76794b62a5349c74e15e28ae15fde03b3d47e73a
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
679
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
687
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
690
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
693 # set this to one.
694 v:int:vtable_function_descriptors:::0:0::0
695
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
699
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
702
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
705
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
708 #
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
712 #
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
717 #
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
720 #
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
724 #
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
727 #
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
730 # here.
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
739 #
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
747 #
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
750 #
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
753 #
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
757 #
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
763 #
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
766 #
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
769 #
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
777 # time.
778 #
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
798
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
800
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
805
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
815
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
824
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
834 # Extra signal info inspection.
835 #
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
838
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
841
842 # Function for the 'catch syscall' feature.
843
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
847 # SystemTap related fields and functions.
848
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
852 #
853 # \$10 ;; integer constant 10
854 #
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
857
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
861
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
865 #
866 # \%eax ;; register eax
867 #
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
874
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
878 #
879 # \(\%eax\) ;; indirecting eax
880 #
881 # in this case, this prefix would be the charater \`\(\'.
882 #
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
886
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
890 #
891 # \(\%eax\) ;; indirecting eax
892 #
893 # in this case, this prefix would be the charater \`\)\'.
894 #
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
898
899 # Prefix(es) used to name a register using GDB's nomenclature.
900 #
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
906
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
909
910 # Check if S is a single operand.
911 #
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917 #
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
923
924 # Function used to handle a "special case" in the parser.
925 #
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
929 #
930 # [R0, #4] ;; displacing R0 by 4
931 #
932 # Since the parser assumes that a register displacement is of the form:
933 #
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
935 #
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
938 #
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
952 # addresses.
953 v:int:has_global_solist:::0:0::0
954
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
960
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
963
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
966
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
971
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
974 #
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
979
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
984
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
992 # Implement the "info proc" command.
993 M:void:info_proc:char *args, enum info_proc_what what:args, what
994
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
999
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1002 #
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1006 # returns nonzero.
1007 #
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1009 # the callback.
1010 #
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1017
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1026 EOF
1027 }
1028
1029 #
1030 # The .log file
1031 #
1032 exec > new-gdbarch.log
1033 function_list | while do_read
1034 do
1035 cat <<EOF
1036 ${class} ${returntype} ${function} ($formal)
1037 EOF
1038 for r in ${read}
1039 do
1040 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1041 done
1042 if class_is_predicate_p && fallback_default_p
1043 then
1044 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1045 kill $$
1046 exit 1
1047 fi
1048 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1049 then
1050 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1051 kill $$
1052 exit 1
1053 fi
1054 if class_is_multiarch_p
1055 then
1056 if class_is_predicate_p ; then :
1057 elif test "x${predefault}" = "x"
1058 then
1059 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1060 kill $$
1061 exit 1
1062 fi
1063 fi
1064 echo ""
1065 done
1066
1067 exec 1>&2
1068 compare_new gdbarch.log
1069
1070
1071 copyright ()
1072 {
1073 cat <<EOF
1074 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1075 /* vi:set ro: */
1076
1077 /* Dynamic architecture support for GDB, the GNU debugger.
1078
1079 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1080
1081 This file is part of GDB.
1082
1083 This program is free software; you can redistribute it and/or modify
1084 it under the terms of the GNU General Public License as published by
1085 the Free Software Foundation; either version 3 of the License, or
1086 (at your option) any later version.
1087
1088 This program is distributed in the hope that it will be useful,
1089 but WITHOUT ANY WARRANTY; without even the implied warranty of
1090 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1091 GNU General Public License for more details.
1092
1093 You should have received a copy of the GNU General Public License
1094 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1095
1096 /* This file was created with the aid of \`\`gdbarch.sh''.
1097
1098 The Bourne shell script \`\`gdbarch.sh'' creates the files
1099 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1100 against the existing \`\`gdbarch.[hc]''. Any differences found
1101 being reported.
1102
1103 If editing this file, please also run gdbarch.sh and merge any
1104 changes into that script. Conversely, when making sweeping changes
1105 to this file, modifying gdbarch.sh and using its output may prove
1106 easier. */
1107
1108 EOF
1109 }
1110
1111 #
1112 # The .h file
1113 #
1114
1115 exec > new-gdbarch.h
1116 copyright
1117 cat <<EOF
1118 #ifndef GDBARCH_H
1119 #define GDBARCH_H
1120
1121 struct floatformat;
1122 struct ui_file;
1123 struct frame_info;
1124 struct value;
1125 struct objfile;
1126 struct obj_section;
1127 struct minimal_symbol;
1128 struct regcache;
1129 struct reggroup;
1130 struct regset;
1131 struct disassemble_info;
1132 struct target_ops;
1133 struct obstack;
1134 struct bp_target_info;
1135 struct target_desc;
1136 struct displaced_step_closure;
1137 struct core_regset_section;
1138 struct syscall;
1139 struct agent_expr;
1140 struct axs_value;
1141 struct stap_parse_info;
1142 struct ravenscar_arch_ops;
1143 struct elf_internal_linux_prpsinfo;
1144
1145 /* The architecture associated with the inferior through the
1146 connection to the target.
1147
1148 The architecture vector provides some information that is really a
1149 property of the inferior, accessed through a particular target:
1150 ptrace operations; the layout of certain RSP packets; the solib_ops
1151 vector; etc. To differentiate architecture accesses to
1152 per-inferior/target properties from
1153 per-thread/per-frame/per-objfile properties, accesses to
1154 per-inferior/target properties should be made through this
1155 gdbarch. */
1156
1157 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1158 extern struct gdbarch *target_gdbarch (void);
1159
1160 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1161 gdbarch method. */
1162
1163 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1164 (struct objfile *objfile, void *cb_data);
1165 EOF
1166
1167 # function typedef's
1168 printf "\n"
1169 printf "\n"
1170 printf "/* The following are pre-initialized by GDBARCH. */\n"
1171 function_list | while do_read
1172 do
1173 if class_is_info_p
1174 then
1175 printf "\n"
1176 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1177 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1178 fi
1179 done
1180
1181 # function typedef's
1182 printf "\n"
1183 printf "\n"
1184 printf "/* The following are initialized by the target dependent code. */\n"
1185 function_list | while do_read
1186 do
1187 if [ -n "${comment}" ]
1188 then
1189 echo "${comment}" | sed \
1190 -e '2 s,#,/*,' \
1191 -e '3,$ s,#, ,' \
1192 -e '$ s,$, */,'
1193 fi
1194
1195 if class_is_predicate_p
1196 then
1197 printf "\n"
1198 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1199 fi
1200 if class_is_variable_p
1201 then
1202 printf "\n"
1203 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1204 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1205 fi
1206 if class_is_function_p
1207 then
1208 printf "\n"
1209 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1210 then
1211 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1212 elif class_is_multiarch_p
1213 then
1214 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1215 else
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1217 fi
1218 if [ "x${formal}" = "xvoid" ]
1219 then
1220 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1221 else
1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1223 fi
1224 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1225 fi
1226 done
1227
1228 # close it off
1229 cat <<EOF
1230
1231 /* Definition for an unknown syscall, used basically in error-cases. */
1232 #define UNKNOWN_SYSCALL (-1)
1233
1234 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1235
1236
1237 /* Mechanism for co-ordinating the selection of a specific
1238 architecture.
1239
1240 GDB targets (*-tdep.c) can register an interest in a specific
1241 architecture. Other GDB components can register a need to maintain
1242 per-architecture data.
1243
1244 The mechanisms below ensures that there is only a loose connection
1245 between the set-architecture command and the various GDB
1246 components. Each component can independently register their need
1247 to maintain architecture specific data with gdbarch.
1248
1249 Pragmatics:
1250
1251 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1252 didn't scale.
1253
1254 The more traditional mega-struct containing architecture specific
1255 data for all the various GDB components was also considered. Since
1256 GDB is built from a variable number of (fairly independent)
1257 components it was determined that the global aproach was not
1258 applicable. */
1259
1260
1261 /* Register a new architectural family with GDB.
1262
1263 Register support for the specified ARCHITECTURE with GDB. When
1264 gdbarch determines that the specified architecture has been
1265 selected, the corresponding INIT function is called.
1266
1267 --
1268
1269 The INIT function takes two parameters: INFO which contains the
1270 information available to gdbarch about the (possibly new)
1271 architecture; ARCHES which is a list of the previously created
1272 \`\`struct gdbarch'' for this architecture.
1273
1274 The INFO parameter is, as far as possible, be pre-initialized with
1275 information obtained from INFO.ABFD or the global defaults.
1276
1277 The ARCHES parameter is a linked list (sorted most recently used)
1278 of all the previously created architures for this architecture
1279 family. The (possibly NULL) ARCHES->gdbarch can used to access
1280 values from the previously selected architecture for this
1281 architecture family.
1282
1283 The INIT function shall return any of: NULL - indicating that it
1284 doesn't recognize the selected architecture; an existing \`\`struct
1285 gdbarch'' from the ARCHES list - indicating that the new
1286 architecture is just a synonym for an earlier architecture (see
1287 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1288 - that describes the selected architecture (see gdbarch_alloc()).
1289
1290 The DUMP_TDEP function shall print out all target specific values.
1291 Care should be taken to ensure that the function works in both the
1292 multi-arch and non- multi-arch cases. */
1293
1294 struct gdbarch_list
1295 {
1296 struct gdbarch *gdbarch;
1297 struct gdbarch_list *next;
1298 };
1299
1300 struct gdbarch_info
1301 {
1302 /* Use default: NULL (ZERO). */
1303 const struct bfd_arch_info *bfd_arch_info;
1304
1305 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1306 enum bfd_endian byte_order;
1307
1308 enum bfd_endian byte_order_for_code;
1309
1310 /* Use default: NULL (ZERO). */
1311 bfd *abfd;
1312
1313 /* Use default: NULL (ZERO). */
1314 struct gdbarch_tdep_info *tdep_info;
1315
1316 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1317 enum gdb_osabi osabi;
1318
1319 /* Use default: NULL (ZERO). */
1320 const struct target_desc *target_desc;
1321 };
1322
1323 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1324 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1325
1326 /* DEPRECATED - use gdbarch_register() */
1327 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1328
1329 extern void gdbarch_register (enum bfd_architecture architecture,
1330 gdbarch_init_ftype *,
1331 gdbarch_dump_tdep_ftype *);
1332
1333
1334 /* Return a freshly allocated, NULL terminated, array of the valid
1335 architecture names. Since architectures are registered during the
1336 _initialize phase this function only returns useful information
1337 once initialization has been completed. */
1338
1339 extern const char **gdbarch_printable_names (void);
1340
1341
1342 /* Helper function. Search the list of ARCHES for a GDBARCH that
1343 matches the information provided by INFO. */
1344
1345 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1346
1347
1348 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1349 basic initialization using values obtained from the INFO and TDEP
1350 parameters. set_gdbarch_*() functions are called to complete the
1351 initialization of the object. */
1352
1353 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1354
1355
1356 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1357 It is assumed that the caller freeds the \`\`struct
1358 gdbarch_tdep''. */
1359
1360 extern void gdbarch_free (struct gdbarch *);
1361
1362
1363 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1364 obstack. The memory is freed when the corresponding architecture
1365 is also freed. */
1366
1367 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1368 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1369 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1370
1371
1372 /* Helper function. Force an update of the current architecture.
1373
1374 The actual architecture selected is determined by INFO, \`\`(gdb) set
1375 architecture'' et.al., the existing architecture and BFD's default
1376 architecture. INFO should be initialized to zero and then selected
1377 fields should be updated.
1378
1379 Returns non-zero if the update succeeds. */
1380
1381 extern int gdbarch_update_p (struct gdbarch_info info);
1382
1383
1384 /* Helper function. Find an architecture matching info.
1385
1386 INFO should be initialized using gdbarch_info_init, relevant fields
1387 set, and then finished using gdbarch_info_fill.
1388
1389 Returns the corresponding architecture, or NULL if no matching
1390 architecture was found. */
1391
1392 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1393
1394
1395 /* Helper function. Set the target gdbarch to "gdbarch". */
1396
1397 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1398
1399
1400 /* Register per-architecture data-pointer.
1401
1402 Reserve space for a per-architecture data-pointer. An identifier
1403 for the reserved data-pointer is returned. That identifer should
1404 be saved in a local static variable.
1405
1406 Memory for the per-architecture data shall be allocated using
1407 gdbarch_obstack_zalloc. That memory will be deleted when the
1408 corresponding architecture object is deleted.
1409
1410 When a previously created architecture is re-selected, the
1411 per-architecture data-pointer for that previous architecture is
1412 restored. INIT() is not re-called.
1413
1414 Multiple registrarants for any architecture are allowed (and
1415 strongly encouraged). */
1416
1417 struct gdbarch_data;
1418
1419 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1420 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1421 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1422 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1423 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1424 struct gdbarch_data *data,
1425 void *pointer);
1426
1427 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1428
1429
1430 /* Set the dynamic target-system-dependent parameters (architecture,
1431 byte-order, ...) using information found in the BFD. */
1432
1433 extern void set_gdbarch_from_file (bfd *);
1434
1435
1436 /* Initialize the current architecture to the "first" one we find on
1437 our list. */
1438
1439 extern void initialize_current_architecture (void);
1440
1441 /* gdbarch trace variable */
1442 extern unsigned int gdbarch_debug;
1443
1444 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1445
1446 #endif
1447 EOF
1448 exec 1>&2
1449 #../move-if-change new-gdbarch.h gdbarch.h
1450 compare_new gdbarch.h
1451
1452
1453 #
1454 # C file
1455 #
1456
1457 exec > new-gdbarch.c
1458 copyright
1459 cat <<EOF
1460
1461 #include "defs.h"
1462 #include "arch-utils.h"
1463
1464 #include "gdbcmd.h"
1465 #include "inferior.h"
1466 #include "symcat.h"
1467
1468 #include "floatformat.h"
1469
1470 #include "gdb_assert.h"
1471 #include <string.h>
1472 #include "reggroups.h"
1473 #include "osabi.h"
1474 #include "gdb_obstack.h"
1475 #include "observer.h"
1476 #include "regcache.h"
1477 #include "objfiles.h"
1478
1479 /* Static function declarations */
1480
1481 static void alloc_gdbarch_data (struct gdbarch *);
1482
1483 /* Non-zero if we want to trace architecture code. */
1484
1485 #ifndef GDBARCH_DEBUG
1486 #define GDBARCH_DEBUG 0
1487 #endif
1488 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1489 static void
1490 show_gdbarch_debug (struct ui_file *file, int from_tty,
1491 struct cmd_list_element *c, const char *value)
1492 {
1493 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1494 }
1495
1496 static const char *
1497 pformat (const struct floatformat **format)
1498 {
1499 if (format == NULL)
1500 return "(null)";
1501 else
1502 /* Just print out one of them - this is only for diagnostics. */
1503 return format[0]->name;
1504 }
1505
1506 static const char *
1507 pstring (const char *string)
1508 {
1509 if (string == NULL)
1510 return "(null)";
1511 return string;
1512 }
1513
1514 /* Helper function to print a list of strings, represented as "const
1515 char *const *". The list is printed comma-separated. */
1516
1517 static char *
1518 pstring_list (const char *const *list)
1519 {
1520 static char ret[100];
1521 const char *const *p;
1522 size_t offset = 0;
1523
1524 if (list == NULL)
1525 return "(null)";
1526
1527 ret[0] = '\0';
1528 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1529 {
1530 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1531 offset += 2 + s;
1532 }
1533
1534 if (offset > 0)
1535 {
1536 gdb_assert (offset - 2 < sizeof (ret));
1537 ret[offset - 2] = '\0';
1538 }
1539
1540 return ret;
1541 }
1542
1543 EOF
1544
1545 # gdbarch open the gdbarch object
1546 printf "\n"
1547 printf "/* Maintain the struct gdbarch object. */\n"
1548 printf "\n"
1549 printf "struct gdbarch\n"
1550 printf "{\n"
1551 printf " /* Has this architecture been fully initialized? */\n"
1552 printf " int initialized_p;\n"
1553 printf "\n"
1554 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1555 printf " struct obstack *obstack;\n"
1556 printf "\n"
1557 printf " /* basic architectural information. */\n"
1558 function_list | while do_read
1559 do
1560 if class_is_info_p
1561 then
1562 printf " ${returntype} ${function};\n"
1563 fi
1564 done
1565 printf "\n"
1566 printf " /* target specific vector. */\n"
1567 printf " struct gdbarch_tdep *tdep;\n"
1568 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1569 printf "\n"
1570 printf " /* per-architecture data-pointers. */\n"
1571 printf " unsigned nr_data;\n"
1572 printf " void **data;\n"
1573 printf "\n"
1574 cat <<EOF
1575 /* Multi-arch values.
1576
1577 When extending this structure you must:
1578
1579 Add the field below.
1580
1581 Declare set/get functions and define the corresponding
1582 macro in gdbarch.h.
1583
1584 gdbarch_alloc(): If zero/NULL is not a suitable default,
1585 initialize the new field.
1586
1587 verify_gdbarch(): Confirm that the target updated the field
1588 correctly.
1589
1590 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1591 field is dumped out
1592
1593 get_gdbarch(): Implement the set/get functions (probably using
1594 the macro's as shortcuts).
1595
1596 */
1597
1598 EOF
1599 function_list | while do_read
1600 do
1601 if class_is_variable_p
1602 then
1603 printf " ${returntype} ${function};\n"
1604 elif class_is_function_p
1605 then
1606 printf " gdbarch_${function}_ftype *${function};\n"
1607 fi
1608 done
1609 printf "};\n"
1610
1611 # Create a new gdbarch struct
1612 cat <<EOF
1613
1614 /* Create a new \`\`struct gdbarch'' based on information provided by
1615 \`\`struct gdbarch_info''. */
1616 EOF
1617 printf "\n"
1618 cat <<EOF
1619 struct gdbarch *
1620 gdbarch_alloc (const struct gdbarch_info *info,
1621 struct gdbarch_tdep *tdep)
1622 {
1623 struct gdbarch *gdbarch;
1624
1625 /* Create an obstack for allocating all the per-architecture memory,
1626 then use that to allocate the architecture vector. */
1627 struct obstack *obstack = XNEW (struct obstack);
1628 obstack_init (obstack);
1629 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1630 memset (gdbarch, 0, sizeof (*gdbarch));
1631 gdbarch->obstack = obstack;
1632
1633 alloc_gdbarch_data (gdbarch);
1634
1635 gdbarch->tdep = tdep;
1636 EOF
1637 printf "\n"
1638 function_list | while do_read
1639 do
1640 if class_is_info_p
1641 then
1642 printf " gdbarch->${function} = info->${function};\n"
1643 fi
1644 done
1645 printf "\n"
1646 printf " /* Force the explicit initialization of these. */\n"
1647 function_list | while do_read
1648 do
1649 if class_is_function_p || class_is_variable_p
1650 then
1651 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1652 then
1653 printf " gdbarch->${function} = ${predefault};\n"
1654 fi
1655 fi
1656 done
1657 cat <<EOF
1658 /* gdbarch_alloc() */
1659
1660 return gdbarch;
1661 }
1662 EOF
1663
1664 # Free a gdbarch struct.
1665 printf "\n"
1666 printf "\n"
1667 cat <<EOF
1668 /* Allocate extra space using the per-architecture obstack. */
1669
1670 void *
1671 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1672 {
1673 void *data = obstack_alloc (arch->obstack, size);
1674
1675 memset (data, 0, size);
1676 return data;
1677 }
1678
1679
1680 /* Free a gdbarch struct. This should never happen in normal
1681 operation --- once you've created a gdbarch, you keep it around.
1682 However, if an architecture's init function encounters an error
1683 building the structure, it may need to clean up a partially
1684 constructed gdbarch. */
1685
1686 void
1687 gdbarch_free (struct gdbarch *arch)
1688 {
1689 struct obstack *obstack;
1690
1691 gdb_assert (arch != NULL);
1692 gdb_assert (!arch->initialized_p);
1693 obstack = arch->obstack;
1694 obstack_free (obstack, 0); /* Includes the ARCH. */
1695 xfree (obstack);
1696 }
1697 EOF
1698
1699 # verify a new architecture
1700 cat <<EOF
1701
1702
1703 /* Ensure that all values in a GDBARCH are reasonable. */
1704
1705 static void
1706 verify_gdbarch (struct gdbarch *gdbarch)
1707 {
1708 struct ui_file *log;
1709 struct cleanup *cleanups;
1710 long length;
1711 char *buf;
1712
1713 log = mem_fileopen ();
1714 cleanups = make_cleanup_ui_file_delete (log);
1715 /* fundamental */
1716 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1717 fprintf_unfiltered (log, "\n\tbyte-order");
1718 if (gdbarch->bfd_arch_info == NULL)
1719 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1720 /* Check those that need to be defined for the given multi-arch level. */
1721 EOF
1722 function_list | while do_read
1723 do
1724 if class_is_function_p || class_is_variable_p
1725 then
1726 if [ "x${invalid_p}" = "x0" ]
1727 then
1728 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1729 elif class_is_predicate_p
1730 then
1731 printf " /* Skip verify of ${function}, has predicate. */\n"
1732 # FIXME: See do_read for potential simplification
1733 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1734 then
1735 printf " if (${invalid_p})\n"
1736 printf " gdbarch->${function} = ${postdefault};\n"
1737 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1738 then
1739 printf " if (gdbarch->${function} == ${predefault})\n"
1740 printf " gdbarch->${function} = ${postdefault};\n"
1741 elif [ -n "${postdefault}" ]
1742 then
1743 printf " if (gdbarch->${function} == 0)\n"
1744 printf " gdbarch->${function} = ${postdefault};\n"
1745 elif [ -n "${invalid_p}" ]
1746 then
1747 printf " if (${invalid_p})\n"
1748 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1749 elif [ -n "${predefault}" ]
1750 then
1751 printf " if (gdbarch->${function} == ${predefault})\n"
1752 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1753 fi
1754 fi
1755 done
1756 cat <<EOF
1757 buf = ui_file_xstrdup (log, &length);
1758 make_cleanup (xfree, buf);
1759 if (length > 0)
1760 internal_error (__FILE__, __LINE__,
1761 _("verify_gdbarch: the following are invalid ...%s"),
1762 buf);
1763 do_cleanups (cleanups);
1764 }
1765 EOF
1766
1767 # dump the structure
1768 printf "\n"
1769 printf "\n"
1770 cat <<EOF
1771 /* Print out the details of the current architecture. */
1772
1773 void
1774 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1775 {
1776 const char *gdb_nm_file = "<not-defined>";
1777
1778 #if defined (GDB_NM_FILE)
1779 gdb_nm_file = GDB_NM_FILE;
1780 #endif
1781 fprintf_unfiltered (file,
1782 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1783 gdb_nm_file);
1784 EOF
1785 function_list | sort -t: -k 3 | while do_read
1786 do
1787 # First the predicate
1788 if class_is_predicate_p
1789 then
1790 printf " fprintf_unfiltered (file,\n"
1791 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1792 printf " gdbarch_${function}_p (gdbarch));\n"
1793 fi
1794 # Print the corresponding value.
1795 if class_is_function_p
1796 then
1797 printf " fprintf_unfiltered (file,\n"
1798 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1799 printf " host_address_to_string (gdbarch->${function}));\n"
1800 else
1801 # It is a variable
1802 case "${print}:${returntype}" in
1803 :CORE_ADDR )
1804 fmt="%s"
1805 print="core_addr_to_string_nz (gdbarch->${function})"
1806 ;;
1807 :* )
1808 fmt="%s"
1809 print="plongest (gdbarch->${function})"
1810 ;;
1811 * )
1812 fmt="%s"
1813 ;;
1814 esac
1815 printf " fprintf_unfiltered (file,\n"
1816 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1817 printf " ${print});\n"
1818 fi
1819 done
1820 cat <<EOF
1821 if (gdbarch->dump_tdep != NULL)
1822 gdbarch->dump_tdep (gdbarch, file);
1823 }
1824 EOF
1825
1826
1827 # GET/SET
1828 printf "\n"
1829 cat <<EOF
1830 struct gdbarch_tdep *
1831 gdbarch_tdep (struct gdbarch *gdbarch)
1832 {
1833 if (gdbarch_debug >= 2)
1834 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1835 return gdbarch->tdep;
1836 }
1837 EOF
1838 printf "\n"
1839 function_list | while do_read
1840 do
1841 if class_is_predicate_p
1842 then
1843 printf "\n"
1844 printf "int\n"
1845 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1846 printf "{\n"
1847 printf " gdb_assert (gdbarch != NULL);\n"
1848 printf " return ${predicate};\n"
1849 printf "}\n"
1850 fi
1851 if class_is_function_p
1852 then
1853 printf "\n"
1854 printf "${returntype}\n"
1855 if [ "x${formal}" = "xvoid" ]
1856 then
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1858 else
1859 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1860 fi
1861 printf "{\n"
1862 printf " gdb_assert (gdbarch != NULL);\n"
1863 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1864 if class_is_predicate_p && test -n "${predefault}"
1865 then
1866 # Allow a call to a function with a predicate.
1867 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1868 fi
1869 printf " if (gdbarch_debug >= 2)\n"
1870 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1871 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1872 then
1873 if class_is_multiarch_p
1874 then
1875 params="gdbarch"
1876 else
1877 params=""
1878 fi
1879 else
1880 if class_is_multiarch_p
1881 then
1882 params="gdbarch, ${actual}"
1883 else
1884 params="${actual}"
1885 fi
1886 fi
1887 if [ "x${returntype}" = "xvoid" ]
1888 then
1889 printf " gdbarch->${function} (${params});\n"
1890 else
1891 printf " return gdbarch->${function} (${params});\n"
1892 fi
1893 printf "}\n"
1894 printf "\n"
1895 printf "void\n"
1896 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1897 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1898 printf "{\n"
1899 printf " gdbarch->${function} = ${function};\n"
1900 printf "}\n"
1901 elif class_is_variable_p
1902 then
1903 printf "\n"
1904 printf "${returntype}\n"
1905 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1906 printf "{\n"
1907 printf " gdb_assert (gdbarch != NULL);\n"
1908 if [ "x${invalid_p}" = "x0" ]
1909 then
1910 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1911 elif [ -n "${invalid_p}" ]
1912 then
1913 printf " /* Check variable is valid. */\n"
1914 printf " gdb_assert (!(${invalid_p}));\n"
1915 elif [ -n "${predefault}" ]
1916 then
1917 printf " /* Check variable changed from pre-default. */\n"
1918 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1919 fi
1920 printf " if (gdbarch_debug >= 2)\n"
1921 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1922 printf " return gdbarch->${function};\n"
1923 printf "}\n"
1924 printf "\n"
1925 printf "void\n"
1926 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1927 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1928 printf "{\n"
1929 printf " gdbarch->${function} = ${function};\n"
1930 printf "}\n"
1931 elif class_is_info_p
1932 then
1933 printf "\n"
1934 printf "${returntype}\n"
1935 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1936 printf "{\n"
1937 printf " gdb_assert (gdbarch != NULL);\n"
1938 printf " if (gdbarch_debug >= 2)\n"
1939 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1940 printf " return gdbarch->${function};\n"
1941 printf "}\n"
1942 fi
1943 done
1944
1945 # All the trailing guff
1946 cat <<EOF
1947
1948
1949 /* Keep a registry of per-architecture data-pointers required by GDB
1950 modules. */
1951
1952 struct gdbarch_data
1953 {
1954 unsigned index;
1955 int init_p;
1956 gdbarch_data_pre_init_ftype *pre_init;
1957 gdbarch_data_post_init_ftype *post_init;
1958 };
1959
1960 struct gdbarch_data_registration
1961 {
1962 struct gdbarch_data *data;
1963 struct gdbarch_data_registration *next;
1964 };
1965
1966 struct gdbarch_data_registry
1967 {
1968 unsigned nr;
1969 struct gdbarch_data_registration *registrations;
1970 };
1971
1972 struct gdbarch_data_registry gdbarch_data_registry =
1973 {
1974 0, NULL,
1975 };
1976
1977 static struct gdbarch_data *
1978 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1979 gdbarch_data_post_init_ftype *post_init)
1980 {
1981 struct gdbarch_data_registration **curr;
1982
1983 /* Append the new registration. */
1984 for (curr = &gdbarch_data_registry.registrations;
1985 (*curr) != NULL;
1986 curr = &(*curr)->next);
1987 (*curr) = XNEW (struct gdbarch_data_registration);
1988 (*curr)->next = NULL;
1989 (*curr)->data = XNEW (struct gdbarch_data);
1990 (*curr)->data->index = gdbarch_data_registry.nr++;
1991 (*curr)->data->pre_init = pre_init;
1992 (*curr)->data->post_init = post_init;
1993 (*curr)->data->init_p = 1;
1994 return (*curr)->data;
1995 }
1996
1997 struct gdbarch_data *
1998 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1999 {
2000 return gdbarch_data_register (pre_init, NULL);
2001 }
2002
2003 struct gdbarch_data *
2004 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2005 {
2006 return gdbarch_data_register (NULL, post_init);
2007 }
2008
2009 /* Create/delete the gdbarch data vector. */
2010
2011 static void
2012 alloc_gdbarch_data (struct gdbarch *gdbarch)
2013 {
2014 gdb_assert (gdbarch->data == NULL);
2015 gdbarch->nr_data = gdbarch_data_registry.nr;
2016 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2017 }
2018
2019 /* Initialize the current value of the specified per-architecture
2020 data-pointer. */
2021
2022 void
2023 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2024 struct gdbarch_data *data,
2025 void *pointer)
2026 {
2027 gdb_assert (data->index < gdbarch->nr_data);
2028 gdb_assert (gdbarch->data[data->index] == NULL);
2029 gdb_assert (data->pre_init == NULL);
2030 gdbarch->data[data->index] = pointer;
2031 }
2032
2033 /* Return the current value of the specified per-architecture
2034 data-pointer. */
2035
2036 void *
2037 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2038 {
2039 gdb_assert (data->index < gdbarch->nr_data);
2040 if (gdbarch->data[data->index] == NULL)
2041 {
2042 /* The data-pointer isn't initialized, call init() to get a
2043 value. */
2044 if (data->pre_init != NULL)
2045 /* Mid architecture creation: pass just the obstack, and not
2046 the entire architecture, as that way it isn't possible for
2047 pre-init code to refer to undefined architecture
2048 fields. */
2049 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2050 else if (gdbarch->initialized_p
2051 && data->post_init != NULL)
2052 /* Post architecture creation: pass the entire architecture
2053 (as all fields are valid), but be careful to also detect
2054 recursive references. */
2055 {
2056 gdb_assert (data->init_p);
2057 data->init_p = 0;
2058 gdbarch->data[data->index] = data->post_init (gdbarch);
2059 data->init_p = 1;
2060 }
2061 else
2062 /* The architecture initialization hasn't completed - punt -
2063 hope that the caller knows what they are doing. Once
2064 deprecated_set_gdbarch_data has been initialized, this can be
2065 changed to an internal error. */
2066 return NULL;
2067 gdb_assert (gdbarch->data[data->index] != NULL);
2068 }
2069 return gdbarch->data[data->index];
2070 }
2071
2072
2073 /* Keep a registry of the architectures known by GDB. */
2074
2075 struct gdbarch_registration
2076 {
2077 enum bfd_architecture bfd_architecture;
2078 gdbarch_init_ftype *init;
2079 gdbarch_dump_tdep_ftype *dump_tdep;
2080 struct gdbarch_list *arches;
2081 struct gdbarch_registration *next;
2082 };
2083
2084 static struct gdbarch_registration *gdbarch_registry = NULL;
2085
2086 static void
2087 append_name (const char ***buf, int *nr, const char *name)
2088 {
2089 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2090 (*buf)[*nr] = name;
2091 *nr += 1;
2092 }
2093
2094 const char **
2095 gdbarch_printable_names (void)
2096 {
2097 /* Accumulate a list of names based on the registed list of
2098 architectures. */
2099 int nr_arches = 0;
2100 const char **arches = NULL;
2101 struct gdbarch_registration *rego;
2102
2103 for (rego = gdbarch_registry;
2104 rego != NULL;
2105 rego = rego->next)
2106 {
2107 const struct bfd_arch_info *ap;
2108 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2109 if (ap == NULL)
2110 internal_error (__FILE__, __LINE__,
2111 _("gdbarch_architecture_names: multi-arch unknown"));
2112 do
2113 {
2114 append_name (&arches, &nr_arches, ap->printable_name);
2115 ap = ap->next;
2116 }
2117 while (ap != NULL);
2118 }
2119 append_name (&arches, &nr_arches, NULL);
2120 return arches;
2121 }
2122
2123
2124 void
2125 gdbarch_register (enum bfd_architecture bfd_architecture,
2126 gdbarch_init_ftype *init,
2127 gdbarch_dump_tdep_ftype *dump_tdep)
2128 {
2129 struct gdbarch_registration **curr;
2130 const struct bfd_arch_info *bfd_arch_info;
2131
2132 /* Check that BFD recognizes this architecture */
2133 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2134 if (bfd_arch_info == NULL)
2135 {
2136 internal_error (__FILE__, __LINE__,
2137 _("gdbarch: Attempt to register "
2138 "unknown architecture (%d)"),
2139 bfd_architecture);
2140 }
2141 /* Check that we haven't seen this architecture before. */
2142 for (curr = &gdbarch_registry;
2143 (*curr) != NULL;
2144 curr = &(*curr)->next)
2145 {
2146 if (bfd_architecture == (*curr)->bfd_architecture)
2147 internal_error (__FILE__, __LINE__,
2148 _("gdbarch: Duplicate registration "
2149 "of architecture (%s)"),
2150 bfd_arch_info->printable_name);
2151 }
2152 /* log it */
2153 if (gdbarch_debug)
2154 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2155 bfd_arch_info->printable_name,
2156 host_address_to_string (init));
2157 /* Append it */
2158 (*curr) = XNEW (struct gdbarch_registration);
2159 (*curr)->bfd_architecture = bfd_architecture;
2160 (*curr)->init = init;
2161 (*curr)->dump_tdep = dump_tdep;
2162 (*curr)->arches = NULL;
2163 (*curr)->next = NULL;
2164 }
2165
2166 void
2167 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2168 gdbarch_init_ftype *init)
2169 {
2170 gdbarch_register (bfd_architecture, init, NULL);
2171 }
2172
2173
2174 /* Look for an architecture using gdbarch_info. */
2175
2176 struct gdbarch_list *
2177 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2178 const struct gdbarch_info *info)
2179 {
2180 for (; arches != NULL; arches = arches->next)
2181 {
2182 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2183 continue;
2184 if (info->byte_order != arches->gdbarch->byte_order)
2185 continue;
2186 if (info->osabi != arches->gdbarch->osabi)
2187 continue;
2188 if (info->target_desc != arches->gdbarch->target_desc)
2189 continue;
2190 return arches;
2191 }
2192 return NULL;
2193 }
2194
2195
2196 /* Find an architecture that matches the specified INFO. Create a new
2197 architecture if needed. Return that new architecture. */
2198
2199 struct gdbarch *
2200 gdbarch_find_by_info (struct gdbarch_info info)
2201 {
2202 struct gdbarch *new_gdbarch;
2203 struct gdbarch_registration *rego;
2204
2205 /* Fill in missing parts of the INFO struct using a number of
2206 sources: "set ..."; INFOabfd supplied; and the global
2207 defaults. */
2208 gdbarch_info_fill (&info);
2209
2210 /* Must have found some sort of architecture. */
2211 gdb_assert (info.bfd_arch_info != NULL);
2212
2213 if (gdbarch_debug)
2214 {
2215 fprintf_unfiltered (gdb_stdlog,
2216 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2217 (info.bfd_arch_info != NULL
2218 ? info.bfd_arch_info->printable_name
2219 : "(null)"));
2220 fprintf_unfiltered (gdb_stdlog,
2221 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2222 info.byte_order,
2223 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2224 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2225 : "default"));
2226 fprintf_unfiltered (gdb_stdlog,
2227 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2228 info.osabi, gdbarch_osabi_name (info.osabi));
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_find_by_info: info.abfd %s\n",
2231 host_address_to_string (info.abfd));
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_find_by_info: info.tdep_info %s\n",
2234 host_address_to_string (info.tdep_info));
2235 }
2236
2237 /* Find the tdep code that knows about this architecture. */
2238 for (rego = gdbarch_registry;
2239 rego != NULL;
2240 rego = rego->next)
2241 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2242 break;
2243 if (rego == NULL)
2244 {
2245 if (gdbarch_debug)
2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2247 "No matching architecture\n");
2248 return 0;
2249 }
2250
2251 /* Ask the tdep code for an architecture that matches "info". */
2252 new_gdbarch = rego->init (info, rego->arches);
2253
2254 /* Did the tdep code like it? No. Reject the change and revert to
2255 the old architecture. */
2256 if (new_gdbarch == NULL)
2257 {
2258 if (gdbarch_debug)
2259 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2260 "Target rejected architecture\n");
2261 return NULL;
2262 }
2263
2264 /* Is this a pre-existing architecture (as determined by already
2265 being initialized)? Move it to the front of the architecture
2266 list (keeping the list sorted Most Recently Used). */
2267 if (new_gdbarch->initialized_p)
2268 {
2269 struct gdbarch_list **list;
2270 struct gdbarch_list *this;
2271 if (gdbarch_debug)
2272 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2273 "Previous architecture %s (%s) selected\n",
2274 host_address_to_string (new_gdbarch),
2275 new_gdbarch->bfd_arch_info->printable_name);
2276 /* Find the existing arch in the list. */
2277 for (list = &rego->arches;
2278 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2279 list = &(*list)->next);
2280 /* It had better be in the list of architectures. */
2281 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2282 /* Unlink THIS. */
2283 this = (*list);
2284 (*list) = this->next;
2285 /* Insert THIS at the front. */
2286 this->next = rego->arches;
2287 rego->arches = this;
2288 /* Return it. */
2289 return new_gdbarch;
2290 }
2291
2292 /* It's a new architecture. */
2293 if (gdbarch_debug)
2294 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2295 "New architecture %s (%s) selected\n",
2296 host_address_to_string (new_gdbarch),
2297 new_gdbarch->bfd_arch_info->printable_name);
2298
2299 /* Insert the new architecture into the front of the architecture
2300 list (keep the list sorted Most Recently Used). */
2301 {
2302 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2303 this->next = rego->arches;
2304 this->gdbarch = new_gdbarch;
2305 rego->arches = this;
2306 }
2307
2308 /* Check that the newly installed architecture is valid. Plug in
2309 any post init values. */
2310 new_gdbarch->dump_tdep = rego->dump_tdep;
2311 verify_gdbarch (new_gdbarch);
2312 new_gdbarch->initialized_p = 1;
2313
2314 if (gdbarch_debug)
2315 gdbarch_dump (new_gdbarch, gdb_stdlog);
2316
2317 return new_gdbarch;
2318 }
2319
2320 /* Make the specified architecture current. */
2321
2322 void
2323 set_target_gdbarch (struct gdbarch *new_gdbarch)
2324 {
2325 gdb_assert (new_gdbarch != NULL);
2326 gdb_assert (new_gdbarch->initialized_p);
2327 current_inferior ()->gdbarch = new_gdbarch;
2328 observer_notify_architecture_changed (new_gdbarch);
2329 registers_changed ();
2330 }
2331
2332 /* Return the current inferior's arch. */
2333
2334 struct gdbarch *
2335 target_gdbarch (void)
2336 {
2337 return current_inferior ()->gdbarch;
2338 }
2339
2340 extern void _initialize_gdbarch (void);
2341
2342 void
2343 _initialize_gdbarch (void)
2344 {
2345 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2346 Set architecture debugging."), _("\\
2347 Show architecture debugging."), _("\\
2348 When non-zero, architecture debugging is enabled."),
2349 NULL,
2350 show_gdbarch_debug,
2351 &setdebuglist, &showdebuglist);
2352 }
2353 EOF
2354
2355 # close things off
2356 exec 1>&2
2357 #../move-if-change new-gdbarch.c gdbarch.c
2358 compare_new gdbarch.c
This page took 0.08095 seconds and 3 git commands to generate.