73f62c596a5978cdd164c47b94afdf7a39576140
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
475 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
476 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
477 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
478 #
479 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
480 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
481 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
486 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
487 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
488 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
491 #
492 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
493 # much better but at least they are vaguely consistent). The headers
494 # and body contain convoluted #if/#else sequences for determine how
495 # things should be compiled. Instead of trying to mimic that
496 # behaviour here (and hence entrench it further) gdbarch simply
497 # reqires that these methods be set up from the word go. This also
498 # avoids any potential problems with moving beyond multi-arch partial.
499 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
500 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
501 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
502 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
504 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
505 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
506 # NOTE: cagney/2002-11-24: This function with predicate has a valid
507 # (callable) initial value. As a consequence, even when the predicate
508 # is false, the corresponding function works. This simplifies the
509 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
510 # doesn't need to be modified.
511 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
512 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
513 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
514 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
515 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
516 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
517 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
518 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
519 F::DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
520 #
521 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
522 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
523 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
524 #
525 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
526 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
527 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
528 #
529 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
530 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
531 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
532 #
533 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
534 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
535 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
536 #
537 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
538 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
539 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
540 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
541 f:2:POP_FRAME:void:pop_frame:void:-:::0
542 #
543 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
544 #
545 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
549 #
550 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
551 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
552 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
553 #
554 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
555 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
556 #
557 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
558 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
559 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
560 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
561 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
562 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
563 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
564 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
565 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
566 #
567 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
568 #
569 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
570 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
571 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
572 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
573 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
574 # given frame is the outermost one and has no caller.
575 #
576 # XXXX - both default and alternate frame_chain_valid functions are
577 # deprecated. New code should use dummy frames and one of the generic
578 # functions.
579 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
580 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
581 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
582 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
583 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
584 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
585 #
586 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
587 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
588 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
589 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
590 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
591 v:2:PARM_BOUNDARY:int:parm_boundary
592 #
593 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
594 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
595 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
596 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
597 # On some machines there are bits in addresses which are not really
598 # part of the address, but are used by the kernel, the hardware, etc.
599 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
600 # we get a "real" address such as one would find in a symbol table.
601 # This is used only for addresses of instructions, and even then I'm
602 # not sure it's used in all contexts. It exists to deal with there
603 # being a few stray bits in the PC which would mislead us, not as some
604 # sort of generic thing to handle alignment or segmentation (it's
605 # possible it should be in TARGET_READ_PC instead).
606 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
607 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
608 # ADDR_BITS_REMOVE.
609 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
610 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
611 # the target needs software single step. An ISA method to implement it.
612 #
613 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
614 # using the breakpoint system instead of blatting memory directly (as with rs6000).
615 #
616 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
617 # single step. If not, then implement single step using breakpoints.
618 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
619 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
620 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
621
622
623 # For SVR4 shared libraries, each call goes through a small piece of
624 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
625 # to nonzero if we are currently stopped in one of these.
626 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
627
628 # Some systems also have trampoline code for returning from shared libs.
629 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
630
631 # Sigtramp is a routine that the kernel calls (which then calls the
632 # signal handler). On most machines it is a library routine that is
633 # linked into the executable.
634 #
635 # This macro, given a program counter value and the name of the
636 # function in which that PC resides (which can be null if the name is
637 # not known), returns nonzero if the PC and name show that we are in
638 # sigtramp.
639 #
640 # On most machines just see if the name is sigtramp (and if we have
641 # no name, assume we are not in sigtramp).
642 #
643 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
644 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
645 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
646 # own local NAME lookup.
647 #
648 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
649 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
650 # does not.
651 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
652 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
653 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
654 # A target might have problems with watchpoints as soon as the stack
655 # frame of the current function has been destroyed. This mostly happens
656 # as the first action in a funtion's epilogue. in_function_epilogue_p()
657 # is defined to return a non-zero value if either the given addr is one
658 # instruction after the stack destroying instruction up to the trailing
659 # return instruction or if we can figure out that the stack frame has
660 # already been invalidated regardless of the value of addr. Targets
661 # which don't suffer from that problem could just let this functionality
662 # untouched.
663 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
664 # Given a vector of command-line arguments, return a newly allocated
665 # string which, when passed to the create_inferior function, will be
666 # parsed (on Unix systems, by the shell) to yield the same vector.
667 # This function should call error() if the argument vector is not
668 # representable for this target or if this target does not support
669 # command-line arguments.
670 # ARGC is the number of elements in the vector.
671 # ARGV is an array of strings, one per argument.
672 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
673 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
674 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
675 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
676 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
677 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
678 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
679 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
680 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
681 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
682 # Is a register in a group
683 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
684 EOF
685 }
686
687 #
688 # The .log file
689 #
690 exec > new-gdbarch.log
691 function_list | while do_read
692 do
693 cat <<EOF
694 ${class} ${macro}(${actual})
695 ${returntype} ${function} ($formal)${attrib}
696 EOF
697 for r in ${read}
698 do
699 eval echo \"\ \ \ \ ${r}=\${${r}}\"
700 done
701 if class_is_predicate_p && fallback_default_p
702 then
703 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
704 kill $$
705 exit 1
706 fi
707 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
708 then
709 echo "Error: postdefault is useless when invalid_p=0" 1>&2
710 kill $$
711 exit 1
712 fi
713 if class_is_multiarch_p
714 then
715 if class_is_predicate_p ; then :
716 elif test "x${predefault}" = "x"
717 then
718 echo "Error: pure multi-arch function must have a predefault" 1>&2
719 kill $$
720 exit 1
721 fi
722 fi
723 echo ""
724 done
725
726 exec 1>&2
727 compare_new gdbarch.log
728
729
730 copyright ()
731 {
732 cat <<EOF
733 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
734
735 /* Dynamic architecture support for GDB, the GNU debugger.
736 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
737
738 This file is part of GDB.
739
740 This program is free software; you can redistribute it and/or modify
741 it under the terms of the GNU General Public License as published by
742 the Free Software Foundation; either version 2 of the License, or
743 (at your option) any later version.
744
745 This program is distributed in the hope that it will be useful,
746 but WITHOUT ANY WARRANTY; without even the implied warranty of
747 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
748 GNU General Public License for more details.
749
750 You should have received a copy of the GNU General Public License
751 along with this program; if not, write to the Free Software
752 Foundation, Inc., 59 Temple Place - Suite 330,
753 Boston, MA 02111-1307, USA. */
754
755 /* This file was created with the aid of \`\`gdbarch.sh''.
756
757 The Bourne shell script \`\`gdbarch.sh'' creates the files
758 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
759 against the existing \`\`gdbarch.[hc]''. Any differences found
760 being reported.
761
762 If editing this file, please also run gdbarch.sh and merge any
763 changes into that script. Conversely, when making sweeping changes
764 to this file, modifying gdbarch.sh and using its output may prove
765 easier. */
766
767 EOF
768 }
769
770 #
771 # The .h file
772 #
773
774 exec > new-gdbarch.h
775 copyright
776 cat <<EOF
777 #ifndef GDBARCH_H
778 #define GDBARCH_H
779
780 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
781 #if !GDB_MULTI_ARCH
782 /* Pull in function declarations refered to, indirectly, via macros. */
783 #include "inferior.h" /* For unsigned_address_to_pointer(). */
784 #endif
785
786 struct frame_info;
787 struct value;
788 struct objfile;
789 struct minimal_symbol;
790 struct regcache;
791 struct reggroup;
792
793 extern struct gdbarch *current_gdbarch;
794
795
796 /* If any of the following are defined, the target wasn't correctly
797 converted. */
798
799 #if GDB_MULTI_ARCH
800 #if defined (EXTRA_FRAME_INFO)
801 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
802 #endif
803 #endif
804
805 #if GDB_MULTI_ARCH
806 #if defined (FRAME_FIND_SAVED_REGS)
807 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
808 #endif
809 #endif
810
811 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
812 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
813 #endif
814 EOF
815
816 # function typedef's
817 printf "\n"
818 printf "\n"
819 printf "/* The following are pre-initialized by GDBARCH. */\n"
820 function_list | while do_read
821 do
822 if class_is_info_p
823 then
824 printf "\n"
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
830 printf "#if GDB_MULTI_ARCH\n"
831 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "#endif\n"
834 printf "#endif\n"
835 fi
836 done
837
838 # function typedef's
839 printf "\n"
840 printf "\n"
841 printf "/* The following are initialized by the target dependent code. */\n"
842 function_list | while do_read
843 do
844 if [ -n "${comment}" ]
845 then
846 echo "${comment}" | sed \
847 -e '2 s,#,/*,' \
848 -e '3,$ s,#, ,' \
849 -e '$ s,$, */,'
850 fi
851 if class_is_multiarch_p
852 then
853 if class_is_predicate_p
854 then
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
857 fi
858 else
859 if class_is_predicate_p
860 then
861 printf "\n"
862 printf "#if defined (${macro})\n"
863 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
864 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
865 printf "#if !defined (${macro}_P)\n"
866 printf "#define ${macro}_P() (1)\n"
867 printf "#endif\n"
868 printf "#endif\n"
869 printf "\n"
870 printf "/* Default predicate for non- multi-arch targets. */\n"
871 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (0)\n"
873 printf "#endif\n"
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
881 printf "#endif\n"
882 fi
883 fi
884 if class_is_variable_p
885 then
886 if fallback_default_p || class_is_predicate_p
887 then
888 printf "\n"
889 printf "/* Default (value) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
891 echo "#define ${macro} (${fallbackdefault})" \
892 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
893 printf "#endif\n"
894 fi
895 printf "\n"
896 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
897 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
898 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
901 printf "#if GDB_MULTI_ARCH\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 printf "#endif\n"
906 fi
907 if class_is_function_p
908 then
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 if [ "x${fallbackdefault}" = "x0" ]
916 then
917 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
918 else
919 # FIXME: Should be passing current_gdbarch through!
920 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
922 fi
923 printf "#endif\n"
924 fi
925 printf "\n"
926 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
927 then
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
929 elif class_is_multiarch_p
930 then
931 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
932 else
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
934 fi
935 if [ "x${formal}" = "xvoid" ]
936 then
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 else
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
940 fi
941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
942 if class_is_multiarch_p ; then :
943 else
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
947 printf "#if GDB_MULTI_ARCH\n"
948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
949 if [ "x${actual}" = "x" ]
950 then
951 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
952 elif [ "x${actual}" = "x-" ]
953 then
954 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
955 else
956 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
957 fi
958 printf "#endif\n"
959 printf "#endif\n"
960 fi
961 fi
962 done
963
964 # close it off
965 cat <<EOF
966
967 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
968
969
970 /* Mechanism for co-ordinating the selection of a specific
971 architecture.
972
973 GDB targets (*-tdep.c) can register an interest in a specific
974 architecture. Other GDB components can register a need to maintain
975 per-architecture data.
976
977 The mechanisms below ensures that there is only a loose connection
978 between the set-architecture command and the various GDB
979 components. Each component can independently register their need
980 to maintain architecture specific data with gdbarch.
981
982 Pragmatics:
983
984 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
985 didn't scale.
986
987 The more traditional mega-struct containing architecture specific
988 data for all the various GDB components was also considered. Since
989 GDB is built from a variable number of (fairly independent)
990 components it was determined that the global aproach was not
991 applicable. */
992
993
994 /* Register a new architectural family with GDB.
995
996 Register support for the specified ARCHITECTURE with GDB. When
997 gdbarch determines that the specified architecture has been
998 selected, the corresponding INIT function is called.
999
1000 --
1001
1002 The INIT function takes two parameters: INFO which contains the
1003 information available to gdbarch about the (possibly new)
1004 architecture; ARCHES which is a list of the previously created
1005 \`\`struct gdbarch'' for this architecture.
1006
1007 The INFO parameter is, as far as possible, be pre-initialized with
1008 information obtained from INFO.ABFD or the previously selected
1009 architecture.
1010
1011 The ARCHES parameter is a linked list (sorted most recently used)
1012 of all the previously created architures for this architecture
1013 family. The (possibly NULL) ARCHES->gdbarch can used to access
1014 values from the previously selected architecture for this
1015 architecture family. The global \`\`current_gdbarch'' shall not be
1016 used.
1017
1018 The INIT function shall return any of: NULL - indicating that it
1019 doesn't recognize the selected architecture; an existing \`\`struct
1020 gdbarch'' from the ARCHES list - indicating that the new
1021 architecture is just a synonym for an earlier architecture (see
1022 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1023 - that describes the selected architecture (see gdbarch_alloc()).
1024
1025 The DUMP_TDEP function shall print out all target specific values.
1026 Care should be taken to ensure that the function works in both the
1027 multi-arch and non- multi-arch cases. */
1028
1029 struct gdbarch_list
1030 {
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_list *next;
1033 };
1034
1035 struct gdbarch_info
1036 {
1037 /* Use default: NULL (ZERO). */
1038 const struct bfd_arch_info *bfd_arch_info;
1039
1040 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1041 int byte_order;
1042
1043 /* Use default: NULL (ZERO). */
1044 bfd *abfd;
1045
1046 /* Use default: NULL (ZERO). */
1047 struct gdbarch_tdep_info *tdep_info;
1048
1049 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1050 enum gdb_osabi osabi;
1051 };
1052
1053 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1054 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1055
1056 /* DEPRECATED - use gdbarch_register() */
1057 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1058
1059 extern void gdbarch_register (enum bfd_architecture architecture,
1060 gdbarch_init_ftype *,
1061 gdbarch_dump_tdep_ftype *);
1062
1063
1064 /* Return a freshly allocated, NULL terminated, array of the valid
1065 architecture names. Since architectures are registered during the
1066 _initialize phase this function only returns useful information
1067 once initialization has been completed. */
1068
1069 extern const char **gdbarch_printable_names (void);
1070
1071
1072 /* Helper function. Search the list of ARCHES for a GDBARCH that
1073 matches the information provided by INFO. */
1074
1075 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1076
1077
1078 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1079 basic initialization using values obtained from the INFO andTDEP
1080 parameters. set_gdbarch_*() functions are called to complete the
1081 initialization of the object. */
1082
1083 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1084
1085
1086 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1087 It is assumed that the caller freeds the \`\`struct
1088 gdbarch_tdep''. */
1089
1090 extern void gdbarch_free (struct gdbarch *);
1091
1092
1093 /* Helper function. Force an update of the current architecture.
1094
1095 The actual architecture selected is determined by INFO, \`\`(gdb) set
1096 architecture'' et.al., the existing architecture and BFD's default
1097 architecture. INFO should be initialized to zero and then selected
1098 fields should be updated.
1099
1100 Returns non-zero if the update succeeds */
1101
1102 extern int gdbarch_update_p (struct gdbarch_info info);
1103
1104
1105
1106 /* Register per-architecture data-pointer.
1107
1108 Reserve space for a per-architecture data-pointer. An identifier
1109 for the reserved data-pointer is returned. That identifer should
1110 be saved in a local static variable.
1111
1112 The per-architecture data-pointer is either initialized explicitly
1113 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1114 gdbarch_data()). FREE() is called to delete either an existing
1115 data-pointer overridden by set_gdbarch_data() or when the
1116 architecture object is being deleted.
1117
1118 When a previously created architecture is re-selected, the
1119 per-architecture data-pointer for that previous architecture is
1120 restored. INIT() is not re-called.
1121
1122 Multiple registrarants for any architecture are allowed (and
1123 strongly encouraged). */
1124
1125 struct gdbarch_data;
1126
1127 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1128 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1129 void *pointer);
1130 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1131 gdbarch_data_free_ftype *free);
1132 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1133 struct gdbarch_data *data,
1134 void *pointer);
1135
1136 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1137
1138
1139 /* Register per-architecture memory region.
1140
1141 Provide a memory-region swap mechanism. Per-architecture memory
1142 region are created. These memory regions are swapped whenever the
1143 architecture is changed. For a new architecture, the memory region
1144 is initialized with zero (0) and the INIT function is called.
1145
1146 Memory regions are swapped / initialized in the order that they are
1147 registered. NULL DATA and/or INIT values can be specified.
1148
1149 New code should use register_gdbarch_data(). */
1150
1151 typedef void (gdbarch_swap_ftype) (void);
1152 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1153 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1154
1155
1156
1157 /* The target-system-dependent byte order is dynamic */
1158
1159 extern int target_byte_order;
1160 #ifndef TARGET_BYTE_ORDER
1161 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1162 #endif
1163
1164 extern int target_byte_order_auto;
1165 #ifndef TARGET_BYTE_ORDER_AUTO
1166 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1167 #endif
1168
1169
1170
1171 /* The target-system-dependent BFD architecture is dynamic */
1172
1173 extern int target_architecture_auto;
1174 #ifndef TARGET_ARCHITECTURE_AUTO
1175 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1176 #endif
1177
1178 extern const struct bfd_arch_info *target_architecture;
1179 #ifndef TARGET_ARCHITECTURE
1180 #define TARGET_ARCHITECTURE (target_architecture + 0)
1181 #endif
1182
1183
1184 /* The target-system-dependent disassembler is semi-dynamic */
1185
1186 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1187 unsigned int len, disassemble_info *info);
1188
1189 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1190 disassemble_info *info);
1191
1192 extern void dis_asm_print_address (bfd_vma addr,
1193 disassemble_info *info);
1194
1195 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1196 extern disassemble_info tm_print_insn_info;
1197 #ifndef TARGET_PRINT_INSN_INFO
1198 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1199 #endif
1200
1201
1202
1203 /* Set the dynamic target-system-dependent parameters (architecture,
1204 byte-order, ...) using information found in the BFD */
1205
1206 extern void set_gdbarch_from_file (bfd *);
1207
1208
1209 /* Initialize the current architecture to the "first" one we find on
1210 our list. */
1211
1212 extern void initialize_current_architecture (void);
1213
1214 /* For non-multiarched targets, do any initialization of the default
1215 gdbarch object necessary after the _initialize_MODULE functions
1216 have run. */
1217 extern void initialize_non_multiarch (void);
1218
1219 /* gdbarch trace variable */
1220 extern int gdbarch_debug;
1221
1222 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1223
1224 #endif
1225 EOF
1226 exec 1>&2
1227 #../move-if-change new-gdbarch.h gdbarch.h
1228 compare_new gdbarch.h
1229
1230
1231 #
1232 # C file
1233 #
1234
1235 exec > new-gdbarch.c
1236 copyright
1237 cat <<EOF
1238
1239 #include "defs.h"
1240 #include "arch-utils.h"
1241
1242 #if GDB_MULTI_ARCH
1243 #include "gdbcmd.h"
1244 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1245 #else
1246 /* Just include everything in sight so that the every old definition
1247 of macro is visible. */
1248 #include "gdb_string.h"
1249 #include <ctype.h>
1250 #include "symtab.h"
1251 #include "frame.h"
1252 #include "inferior.h"
1253 #include "breakpoint.h"
1254 #include "gdb_wait.h"
1255 #include "gdbcore.h"
1256 #include "gdbcmd.h"
1257 #include "target.h"
1258 #include "gdbthread.h"
1259 #include "annotate.h"
1260 #include "symfile.h" /* for overlay functions */
1261 #include "value.h" /* For old tm.h/nm.h macros. */
1262 #endif
1263 #include "symcat.h"
1264
1265 #include "floatformat.h"
1266
1267 #include "gdb_assert.h"
1268 #include "gdb_string.h"
1269 #include "gdb-events.h"
1270 #include "reggroups.h"
1271 #include "osabi.h"
1272
1273 /* Static function declarations */
1274
1275 static void verify_gdbarch (struct gdbarch *gdbarch);
1276 static void alloc_gdbarch_data (struct gdbarch *);
1277 static void free_gdbarch_data (struct gdbarch *);
1278 static void init_gdbarch_swap (struct gdbarch *);
1279 static void clear_gdbarch_swap (struct gdbarch *);
1280 static void swapout_gdbarch_swap (struct gdbarch *);
1281 static void swapin_gdbarch_swap (struct gdbarch *);
1282
1283 /* Non-zero if we want to trace architecture code. */
1284
1285 #ifndef GDBARCH_DEBUG
1286 #define GDBARCH_DEBUG 0
1287 #endif
1288 int gdbarch_debug = GDBARCH_DEBUG;
1289
1290 EOF
1291
1292 # gdbarch open the gdbarch object
1293 printf "\n"
1294 printf "/* Maintain the struct gdbarch object */\n"
1295 printf "\n"
1296 printf "struct gdbarch\n"
1297 printf "{\n"
1298 printf " /* Has this architecture been fully initialized? */\n"
1299 printf " int initialized_p;\n"
1300 printf " /* basic architectural information */\n"
1301 function_list | while do_read
1302 do
1303 if class_is_info_p
1304 then
1305 printf " ${returntype} ${function};\n"
1306 fi
1307 done
1308 printf "\n"
1309 printf " /* target specific vector. */\n"
1310 printf " struct gdbarch_tdep *tdep;\n"
1311 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1312 printf "\n"
1313 printf " /* per-architecture data-pointers */\n"
1314 printf " unsigned nr_data;\n"
1315 printf " void **data;\n"
1316 printf "\n"
1317 printf " /* per-architecture swap-regions */\n"
1318 printf " struct gdbarch_swap *swap;\n"
1319 printf "\n"
1320 cat <<EOF
1321 /* Multi-arch values.
1322
1323 When extending this structure you must:
1324
1325 Add the field below.
1326
1327 Declare set/get functions and define the corresponding
1328 macro in gdbarch.h.
1329
1330 gdbarch_alloc(): If zero/NULL is not a suitable default,
1331 initialize the new field.
1332
1333 verify_gdbarch(): Confirm that the target updated the field
1334 correctly.
1335
1336 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1337 field is dumped out
1338
1339 \`\`startup_gdbarch()'': Append an initial value to the static
1340 variable (base values on the host's c-type system).
1341
1342 get_gdbarch(): Implement the set/get functions (probably using
1343 the macro's as shortcuts).
1344
1345 */
1346
1347 EOF
1348 function_list | while do_read
1349 do
1350 if class_is_variable_p
1351 then
1352 printf " ${returntype} ${function};\n"
1353 elif class_is_function_p
1354 then
1355 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1356 fi
1357 done
1358 printf "};\n"
1359
1360 # A pre-initialized vector
1361 printf "\n"
1362 printf "\n"
1363 cat <<EOF
1364 /* The default architecture uses host values (for want of a better
1365 choice). */
1366 EOF
1367 printf "\n"
1368 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1369 printf "\n"
1370 printf "struct gdbarch startup_gdbarch =\n"
1371 printf "{\n"
1372 printf " 1, /* Always initialized. */\n"
1373 printf " /* basic architecture information */\n"
1374 function_list | while do_read
1375 do
1376 if class_is_info_p
1377 then
1378 printf " ${staticdefault},\n"
1379 fi
1380 done
1381 cat <<EOF
1382 /* target specific vector and its dump routine */
1383 NULL, NULL,
1384 /*per-architecture data-pointers and swap regions */
1385 0, NULL, NULL,
1386 /* Multi-arch values */
1387 EOF
1388 function_list | while do_read
1389 do
1390 if class_is_function_p || class_is_variable_p
1391 then
1392 printf " ${staticdefault},\n"
1393 fi
1394 done
1395 cat <<EOF
1396 /* startup_gdbarch() */
1397 };
1398
1399 struct gdbarch *current_gdbarch = &startup_gdbarch;
1400
1401 /* Do any initialization needed for a non-multiarch configuration
1402 after the _initialize_MODULE functions have been run. */
1403 void
1404 initialize_non_multiarch (void)
1405 {
1406 alloc_gdbarch_data (&startup_gdbarch);
1407 /* Ensure that all swap areas are zeroed so that they again think
1408 they are starting from scratch. */
1409 clear_gdbarch_swap (&startup_gdbarch);
1410 init_gdbarch_swap (&startup_gdbarch);
1411 }
1412 EOF
1413
1414 # Create a new gdbarch struct
1415 printf "\n"
1416 printf "\n"
1417 cat <<EOF
1418 /* Create a new \`\`struct gdbarch'' based on information provided by
1419 \`\`struct gdbarch_info''. */
1420 EOF
1421 printf "\n"
1422 cat <<EOF
1423 struct gdbarch *
1424 gdbarch_alloc (const struct gdbarch_info *info,
1425 struct gdbarch_tdep *tdep)
1426 {
1427 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1428 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1429 the current local architecture and not the previous global
1430 architecture. This ensures that the new architectures initial
1431 values are not influenced by the previous architecture. Once
1432 everything is parameterised with gdbarch, this will go away. */
1433 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1434 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1435
1436 alloc_gdbarch_data (current_gdbarch);
1437
1438 current_gdbarch->tdep = tdep;
1439 EOF
1440 printf "\n"
1441 function_list | while do_read
1442 do
1443 if class_is_info_p
1444 then
1445 printf " current_gdbarch->${function} = info->${function};\n"
1446 fi
1447 done
1448 printf "\n"
1449 printf " /* Force the explicit initialization of these. */\n"
1450 function_list | while do_read
1451 do
1452 if class_is_function_p || class_is_variable_p
1453 then
1454 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1455 then
1456 printf " current_gdbarch->${function} = ${predefault};\n"
1457 fi
1458 fi
1459 done
1460 cat <<EOF
1461 /* gdbarch_alloc() */
1462
1463 return current_gdbarch;
1464 }
1465 EOF
1466
1467 # Free a gdbarch struct.
1468 printf "\n"
1469 printf "\n"
1470 cat <<EOF
1471 /* Free a gdbarch struct. This should never happen in normal
1472 operation --- once you've created a gdbarch, you keep it around.
1473 However, if an architecture's init function encounters an error
1474 building the structure, it may need to clean up a partially
1475 constructed gdbarch. */
1476
1477 void
1478 gdbarch_free (struct gdbarch *arch)
1479 {
1480 gdb_assert (arch != NULL);
1481 free_gdbarch_data (arch);
1482 xfree (arch);
1483 }
1484 EOF
1485
1486 # verify a new architecture
1487 printf "\n"
1488 printf "\n"
1489 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1490 printf "\n"
1491 cat <<EOF
1492 static void
1493 verify_gdbarch (struct gdbarch *gdbarch)
1494 {
1495 struct ui_file *log;
1496 struct cleanup *cleanups;
1497 long dummy;
1498 char *buf;
1499 /* Only perform sanity checks on a multi-arch target. */
1500 if (!GDB_MULTI_ARCH)
1501 return;
1502 log = mem_fileopen ();
1503 cleanups = make_cleanup_ui_file_delete (log);
1504 /* fundamental */
1505 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1506 fprintf_unfiltered (log, "\n\tbyte-order");
1507 if (gdbarch->bfd_arch_info == NULL)
1508 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1509 /* Check those that need to be defined for the given multi-arch level. */
1510 EOF
1511 function_list | while do_read
1512 do
1513 if class_is_function_p || class_is_variable_p
1514 then
1515 if [ "x${invalid_p}" = "x0" ]
1516 then
1517 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1518 elif class_is_predicate_p
1519 then
1520 printf " /* Skip verify of ${function}, has predicate */\n"
1521 # FIXME: See do_read for potential simplification
1522 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1523 then
1524 printf " if (${invalid_p})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
1526 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1527 then
1528 printf " if (gdbarch->${function} == ${predefault})\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
1530 elif [ -n "${postdefault}" ]
1531 then
1532 printf " if (gdbarch->${function} == 0)\n"
1533 printf " gdbarch->${function} = ${postdefault};\n"
1534 elif [ -n "${invalid_p}" ]
1535 then
1536 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1537 printf " && (${invalid_p}))\n"
1538 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1539 elif [ -n "${predefault}" ]
1540 then
1541 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1542 printf " && (gdbarch->${function} == ${predefault}))\n"
1543 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1544 fi
1545 fi
1546 done
1547 cat <<EOF
1548 buf = ui_file_xstrdup (log, &dummy);
1549 make_cleanup (xfree, buf);
1550 if (strlen (buf) > 0)
1551 internal_error (__FILE__, __LINE__,
1552 "verify_gdbarch: the following are invalid ...%s",
1553 buf);
1554 do_cleanups (cleanups);
1555 }
1556 EOF
1557
1558 # dump the structure
1559 printf "\n"
1560 printf "\n"
1561 cat <<EOF
1562 /* Print out the details of the current architecture. */
1563
1564 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1565 just happens to match the global variable \`\`current_gdbarch''. That
1566 way macros refering to that variable get the local and not the global
1567 version - ulgh. Once everything is parameterised with gdbarch, this
1568 will go away. */
1569
1570 void
1571 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1572 {
1573 fprintf_unfiltered (file,
1574 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1575 GDB_MULTI_ARCH);
1576 EOF
1577 function_list | sort -t: -k 3 | while do_read
1578 do
1579 # First the predicate
1580 if class_is_predicate_p
1581 then
1582 if class_is_multiarch_p
1583 then
1584 printf " if (GDB_MULTI_ARCH)\n"
1585 printf " fprintf_unfiltered (file,\n"
1586 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1587 printf " gdbarch_${function}_p (current_gdbarch));\n"
1588 else
1589 printf "#ifdef ${macro}_P\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1592 printf " \"${macro}_P()\",\n"
1593 printf " XSTRING (${macro}_P ()));\n"
1594 printf " fprintf_unfiltered (file,\n"
1595 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1596 printf " ${macro}_P ());\n"
1597 printf "#endif\n"
1598 fi
1599 fi
1600 # multiarch functions don't have macros.
1601 if class_is_multiarch_p
1602 then
1603 printf " if (GDB_MULTI_ARCH)\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1606 printf " (long) current_gdbarch->${function});\n"
1607 continue
1608 fi
1609 # Print the macro definition.
1610 printf "#ifdef ${macro}\n"
1611 if [ "x${returntype}" = "xvoid" ]
1612 then
1613 printf "#if GDB_MULTI_ARCH\n"
1614 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1615 fi
1616 if class_is_function_p
1617 then
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1620 printf " \"${macro}(${actual})\",\n"
1621 printf " XSTRING (${macro} (${actual})));\n"
1622 else
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1625 printf " XSTRING (${macro}));\n"
1626 fi
1627 # Print the architecture vector value
1628 if [ "x${returntype}" = "xvoid" ]
1629 then
1630 printf "#endif\n"
1631 fi
1632 if [ "x${print_p}" = "x()" ]
1633 then
1634 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1635 elif [ "x${print_p}" = "x0" ]
1636 then
1637 printf " /* skip print of ${macro}, print_p == 0. */\n"
1638 elif [ -n "${print_p}" ]
1639 then
1640 printf " if (${print_p})\n"
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1643 printf " ${print});\n"
1644 elif class_is_function_p
1645 then
1646 printf " if (GDB_MULTI_ARCH)\n"
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1649 printf " (long) current_gdbarch->${function}\n"
1650 printf " /*${macro} ()*/);\n"
1651 else
1652 printf " fprintf_unfiltered (file,\n"
1653 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1654 printf " ${print});\n"
1655 fi
1656 printf "#endif\n"
1657 done
1658 cat <<EOF
1659 if (current_gdbarch->dump_tdep != NULL)
1660 current_gdbarch->dump_tdep (current_gdbarch, file);
1661 }
1662 EOF
1663
1664
1665 # GET/SET
1666 printf "\n"
1667 cat <<EOF
1668 struct gdbarch_tdep *
1669 gdbarch_tdep (struct gdbarch *gdbarch)
1670 {
1671 if (gdbarch_debug >= 2)
1672 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1673 return gdbarch->tdep;
1674 }
1675 EOF
1676 printf "\n"
1677 function_list | while do_read
1678 do
1679 if class_is_predicate_p
1680 then
1681 printf "\n"
1682 printf "int\n"
1683 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1684 printf "{\n"
1685 printf " gdb_assert (gdbarch != NULL);\n"
1686 if [ -n "${predicate}" ]
1687 then
1688 printf " return ${predicate};\n"
1689 else
1690 printf " return gdbarch->${function} != 0;\n"
1691 fi
1692 printf "}\n"
1693 fi
1694 if class_is_function_p
1695 then
1696 printf "\n"
1697 printf "${returntype}\n"
1698 if [ "x${formal}" = "xvoid" ]
1699 then
1700 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1701 else
1702 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1703 fi
1704 printf "{\n"
1705 printf " gdb_assert (gdbarch != NULL);\n"
1706 printf " if (gdbarch->${function} == 0)\n"
1707 printf " internal_error (__FILE__, __LINE__,\n"
1708 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1709 if class_is_predicate_p && test -n "${predicate}"
1710 then
1711 # Allow a call to a function with a predicate.
1712 printf " /* Ignore predicate (${predicate}). */\n"
1713 fi
1714 printf " if (gdbarch_debug >= 2)\n"
1715 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1716 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1717 then
1718 if class_is_multiarch_p
1719 then
1720 params="gdbarch"
1721 else
1722 params=""
1723 fi
1724 else
1725 if class_is_multiarch_p
1726 then
1727 params="gdbarch, ${actual}"
1728 else
1729 params="${actual}"
1730 fi
1731 fi
1732 if [ "x${returntype}" = "xvoid" ]
1733 then
1734 printf " gdbarch->${function} (${params});\n"
1735 else
1736 printf " return gdbarch->${function} (${params});\n"
1737 fi
1738 printf "}\n"
1739 printf "\n"
1740 printf "void\n"
1741 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1742 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1743 printf "{\n"
1744 printf " gdbarch->${function} = ${function};\n"
1745 printf "}\n"
1746 elif class_is_variable_p
1747 then
1748 printf "\n"
1749 printf "${returntype}\n"
1750 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1751 printf "{\n"
1752 printf " gdb_assert (gdbarch != NULL);\n"
1753 if [ "x${invalid_p}" = "x0" ]
1754 then
1755 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1756 elif [ -n "${invalid_p}" ]
1757 then
1758 printf " if (${invalid_p})\n"
1759 printf " internal_error (__FILE__, __LINE__,\n"
1760 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1761 elif [ -n "${predefault}" ]
1762 then
1763 printf " if (gdbarch->${function} == ${predefault})\n"
1764 printf " internal_error (__FILE__, __LINE__,\n"
1765 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1766 fi
1767 printf " if (gdbarch_debug >= 2)\n"
1768 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1769 printf " return gdbarch->${function};\n"
1770 printf "}\n"
1771 printf "\n"
1772 printf "void\n"
1773 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1774 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1775 printf "{\n"
1776 printf " gdbarch->${function} = ${function};\n"
1777 printf "}\n"
1778 elif class_is_info_p
1779 then
1780 printf "\n"
1781 printf "${returntype}\n"
1782 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1783 printf "{\n"
1784 printf " gdb_assert (gdbarch != NULL);\n"
1785 printf " if (gdbarch_debug >= 2)\n"
1786 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1787 printf " return gdbarch->${function};\n"
1788 printf "}\n"
1789 fi
1790 done
1791
1792 # All the trailing guff
1793 cat <<EOF
1794
1795
1796 /* Keep a registry of per-architecture data-pointers required by GDB
1797 modules. */
1798
1799 struct gdbarch_data
1800 {
1801 unsigned index;
1802 int init_p;
1803 gdbarch_data_init_ftype *init;
1804 gdbarch_data_free_ftype *free;
1805 };
1806
1807 struct gdbarch_data_registration
1808 {
1809 struct gdbarch_data *data;
1810 struct gdbarch_data_registration *next;
1811 };
1812
1813 struct gdbarch_data_registry
1814 {
1815 unsigned nr;
1816 struct gdbarch_data_registration *registrations;
1817 };
1818
1819 struct gdbarch_data_registry gdbarch_data_registry =
1820 {
1821 0, NULL,
1822 };
1823
1824 struct gdbarch_data *
1825 register_gdbarch_data (gdbarch_data_init_ftype *init,
1826 gdbarch_data_free_ftype *free)
1827 {
1828 struct gdbarch_data_registration **curr;
1829 /* Append the new registraration. */
1830 for (curr = &gdbarch_data_registry.registrations;
1831 (*curr) != NULL;
1832 curr = &(*curr)->next);
1833 (*curr) = XMALLOC (struct gdbarch_data_registration);
1834 (*curr)->next = NULL;
1835 (*curr)->data = XMALLOC (struct gdbarch_data);
1836 (*curr)->data->index = gdbarch_data_registry.nr++;
1837 (*curr)->data->init = init;
1838 (*curr)->data->init_p = 1;
1839 (*curr)->data->free = free;
1840 return (*curr)->data;
1841 }
1842
1843
1844 /* Create/delete the gdbarch data vector. */
1845
1846 static void
1847 alloc_gdbarch_data (struct gdbarch *gdbarch)
1848 {
1849 gdb_assert (gdbarch->data == NULL);
1850 gdbarch->nr_data = gdbarch_data_registry.nr;
1851 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1852 }
1853
1854 static void
1855 free_gdbarch_data (struct gdbarch *gdbarch)
1856 {
1857 struct gdbarch_data_registration *rego;
1858 gdb_assert (gdbarch->data != NULL);
1859 for (rego = gdbarch_data_registry.registrations;
1860 rego != NULL;
1861 rego = rego->next)
1862 {
1863 struct gdbarch_data *data = rego->data;
1864 gdb_assert (data->index < gdbarch->nr_data);
1865 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1866 {
1867 data->free (gdbarch, gdbarch->data[data->index]);
1868 gdbarch->data[data->index] = NULL;
1869 }
1870 }
1871 xfree (gdbarch->data);
1872 gdbarch->data = NULL;
1873 }
1874
1875
1876 /* Initialize the current value of the specified per-architecture
1877 data-pointer. */
1878
1879 void
1880 set_gdbarch_data (struct gdbarch *gdbarch,
1881 struct gdbarch_data *data,
1882 void *pointer)
1883 {
1884 gdb_assert (data->index < gdbarch->nr_data);
1885 if (gdbarch->data[data->index] != NULL)
1886 {
1887 gdb_assert (data->free != NULL);
1888 data->free (gdbarch, gdbarch->data[data->index]);
1889 }
1890 gdbarch->data[data->index] = pointer;
1891 }
1892
1893 /* Return the current value of the specified per-architecture
1894 data-pointer. */
1895
1896 void *
1897 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1898 {
1899 gdb_assert (data->index < gdbarch->nr_data);
1900 /* The data-pointer isn't initialized, call init() to get a value but
1901 only if the architecture initializaiton has completed. Otherwise
1902 punt - hope that the caller knows what they are doing. */
1903 if (gdbarch->data[data->index] == NULL
1904 && gdbarch->initialized_p)
1905 {
1906 /* Be careful to detect an initialization cycle. */
1907 gdb_assert (data->init_p);
1908 data->init_p = 0;
1909 gdb_assert (data->init != NULL);
1910 gdbarch->data[data->index] = data->init (gdbarch);
1911 data->init_p = 1;
1912 gdb_assert (gdbarch->data[data->index] != NULL);
1913 }
1914 return gdbarch->data[data->index];
1915 }
1916
1917
1918
1919 /* Keep a registry of swapped data required by GDB modules. */
1920
1921 struct gdbarch_swap
1922 {
1923 void *swap;
1924 struct gdbarch_swap_registration *source;
1925 struct gdbarch_swap *next;
1926 };
1927
1928 struct gdbarch_swap_registration
1929 {
1930 void *data;
1931 unsigned long sizeof_data;
1932 gdbarch_swap_ftype *init;
1933 struct gdbarch_swap_registration *next;
1934 };
1935
1936 struct gdbarch_swap_registry
1937 {
1938 int nr;
1939 struct gdbarch_swap_registration *registrations;
1940 };
1941
1942 struct gdbarch_swap_registry gdbarch_swap_registry =
1943 {
1944 0, NULL,
1945 };
1946
1947 void
1948 register_gdbarch_swap (void *data,
1949 unsigned long sizeof_data,
1950 gdbarch_swap_ftype *init)
1951 {
1952 struct gdbarch_swap_registration **rego;
1953 for (rego = &gdbarch_swap_registry.registrations;
1954 (*rego) != NULL;
1955 rego = &(*rego)->next);
1956 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1957 (*rego)->next = NULL;
1958 (*rego)->init = init;
1959 (*rego)->data = data;
1960 (*rego)->sizeof_data = sizeof_data;
1961 }
1962
1963 static void
1964 clear_gdbarch_swap (struct gdbarch *gdbarch)
1965 {
1966 struct gdbarch_swap *curr;
1967 for (curr = gdbarch->swap;
1968 curr != NULL;
1969 curr = curr->next)
1970 {
1971 memset (curr->source->data, 0, curr->source->sizeof_data);
1972 }
1973 }
1974
1975 static void
1976 init_gdbarch_swap (struct gdbarch *gdbarch)
1977 {
1978 struct gdbarch_swap_registration *rego;
1979 struct gdbarch_swap **curr = &gdbarch->swap;
1980 for (rego = gdbarch_swap_registry.registrations;
1981 rego != NULL;
1982 rego = rego->next)
1983 {
1984 if (rego->data != NULL)
1985 {
1986 (*curr) = XMALLOC (struct gdbarch_swap);
1987 (*curr)->source = rego;
1988 (*curr)->swap = xmalloc (rego->sizeof_data);
1989 (*curr)->next = NULL;
1990 curr = &(*curr)->next;
1991 }
1992 if (rego->init != NULL)
1993 rego->init ();
1994 }
1995 }
1996
1997 static void
1998 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1999 {
2000 struct gdbarch_swap *curr;
2001 for (curr = gdbarch->swap;
2002 curr != NULL;
2003 curr = curr->next)
2004 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2005 }
2006
2007 static void
2008 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2009 {
2010 struct gdbarch_swap *curr;
2011 for (curr = gdbarch->swap;
2012 curr != NULL;
2013 curr = curr->next)
2014 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2015 }
2016
2017
2018 /* Keep a registry of the architectures known by GDB. */
2019
2020 struct gdbarch_registration
2021 {
2022 enum bfd_architecture bfd_architecture;
2023 gdbarch_init_ftype *init;
2024 gdbarch_dump_tdep_ftype *dump_tdep;
2025 struct gdbarch_list *arches;
2026 struct gdbarch_registration *next;
2027 };
2028
2029 static struct gdbarch_registration *gdbarch_registry = NULL;
2030
2031 static void
2032 append_name (const char ***buf, int *nr, const char *name)
2033 {
2034 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2035 (*buf)[*nr] = name;
2036 *nr += 1;
2037 }
2038
2039 const char **
2040 gdbarch_printable_names (void)
2041 {
2042 if (GDB_MULTI_ARCH)
2043 {
2044 /* Accumulate a list of names based on the registed list of
2045 architectures. */
2046 enum bfd_architecture a;
2047 int nr_arches = 0;
2048 const char **arches = NULL;
2049 struct gdbarch_registration *rego;
2050 for (rego = gdbarch_registry;
2051 rego != NULL;
2052 rego = rego->next)
2053 {
2054 const struct bfd_arch_info *ap;
2055 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2056 if (ap == NULL)
2057 internal_error (__FILE__, __LINE__,
2058 "gdbarch_architecture_names: multi-arch unknown");
2059 do
2060 {
2061 append_name (&arches, &nr_arches, ap->printable_name);
2062 ap = ap->next;
2063 }
2064 while (ap != NULL);
2065 }
2066 append_name (&arches, &nr_arches, NULL);
2067 return arches;
2068 }
2069 else
2070 /* Just return all the architectures that BFD knows. Assume that
2071 the legacy architecture framework supports them. */
2072 return bfd_arch_list ();
2073 }
2074
2075
2076 void
2077 gdbarch_register (enum bfd_architecture bfd_architecture,
2078 gdbarch_init_ftype *init,
2079 gdbarch_dump_tdep_ftype *dump_tdep)
2080 {
2081 struct gdbarch_registration **curr;
2082 const struct bfd_arch_info *bfd_arch_info;
2083 /* Check that BFD recognizes this architecture */
2084 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2085 if (bfd_arch_info == NULL)
2086 {
2087 internal_error (__FILE__, __LINE__,
2088 "gdbarch: Attempt to register unknown architecture (%d)",
2089 bfd_architecture);
2090 }
2091 /* Check that we haven't seen this architecture before */
2092 for (curr = &gdbarch_registry;
2093 (*curr) != NULL;
2094 curr = &(*curr)->next)
2095 {
2096 if (bfd_architecture == (*curr)->bfd_architecture)
2097 internal_error (__FILE__, __LINE__,
2098 "gdbarch: Duplicate registraration of architecture (%s)",
2099 bfd_arch_info->printable_name);
2100 }
2101 /* log it */
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2104 bfd_arch_info->printable_name,
2105 (long) init);
2106 /* Append it */
2107 (*curr) = XMALLOC (struct gdbarch_registration);
2108 (*curr)->bfd_architecture = bfd_architecture;
2109 (*curr)->init = init;
2110 (*curr)->dump_tdep = dump_tdep;
2111 (*curr)->arches = NULL;
2112 (*curr)->next = NULL;
2113 /* When non- multi-arch, install whatever target dump routine we've
2114 been provided - hopefully that routine has been written correctly
2115 and works regardless of multi-arch. */
2116 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2117 && startup_gdbarch.dump_tdep == NULL)
2118 startup_gdbarch.dump_tdep = dump_tdep;
2119 }
2120
2121 void
2122 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2123 gdbarch_init_ftype *init)
2124 {
2125 gdbarch_register (bfd_architecture, init, NULL);
2126 }
2127
2128
2129 /* Look for an architecture using gdbarch_info. Base search on only
2130 BFD_ARCH_INFO and BYTE_ORDER. */
2131
2132 struct gdbarch_list *
2133 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2134 const struct gdbarch_info *info)
2135 {
2136 for (; arches != NULL; arches = arches->next)
2137 {
2138 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2139 continue;
2140 if (info->byte_order != arches->gdbarch->byte_order)
2141 continue;
2142 if (info->osabi != arches->gdbarch->osabi)
2143 continue;
2144 return arches;
2145 }
2146 return NULL;
2147 }
2148
2149
2150 /* Update the current architecture. Return ZERO if the update request
2151 failed. */
2152
2153 int
2154 gdbarch_update_p (struct gdbarch_info info)
2155 {
2156 struct gdbarch *new_gdbarch;
2157 struct gdbarch *old_gdbarch;
2158 struct gdbarch_registration *rego;
2159
2160 /* Fill in missing parts of the INFO struct using a number of
2161 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2162
2163 /* \`\`(gdb) set architecture ...'' */
2164 if (info.bfd_arch_info == NULL
2165 && !TARGET_ARCHITECTURE_AUTO)
2166 info.bfd_arch_info = TARGET_ARCHITECTURE;
2167 if (info.bfd_arch_info == NULL
2168 && info.abfd != NULL
2169 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2170 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2171 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2172 if (info.bfd_arch_info == NULL)
2173 info.bfd_arch_info = TARGET_ARCHITECTURE;
2174
2175 /* \`\`(gdb) set byte-order ...'' */
2176 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2177 && !TARGET_BYTE_ORDER_AUTO)
2178 info.byte_order = TARGET_BYTE_ORDER;
2179 /* From the INFO struct. */
2180 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2181 && info.abfd != NULL)
2182 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2183 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2184 : BFD_ENDIAN_UNKNOWN);
2185 /* From the current target. */
2186 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2187 info.byte_order = TARGET_BYTE_ORDER;
2188
2189 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2190 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2191 info.osabi = gdbarch_lookup_osabi (info.abfd);
2192 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2193 info.osabi = current_gdbarch->osabi;
2194
2195 /* Must have found some sort of architecture. */
2196 gdb_assert (info.bfd_arch_info != NULL);
2197
2198 if (gdbarch_debug)
2199 {
2200 fprintf_unfiltered (gdb_stdlog,
2201 "gdbarch_update: info.bfd_arch_info %s\n",
2202 (info.bfd_arch_info != NULL
2203 ? info.bfd_arch_info->printable_name
2204 : "(null)"));
2205 fprintf_unfiltered (gdb_stdlog,
2206 "gdbarch_update: info.byte_order %d (%s)\n",
2207 info.byte_order,
2208 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2209 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2210 : "default"));
2211 fprintf_unfiltered (gdb_stdlog,
2212 "gdbarch_update: info.osabi %d (%s)\n",
2213 info.osabi, gdbarch_osabi_name (info.osabi));
2214 fprintf_unfiltered (gdb_stdlog,
2215 "gdbarch_update: info.abfd 0x%lx\n",
2216 (long) info.abfd);
2217 fprintf_unfiltered (gdb_stdlog,
2218 "gdbarch_update: info.tdep_info 0x%lx\n",
2219 (long) info.tdep_info);
2220 }
2221
2222 /* Find the target that knows about this architecture. */
2223 for (rego = gdbarch_registry;
2224 rego != NULL;
2225 rego = rego->next)
2226 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2227 break;
2228 if (rego == NULL)
2229 {
2230 if (gdbarch_debug)
2231 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2232 return 0;
2233 }
2234
2235 /* Swap the data belonging to the old target out setting the
2236 installed data to zero. This stops the ->init() function trying
2237 to refer to the previous architecture's global data structures. */
2238 swapout_gdbarch_swap (current_gdbarch);
2239 clear_gdbarch_swap (current_gdbarch);
2240
2241 /* Save the previously selected architecture, setting the global to
2242 NULL. This stops ->init() trying to use the previous
2243 architecture's configuration. The previous architecture may not
2244 even be of the same architecture family. The most recent
2245 architecture of the same family is found at the head of the
2246 rego->arches list. */
2247 old_gdbarch = current_gdbarch;
2248 current_gdbarch = NULL;
2249
2250 /* Ask the target for a replacement architecture. */
2251 new_gdbarch = rego->init (info, rego->arches);
2252
2253 /* Did the target like it? No. Reject the change and revert to the
2254 old architecture. */
2255 if (new_gdbarch == NULL)
2256 {
2257 if (gdbarch_debug)
2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2259 swapin_gdbarch_swap (old_gdbarch);
2260 current_gdbarch = old_gdbarch;
2261 return 0;
2262 }
2263
2264 /* Did the architecture change? No. Oops, put the old architecture
2265 back. */
2266 if (old_gdbarch == new_gdbarch)
2267 {
2268 if (gdbarch_debug)
2269 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2270 (long) new_gdbarch,
2271 new_gdbarch->bfd_arch_info->printable_name);
2272 swapin_gdbarch_swap (old_gdbarch);
2273 current_gdbarch = old_gdbarch;
2274 return 1;
2275 }
2276
2277 /* Is this a pre-existing architecture? Yes. Move it to the front
2278 of the list of architectures (keeping the list sorted Most
2279 Recently Used) and then copy it in. */
2280 {
2281 struct gdbarch_list **list;
2282 for (list = &rego->arches;
2283 (*list) != NULL;
2284 list = &(*list)->next)
2285 {
2286 if ((*list)->gdbarch == new_gdbarch)
2287 {
2288 struct gdbarch_list *this;
2289 if (gdbarch_debug)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2292 (long) new_gdbarch,
2293 new_gdbarch->bfd_arch_info->printable_name);
2294 /* Unlink this. */
2295 this = (*list);
2296 (*list) = this->next;
2297 /* Insert in the front. */
2298 this->next = rego->arches;
2299 rego->arches = this;
2300 /* Copy the new architecture in. */
2301 current_gdbarch = new_gdbarch;
2302 swapin_gdbarch_swap (new_gdbarch);
2303 architecture_changed_event ();
2304 return 1;
2305 }
2306 }
2307 }
2308
2309 /* Prepend this new architecture to the architecture list (keep the
2310 list sorted Most Recently Used). */
2311 {
2312 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2313 this->next = rego->arches;
2314 this->gdbarch = new_gdbarch;
2315 rego->arches = this;
2316 }
2317
2318 /* Switch to this new architecture marking it initialized. */
2319 current_gdbarch = new_gdbarch;
2320 current_gdbarch->initialized_p = 1;
2321 if (gdbarch_debug)
2322 {
2323 fprintf_unfiltered (gdb_stdlog,
2324 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2325 (long) new_gdbarch,
2326 new_gdbarch->bfd_arch_info->printable_name);
2327 }
2328
2329 /* Check that the newly installed architecture is valid. Plug in
2330 any post init values. */
2331 new_gdbarch->dump_tdep = rego->dump_tdep;
2332 verify_gdbarch (new_gdbarch);
2333
2334 /* Initialize the per-architecture memory (swap) areas.
2335 CURRENT_GDBARCH must be update before these modules are
2336 called. */
2337 init_gdbarch_swap (new_gdbarch);
2338
2339 /* Initialize the per-architecture data. CURRENT_GDBARCH
2340 must be updated before these modules are called. */
2341 architecture_changed_event ();
2342
2343 if (gdbarch_debug)
2344 gdbarch_dump (current_gdbarch, gdb_stdlog);
2345
2346 return 1;
2347 }
2348
2349
2350 /* Disassembler */
2351
2352 /* Pointer to the target-dependent disassembly function. */
2353 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2354 disassemble_info tm_print_insn_info;
2355
2356
2357 extern void _initialize_gdbarch (void);
2358
2359 void
2360 _initialize_gdbarch (void)
2361 {
2362 struct cmd_list_element *c;
2363
2364 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2365 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2366 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2367 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2368 tm_print_insn_info.print_address_func = dis_asm_print_address;
2369
2370 add_show_from_set (add_set_cmd ("arch",
2371 class_maintenance,
2372 var_zinteger,
2373 (char *)&gdbarch_debug,
2374 "Set architecture debugging.\\n\\
2375 When non-zero, architecture debugging is enabled.", &setdebuglist),
2376 &showdebuglist);
2377 c = add_set_cmd ("archdebug",
2378 class_maintenance,
2379 var_zinteger,
2380 (char *)&gdbarch_debug,
2381 "Set architecture debugging.\\n\\
2382 When non-zero, architecture debugging is enabled.", &setlist);
2383
2384 deprecate_cmd (c, "set debug arch");
2385 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2386 }
2387 EOF
2388
2389 # close things off
2390 exec 1>&2
2391 #../move-if-change new-gdbarch.c gdbarch.c
2392 compare_new gdbarch.c
This page took 0.121989 seconds and 4 git commands to generate.