3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
23 # Make certain that the script is not running in an internationalized
26 LC_ALL
=c
; export LC_ALL
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-
${file}
37 echo "${file} unchanged" 1>&2
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
53 if test "${line}" = ""
56 elif test "${line}" = "#" -a "${comment}" = ""
59 elif expr "${line}" : "#" > /dev
/null
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line
="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
70 OFS
="${IFS}" ; IFS
="[:]"
71 eval read ${read} <<EOF
76 if test -n "${garbage_at_eol}"
78 echo "Garbage at end-of-line in ${line}" 1>&2
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
87 if eval test \"\
${${r}}\" = \"\
\"
94 m
) staticdefault
="${predefault}" ;;
95 M
) staticdefault
="0" ;;
96 * ) test "${staticdefault}" || staticdefault
=0 ;;
101 case "${invalid_p}" in
103 if test -n "${predefault}"
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate
="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
109 predicate
="gdbarch->${function} != 0"
110 elif class_is_function_p
112 predicate
="gdbarch->${function} != NULL"
116 echo "Predicate function ${function} with invalid_p." 1>&2
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
130 if [ -n "${postdefault}" ]
132 fallbackdefault
="${postdefault}"
133 elif [ -n "${predefault}" ]
135 fallbackdefault
="${predefault}"
140 #NOT YET: See gdbarch.log for basic verification of
155 fallback_default_p
()
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 ||
[ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 class_is_variable_p
()
169 class_is_function_p
()
172 *f
* |
*F
* |
*m
* |
*M
* ) true
;;
177 class_is_multiarch_p
()
185 class_is_predicate_p
()
188 *F
* |
*V
* |
*M
* ) true
;;
202 # dump out/verify the doco
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
227 # For functions, the return type; for variables, the data type
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
255 # If STATICDEFAULT is empty, zero is used.
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
264 # If PREDEFAULT is empty, zero is used.
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
270 # A zero PREDEFAULT function will force the fallback to call
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
282 # If POSTDEFAULT is empty, no post update is performed.
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
314 # See also PREDEFAULT and POSTDEFAULT.
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
324 garbage_at_eol
) : ;;
326 # Catches stray fields.
329 echo "Bad field ${field}"
337 # See below (DOCO) for description of each field
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
458 v:int:believe_pcc_promotion:::::::
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
608 # How the core_stratum layer converts a PTID from a core file to a
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
618 v:int:vtable_function_descriptors:::0:0::0
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
657 # Return true if GDB should use hardware single-stepping to execute
658 # the displaced instruction identified by CLOSURE. If false,
659 # GDB will simply restart execution at the displaced instruction
660 # location, and it is up to the target to ensure GDB will receive
661 # control again (e.g. by placing a software breakpoint instruction
662 # into the displaced instruction buffer).
664 # The default implementation returns false on all targets that
665 # provide a gdbarch_software_single_step routine, and true otherwise.
666 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
668 # Fix up the state resulting from successfully single-stepping a
669 # displaced instruction, to give the result we would have gotten from
670 # stepping the instruction in its original location.
672 # REGS is the register state resulting from single-stepping the
673 # displaced instruction.
675 # CLOSURE is the result from the matching call to
676 # gdbarch_displaced_step_copy_insn.
678 # If you provide gdbarch_displaced_step_copy_insn.but not this
679 # function, then GDB assumes that no fixup is needed after
680 # single-stepping the instruction.
682 # For a general explanation of displaced stepping and how GDB uses it,
683 # see the comments in infrun.c.
684 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
686 # Free a closure returned by gdbarch_displaced_step_copy_insn.
688 # If you provide gdbarch_displaced_step_copy_insn, you must provide
689 # this function as well.
691 # If your architecture uses closures that don't need to be freed, then
692 # you can use simple_displaced_step_free_closure here.
694 # For a general explanation of displaced stepping and how GDB uses it,
695 # see the comments in infrun.c.
696 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
698 # Return the address of an appropriate place to put displaced
699 # instructions while we step over them. There need only be one such
700 # place, since we're only stepping one thread over a breakpoint at a
703 # For a general explanation of displaced stepping and how GDB uses it,
704 # see the comments in infrun.c.
705 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
707 # Refresh overlay mapped state for section OSECT.
708 F:void:overlay_update:struct obj_section *osect:osect
710 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
712 # Handle special encoding of static variables in stabs debug info.
713 F:char *:static_transform_name:char *name:name
714 # Set if the address in N_SO or N_FUN stabs may be zero.
715 v:int:sofun_address_maybe_missing:::0:0::0
717 # Parse the instruction at ADDR storing in the record execution log
718 # the registers REGCACHE and memory ranges that will be affected when
719 # the instruction executes, along with their current values.
720 # Return -1 if something goes wrong, 0 otherwise.
721 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
723 # Save process state after a signal.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
727 # Signal translation: translate inferior's signal (host's) number into
728 # GDB's representation.
729 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730 # Signal translation: translate GDB's signal number into inferior's host
732 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
734 # Extra signal info inspection.
736 # Return a type suitable to inspect extra signal information.
737 M:struct type *:get_siginfo_type:void:
739 # Record architecture-specific information from the symbol table.
740 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
742 # Function for the 'catch syscall' feature.
744 # Get architecture-specific system calls information from registers.
745 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
747 # True if the list of shared libraries is one and only for all
748 # processes, as opposed to a list of shared libraries per inferior.
749 # This usually means that all processes, although may or may not share
750 # an address space, will see the same set of symbols at the same
752 v:int:has_global_solist:::0:0::0
754 # On some targets, even though each inferior has its own private
755 # address space, the debug interface takes care of making breakpoints
756 # visible to all address spaces automatically. For such cases,
757 # this property should be set to true.
758 v:int:has_global_breakpoints:::0:0::0
760 # True if inferiors share an address space (e.g., uClinux).
761 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
768 exec > new-gdbarch.log
769 function_list |
while do_read
772 ${class} ${returntype} ${function} ($formal)
776 eval echo \"\ \ \ \
${r}=\
${${r}}\"
778 if class_is_predicate_p
&& fallback_default_p
780 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
784 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
786 echo "Error: postdefault is useless when invalid_p=0" 1>&2
790 if class_is_multiarch_p
792 if class_is_predicate_p
; then :
793 elif test "x${predefault}" = "x"
795 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
804 compare_new gdbarch.log
810 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
812 /* Dynamic architecture support for GDB, the GNU debugger.
814 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
815 Free Software Foundation, Inc.
817 This file is part of GDB.
819 This program is free software; you can redistribute it and/or modify
820 it under the terms of the GNU General Public License as published by
821 the Free Software Foundation; either version 3 of the License, or
822 (at your option) any later version.
824 This program is distributed in the hope that it will be useful,
825 but WITHOUT ANY WARRANTY; without even the implied warranty of
826 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
827 GNU General Public License for more details.
829 You should have received a copy of the GNU General Public License
830 along with this program. If not, see <http://www.gnu.org/licenses/>. */
832 /* This file was created with the aid of \`\`gdbarch.sh''.
834 The Bourne shell script \`\`gdbarch.sh'' creates the files
835 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
836 against the existing \`\`gdbarch.[hc]''. Any differences found
839 If editing this file, please also run gdbarch.sh and merge any
840 changes into that script. Conversely, when making sweeping changes
841 to this file, modifying gdbarch.sh and using its output may prove
863 struct minimal_symbol;
867 struct disassemble_info;
870 struct bp_target_info;
872 struct displaced_step_closure;
873 struct core_regset_section;
876 /* The architecture associated with the connection to the target.
878 The architecture vector provides some information that is really
879 a property of the target: The layout of certain packets, for instance;
880 or the solib_ops vector. Etc. To differentiate architecture accesses
881 to per-target properties from per-thread/per-frame/per-objfile properties,
882 accesses to per-target properties should be made through target_gdbarch.
884 Eventually, when support for multiple targets is implemented in
885 GDB, this global should be made target-specific. */
886 extern struct gdbarch *target_gdbarch;
892 printf "/* The following are pre-initialized by GDBARCH. */\n"
893 function_list |
while do_read
898 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
899 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
906 printf "/* The following are initialized by the target dependent code. */\n"
907 function_list |
while do_read
909 if [ -n "${comment}" ]
911 echo "${comment}" |
sed \
917 if class_is_predicate_p
920 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
922 if class_is_variable_p
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
928 if class_is_function_p
931 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
934 elif class_is_multiarch_p
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
938 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
940 if [ "x${formal}" = "xvoid" ]
942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
944 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
946 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
953 /* Definition for an unknown syscall, used basically in error-cases. */
954 #define UNKNOWN_SYSCALL (-1)
956 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
959 /* Mechanism for co-ordinating the selection of a specific
962 GDB targets (*-tdep.c) can register an interest in a specific
963 architecture. Other GDB components can register a need to maintain
964 per-architecture data.
966 The mechanisms below ensures that there is only a loose connection
967 between the set-architecture command and the various GDB
968 components. Each component can independently register their need
969 to maintain architecture specific data with gdbarch.
973 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
976 The more traditional mega-struct containing architecture specific
977 data for all the various GDB components was also considered. Since
978 GDB is built from a variable number of (fairly independent)
979 components it was determined that the global aproach was not
983 /* Register a new architectural family with GDB.
985 Register support for the specified ARCHITECTURE with GDB. When
986 gdbarch determines that the specified architecture has been
987 selected, the corresponding INIT function is called.
991 The INIT function takes two parameters: INFO which contains the
992 information available to gdbarch about the (possibly new)
993 architecture; ARCHES which is a list of the previously created
994 \`\`struct gdbarch'' for this architecture.
996 The INFO parameter is, as far as possible, be pre-initialized with
997 information obtained from INFO.ABFD or the global defaults.
999 The ARCHES parameter is a linked list (sorted most recently used)
1000 of all the previously created architures for this architecture
1001 family. The (possibly NULL) ARCHES->gdbarch can used to access
1002 values from the previously selected architecture for this
1003 architecture family.
1005 The INIT function shall return any of: NULL - indicating that it
1006 doesn't recognize the selected architecture; an existing \`\`struct
1007 gdbarch'' from the ARCHES list - indicating that the new
1008 architecture is just a synonym for an earlier architecture (see
1009 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1010 - that describes the selected architecture (see gdbarch_alloc()).
1012 The DUMP_TDEP function shall print out all target specific values.
1013 Care should be taken to ensure that the function works in both the
1014 multi-arch and non- multi-arch cases. */
1018 struct gdbarch *gdbarch;
1019 struct gdbarch_list *next;
1024 /* Use default: NULL (ZERO). */
1025 const struct bfd_arch_info *bfd_arch_info;
1027 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1030 int byte_order_for_code;
1032 /* Use default: NULL (ZERO). */
1035 /* Use default: NULL (ZERO). */
1036 struct gdbarch_tdep_info *tdep_info;
1038 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1039 enum gdb_osabi osabi;
1041 /* Use default: NULL (ZERO). */
1042 const struct target_desc *target_desc;
1045 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1046 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1048 /* DEPRECATED - use gdbarch_register() */
1049 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1051 extern void gdbarch_register (enum bfd_architecture architecture,
1052 gdbarch_init_ftype *,
1053 gdbarch_dump_tdep_ftype *);
1056 /* Return a freshly allocated, NULL terminated, array of the valid
1057 architecture names. Since architectures are registered during the
1058 _initialize phase this function only returns useful information
1059 once initialization has been completed. */
1061 extern const char **gdbarch_printable_names (void);
1064 /* Helper function. Search the list of ARCHES for a GDBARCH that
1065 matches the information provided by INFO. */
1067 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1070 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1071 basic initialization using values obtained from the INFO and TDEP
1072 parameters. set_gdbarch_*() functions are called to complete the
1073 initialization of the object. */
1075 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1078 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1079 It is assumed that the caller freeds the \`\`struct
1082 extern void gdbarch_free (struct gdbarch *);
1085 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1086 obstack. The memory is freed when the corresponding architecture
1089 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1090 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1091 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1094 /* Helper function. Force an update of the current architecture.
1096 The actual architecture selected is determined by INFO, \`\`(gdb) set
1097 architecture'' et.al., the existing architecture and BFD's default
1098 architecture. INFO should be initialized to zero and then selected
1099 fields should be updated.
1101 Returns non-zero if the update succeeds */
1103 extern int gdbarch_update_p (struct gdbarch_info info);
1106 /* Helper function. Find an architecture matching info.
1108 INFO should be initialized using gdbarch_info_init, relevant fields
1109 set, and then finished using gdbarch_info_fill.
1111 Returns the corresponding architecture, or NULL if no matching
1112 architecture was found. */
1114 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1117 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1119 FIXME: kettenis/20031124: Of the functions that follow, only
1120 gdbarch_from_bfd is supposed to survive. The others will
1121 dissappear since in the future GDB will (hopefully) be truly
1122 multi-arch. However, for now we're still stuck with the concept of
1123 a single active architecture. */
1125 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1128 /* Register per-architecture data-pointer.
1130 Reserve space for a per-architecture data-pointer. An identifier
1131 for the reserved data-pointer is returned. That identifer should
1132 be saved in a local static variable.
1134 Memory for the per-architecture data shall be allocated using
1135 gdbarch_obstack_zalloc. That memory will be deleted when the
1136 corresponding architecture object is deleted.
1138 When a previously created architecture is re-selected, the
1139 per-architecture data-pointer for that previous architecture is
1140 restored. INIT() is not re-called.
1142 Multiple registrarants for any architecture are allowed (and
1143 strongly encouraged). */
1145 struct gdbarch_data;
1147 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1148 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1149 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1150 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1151 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1152 struct gdbarch_data *data,
1155 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1158 /* Set the dynamic target-system-dependent parameters (architecture,
1159 byte-order, ...) using information found in the BFD */
1161 extern void set_gdbarch_from_file (bfd *);
1164 /* Initialize the current architecture to the "first" one we find on
1167 extern void initialize_current_architecture (void);
1169 /* gdbarch trace variable */
1170 extern int gdbarch_debug;
1172 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1177 #../move-if-change new-gdbarch.h gdbarch.h
1178 compare_new gdbarch.h
1185 exec > new-gdbarch.c
1190 #include "arch-utils.h"
1193 #include "inferior.h"
1196 #include "floatformat.h"
1198 #include "gdb_assert.h"
1199 #include "gdb_string.h"
1200 #include "reggroups.h"
1202 #include "gdb_obstack.h"
1203 #include "observer.h"
1204 #include "regcache.h"
1206 /* Static function declarations */
1208 static void alloc_gdbarch_data (struct gdbarch *);
1210 /* Non-zero if we want to trace architecture code. */
1212 #ifndef GDBARCH_DEBUG
1213 #define GDBARCH_DEBUG 0
1215 int gdbarch_debug = GDBARCH_DEBUG;
1217 show_gdbarch_debug (struct ui_file *file, int from_tty,
1218 struct cmd_list_element *c, const char *value)
1220 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1224 pformat (const struct floatformat **format)
1229 /* Just print out one of them - this is only for diagnostics. */
1230 return format[0]->name;
1235 # gdbarch open the gdbarch object
1237 printf "/* Maintain the struct gdbarch object */\n"
1239 printf "struct gdbarch\n"
1241 printf " /* Has this architecture been fully initialized? */\n"
1242 printf " int initialized_p;\n"
1244 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1245 printf " struct obstack *obstack;\n"
1247 printf " /* basic architectural information */\n"
1248 function_list |
while do_read
1252 printf " ${returntype} ${function};\n"
1256 printf " /* target specific vector. */\n"
1257 printf " struct gdbarch_tdep *tdep;\n"
1258 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1260 printf " /* per-architecture data-pointers */\n"
1261 printf " unsigned nr_data;\n"
1262 printf " void **data;\n"
1264 printf " /* per-architecture swap-regions */\n"
1265 printf " struct gdbarch_swap *swap;\n"
1268 /* Multi-arch values.
1270 When extending this structure you must:
1272 Add the field below.
1274 Declare set/get functions and define the corresponding
1277 gdbarch_alloc(): If zero/NULL is not a suitable default,
1278 initialize the new field.
1280 verify_gdbarch(): Confirm that the target updated the field
1283 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1286 \`\`startup_gdbarch()'': Append an initial value to the static
1287 variable (base values on the host's c-type system).
1289 get_gdbarch(): Implement the set/get functions (probably using
1290 the macro's as shortcuts).
1295 function_list |
while do_read
1297 if class_is_variable_p
1299 printf " ${returntype} ${function};\n"
1300 elif class_is_function_p
1302 printf " gdbarch_${function}_ftype *${function};\n"
1307 # A pre-initialized vector
1311 /* The default architecture uses host values (for want of a better
1315 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1317 printf "struct gdbarch startup_gdbarch =\n"
1319 printf " 1, /* Always initialized. */\n"
1320 printf " NULL, /* The obstack. */\n"
1321 printf " /* basic architecture information */\n"
1322 function_list |
while do_read
1326 printf " ${staticdefault}, /* ${function} */\n"
1330 /* target specific vector and its dump routine */
1332 /*per-architecture data-pointers and swap regions */
1334 /* Multi-arch values */
1336 function_list |
while do_read
1338 if class_is_function_p || class_is_variable_p
1340 printf " ${staticdefault}, /* ${function} */\n"
1344 /* startup_gdbarch() */
1347 struct gdbarch *target_gdbarch = &startup_gdbarch;
1350 # Create a new gdbarch struct
1353 /* Create a new \`\`struct gdbarch'' based on information provided by
1354 \`\`struct gdbarch_info''. */
1359 gdbarch_alloc (const struct gdbarch_info *info,
1360 struct gdbarch_tdep *tdep)
1362 struct gdbarch *gdbarch;
1364 /* Create an obstack for allocating all the per-architecture memory,
1365 then use that to allocate the architecture vector. */
1366 struct obstack *obstack = XMALLOC (struct obstack);
1367 obstack_init (obstack);
1368 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1369 memset (gdbarch, 0, sizeof (*gdbarch));
1370 gdbarch->obstack = obstack;
1372 alloc_gdbarch_data (gdbarch);
1374 gdbarch->tdep = tdep;
1377 function_list |
while do_read
1381 printf " gdbarch->${function} = info->${function};\n"
1385 printf " /* Force the explicit initialization of these. */\n"
1386 function_list |
while do_read
1388 if class_is_function_p || class_is_variable_p
1390 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1392 printf " gdbarch->${function} = ${predefault};\n"
1397 /* gdbarch_alloc() */
1403 # Free a gdbarch struct.
1407 /* Allocate extra space using the per-architecture obstack. */
1410 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1412 void *data = obstack_alloc (arch->obstack, size);
1413 memset (data, 0, size);
1418 /* Free a gdbarch struct. This should never happen in normal
1419 operation --- once you've created a gdbarch, you keep it around.
1420 However, if an architecture's init function encounters an error
1421 building the structure, it may need to clean up a partially
1422 constructed gdbarch. */
1425 gdbarch_free (struct gdbarch *arch)
1427 struct obstack *obstack;
1428 gdb_assert (arch != NULL);
1429 gdb_assert (!arch->initialized_p);
1430 obstack = arch->obstack;
1431 obstack_free (obstack, 0); /* Includes the ARCH. */
1436 # verify a new architecture
1440 /* Ensure that all values in a GDBARCH are reasonable. */
1443 verify_gdbarch (struct gdbarch *gdbarch)
1445 struct ui_file *log;
1446 struct cleanup *cleanups;
1449 log = mem_fileopen ();
1450 cleanups = make_cleanup_ui_file_delete (log);
1452 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1453 fprintf_unfiltered (log, "\n\tbyte-order");
1454 if (gdbarch->bfd_arch_info == NULL)
1455 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1456 /* Check those that need to be defined for the given multi-arch level. */
1458 function_list |
while do_read
1460 if class_is_function_p || class_is_variable_p
1462 if [ "x${invalid_p}" = "x0" ]
1464 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1465 elif class_is_predicate_p
1467 printf " /* Skip verify of ${function}, has predicate */\n"
1468 # FIXME: See do_read for potential simplification
1469 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1471 printf " if (${invalid_p})\n"
1472 printf " gdbarch->${function} = ${postdefault};\n"
1473 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1475 printf " if (gdbarch->${function} == ${predefault})\n"
1476 printf " gdbarch->${function} = ${postdefault};\n"
1477 elif [ -n "${postdefault}" ]
1479 printf " if (gdbarch->${function} == 0)\n"
1480 printf " gdbarch->${function} = ${postdefault};\n"
1481 elif [ -n "${invalid_p}" ]
1483 printf " if (${invalid_p})\n"
1484 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1485 elif [ -n "${predefault}" ]
1487 printf " if (gdbarch->${function} == ${predefault})\n"
1488 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1493 buf = ui_file_xstrdup (log, &length);
1494 make_cleanup (xfree, buf);
1496 internal_error (__FILE__, __LINE__,
1497 _("verify_gdbarch: the following are invalid ...%s"),
1499 do_cleanups (cleanups);
1503 # dump the structure
1507 /* Print out the details of the current architecture. */
1510 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1512 const char *gdb_nm_file = "<not-defined>";
1513 #if defined (GDB_NM_FILE)
1514 gdb_nm_file = GDB_NM_FILE;
1516 fprintf_unfiltered (file,
1517 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1520 function_list |
sort -t: -k 3 |
while do_read
1522 # First the predicate
1523 if class_is_predicate_p
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1527 printf " gdbarch_${function}_p (gdbarch));\n"
1529 # Print the corresponding value.
1530 if class_is_function_p
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1534 printf " host_address_to_string (gdbarch->${function}));\n"
1537 case "${print}:${returntype}" in
1540 print
="core_addr_to_string_nz (gdbarch->${function})"
1544 print
="plongest (gdbarch->${function})"
1550 printf " fprintf_unfiltered (file,\n"
1551 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1552 printf " ${print});\n"
1556 if (gdbarch->dump_tdep != NULL)
1557 gdbarch->dump_tdep (gdbarch, file);
1565 struct gdbarch_tdep *
1566 gdbarch_tdep (struct gdbarch *gdbarch)
1568 if (gdbarch_debug >= 2)
1569 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1570 return gdbarch->tdep;
1574 function_list |
while do_read
1576 if class_is_predicate_p
1580 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1582 printf " gdb_assert (gdbarch != NULL);\n"
1583 printf " return ${predicate};\n"
1586 if class_is_function_p
1589 printf "${returntype}\n"
1590 if [ "x${formal}" = "xvoid" ]
1592 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1594 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1599 if class_is_predicate_p
&& test -n "${predefault}"
1601 # Allow a call to a function with a predicate.
1602 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1608 if class_is_multiarch_p
1615 if class_is_multiarch_p
1617 params
="gdbarch, ${actual}"
1622 if [ "x${returntype}" = "xvoid" ]
1624 printf " gdbarch->${function} (${params});\n"
1626 printf " return gdbarch->${function} (${params});\n"
1631 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1632 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1634 printf " gdbarch->${function} = ${function};\n"
1636 elif class_is_variable_p
1639 printf "${returntype}\n"
1640 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1642 printf " gdb_assert (gdbarch != NULL);\n"
1643 if [ "x${invalid_p}" = "x0" ]
1645 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1646 elif [ -n "${invalid_p}" ]
1648 printf " /* Check variable is valid. */\n"
1649 printf " gdb_assert (!(${invalid_p}));\n"
1650 elif [ -n "${predefault}" ]
1652 printf " /* Check variable changed from pre-default. */\n"
1653 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 printf " return gdbarch->${function};\n"
1661 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1662 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1664 printf " gdbarch->${function} = ${function};\n"
1666 elif class_is_info_p
1669 printf "${returntype}\n"
1670 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1672 printf " gdb_assert (gdbarch != NULL);\n"
1673 printf " if (gdbarch_debug >= 2)\n"
1674 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1675 printf " return gdbarch->${function};\n"
1680 # All the trailing guff
1684 /* Keep a registry of per-architecture data-pointers required by GDB
1691 gdbarch_data_pre_init_ftype *pre_init;
1692 gdbarch_data_post_init_ftype *post_init;
1695 struct gdbarch_data_registration
1697 struct gdbarch_data *data;
1698 struct gdbarch_data_registration *next;
1701 struct gdbarch_data_registry
1704 struct gdbarch_data_registration *registrations;
1707 struct gdbarch_data_registry gdbarch_data_registry =
1712 static struct gdbarch_data *
1713 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1714 gdbarch_data_post_init_ftype *post_init)
1716 struct gdbarch_data_registration **curr;
1717 /* Append the new registraration. */
1718 for (curr = &gdbarch_data_registry.registrations;
1720 curr = &(*curr)->next);
1721 (*curr) = XMALLOC (struct gdbarch_data_registration);
1722 (*curr)->next = NULL;
1723 (*curr)->data = XMALLOC (struct gdbarch_data);
1724 (*curr)->data->index = gdbarch_data_registry.nr++;
1725 (*curr)->data->pre_init = pre_init;
1726 (*curr)->data->post_init = post_init;
1727 (*curr)->data->init_p = 1;
1728 return (*curr)->data;
1731 struct gdbarch_data *
1732 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1734 return gdbarch_data_register (pre_init, NULL);
1737 struct gdbarch_data *
1738 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1740 return gdbarch_data_register (NULL, post_init);
1743 /* Create/delete the gdbarch data vector. */
1746 alloc_gdbarch_data (struct gdbarch *gdbarch)
1748 gdb_assert (gdbarch->data == NULL);
1749 gdbarch->nr_data = gdbarch_data_registry.nr;
1750 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1753 /* Initialize the current value of the specified per-architecture
1757 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1758 struct gdbarch_data *data,
1761 gdb_assert (data->index < gdbarch->nr_data);
1762 gdb_assert (gdbarch->data[data->index] == NULL);
1763 gdb_assert (data->pre_init == NULL);
1764 gdbarch->data[data->index] = pointer;
1767 /* Return the current value of the specified per-architecture
1771 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1773 gdb_assert (data->index < gdbarch->nr_data);
1774 if (gdbarch->data[data->index] == NULL)
1776 /* The data-pointer isn't initialized, call init() to get a
1778 if (data->pre_init != NULL)
1779 /* Mid architecture creation: pass just the obstack, and not
1780 the entire architecture, as that way it isn't possible for
1781 pre-init code to refer to undefined architecture
1783 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1784 else if (gdbarch->initialized_p
1785 && data->post_init != NULL)
1786 /* Post architecture creation: pass the entire architecture
1787 (as all fields are valid), but be careful to also detect
1788 recursive references. */
1790 gdb_assert (data->init_p);
1792 gdbarch->data[data->index] = data->post_init (gdbarch);
1796 /* The architecture initialization hasn't completed - punt -
1797 hope that the caller knows what they are doing. Once
1798 deprecated_set_gdbarch_data has been initialized, this can be
1799 changed to an internal error. */
1801 gdb_assert (gdbarch->data[data->index] != NULL);
1803 return gdbarch->data[data->index];
1807 /* Keep a registry of the architectures known by GDB. */
1809 struct gdbarch_registration
1811 enum bfd_architecture bfd_architecture;
1812 gdbarch_init_ftype *init;
1813 gdbarch_dump_tdep_ftype *dump_tdep;
1814 struct gdbarch_list *arches;
1815 struct gdbarch_registration *next;
1818 static struct gdbarch_registration *gdbarch_registry = NULL;
1821 append_name (const char ***buf, int *nr, const char *name)
1823 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1829 gdbarch_printable_names (void)
1831 /* Accumulate a list of names based on the registed list of
1833 enum bfd_architecture a;
1835 const char **arches = NULL;
1836 struct gdbarch_registration *rego;
1837 for (rego = gdbarch_registry;
1841 const struct bfd_arch_info *ap;
1842 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1844 internal_error (__FILE__, __LINE__,
1845 _("gdbarch_architecture_names: multi-arch unknown"));
1848 append_name (&arches, &nr_arches, ap->printable_name);
1853 append_name (&arches, &nr_arches, NULL);
1859 gdbarch_register (enum bfd_architecture bfd_architecture,
1860 gdbarch_init_ftype *init,
1861 gdbarch_dump_tdep_ftype *dump_tdep)
1863 struct gdbarch_registration **curr;
1864 const struct bfd_arch_info *bfd_arch_info;
1865 /* Check that BFD recognizes this architecture */
1866 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1867 if (bfd_arch_info == NULL)
1869 internal_error (__FILE__, __LINE__,
1870 _("gdbarch: Attempt to register unknown architecture (%d)"),
1873 /* Check that we haven't seen this architecture before */
1874 for (curr = &gdbarch_registry;
1876 curr = &(*curr)->next)
1878 if (bfd_architecture == (*curr)->bfd_architecture)
1879 internal_error (__FILE__, __LINE__,
1880 _("gdbarch: Duplicate registraration of architecture (%s)"),
1881 bfd_arch_info->printable_name);
1885 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1886 bfd_arch_info->printable_name,
1887 host_address_to_string (init));
1889 (*curr) = XMALLOC (struct gdbarch_registration);
1890 (*curr)->bfd_architecture = bfd_architecture;
1891 (*curr)->init = init;
1892 (*curr)->dump_tdep = dump_tdep;
1893 (*curr)->arches = NULL;
1894 (*curr)->next = NULL;
1898 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1899 gdbarch_init_ftype *init)
1901 gdbarch_register (bfd_architecture, init, NULL);
1905 /* Look for an architecture using gdbarch_info. */
1907 struct gdbarch_list *
1908 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1909 const struct gdbarch_info *info)
1911 for (; arches != NULL; arches = arches->next)
1913 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1915 if (info->byte_order != arches->gdbarch->byte_order)
1917 if (info->osabi != arches->gdbarch->osabi)
1919 if (info->target_desc != arches->gdbarch->target_desc)
1927 /* Find an architecture that matches the specified INFO. Create a new
1928 architecture if needed. Return that new architecture. */
1931 gdbarch_find_by_info (struct gdbarch_info info)
1933 struct gdbarch *new_gdbarch;
1934 struct gdbarch_registration *rego;
1936 /* Fill in missing parts of the INFO struct using a number of
1937 sources: "set ..."; INFOabfd supplied; and the global
1939 gdbarch_info_fill (&info);
1941 /* Must have found some sort of architecture. */
1942 gdb_assert (info.bfd_arch_info != NULL);
1946 fprintf_unfiltered (gdb_stdlog,
1947 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1948 (info.bfd_arch_info != NULL
1949 ? info.bfd_arch_info->printable_name
1951 fprintf_unfiltered (gdb_stdlog,
1952 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1954 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1955 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1957 fprintf_unfiltered (gdb_stdlog,
1958 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1959 info.osabi, gdbarch_osabi_name (info.osabi));
1960 fprintf_unfiltered (gdb_stdlog,
1961 "gdbarch_find_by_info: info.abfd %s\n",
1962 host_address_to_string (info.abfd));
1963 fprintf_unfiltered (gdb_stdlog,
1964 "gdbarch_find_by_info: info.tdep_info %s\n",
1965 host_address_to_string (info.tdep_info));
1968 /* Find the tdep code that knows about this architecture. */
1969 for (rego = gdbarch_registry;
1972 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1977 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1978 "No matching architecture\n");
1982 /* Ask the tdep code for an architecture that matches "info". */
1983 new_gdbarch = rego->init (info, rego->arches);
1985 /* Did the tdep code like it? No. Reject the change and revert to
1986 the old architecture. */
1987 if (new_gdbarch == NULL)
1990 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1991 "Target rejected architecture\n");
1995 /* Is this a pre-existing architecture (as determined by already
1996 being initialized)? Move it to the front of the architecture
1997 list (keeping the list sorted Most Recently Used). */
1998 if (new_gdbarch->initialized_p)
2000 struct gdbarch_list **list;
2001 struct gdbarch_list *this;
2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2004 "Previous architecture %s (%s) selected\n",
2005 host_address_to_string (new_gdbarch),
2006 new_gdbarch->bfd_arch_info->printable_name);
2007 /* Find the existing arch in the list. */
2008 for (list = ®o->arches;
2009 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2010 list = &(*list)->next);
2011 /* It had better be in the list of architectures. */
2012 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2015 (*list) = this->next;
2016 /* Insert THIS at the front. */
2017 this->next = rego->arches;
2018 rego->arches = this;
2023 /* It's a new architecture. */
2025 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2026 "New architecture %s (%s) selected\n",
2027 host_address_to_string (new_gdbarch),
2028 new_gdbarch->bfd_arch_info->printable_name);
2030 /* Insert the new architecture into the front of the architecture
2031 list (keep the list sorted Most Recently Used). */
2033 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2034 this->next = rego->arches;
2035 this->gdbarch = new_gdbarch;
2036 rego->arches = this;
2039 /* Check that the newly installed architecture is valid. Plug in
2040 any post init values. */
2041 new_gdbarch->dump_tdep = rego->dump_tdep;
2042 verify_gdbarch (new_gdbarch);
2043 new_gdbarch->initialized_p = 1;
2046 gdbarch_dump (new_gdbarch, gdb_stdlog);
2051 /* Make the specified architecture current. */
2054 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2056 gdb_assert (new_gdbarch != NULL);
2057 gdb_assert (new_gdbarch->initialized_p);
2058 target_gdbarch = new_gdbarch;
2059 observer_notify_architecture_changed (new_gdbarch);
2060 registers_changed ();
2063 extern void _initialize_gdbarch (void);
2066 _initialize_gdbarch (void)
2068 struct cmd_list_element *c;
2070 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2071 Set architecture debugging."), _("\\
2072 Show architecture debugging."), _("\\
2073 When non-zero, architecture debugging is enabled."),
2076 &setdebuglist, &showdebuglist);
2082 #../move-if-change new-gdbarch.c gdbarch.c
2083 compare_new gdbarch.c