiltered (gdb_stdlog,
2216 "gdbarch_find_by_info: info.abfd %s\n",
2217 host_address_to_string (info.abfd));
2218 fprintf_unfiltered (gdb_stdlog,
2219 "gdbarch_find_by_info: info.tdep_info %s\n",
2220 host_address_to_string (info.tdep_info));
2221 }
2222
2223 /* Find the tdep code that knows about this architecture. */
2224 for (rego = gdbarch_registry;
2225 rego != NULL;
2226 rego = rego->next)
2227 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2228 break;
2229 if (rego == NULL)
2230 {
2231 if (gdbarch_debug)
2232 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2233 "No matching architecture\n");
2234 return 0;
2235 }
2236
2237 /* Ask the tdep code for an architecture that matches "info". */
2238 new_gdbarch = rego->init (info, rego->arches);
2239
2240 /* Did the tdep code like it? No. Reject the change and revert to
2241 the old architecture. */
2242 if (new_gdbarch == NULL)
2243 {
2244 if (gdbarch_debug)
2245 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2246 "Target rejected architecture\n");
2247 return NULL;
2248 }
2249
2250 /* Is this a pre-existing architecture (as determined by already
2251 being initialized)? Move it to the front of the architecture
2252 list (keeping the list sorted Most Recently Used). */
2253 if (new_gdbarch->initialized_p)
2254 {
2255 struct gdbarch_list **list;
2256 struct gdbarch_list *this;
2257 if (gdbarch_debug)
2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2259 "Previous architecture %s (%s) selected\n",
2260 host_address_to_string (new_gdbarch),
2261 new_gdbarch->bfd_arch_info->printable_name);
2262 /* Find the existing arch in the list. */
2263 for (list = &rego->arches;
2264 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2265 list = &(*list)->next);
2266 /* It had better be in the list of architectures. */
2267 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2268 /* Unlink THIS. */
2269 this = (*list);
2270 (*list) = this->next;
2271 /* Insert THIS at the front. */
2272 this->next = rego->arches;
2273 rego->arches = this;
2274 /* Return it. */
2275 return new_gdbarch;
2276 }
2277
2278 /* It's a new architecture. */
2279 if (gdbarch_debug)
2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2281 "New architecture %s (%s) selected\n",
2282 host_address_to_string (new_gdbarch),
2283 new_gdbarch->bfd_arch_info->printable_name);
2284
2285 /* Insert the new architecture into the front of the architecture
2286 list (keep the list sorted Most Recently Used). */
2287 {
2288 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2289 this->next = rego->arches;
2290 this->gdbarch = new_gdbarch;
2291 rego->arches = this;
2292 }
2293
2294 /* Check that the newly installed architecture is valid. Plug in
2295 any post init values. */
2296 new_gdbarch->dump_tdep = rego->dump_tdep;
2297 verify_gdbarch (new_gdbarch);
2298 new_gdbarch->initialized_p = 1;
2299
2300 if (gdbarch_debug)
2301 gdbarch_dump (new_gdbarch, gdb_stdlog);
2302
2303 return new_gdbarch;
2304 }
2305
2306 /* Make the specified architecture current. */
2307
2308 void
2309 set_target_gdbarch (struct gdbarch *new_gdbarch)
2310 {
2311 gdb_assert (new_gdbarch != NULL);
2312 gdb_assert (new_gdbarch->initialized_p);
2313 current_inferior ()->gdbarch = new_gdbarch;
2314 observer_notify_architecture_changed (new_gdbarch);
2315 registers_changed ();
2316 }
2317
2318 /* Return the current inferior's arch. */
2319
2320 struct gdbarch *
2321 target_gdbarch (void)
2322 {
2323 return current_inferior ()->gdbarch;
2324 }
2325
2326 extern void _initialize_gdbarch (void);
2327
2328 void
2329 _initialize_gdbarch (void)
2330 {
2331 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2332 Set architecture debugging."), _("\\
2333 Show architecture debugging."), _("\\
2334 When non-zero, architecture debugging is enabled."),
2335 NULL,
2336 show_gdbarch_debug,
2337 &setdebuglist, &showdebuglist);
2338 }
2339 EOF
2340
2341 # close things off
2342 exec 1>&2
2343 #../move-if-change new-gdbarch.c gdbarch.c
2344 compare_new gdbarch.c
This page took 0.084393 seconds and 4 git commands to generate.