2009-10-23 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Return true if GDB should use hardware single-stepping to execute
658 # the displaced instruction identified by CLOSURE. If false,
659 # GDB will simply restart execution at the displaced instruction
660 # location, and it is up to the target to ensure GDB will receive
661 # control again (e.g. by placing a software breakpoint instruction
662 # into the displaced instruction buffer).
663 #
664 # The default implementation returns false on all targets that
665 # provide a gdbarch_software_single_step routine, and true otherwise.
666 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
668 # Fix up the state resulting from successfully single-stepping a
669 # displaced instruction, to give the result we would have gotten from
670 # stepping the instruction in its original location.
671 #
672 # REGS is the register state resulting from single-stepping the
673 # displaced instruction.
674 #
675 # CLOSURE is the result from the matching call to
676 # gdbarch_displaced_step_copy_insn.
677 #
678 # If you provide gdbarch_displaced_step_copy_insn.but not this
679 # function, then GDB assumes that no fixup is needed after
680 # single-stepping the instruction.
681 #
682 # For a general explanation of displaced stepping and how GDB uses it,
683 # see the comments in infrun.c.
684 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686 # Free a closure returned by gdbarch_displaced_step_copy_insn.
687 #
688 # If you provide gdbarch_displaced_step_copy_insn, you must provide
689 # this function as well.
690 #
691 # If your architecture uses closures that don't need to be freed, then
692 # you can use simple_displaced_step_free_closure here.
693 #
694 # For a general explanation of displaced stepping and how GDB uses it,
695 # see the comments in infrun.c.
696 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698 # Return the address of an appropriate place to put displaced
699 # instructions while we step over them. There need only be one such
700 # place, since we're only stepping one thread over a breakpoint at a
701 # time.
702 #
703 # For a general explanation of displaced stepping and how GDB uses it,
704 # see the comments in infrun.c.
705 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
707 # Refresh overlay mapped state for section OSECT.
708 F:void:overlay_update:struct obj_section *osect:osect
709
710 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
711
712 # Handle special encoding of static variables in stabs debug info.
713 F:char *:static_transform_name:char *name:name
714 # Set if the address in N_SO or N_FUN stabs may be zero.
715 v:int:sofun_address_maybe_missing:::0:0::0
716
717 # Parse the instruction at ADDR storing in the record execution log
718 # the registers REGCACHE and memory ranges that will be affected when
719 # the instruction executes, along with their current values.
720 # Return -1 if something goes wrong, 0 otherwise.
721 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
723 # Save process state after a signal.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
727 # Signal translation: translate inferior's signal (host's) number into
728 # GDB's representation.
729 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730 # Signal translation: translate GDB's signal number into inferior's host
731 # signal number.
732 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
733
734 # Extra signal info inspection.
735 #
736 # Return a type suitable to inspect extra signal information.
737 M:struct type *:get_siginfo_type:void:
738
739 # Record architecture-specific information from the symbol table.
740 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
741
742 # Function for the 'catch syscall' feature.
743
744 # Get architecture-specific system calls information from registers.
745 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
747 # True if the list of shared libraries is one and only for all
748 # processes, as opposed to a list of shared libraries per inferior.
749 # This usually means that all processes, although may or may not share
750 # an address space, will see the same set of symbols at the same
751 # addresses.
752 v:int:has_global_solist:::0:0::0
753
754 # On some targets, even though each inferior has its own private
755 # address space, the debug interface takes care of making breakpoints
756 # visible to all address spaces automatically. For such cases,
757 # this property should be set to true.
758 v:int:has_global_breakpoints:::0:0::0
759
760 # True if inferiors share an address space (e.g., uClinux).
761 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
762 EOF
763 }
764
765 #
766 # The .log file
767 #
768 exec > new-gdbarch.log
769 function_list | while do_read
770 do
771 cat <<EOF
772 ${class} ${returntype} ${function} ($formal)
773 EOF
774 for r in ${read}
775 do
776 eval echo \"\ \ \ \ ${r}=\${${r}}\"
777 done
778 if class_is_predicate_p && fallback_default_p
779 then
780 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
781 kill $$
782 exit 1
783 fi
784 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
785 then
786 echo "Error: postdefault is useless when invalid_p=0" 1>&2
787 kill $$
788 exit 1
789 fi
790 if class_is_multiarch_p
791 then
792 if class_is_predicate_p ; then :
793 elif test "x${predefault}" = "x"
794 then
795 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
796 kill $$
797 exit 1
798 fi
799 fi
800 echo ""
801 done
802
803 exec 1>&2
804 compare_new gdbarch.log
805
806
807 copyright ()
808 {
809 cat <<EOF
810 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
811
812 /* Dynamic architecture support for GDB, the GNU debugger.
813
814 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
815 Free Software Foundation, Inc.
816
817 This file is part of GDB.
818
819 This program is free software; you can redistribute it and/or modify
820 it under the terms of the GNU General Public License as published by
821 the Free Software Foundation; either version 3 of the License, or
822 (at your option) any later version.
823
824 This program is distributed in the hope that it will be useful,
825 but WITHOUT ANY WARRANTY; without even the implied warranty of
826 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
827 GNU General Public License for more details.
828
829 You should have received a copy of the GNU General Public License
830 along with this program. If not, see <http://www.gnu.org/licenses/>. */
831
832 /* This file was created with the aid of \`\`gdbarch.sh''.
833
834 The Bourne shell script \`\`gdbarch.sh'' creates the files
835 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
836 against the existing \`\`gdbarch.[hc]''. Any differences found
837 being reported.
838
839 If editing this file, please also run gdbarch.sh and merge any
840 changes into that script. Conversely, when making sweeping changes
841 to this file, modifying gdbarch.sh and using its output may prove
842 easier. */
843
844 EOF
845 }
846
847 #
848 # The .h file
849 #
850
851 exec > new-gdbarch.h
852 copyright
853 cat <<EOF
854 #ifndef GDBARCH_H
855 #define GDBARCH_H
856
857 struct floatformat;
858 struct ui_file;
859 struct frame_info;
860 struct value;
861 struct objfile;
862 struct obj_section;
863 struct minimal_symbol;
864 struct regcache;
865 struct reggroup;
866 struct regset;
867 struct disassemble_info;
868 struct target_ops;
869 struct obstack;
870 struct bp_target_info;
871 struct target_desc;
872 struct displaced_step_closure;
873 struct core_regset_section;
874 struct syscall;
875
876 /* The architecture associated with the connection to the target.
877
878 The architecture vector provides some information that is really
879 a property of the target: The layout of certain packets, for instance;
880 or the solib_ops vector. Etc. To differentiate architecture accesses
881 to per-target properties from per-thread/per-frame/per-objfile properties,
882 accesses to per-target properties should be made through target_gdbarch.
883
884 Eventually, when support for multiple targets is implemented in
885 GDB, this global should be made target-specific. */
886 extern struct gdbarch *target_gdbarch;
887 EOF
888
889 # function typedef's
890 printf "\n"
891 printf "\n"
892 printf "/* The following are pre-initialized by GDBARCH. */\n"
893 function_list | while do_read
894 do
895 if class_is_info_p
896 then
897 printf "\n"
898 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
899 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
900 fi
901 done
902
903 # function typedef's
904 printf "\n"
905 printf "\n"
906 printf "/* The following are initialized by the target dependent code. */\n"
907 function_list | while do_read
908 do
909 if [ -n "${comment}" ]
910 then
911 echo "${comment}" | sed \
912 -e '2 s,#,/*,' \
913 -e '3,$ s,#, ,' \
914 -e '$ s,$, */,'
915 fi
916
917 if class_is_predicate_p
918 then
919 printf "\n"
920 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
921 fi
922 if class_is_variable_p
923 then
924 printf "\n"
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
927 fi
928 if class_is_function_p
929 then
930 printf "\n"
931 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
932 then
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
934 elif class_is_multiarch_p
935 then
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
937 else
938 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
939 fi
940 if [ "x${formal}" = "xvoid" ]
941 then
942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
943 else
944 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
945 fi
946 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
947 fi
948 done
949
950 # close it off
951 cat <<EOF
952
953 /* Definition for an unknown syscall, used basically in error-cases. */
954 #define UNKNOWN_SYSCALL (-1)
955
956 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
957
958
959 /* Mechanism for co-ordinating the selection of a specific
960 architecture.
961
962 GDB targets (*-tdep.c) can register an interest in a specific
963 architecture. Other GDB components can register a need to maintain
964 per-architecture data.
965
966 The mechanisms below ensures that there is only a loose connection
967 between the set-architecture command and the various GDB
968 components. Each component can independently register their need
969 to maintain architecture specific data with gdbarch.
970
971 Pragmatics:
972
973 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
974 didn't scale.
975
976 The more traditional mega-struct containing architecture specific
977 data for all the various GDB components was also considered. Since
978 GDB is built from a variable number of (fairly independent)
979 components it was determined that the global aproach was not
980 applicable. */
981
982
983 /* Register a new architectural family with GDB.
984
985 Register support for the specified ARCHITECTURE with GDB. When
986 gdbarch determines that the specified architecture has been
987 selected, the corresponding INIT function is called.
988
989 --
990
991 The INIT function takes two parameters: INFO which contains the
992 information available to gdbarch about the (possibly new)
993 architecture; ARCHES which is a list of the previously created
994 \`\`struct gdbarch'' for this architecture.
995
996 The INFO parameter is, as far as possible, be pre-initialized with
997 information obtained from INFO.ABFD or the global defaults.
998
999 The ARCHES parameter is a linked list (sorted most recently used)
1000 of all the previously created architures for this architecture
1001 family. The (possibly NULL) ARCHES->gdbarch can used to access
1002 values from the previously selected architecture for this
1003 architecture family.
1004
1005 The INIT function shall return any of: NULL - indicating that it
1006 doesn't recognize the selected architecture; an existing \`\`struct
1007 gdbarch'' from the ARCHES list - indicating that the new
1008 architecture is just a synonym for an earlier architecture (see
1009 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1010 - that describes the selected architecture (see gdbarch_alloc()).
1011
1012 The DUMP_TDEP function shall print out all target specific values.
1013 Care should be taken to ensure that the function works in both the
1014 multi-arch and non- multi-arch cases. */
1015
1016 struct gdbarch_list
1017 {
1018 struct gdbarch *gdbarch;
1019 struct gdbarch_list *next;
1020 };
1021
1022 struct gdbarch_info
1023 {
1024 /* Use default: NULL (ZERO). */
1025 const struct bfd_arch_info *bfd_arch_info;
1026
1027 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1028 int byte_order;
1029
1030 int byte_order_for_code;
1031
1032 /* Use default: NULL (ZERO). */
1033 bfd *abfd;
1034
1035 /* Use default: NULL (ZERO). */
1036 struct gdbarch_tdep_info *tdep_info;
1037
1038 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1039 enum gdb_osabi osabi;
1040
1041 /* Use default: NULL (ZERO). */
1042 const struct target_desc *target_desc;
1043 };
1044
1045 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1046 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1047
1048 /* DEPRECATED - use gdbarch_register() */
1049 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1050
1051 extern void gdbarch_register (enum bfd_architecture architecture,
1052 gdbarch_init_ftype *,
1053 gdbarch_dump_tdep_ftype *);
1054
1055
1056 /* Return a freshly allocated, NULL terminated, array of the valid
1057 architecture names. Since architectures are registered during the
1058 _initialize phase this function only returns useful information
1059 once initialization has been completed. */
1060
1061 extern const char **gdbarch_printable_names (void);
1062
1063
1064 /* Helper function. Search the list of ARCHES for a GDBARCH that
1065 matches the information provided by INFO. */
1066
1067 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1068
1069
1070 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1071 basic initialization using values obtained from the INFO and TDEP
1072 parameters. set_gdbarch_*() functions are called to complete the
1073 initialization of the object. */
1074
1075 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1076
1077
1078 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1079 It is assumed that the caller freeds the \`\`struct
1080 gdbarch_tdep''. */
1081
1082 extern void gdbarch_free (struct gdbarch *);
1083
1084
1085 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1086 obstack. The memory is freed when the corresponding architecture
1087 is also freed. */
1088
1089 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1090 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1091 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1092
1093
1094 /* Helper function. Force an update of the current architecture.
1095
1096 The actual architecture selected is determined by INFO, \`\`(gdb) set
1097 architecture'' et.al., the existing architecture and BFD's default
1098 architecture. INFO should be initialized to zero and then selected
1099 fields should be updated.
1100
1101 Returns non-zero if the update succeeds */
1102
1103 extern int gdbarch_update_p (struct gdbarch_info info);
1104
1105
1106 /* Helper function. Find an architecture matching info.
1107
1108 INFO should be initialized using gdbarch_info_init, relevant fields
1109 set, and then finished using gdbarch_info_fill.
1110
1111 Returns the corresponding architecture, or NULL if no matching
1112 architecture was found. */
1113
1114 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1115
1116
1117 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1118
1119 FIXME: kettenis/20031124: Of the functions that follow, only
1120 gdbarch_from_bfd is supposed to survive. The others will
1121 dissappear since in the future GDB will (hopefully) be truly
1122 multi-arch. However, for now we're still stuck with the concept of
1123 a single active architecture. */
1124
1125 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1126
1127
1128 /* Register per-architecture data-pointer.
1129
1130 Reserve space for a per-architecture data-pointer. An identifier
1131 for the reserved data-pointer is returned. That identifer should
1132 be saved in a local static variable.
1133
1134 Memory for the per-architecture data shall be allocated using
1135 gdbarch_obstack_zalloc. That memory will be deleted when the
1136 corresponding architecture object is deleted.
1137
1138 When a previously created architecture is re-selected, the
1139 per-architecture data-pointer for that previous architecture is
1140 restored. INIT() is not re-called.
1141
1142 Multiple registrarants for any architecture are allowed (and
1143 strongly encouraged). */
1144
1145 struct gdbarch_data;
1146
1147 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1148 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1149 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1150 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1151 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1152 struct gdbarch_data *data,
1153 void *pointer);
1154
1155 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1156
1157
1158 /* Set the dynamic target-system-dependent parameters (architecture,
1159 byte-order, ...) using information found in the BFD */
1160
1161 extern void set_gdbarch_from_file (bfd *);
1162
1163
1164 /* Initialize the current architecture to the "first" one we find on
1165 our list. */
1166
1167 extern void initialize_current_architecture (void);
1168
1169 /* gdbarch trace variable */
1170 extern int gdbarch_debug;
1171
1172 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1173
1174 #endif
1175 EOF
1176 exec 1>&2
1177 #../move-if-change new-gdbarch.h gdbarch.h
1178 compare_new gdbarch.h
1179
1180
1181 #
1182 # C file
1183 #
1184
1185 exec > new-gdbarch.c
1186 copyright
1187 cat <<EOF
1188
1189 #include "defs.h"
1190 #include "arch-utils.h"
1191
1192 #include "gdbcmd.h"
1193 #include "inferior.h"
1194 #include "symcat.h"
1195
1196 #include "floatformat.h"
1197
1198 #include "gdb_assert.h"
1199 #include "gdb_string.h"
1200 #include "reggroups.h"
1201 #include "osabi.h"
1202 #include "gdb_obstack.h"
1203 #include "observer.h"
1204 #include "regcache.h"
1205
1206 /* Static function declarations */
1207
1208 static void alloc_gdbarch_data (struct gdbarch *);
1209
1210 /* Non-zero if we want to trace architecture code. */
1211
1212 #ifndef GDBARCH_DEBUG
1213 #define GDBARCH_DEBUG 0
1214 #endif
1215 int gdbarch_debug = GDBARCH_DEBUG;
1216 static void
1217 show_gdbarch_debug (struct ui_file *file, int from_tty,
1218 struct cmd_list_element *c, const char *value)
1219 {
1220 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1221 }
1222
1223 static const char *
1224 pformat (const struct floatformat **format)
1225 {
1226 if (format == NULL)
1227 return "(null)";
1228 else
1229 /* Just print out one of them - this is only for diagnostics. */
1230 return format[0]->name;
1231 }
1232
1233 EOF
1234
1235 # gdbarch open the gdbarch object
1236 printf "\n"
1237 printf "/* Maintain the struct gdbarch object */\n"
1238 printf "\n"
1239 printf "struct gdbarch\n"
1240 printf "{\n"
1241 printf " /* Has this architecture been fully initialized? */\n"
1242 printf " int initialized_p;\n"
1243 printf "\n"
1244 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1245 printf " struct obstack *obstack;\n"
1246 printf "\n"
1247 printf " /* basic architectural information */\n"
1248 function_list | while do_read
1249 do
1250 if class_is_info_p
1251 then
1252 printf " ${returntype} ${function};\n"
1253 fi
1254 done
1255 printf "\n"
1256 printf " /* target specific vector. */\n"
1257 printf " struct gdbarch_tdep *tdep;\n"
1258 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1259 printf "\n"
1260 printf " /* per-architecture data-pointers */\n"
1261 printf " unsigned nr_data;\n"
1262 printf " void **data;\n"
1263 printf "\n"
1264 printf " /* per-architecture swap-regions */\n"
1265 printf " struct gdbarch_swap *swap;\n"
1266 printf "\n"
1267 cat <<EOF
1268 /* Multi-arch values.
1269
1270 When extending this structure you must:
1271
1272 Add the field below.
1273
1274 Declare set/get functions and define the corresponding
1275 macro in gdbarch.h.
1276
1277 gdbarch_alloc(): If zero/NULL is not a suitable default,
1278 initialize the new field.
1279
1280 verify_gdbarch(): Confirm that the target updated the field
1281 correctly.
1282
1283 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1284 field is dumped out
1285
1286 \`\`startup_gdbarch()'': Append an initial value to the static
1287 variable (base values on the host's c-type system).
1288
1289 get_gdbarch(): Implement the set/get functions (probably using
1290 the macro's as shortcuts).
1291
1292 */
1293
1294 EOF
1295 function_list | while do_read
1296 do
1297 if class_is_variable_p
1298 then
1299 printf " ${returntype} ${function};\n"
1300 elif class_is_function_p
1301 then
1302 printf " gdbarch_${function}_ftype *${function};\n"
1303 fi
1304 done
1305 printf "};\n"
1306
1307 # A pre-initialized vector
1308 printf "\n"
1309 printf "\n"
1310 cat <<EOF
1311 /* The default architecture uses host values (for want of a better
1312 choice). */
1313 EOF
1314 printf "\n"
1315 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1316 printf "\n"
1317 printf "struct gdbarch startup_gdbarch =\n"
1318 printf "{\n"
1319 printf " 1, /* Always initialized. */\n"
1320 printf " NULL, /* The obstack. */\n"
1321 printf " /* basic architecture information */\n"
1322 function_list | while do_read
1323 do
1324 if class_is_info_p
1325 then
1326 printf " ${staticdefault}, /* ${function} */\n"
1327 fi
1328 done
1329 cat <<EOF
1330 /* target specific vector and its dump routine */
1331 NULL, NULL,
1332 /*per-architecture data-pointers and swap regions */
1333 0, NULL, NULL,
1334 /* Multi-arch values */
1335 EOF
1336 function_list | while do_read
1337 do
1338 if class_is_function_p || class_is_variable_p
1339 then
1340 printf " ${staticdefault}, /* ${function} */\n"
1341 fi
1342 done
1343 cat <<EOF
1344 /* startup_gdbarch() */
1345 };
1346
1347 struct gdbarch *target_gdbarch = &startup_gdbarch;
1348 EOF
1349
1350 # Create a new gdbarch struct
1351 cat <<EOF
1352
1353 /* Create a new \`\`struct gdbarch'' based on information provided by
1354 \`\`struct gdbarch_info''. */
1355 EOF
1356 printf "\n"
1357 cat <<EOF
1358 struct gdbarch *
1359 gdbarch_alloc (const struct gdbarch_info *info,
1360 struct gdbarch_tdep *tdep)
1361 {
1362 struct gdbarch *gdbarch;
1363
1364 /* Create an obstack for allocating all the per-architecture memory,
1365 then use that to allocate the architecture vector. */
1366 struct obstack *obstack = XMALLOC (struct obstack);
1367 obstack_init (obstack);
1368 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1369 memset (gdbarch, 0, sizeof (*gdbarch));
1370 gdbarch->obstack = obstack;
1371
1372 alloc_gdbarch_data (gdbarch);
1373
1374 gdbarch->tdep = tdep;
1375 EOF
1376 printf "\n"
1377 function_list | while do_read
1378 do
1379 if class_is_info_p
1380 then
1381 printf " gdbarch->${function} = info->${function};\n"
1382 fi
1383 done
1384 printf "\n"
1385 printf " /* Force the explicit initialization of these. */\n"
1386 function_list | while do_read
1387 do
1388 if class_is_function_p || class_is_variable_p
1389 then
1390 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1391 then
1392 printf " gdbarch->${function} = ${predefault};\n"
1393 fi
1394 fi
1395 done
1396 cat <<EOF
1397 /* gdbarch_alloc() */
1398
1399 return gdbarch;
1400 }
1401 EOF
1402
1403 # Free a gdbarch struct.
1404 printf "\n"
1405 printf "\n"
1406 cat <<EOF
1407 /* Allocate extra space using the per-architecture obstack. */
1408
1409 void *
1410 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1411 {
1412 void *data = obstack_alloc (arch->obstack, size);
1413 memset (data, 0, size);
1414 return data;
1415 }
1416
1417
1418 /* Free a gdbarch struct. This should never happen in normal
1419 operation --- once you've created a gdbarch, you keep it around.
1420 However, if an architecture's init function encounters an error
1421 building the structure, it may need to clean up a partially
1422 constructed gdbarch. */
1423
1424 void
1425 gdbarch_free (struct gdbarch *arch)
1426 {
1427 struct obstack *obstack;
1428 gdb_assert (arch != NULL);
1429 gdb_assert (!arch->initialized_p);
1430 obstack = arch->obstack;
1431 obstack_free (obstack, 0); /* Includes the ARCH. */
1432 xfree (obstack);
1433 }
1434 EOF
1435
1436 # verify a new architecture
1437 cat <<EOF
1438
1439
1440 /* Ensure that all values in a GDBARCH are reasonable. */
1441
1442 static void
1443 verify_gdbarch (struct gdbarch *gdbarch)
1444 {
1445 struct ui_file *log;
1446 struct cleanup *cleanups;
1447 long length;
1448 char *buf;
1449 log = mem_fileopen ();
1450 cleanups = make_cleanup_ui_file_delete (log);
1451 /* fundamental */
1452 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1453 fprintf_unfiltered (log, "\n\tbyte-order");
1454 if (gdbarch->bfd_arch_info == NULL)
1455 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1456 /* Check those that need to be defined for the given multi-arch level. */
1457 EOF
1458 function_list | while do_read
1459 do
1460 if class_is_function_p || class_is_variable_p
1461 then
1462 if [ "x${invalid_p}" = "x0" ]
1463 then
1464 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1465 elif class_is_predicate_p
1466 then
1467 printf " /* Skip verify of ${function}, has predicate */\n"
1468 # FIXME: See do_read for potential simplification
1469 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1470 then
1471 printf " if (${invalid_p})\n"
1472 printf " gdbarch->${function} = ${postdefault};\n"
1473 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1474 then
1475 printf " if (gdbarch->${function} == ${predefault})\n"
1476 printf " gdbarch->${function} = ${postdefault};\n"
1477 elif [ -n "${postdefault}" ]
1478 then
1479 printf " if (gdbarch->${function} == 0)\n"
1480 printf " gdbarch->${function} = ${postdefault};\n"
1481 elif [ -n "${invalid_p}" ]
1482 then
1483 printf " if (${invalid_p})\n"
1484 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1485 elif [ -n "${predefault}" ]
1486 then
1487 printf " if (gdbarch->${function} == ${predefault})\n"
1488 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1489 fi
1490 fi
1491 done
1492 cat <<EOF
1493 buf = ui_file_xstrdup (log, &length);
1494 make_cleanup (xfree, buf);
1495 if (length > 0)
1496 internal_error (__FILE__, __LINE__,
1497 _("verify_gdbarch: the following are invalid ...%s"),
1498 buf);
1499 do_cleanups (cleanups);
1500 }
1501 EOF
1502
1503 # dump the structure
1504 printf "\n"
1505 printf "\n"
1506 cat <<EOF
1507 /* Print out the details of the current architecture. */
1508
1509 void
1510 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1511 {
1512 const char *gdb_nm_file = "<not-defined>";
1513 #if defined (GDB_NM_FILE)
1514 gdb_nm_file = GDB_NM_FILE;
1515 #endif
1516 fprintf_unfiltered (file,
1517 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1518 gdb_nm_file);
1519 EOF
1520 function_list | sort -t: -k 3 | while do_read
1521 do
1522 # First the predicate
1523 if class_is_predicate_p
1524 then
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1527 printf " gdbarch_${function}_p (gdbarch));\n"
1528 fi
1529 # Print the corresponding value.
1530 if class_is_function_p
1531 then
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1534 printf " host_address_to_string (gdbarch->${function}));\n"
1535 else
1536 # It is a variable
1537 case "${print}:${returntype}" in
1538 :CORE_ADDR )
1539 fmt="%s"
1540 print="core_addr_to_string_nz (gdbarch->${function})"
1541 ;;
1542 :* )
1543 fmt="%s"
1544 print="plongest (gdbarch->${function})"
1545 ;;
1546 * )
1547 fmt="%s"
1548 ;;
1549 esac
1550 printf " fprintf_unfiltered (file,\n"
1551 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1552 printf " ${print});\n"
1553 fi
1554 done
1555 cat <<EOF
1556 if (gdbarch->dump_tdep != NULL)
1557 gdbarch->dump_tdep (gdbarch, file);
1558 }
1559 EOF
1560
1561
1562 # GET/SET
1563 printf "\n"
1564 cat <<EOF
1565 struct gdbarch_tdep *
1566 gdbarch_tdep (struct gdbarch *gdbarch)
1567 {
1568 if (gdbarch_debug >= 2)
1569 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1570 return gdbarch->tdep;
1571 }
1572 EOF
1573 printf "\n"
1574 function_list | while do_read
1575 do
1576 if class_is_predicate_p
1577 then
1578 printf "\n"
1579 printf "int\n"
1580 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1581 printf "{\n"
1582 printf " gdb_assert (gdbarch != NULL);\n"
1583 printf " return ${predicate};\n"
1584 printf "}\n"
1585 fi
1586 if class_is_function_p
1587 then
1588 printf "\n"
1589 printf "${returntype}\n"
1590 if [ "x${formal}" = "xvoid" ]
1591 then
1592 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1593 else
1594 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1595 fi
1596 printf "{\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1599 if class_is_predicate_p && test -n "${predefault}"
1600 then
1601 # Allow a call to a function with a predicate.
1602 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1603 fi
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1607 then
1608 if class_is_multiarch_p
1609 then
1610 params="gdbarch"
1611 else
1612 params=""
1613 fi
1614 else
1615 if class_is_multiarch_p
1616 then
1617 params="gdbarch, ${actual}"
1618 else
1619 params="${actual}"
1620 fi
1621 fi
1622 if [ "x${returntype}" = "xvoid" ]
1623 then
1624 printf " gdbarch->${function} (${params});\n"
1625 else
1626 printf " return gdbarch->${function} (${params});\n"
1627 fi
1628 printf "}\n"
1629 printf "\n"
1630 printf "void\n"
1631 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1632 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1633 printf "{\n"
1634 printf " gdbarch->${function} = ${function};\n"
1635 printf "}\n"
1636 elif class_is_variable_p
1637 then
1638 printf "\n"
1639 printf "${returntype}\n"
1640 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1641 printf "{\n"
1642 printf " gdb_assert (gdbarch != NULL);\n"
1643 if [ "x${invalid_p}" = "x0" ]
1644 then
1645 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1646 elif [ -n "${invalid_p}" ]
1647 then
1648 printf " /* Check variable is valid. */\n"
1649 printf " gdb_assert (!(${invalid_p}));\n"
1650 elif [ -n "${predefault}" ]
1651 then
1652 printf " /* Check variable changed from pre-default. */\n"
1653 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1654 fi
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 printf " return gdbarch->${function};\n"
1658 printf "}\n"
1659 printf "\n"
1660 printf "void\n"
1661 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1662 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1663 printf "{\n"
1664 printf " gdbarch->${function} = ${function};\n"
1665 printf "}\n"
1666 elif class_is_info_p
1667 then
1668 printf "\n"
1669 printf "${returntype}\n"
1670 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1671 printf "{\n"
1672 printf " gdb_assert (gdbarch != NULL);\n"
1673 printf " if (gdbarch_debug >= 2)\n"
1674 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1675 printf " return gdbarch->${function};\n"
1676 printf "}\n"
1677 fi
1678 done
1679
1680 # All the trailing guff
1681 cat <<EOF
1682
1683
1684 /* Keep a registry of per-architecture data-pointers required by GDB
1685 modules. */
1686
1687 struct gdbarch_data
1688 {
1689 unsigned index;
1690 int init_p;
1691 gdbarch_data_pre_init_ftype *pre_init;
1692 gdbarch_data_post_init_ftype *post_init;
1693 };
1694
1695 struct gdbarch_data_registration
1696 {
1697 struct gdbarch_data *data;
1698 struct gdbarch_data_registration *next;
1699 };
1700
1701 struct gdbarch_data_registry
1702 {
1703 unsigned nr;
1704 struct gdbarch_data_registration *registrations;
1705 };
1706
1707 struct gdbarch_data_registry gdbarch_data_registry =
1708 {
1709 0, NULL,
1710 };
1711
1712 static struct gdbarch_data *
1713 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1714 gdbarch_data_post_init_ftype *post_init)
1715 {
1716 struct gdbarch_data_registration **curr;
1717 /* Append the new registraration. */
1718 for (curr = &gdbarch_data_registry.registrations;
1719 (*curr) != NULL;
1720 curr = &(*curr)->next);
1721 (*curr) = XMALLOC (struct gdbarch_data_registration);
1722 (*curr)->next = NULL;
1723 (*curr)->data = XMALLOC (struct gdbarch_data);
1724 (*curr)->data->index = gdbarch_data_registry.nr++;
1725 (*curr)->data->pre_init = pre_init;
1726 (*curr)->data->post_init = post_init;
1727 (*curr)->data->init_p = 1;
1728 return (*curr)->data;
1729 }
1730
1731 struct gdbarch_data *
1732 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1733 {
1734 return gdbarch_data_register (pre_init, NULL);
1735 }
1736
1737 struct gdbarch_data *
1738 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1739 {
1740 return gdbarch_data_register (NULL, post_init);
1741 }
1742
1743 /* Create/delete the gdbarch data vector. */
1744
1745 static void
1746 alloc_gdbarch_data (struct gdbarch *gdbarch)
1747 {
1748 gdb_assert (gdbarch->data == NULL);
1749 gdbarch->nr_data = gdbarch_data_registry.nr;
1750 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1751 }
1752
1753 /* Initialize the current value of the specified per-architecture
1754 data-pointer. */
1755
1756 void
1757 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1758 struct gdbarch_data *data,
1759 void *pointer)
1760 {
1761 gdb_assert (data->index < gdbarch->nr_data);
1762 gdb_assert (gdbarch->data[data->index] == NULL);
1763 gdb_assert (data->pre_init == NULL);
1764 gdbarch->data[data->index] = pointer;
1765 }
1766
1767 /* Return the current value of the specified per-architecture
1768 data-pointer. */
1769
1770 void *
1771 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1772 {
1773 gdb_assert (data->index < gdbarch->nr_data);
1774 if (gdbarch->data[data->index] == NULL)
1775 {
1776 /* The data-pointer isn't initialized, call init() to get a
1777 value. */
1778 if (data->pre_init != NULL)
1779 /* Mid architecture creation: pass just the obstack, and not
1780 the entire architecture, as that way it isn't possible for
1781 pre-init code to refer to undefined architecture
1782 fields. */
1783 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1784 else if (gdbarch->initialized_p
1785 && data->post_init != NULL)
1786 /* Post architecture creation: pass the entire architecture
1787 (as all fields are valid), but be careful to also detect
1788 recursive references. */
1789 {
1790 gdb_assert (data->init_p);
1791 data->init_p = 0;
1792 gdbarch->data[data->index] = data->post_init (gdbarch);
1793 data->init_p = 1;
1794 }
1795 else
1796 /* The architecture initialization hasn't completed - punt -
1797 hope that the caller knows what they are doing. Once
1798 deprecated_set_gdbarch_data has been initialized, this can be
1799 changed to an internal error. */
1800 return NULL;
1801 gdb_assert (gdbarch->data[data->index] != NULL);
1802 }
1803 return gdbarch->data[data->index];
1804 }
1805
1806
1807 /* Keep a registry of the architectures known by GDB. */
1808
1809 struct gdbarch_registration
1810 {
1811 enum bfd_architecture bfd_architecture;
1812 gdbarch_init_ftype *init;
1813 gdbarch_dump_tdep_ftype *dump_tdep;
1814 struct gdbarch_list *arches;
1815 struct gdbarch_registration *next;
1816 };
1817
1818 static struct gdbarch_registration *gdbarch_registry = NULL;
1819
1820 static void
1821 append_name (const char ***buf, int *nr, const char *name)
1822 {
1823 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1824 (*buf)[*nr] = name;
1825 *nr += 1;
1826 }
1827
1828 const char **
1829 gdbarch_printable_names (void)
1830 {
1831 /* Accumulate a list of names based on the registed list of
1832 architectures. */
1833 enum bfd_architecture a;
1834 int nr_arches = 0;
1835 const char **arches = NULL;
1836 struct gdbarch_registration *rego;
1837 for (rego = gdbarch_registry;
1838 rego != NULL;
1839 rego = rego->next)
1840 {
1841 const struct bfd_arch_info *ap;
1842 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1843 if (ap == NULL)
1844 internal_error (__FILE__, __LINE__,
1845 _("gdbarch_architecture_names: multi-arch unknown"));
1846 do
1847 {
1848 append_name (&arches, &nr_arches, ap->printable_name);
1849 ap = ap->next;
1850 }
1851 while (ap != NULL);
1852 }
1853 append_name (&arches, &nr_arches, NULL);
1854 return arches;
1855 }
1856
1857
1858 void
1859 gdbarch_register (enum bfd_architecture bfd_architecture,
1860 gdbarch_init_ftype *init,
1861 gdbarch_dump_tdep_ftype *dump_tdep)
1862 {
1863 struct gdbarch_registration **curr;
1864 const struct bfd_arch_info *bfd_arch_info;
1865 /* Check that BFD recognizes this architecture */
1866 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1867 if (bfd_arch_info == NULL)
1868 {
1869 internal_error (__FILE__, __LINE__,
1870 _("gdbarch: Attempt to register unknown architecture (%d)"),
1871 bfd_architecture);
1872 }
1873 /* Check that we haven't seen this architecture before */
1874 for (curr = &gdbarch_registry;
1875 (*curr) != NULL;
1876 curr = &(*curr)->next)
1877 {
1878 if (bfd_architecture == (*curr)->bfd_architecture)
1879 internal_error (__FILE__, __LINE__,
1880 _("gdbarch: Duplicate registraration of architecture (%s)"),
1881 bfd_arch_info->printable_name);
1882 }
1883 /* log it */
1884 if (gdbarch_debug)
1885 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1886 bfd_arch_info->printable_name,
1887 host_address_to_string (init));
1888 /* Append it */
1889 (*curr) = XMALLOC (struct gdbarch_registration);
1890 (*curr)->bfd_architecture = bfd_architecture;
1891 (*curr)->init = init;
1892 (*curr)->dump_tdep = dump_tdep;
1893 (*curr)->arches = NULL;
1894 (*curr)->next = NULL;
1895 }
1896
1897 void
1898 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1899 gdbarch_init_ftype *init)
1900 {
1901 gdbarch_register (bfd_architecture, init, NULL);
1902 }
1903
1904
1905 /* Look for an architecture using gdbarch_info. */
1906
1907 struct gdbarch_list *
1908 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1909 const struct gdbarch_info *info)
1910 {
1911 for (; arches != NULL; arches = arches->next)
1912 {
1913 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1914 continue;
1915 if (info->byte_order != arches->gdbarch->byte_order)
1916 continue;
1917 if (info->osabi != arches->gdbarch->osabi)
1918 continue;
1919 if (info->target_desc != arches->gdbarch->target_desc)
1920 continue;
1921 return arches;
1922 }
1923 return NULL;
1924 }
1925
1926
1927 /* Find an architecture that matches the specified INFO. Create a new
1928 architecture if needed. Return that new architecture. */
1929
1930 struct gdbarch *
1931 gdbarch_find_by_info (struct gdbarch_info info)
1932 {
1933 struct gdbarch *new_gdbarch;
1934 struct gdbarch_registration *rego;
1935
1936 /* Fill in missing parts of the INFO struct using a number of
1937 sources: "set ..."; INFOabfd supplied; and the global
1938 defaults. */
1939 gdbarch_info_fill (&info);
1940
1941 /* Must have found some sort of architecture. */
1942 gdb_assert (info.bfd_arch_info != NULL);
1943
1944 if (gdbarch_debug)
1945 {
1946 fprintf_unfiltered (gdb_stdlog,
1947 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1948 (info.bfd_arch_info != NULL
1949 ? info.bfd_arch_info->printable_name
1950 : "(null)"));
1951 fprintf_unfiltered (gdb_stdlog,
1952 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1953 info.byte_order,
1954 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1955 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1956 : "default"));
1957 fprintf_unfiltered (gdb_stdlog,
1958 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1959 info.osabi, gdbarch_osabi_name (info.osabi));
1960 fprintf_unfiltered (gdb_stdlog,
1961 "gdbarch_find_by_info: info.abfd %s\n",
1962 host_address_to_string (info.abfd));
1963 fprintf_unfiltered (gdb_stdlog,
1964 "gdbarch_find_by_info: info.tdep_info %s\n",
1965 host_address_to_string (info.tdep_info));
1966 }
1967
1968 /* Find the tdep code that knows about this architecture. */
1969 for (rego = gdbarch_registry;
1970 rego != NULL;
1971 rego = rego->next)
1972 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1973 break;
1974 if (rego == NULL)
1975 {
1976 if (gdbarch_debug)
1977 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1978 "No matching architecture\n");
1979 return 0;
1980 }
1981
1982 /* Ask the tdep code for an architecture that matches "info". */
1983 new_gdbarch = rego->init (info, rego->arches);
1984
1985 /* Did the tdep code like it? No. Reject the change and revert to
1986 the old architecture. */
1987 if (new_gdbarch == NULL)
1988 {
1989 if (gdbarch_debug)
1990 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1991 "Target rejected architecture\n");
1992 return NULL;
1993 }
1994
1995 /* Is this a pre-existing architecture (as determined by already
1996 being initialized)? Move it to the front of the architecture
1997 list (keeping the list sorted Most Recently Used). */
1998 if (new_gdbarch->initialized_p)
1999 {
2000 struct gdbarch_list **list;
2001 struct gdbarch_list *this;
2002 if (gdbarch_debug)
2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2004 "Previous architecture %s (%s) selected\n",
2005 host_address_to_string (new_gdbarch),
2006 new_gdbarch->bfd_arch_info->printable_name);
2007 /* Find the existing arch in the list. */
2008 for (list = &rego->arches;
2009 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2010 list = &(*list)->next);
2011 /* It had better be in the list of architectures. */
2012 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2013 /* Unlink THIS. */
2014 this = (*list);
2015 (*list) = this->next;
2016 /* Insert THIS at the front. */
2017 this->next = rego->arches;
2018 rego->arches = this;
2019 /* Return it. */
2020 return new_gdbarch;
2021 }
2022
2023 /* It's a new architecture. */
2024 if (gdbarch_debug)
2025 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2026 "New architecture %s (%s) selected\n",
2027 host_address_to_string (new_gdbarch),
2028 new_gdbarch->bfd_arch_info->printable_name);
2029
2030 /* Insert the new architecture into the front of the architecture
2031 list (keep the list sorted Most Recently Used). */
2032 {
2033 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2034 this->next = rego->arches;
2035 this->gdbarch = new_gdbarch;
2036 rego->arches = this;
2037 }
2038
2039 /* Check that the newly installed architecture is valid. Plug in
2040 any post init values. */
2041 new_gdbarch->dump_tdep = rego->dump_tdep;
2042 verify_gdbarch (new_gdbarch);
2043 new_gdbarch->initialized_p = 1;
2044
2045 if (gdbarch_debug)
2046 gdbarch_dump (new_gdbarch, gdb_stdlog);
2047
2048 return new_gdbarch;
2049 }
2050
2051 /* Make the specified architecture current. */
2052
2053 void
2054 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2055 {
2056 gdb_assert (new_gdbarch != NULL);
2057 gdb_assert (new_gdbarch->initialized_p);
2058 target_gdbarch = new_gdbarch;
2059 observer_notify_architecture_changed (new_gdbarch);
2060 registers_changed ();
2061 }
2062
2063 extern void _initialize_gdbarch (void);
2064
2065 void
2066 _initialize_gdbarch (void)
2067 {
2068 struct cmd_list_element *c;
2069
2070 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2071 Set architecture debugging."), _("\\
2072 Show architecture debugging."), _("\\
2073 When non-zero, architecture debugging is enabled."),
2074 NULL,
2075 show_gdbarch_debug,
2076 &setdebuglist, &showdebuglist);
2077 }
2078 EOF
2079
2080 # close things off
2081 exec 1>&2
2082 #../move-if-change new-gdbarch.c gdbarch.c
2083 compare_new gdbarch.c
This page took 0.077393 seconds and 4 git commands to generate.