bfd:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTYPE
507 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
635 # core file into buffer READBUF with length LEN.
636 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
637
638 # How the core target converts a PTID from a core file to a string.
639 M:char *:core_pid_to_str:ptid_t ptid:ptid
640
641 # BFD target to use when generating a core file.
642 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
643
644 # If the elements of C++ vtables are in-place function descriptors rather
645 # than normal function pointers (which may point to code or a descriptor),
646 # set this to one.
647 v:int:vtable_function_descriptors:::0:0::0
648
649 # Set if the least significant bit of the delta is used instead of the least
650 # significant bit of the pfn for pointers to virtual member functions.
651 v:int:vbit_in_delta:::0:0::0
652
653 # Advance PC to next instruction in order to skip a permanent breakpoint.
654 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
655
656 # The maximum length of an instruction on this architecture in bytes.
657 V:ULONGEST:max_insn_length:::0:0
658
659 # Copy the instruction at FROM to TO, and make any adjustments
660 # necessary to single-step it at that address.
661 #
662 # REGS holds the state the thread's registers will have before
663 # executing the copied instruction; the PC in REGS will refer to FROM,
664 # not the copy at TO. The caller should update it to point at TO later.
665 #
666 # Return a pointer to data of the architecture's choice to be passed
667 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
668 # the instruction's effects have been completely simulated, with the
669 # resulting state written back to REGS.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 #
674 # The TO area is only guaranteed to have space for
675 # gdbarch_max_insn_length (arch) bytes, so this function must not
676 # write more bytes than that to that area.
677 #
678 # If you do not provide this function, GDB assumes that the
679 # architecture does not support displaced stepping.
680 #
681 # If your architecture doesn't need to adjust instructions before
682 # single-stepping them, consider using simple_displaced_step_copy_insn
683 # here.
684 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
685
686 # Return true if GDB should use hardware single-stepping to execute
687 # the displaced instruction identified by CLOSURE. If false,
688 # GDB will simply restart execution at the displaced instruction
689 # location, and it is up to the target to ensure GDB will receive
690 # control again (e.g. by placing a software breakpoint instruction
691 # into the displaced instruction buffer).
692 #
693 # The default implementation returns false on all targets that
694 # provide a gdbarch_software_single_step routine, and true otherwise.
695 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
696
697 # Fix up the state resulting from successfully single-stepping a
698 # displaced instruction, to give the result we would have gotten from
699 # stepping the instruction in its original location.
700 #
701 # REGS is the register state resulting from single-stepping the
702 # displaced instruction.
703 #
704 # CLOSURE is the result from the matching call to
705 # gdbarch_displaced_step_copy_insn.
706 #
707 # If you provide gdbarch_displaced_step_copy_insn.but not this
708 # function, then GDB assumes that no fixup is needed after
709 # single-stepping the instruction.
710 #
711 # For a general explanation of displaced stepping and how GDB uses it,
712 # see the comments in infrun.c.
713 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
714
715 # Free a closure returned by gdbarch_displaced_step_copy_insn.
716 #
717 # If you provide gdbarch_displaced_step_copy_insn, you must provide
718 # this function as well.
719 #
720 # If your architecture uses closures that don't need to be freed, then
721 # you can use simple_displaced_step_free_closure here.
722 #
723 # For a general explanation of displaced stepping and how GDB uses it,
724 # see the comments in infrun.c.
725 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
726
727 # Return the address of an appropriate place to put displaced
728 # instructions while we step over them. There need only be one such
729 # place, since we're only stepping one thread over a breakpoint at a
730 # time.
731 #
732 # For a general explanation of displaced stepping and how GDB uses it,
733 # see the comments in infrun.c.
734 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
735
736 # Relocate an instruction to execute at a different address. OLDLOC
737 # is the address in the inferior memory where the instruction to
738 # relocate is currently at. On input, TO points to the destination
739 # where we want the instruction to be copied (and possibly adjusted)
740 # to. On output, it points to one past the end of the resulting
741 # instruction(s). The effect of executing the instruction at TO shall
742 # be the same as if executing it at FROM. For example, call
743 # instructions that implicitly push the return address on the stack
744 # should be adjusted to return to the instruction after OLDLOC;
745 # relative branches, and other PC-relative instructions need the
746 # offset adjusted; etc.
747 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
748
749 # Refresh overlay mapped state for section OSECT.
750 F:void:overlay_update:struct obj_section *osect:osect
751
752 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
753
754 # Handle special encoding of static variables in stabs debug info.
755 F:char *:static_transform_name:char *name:name
756 # Set if the address in N_SO or N_FUN stabs may be zero.
757 v:int:sofun_address_maybe_missing:::0:0::0
758
759 # Parse the instruction at ADDR storing in the record execution log
760 # the registers REGCACHE and memory ranges that will be affected when
761 # the instruction executes, along with their current values.
762 # Return -1 if something goes wrong, 0 otherwise.
763 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
764
765 # Save process state after a signal.
766 # Return -1 if something goes wrong, 0 otherwise.
767 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
768
769 # Signal translation: translate inferior's signal (host's) number into
770 # GDB's representation.
771 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
772 # Signal translation: translate GDB's signal number into inferior's host
773 # signal number.
774 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
775
776 # Extra signal info inspection.
777 #
778 # Return a type suitable to inspect extra signal information.
779 M:struct type *:get_siginfo_type:void:
780
781 # Record architecture-specific information from the symbol table.
782 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
783
784 # Function for the 'catch syscall' feature.
785
786 # Get architecture-specific system calls information from registers.
787 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
788
789 # True if the list of shared libraries is one and only for all
790 # processes, as opposed to a list of shared libraries per inferior.
791 # This usually means that all processes, although may or may not share
792 # an address space, will see the same set of symbols at the same
793 # addresses.
794 v:int:has_global_solist:::0:0::0
795
796 # On some targets, even though each inferior has its own private
797 # address space, the debug interface takes care of making breakpoints
798 # visible to all address spaces automatically. For such cases,
799 # this property should be set to true.
800 v:int:has_global_breakpoints:::0:0::0
801
802 # True if inferiors share an address space (e.g., uClinux).
803 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
804
805 # True if a fast tracepoint can be set at an address.
806 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
807
808 # Return the "auto" target charset.
809 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
810 # Return the "auto" target wide charset.
811 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
812
813 # If non-empty, this is a file extension that will be opened in place
814 # of the file extension reported by the shared library list.
815 #
816 # This is most useful for toolchains that use a post-linker tool,
817 # where the names of the files run on the target differ in extension
818 # compared to the names of the files GDB should load for debug info.
819 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
820
821 # If true, the target OS has DOS-based file system semantics. That
822 # is, absolute paths include a drive name, and the backslash is
823 # considered a directory separator.
824 v:int:has_dos_based_file_system:::0:0::0
825
826 # Generate bytecodes to collect the return address in a frame.
827 # Since the bytecodes run on the target, possibly with GDB not even
828 # connected, the full unwinding machinery is not available, and
829 # typically this function will issue bytecodes for one or more likely
830 # places that the return address may be found.
831 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
832
833 EOF
834 }
835
836 #
837 # The .log file
838 #
839 exec > new-gdbarch.log
840 function_list | while do_read
841 do
842 cat <<EOF
843 ${class} ${returntype} ${function} ($formal)
844 EOF
845 for r in ${read}
846 do
847 eval echo \"\ \ \ \ ${r}=\${${r}}\"
848 done
849 if class_is_predicate_p && fallback_default_p
850 then
851 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
852 kill $$
853 exit 1
854 fi
855 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
856 then
857 echo "Error: postdefault is useless when invalid_p=0" 1>&2
858 kill $$
859 exit 1
860 fi
861 if class_is_multiarch_p
862 then
863 if class_is_predicate_p ; then :
864 elif test "x${predefault}" = "x"
865 then
866 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
867 kill $$
868 exit 1
869 fi
870 fi
871 echo ""
872 done
873
874 exec 1>&2
875 compare_new gdbarch.log
876
877
878 copyright ()
879 {
880 cat <<EOF
881 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
882
883 /* Dynamic architecture support for GDB, the GNU debugger.
884
885 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
886 2007, 2008, 2009 Free Software Foundation, Inc.
887
888 This file is part of GDB.
889
890 This program is free software; you can redistribute it and/or modify
891 it under the terms of the GNU General Public License as published by
892 the Free Software Foundation; either version 3 of the License, or
893 (at your option) any later version.
894
895 This program is distributed in the hope that it will be useful,
896 but WITHOUT ANY WARRANTY; without even the implied warranty of
897 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
898 GNU General Public License for more details.
899
900 You should have received a copy of the GNU General Public License
901 along with this program. If not, see <http://www.gnu.org/licenses/>. */
902
903 /* This file was created with the aid of \`\`gdbarch.sh''.
904
905 The Bourne shell script \`\`gdbarch.sh'' creates the files
906 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
907 against the existing \`\`gdbarch.[hc]''. Any differences found
908 being reported.
909
910 If editing this file, please also run gdbarch.sh and merge any
911 changes into that script. Conversely, when making sweeping changes
912 to this file, modifying gdbarch.sh and using its output may prove
913 easier. */
914
915 EOF
916 }
917
918 #
919 # The .h file
920 #
921
922 exec > new-gdbarch.h
923 copyright
924 cat <<EOF
925 #ifndef GDBARCH_H
926 #define GDBARCH_H
927
928 struct floatformat;
929 struct ui_file;
930 struct frame_info;
931 struct value;
932 struct objfile;
933 struct obj_section;
934 struct minimal_symbol;
935 struct regcache;
936 struct reggroup;
937 struct regset;
938 struct disassemble_info;
939 struct target_ops;
940 struct obstack;
941 struct bp_target_info;
942 struct target_desc;
943 struct displaced_step_closure;
944 struct core_regset_section;
945 struct syscall;
946 struct agent_expr;
947 struct axs_value;
948
949 /* The architecture associated with the connection to the target.
950
951 The architecture vector provides some information that is really
952 a property of the target: The layout of certain packets, for instance;
953 or the solib_ops vector. Etc. To differentiate architecture accesses
954 to per-target properties from per-thread/per-frame/per-objfile properties,
955 accesses to per-target properties should be made through target_gdbarch.
956
957 Eventually, when support for multiple targets is implemented in
958 GDB, this global should be made target-specific. */
959 extern struct gdbarch *target_gdbarch;
960 EOF
961
962 # function typedef's
963 printf "\n"
964 printf "\n"
965 printf "/* The following are pre-initialized by GDBARCH. */\n"
966 function_list | while do_read
967 do
968 if class_is_info_p
969 then
970 printf "\n"
971 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
972 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
973 fi
974 done
975
976 # function typedef's
977 printf "\n"
978 printf "\n"
979 printf "/* The following are initialized by the target dependent code. */\n"
980 function_list | while do_read
981 do
982 if [ -n "${comment}" ]
983 then
984 echo "${comment}" | sed \
985 -e '2 s,#,/*,' \
986 -e '3,$ s,#, ,' \
987 -e '$ s,$, */,'
988 fi
989
990 if class_is_predicate_p
991 then
992 printf "\n"
993 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
994 fi
995 if class_is_variable_p
996 then
997 printf "\n"
998 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
999 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1000 fi
1001 if class_is_function_p
1002 then
1003 printf "\n"
1004 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1005 then
1006 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1007 elif class_is_multiarch_p
1008 then
1009 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1010 else
1011 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1012 fi
1013 if [ "x${formal}" = "xvoid" ]
1014 then
1015 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1016 else
1017 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1018 fi
1019 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1020 fi
1021 done
1022
1023 # close it off
1024 cat <<EOF
1025
1026 /* Definition for an unknown syscall, used basically in error-cases. */
1027 #define UNKNOWN_SYSCALL (-1)
1028
1029 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1030
1031
1032 /* Mechanism for co-ordinating the selection of a specific
1033 architecture.
1034
1035 GDB targets (*-tdep.c) can register an interest in a specific
1036 architecture. Other GDB components can register a need to maintain
1037 per-architecture data.
1038
1039 The mechanisms below ensures that there is only a loose connection
1040 between the set-architecture command and the various GDB
1041 components. Each component can independently register their need
1042 to maintain architecture specific data with gdbarch.
1043
1044 Pragmatics:
1045
1046 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1047 didn't scale.
1048
1049 The more traditional mega-struct containing architecture specific
1050 data for all the various GDB components was also considered. Since
1051 GDB is built from a variable number of (fairly independent)
1052 components it was determined that the global aproach was not
1053 applicable. */
1054
1055
1056 /* Register a new architectural family with GDB.
1057
1058 Register support for the specified ARCHITECTURE with GDB. When
1059 gdbarch determines that the specified architecture has been
1060 selected, the corresponding INIT function is called.
1061
1062 --
1063
1064 The INIT function takes two parameters: INFO which contains the
1065 information available to gdbarch about the (possibly new)
1066 architecture; ARCHES which is a list of the previously created
1067 \`\`struct gdbarch'' for this architecture.
1068
1069 The INFO parameter is, as far as possible, be pre-initialized with
1070 information obtained from INFO.ABFD or the global defaults.
1071
1072 The ARCHES parameter is a linked list (sorted most recently used)
1073 of all the previously created architures for this architecture
1074 family. The (possibly NULL) ARCHES->gdbarch can used to access
1075 values from the previously selected architecture for this
1076 architecture family.
1077
1078 The INIT function shall return any of: NULL - indicating that it
1079 doesn't recognize the selected architecture; an existing \`\`struct
1080 gdbarch'' from the ARCHES list - indicating that the new
1081 architecture is just a synonym for an earlier architecture (see
1082 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1083 - that describes the selected architecture (see gdbarch_alloc()).
1084
1085 The DUMP_TDEP function shall print out all target specific values.
1086 Care should be taken to ensure that the function works in both the
1087 multi-arch and non- multi-arch cases. */
1088
1089 struct gdbarch_list
1090 {
1091 struct gdbarch *gdbarch;
1092 struct gdbarch_list *next;
1093 };
1094
1095 struct gdbarch_info
1096 {
1097 /* Use default: NULL (ZERO). */
1098 const struct bfd_arch_info *bfd_arch_info;
1099
1100 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1101 int byte_order;
1102
1103 int byte_order_for_code;
1104
1105 /* Use default: NULL (ZERO). */
1106 bfd *abfd;
1107
1108 /* Use default: NULL (ZERO). */
1109 struct gdbarch_tdep_info *tdep_info;
1110
1111 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1112 enum gdb_osabi osabi;
1113
1114 /* Use default: NULL (ZERO). */
1115 const struct target_desc *target_desc;
1116 };
1117
1118 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1119 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1120
1121 /* DEPRECATED - use gdbarch_register() */
1122 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1123
1124 extern void gdbarch_register (enum bfd_architecture architecture,
1125 gdbarch_init_ftype *,
1126 gdbarch_dump_tdep_ftype *);
1127
1128
1129 /* Return a freshly allocated, NULL terminated, array of the valid
1130 architecture names. Since architectures are registered during the
1131 _initialize phase this function only returns useful information
1132 once initialization has been completed. */
1133
1134 extern const char **gdbarch_printable_names (void);
1135
1136
1137 /* Helper function. Search the list of ARCHES for a GDBARCH that
1138 matches the information provided by INFO. */
1139
1140 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1141
1142
1143 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1144 basic initialization using values obtained from the INFO and TDEP
1145 parameters. set_gdbarch_*() functions are called to complete the
1146 initialization of the object. */
1147
1148 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1149
1150
1151 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1152 It is assumed that the caller freeds the \`\`struct
1153 gdbarch_tdep''. */
1154
1155 extern void gdbarch_free (struct gdbarch *);
1156
1157
1158 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1159 obstack. The memory is freed when the corresponding architecture
1160 is also freed. */
1161
1162 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1163 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1164 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1165
1166
1167 /* Helper function. Force an update of the current architecture.
1168
1169 The actual architecture selected is determined by INFO, \`\`(gdb) set
1170 architecture'' et.al., the existing architecture and BFD's default
1171 architecture. INFO should be initialized to zero and then selected
1172 fields should be updated.
1173
1174 Returns non-zero if the update succeeds. */
1175
1176 extern int gdbarch_update_p (struct gdbarch_info info);
1177
1178
1179 /* Helper function. Find an architecture matching info.
1180
1181 INFO should be initialized using gdbarch_info_init, relevant fields
1182 set, and then finished using gdbarch_info_fill.
1183
1184 Returns the corresponding architecture, or NULL if no matching
1185 architecture was found. */
1186
1187 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1188
1189
1190 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1191
1192 FIXME: kettenis/20031124: Of the functions that follow, only
1193 gdbarch_from_bfd is supposed to survive. The others will
1194 dissappear since in the future GDB will (hopefully) be truly
1195 multi-arch. However, for now we're still stuck with the concept of
1196 a single active architecture. */
1197
1198 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1199
1200
1201 /* Register per-architecture data-pointer.
1202
1203 Reserve space for a per-architecture data-pointer. An identifier
1204 for the reserved data-pointer is returned. That identifer should
1205 be saved in a local static variable.
1206
1207 Memory for the per-architecture data shall be allocated using
1208 gdbarch_obstack_zalloc. That memory will be deleted when the
1209 corresponding architecture object is deleted.
1210
1211 When a previously created architecture is re-selected, the
1212 per-architecture data-pointer for that previous architecture is
1213 restored. INIT() is not re-called.
1214
1215 Multiple registrarants for any architecture are allowed (and
1216 strongly encouraged). */
1217
1218 struct gdbarch_data;
1219
1220 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1221 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1222 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1223 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1224 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1225 struct gdbarch_data *data,
1226 void *pointer);
1227
1228 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1229
1230
1231 /* Set the dynamic target-system-dependent parameters (architecture,
1232 byte-order, ...) using information found in the BFD. */
1233
1234 extern void set_gdbarch_from_file (bfd *);
1235
1236
1237 /* Initialize the current architecture to the "first" one we find on
1238 our list. */
1239
1240 extern void initialize_current_architecture (void);
1241
1242 /* gdbarch trace variable */
1243 extern int gdbarch_debug;
1244
1245 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1246
1247 #endif
1248 EOF
1249 exec 1>&2
1250 #../move-if-change new-gdbarch.h gdbarch.h
1251 compare_new gdbarch.h
1252
1253
1254 #
1255 # C file
1256 #
1257
1258 exec > new-gdbarch.c
1259 copyright
1260 cat <<EOF
1261
1262 #include "defs.h"
1263 #include "arch-utils.h"
1264
1265 #include "gdbcmd.h"
1266 #include "inferior.h"
1267 #include "symcat.h"
1268
1269 #include "floatformat.h"
1270
1271 #include "gdb_assert.h"
1272 #include "gdb_string.h"
1273 #include "reggroups.h"
1274 #include "osabi.h"
1275 #include "gdb_obstack.h"
1276 #include "observer.h"
1277 #include "regcache.h"
1278
1279 /* Static function declarations */
1280
1281 static void alloc_gdbarch_data (struct gdbarch *);
1282
1283 /* Non-zero if we want to trace architecture code. */
1284
1285 #ifndef GDBARCH_DEBUG
1286 #define GDBARCH_DEBUG 0
1287 #endif
1288 int gdbarch_debug = GDBARCH_DEBUG;
1289 static void
1290 show_gdbarch_debug (struct ui_file *file, int from_tty,
1291 struct cmd_list_element *c, const char *value)
1292 {
1293 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1294 }
1295
1296 static const char *
1297 pformat (const struct floatformat **format)
1298 {
1299 if (format == NULL)
1300 return "(null)";
1301 else
1302 /* Just print out one of them - this is only for diagnostics. */
1303 return format[0]->name;
1304 }
1305
1306 static const char *
1307 pstring (const char *string)
1308 {
1309 if (string == NULL)
1310 return "(null)";
1311 return string;
1312 }
1313
1314 EOF
1315
1316 # gdbarch open the gdbarch object
1317 printf "\n"
1318 printf "/* Maintain the struct gdbarch object. */\n"
1319 printf "\n"
1320 printf "struct gdbarch\n"
1321 printf "{\n"
1322 printf " /* Has this architecture been fully initialized? */\n"
1323 printf " int initialized_p;\n"
1324 printf "\n"
1325 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1326 printf " struct obstack *obstack;\n"
1327 printf "\n"
1328 printf " /* basic architectural information. */\n"
1329 function_list | while do_read
1330 do
1331 if class_is_info_p
1332 then
1333 printf " ${returntype} ${function};\n"
1334 fi
1335 done
1336 printf "\n"
1337 printf " /* target specific vector. */\n"
1338 printf " struct gdbarch_tdep *tdep;\n"
1339 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1340 printf "\n"
1341 printf " /* per-architecture data-pointers. */\n"
1342 printf " unsigned nr_data;\n"
1343 printf " void **data;\n"
1344 printf "\n"
1345 printf " /* per-architecture swap-regions. */\n"
1346 printf " struct gdbarch_swap *swap;\n"
1347 printf "\n"
1348 cat <<EOF
1349 /* Multi-arch values.
1350
1351 When extending this structure you must:
1352
1353 Add the field below.
1354
1355 Declare set/get functions and define the corresponding
1356 macro in gdbarch.h.
1357
1358 gdbarch_alloc(): If zero/NULL is not a suitable default,
1359 initialize the new field.
1360
1361 verify_gdbarch(): Confirm that the target updated the field
1362 correctly.
1363
1364 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1365 field is dumped out
1366
1367 \`\`startup_gdbarch()'': Append an initial value to the static
1368 variable (base values on the host's c-type system).
1369
1370 get_gdbarch(): Implement the set/get functions (probably using
1371 the macro's as shortcuts).
1372
1373 */
1374
1375 EOF
1376 function_list | while do_read
1377 do
1378 if class_is_variable_p
1379 then
1380 printf " ${returntype} ${function};\n"
1381 elif class_is_function_p
1382 then
1383 printf " gdbarch_${function}_ftype *${function};\n"
1384 fi
1385 done
1386 printf "};\n"
1387
1388 # A pre-initialized vector
1389 printf "\n"
1390 printf "\n"
1391 cat <<EOF
1392 /* The default architecture uses host values (for want of a better
1393 choice). */
1394 EOF
1395 printf "\n"
1396 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1397 printf "\n"
1398 printf "struct gdbarch startup_gdbarch =\n"
1399 printf "{\n"
1400 printf " 1, /* Always initialized. */\n"
1401 printf " NULL, /* The obstack. */\n"
1402 printf " /* basic architecture information. */\n"
1403 function_list | while do_read
1404 do
1405 if class_is_info_p
1406 then
1407 printf " ${staticdefault}, /* ${function} */\n"
1408 fi
1409 done
1410 cat <<EOF
1411 /* target specific vector and its dump routine. */
1412 NULL, NULL,
1413 /*per-architecture data-pointers and swap regions. */
1414 0, NULL, NULL,
1415 /* Multi-arch values */
1416 EOF
1417 function_list | while do_read
1418 do
1419 if class_is_function_p || class_is_variable_p
1420 then
1421 printf " ${staticdefault}, /* ${function} */\n"
1422 fi
1423 done
1424 cat <<EOF
1425 /* startup_gdbarch() */
1426 };
1427
1428 struct gdbarch *target_gdbarch = &startup_gdbarch;
1429 EOF
1430
1431 # Create a new gdbarch struct
1432 cat <<EOF
1433
1434 /* Create a new \`\`struct gdbarch'' based on information provided by
1435 \`\`struct gdbarch_info''. */
1436 EOF
1437 printf "\n"
1438 cat <<EOF
1439 struct gdbarch *
1440 gdbarch_alloc (const struct gdbarch_info *info,
1441 struct gdbarch_tdep *tdep)
1442 {
1443 struct gdbarch *gdbarch;
1444
1445 /* Create an obstack for allocating all the per-architecture memory,
1446 then use that to allocate the architecture vector. */
1447 struct obstack *obstack = XMALLOC (struct obstack);
1448 obstack_init (obstack);
1449 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1450 memset (gdbarch, 0, sizeof (*gdbarch));
1451 gdbarch->obstack = obstack;
1452
1453 alloc_gdbarch_data (gdbarch);
1454
1455 gdbarch->tdep = tdep;
1456 EOF
1457 printf "\n"
1458 function_list | while do_read
1459 do
1460 if class_is_info_p
1461 then
1462 printf " gdbarch->${function} = info->${function};\n"
1463 fi
1464 done
1465 printf "\n"
1466 printf " /* Force the explicit initialization of these. */\n"
1467 function_list | while do_read
1468 do
1469 if class_is_function_p || class_is_variable_p
1470 then
1471 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1472 then
1473 printf " gdbarch->${function} = ${predefault};\n"
1474 fi
1475 fi
1476 done
1477 cat <<EOF
1478 /* gdbarch_alloc() */
1479
1480 return gdbarch;
1481 }
1482 EOF
1483
1484 # Free a gdbarch struct.
1485 printf "\n"
1486 printf "\n"
1487 cat <<EOF
1488 /* Allocate extra space using the per-architecture obstack. */
1489
1490 void *
1491 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1492 {
1493 void *data = obstack_alloc (arch->obstack, size);
1494
1495 memset (data, 0, size);
1496 return data;
1497 }
1498
1499
1500 /* Free a gdbarch struct. This should never happen in normal
1501 operation --- once you've created a gdbarch, you keep it around.
1502 However, if an architecture's init function encounters an error
1503 building the structure, it may need to clean up a partially
1504 constructed gdbarch. */
1505
1506 void
1507 gdbarch_free (struct gdbarch *arch)
1508 {
1509 struct obstack *obstack;
1510
1511 gdb_assert (arch != NULL);
1512 gdb_assert (!arch->initialized_p);
1513 obstack = arch->obstack;
1514 obstack_free (obstack, 0); /* Includes the ARCH. */
1515 xfree (obstack);
1516 }
1517 EOF
1518
1519 # verify a new architecture
1520 cat <<EOF
1521
1522
1523 /* Ensure that all values in a GDBARCH are reasonable. */
1524
1525 static void
1526 verify_gdbarch (struct gdbarch *gdbarch)
1527 {
1528 struct ui_file *log;
1529 struct cleanup *cleanups;
1530 long length;
1531 char *buf;
1532
1533 log = mem_fileopen ();
1534 cleanups = make_cleanup_ui_file_delete (log);
1535 /* fundamental */
1536 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1537 fprintf_unfiltered (log, "\n\tbyte-order");
1538 if (gdbarch->bfd_arch_info == NULL)
1539 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1540 /* Check those that need to be defined for the given multi-arch level. */
1541 EOF
1542 function_list | while do_read
1543 do
1544 if class_is_function_p || class_is_variable_p
1545 then
1546 if [ "x${invalid_p}" = "x0" ]
1547 then
1548 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1549 elif class_is_predicate_p
1550 then
1551 printf " /* Skip verify of ${function}, has predicate. */\n"
1552 # FIXME: See do_read for potential simplification
1553 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1554 then
1555 printf " if (${invalid_p})\n"
1556 printf " gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1558 then
1559 printf " if (gdbarch->${function} == ${predefault})\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${postdefault}" ]
1562 then
1563 printf " if (gdbarch->${function} == 0)\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
1565 elif [ -n "${invalid_p}" ]
1566 then
1567 printf " if (${invalid_p})\n"
1568 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1569 elif [ -n "${predefault}" ]
1570 then
1571 printf " if (gdbarch->${function} == ${predefault})\n"
1572 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1573 fi
1574 fi
1575 done
1576 cat <<EOF
1577 buf = ui_file_xstrdup (log, &length);
1578 make_cleanup (xfree, buf);
1579 if (length > 0)
1580 internal_error (__FILE__, __LINE__,
1581 _("verify_gdbarch: the following are invalid ...%s"),
1582 buf);
1583 do_cleanups (cleanups);
1584 }
1585 EOF
1586
1587 # dump the structure
1588 printf "\n"
1589 printf "\n"
1590 cat <<EOF
1591 /* Print out the details of the current architecture. */
1592
1593 void
1594 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1595 {
1596 const char *gdb_nm_file = "<not-defined>";
1597
1598 #if defined (GDB_NM_FILE)
1599 gdb_nm_file = GDB_NM_FILE;
1600 #endif
1601 fprintf_unfiltered (file,
1602 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1603 gdb_nm_file);
1604 EOF
1605 function_list | sort -t: -k 3 | while do_read
1606 do
1607 # First the predicate
1608 if class_is_predicate_p
1609 then
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1612 printf " gdbarch_${function}_p (gdbarch));\n"
1613 fi
1614 # Print the corresponding value.
1615 if class_is_function_p
1616 then
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1619 printf " host_address_to_string (gdbarch->${function}));\n"
1620 else
1621 # It is a variable
1622 case "${print}:${returntype}" in
1623 :CORE_ADDR )
1624 fmt="%s"
1625 print="core_addr_to_string_nz (gdbarch->${function})"
1626 ;;
1627 :* )
1628 fmt="%s"
1629 print="plongest (gdbarch->${function})"
1630 ;;
1631 * )
1632 fmt="%s"
1633 ;;
1634 esac
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1637 printf " ${print});\n"
1638 fi
1639 done
1640 cat <<EOF
1641 if (gdbarch->dump_tdep != NULL)
1642 gdbarch->dump_tdep (gdbarch, file);
1643 }
1644 EOF
1645
1646
1647 # GET/SET
1648 printf "\n"
1649 cat <<EOF
1650 struct gdbarch_tdep *
1651 gdbarch_tdep (struct gdbarch *gdbarch)
1652 {
1653 if (gdbarch_debug >= 2)
1654 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1655 return gdbarch->tdep;
1656 }
1657 EOF
1658 printf "\n"
1659 function_list | while do_read
1660 do
1661 if class_is_predicate_p
1662 then
1663 printf "\n"
1664 printf "int\n"
1665 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1666 printf "{\n"
1667 printf " gdb_assert (gdbarch != NULL);\n"
1668 printf " return ${predicate};\n"
1669 printf "}\n"
1670 fi
1671 if class_is_function_p
1672 then
1673 printf "\n"
1674 printf "${returntype}\n"
1675 if [ "x${formal}" = "xvoid" ]
1676 then
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1678 else
1679 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1680 fi
1681 printf "{\n"
1682 printf " gdb_assert (gdbarch != NULL);\n"
1683 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1684 if class_is_predicate_p && test -n "${predefault}"
1685 then
1686 # Allow a call to a function with a predicate.
1687 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1688 fi
1689 printf " if (gdbarch_debug >= 2)\n"
1690 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1691 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1692 then
1693 if class_is_multiarch_p
1694 then
1695 params="gdbarch"
1696 else
1697 params=""
1698 fi
1699 else
1700 if class_is_multiarch_p
1701 then
1702 params="gdbarch, ${actual}"
1703 else
1704 params="${actual}"
1705 fi
1706 fi
1707 if [ "x${returntype}" = "xvoid" ]
1708 then
1709 printf " gdbarch->${function} (${params});\n"
1710 else
1711 printf " return gdbarch->${function} (${params});\n"
1712 fi
1713 printf "}\n"
1714 printf "\n"
1715 printf "void\n"
1716 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1718 printf "{\n"
1719 printf " gdbarch->${function} = ${function};\n"
1720 printf "}\n"
1721 elif class_is_variable_p
1722 then
1723 printf "\n"
1724 printf "${returntype}\n"
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 printf "{\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 if [ "x${invalid_p}" = "x0" ]
1729 then
1730 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1731 elif [ -n "${invalid_p}" ]
1732 then
1733 printf " /* Check variable is valid. */\n"
1734 printf " gdb_assert (!(${invalid_p}));\n"
1735 elif [ -n "${predefault}" ]
1736 then
1737 printf " /* Check variable changed from pre-default. */\n"
1738 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1739 fi
1740 printf " if (gdbarch_debug >= 2)\n"
1741 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1742 printf " return gdbarch->${function};\n"
1743 printf "}\n"
1744 printf "\n"
1745 printf "void\n"
1746 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1747 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1748 printf "{\n"
1749 printf " gdbarch->${function} = ${function};\n"
1750 printf "}\n"
1751 elif class_is_info_p
1752 then
1753 printf "\n"
1754 printf "${returntype}\n"
1755 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1756 printf "{\n"
1757 printf " gdb_assert (gdbarch != NULL);\n"
1758 printf " if (gdbarch_debug >= 2)\n"
1759 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1760 printf " return gdbarch->${function};\n"
1761 printf "}\n"
1762 fi
1763 done
1764
1765 # All the trailing guff
1766 cat <<EOF
1767
1768
1769 /* Keep a registry of per-architecture data-pointers required by GDB
1770 modules. */
1771
1772 struct gdbarch_data
1773 {
1774 unsigned index;
1775 int init_p;
1776 gdbarch_data_pre_init_ftype *pre_init;
1777 gdbarch_data_post_init_ftype *post_init;
1778 };
1779
1780 struct gdbarch_data_registration
1781 {
1782 struct gdbarch_data *data;
1783 struct gdbarch_data_registration *next;
1784 };
1785
1786 struct gdbarch_data_registry
1787 {
1788 unsigned nr;
1789 struct gdbarch_data_registration *registrations;
1790 };
1791
1792 struct gdbarch_data_registry gdbarch_data_registry =
1793 {
1794 0, NULL,
1795 };
1796
1797 static struct gdbarch_data *
1798 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1799 gdbarch_data_post_init_ftype *post_init)
1800 {
1801 struct gdbarch_data_registration **curr;
1802
1803 /* Append the new registration. */
1804 for (curr = &gdbarch_data_registry.registrations;
1805 (*curr) != NULL;
1806 curr = &(*curr)->next);
1807 (*curr) = XMALLOC (struct gdbarch_data_registration);
1808 (*curr)->next = NULL;
1809 (*curr)->data = XMALLOC (struct gdbarch_data);
1810 (*curr)->data->index = gdbarch_data_registry.nr++;
1811 (*curr)->data->pre_init = pre_init;
1812 (*curr)->data->post_init = post_init;
1813 (*curr)->data->init_p = 1;
1814 return (*curr)->data;
1815 }
1816
1817 struct gdbarch_data *
1818 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1819 {
1820 return gdbarch_data_register (pre_init, NULL);
1821 }
1822
1823 struct gdbarch_data *
1824 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1825 {
1826 return gdbarch_data_register (NULL, post_init);
1827 }
1828
1829 /* Create/delete the gdbarch data vector. */
1830
1831 static void
1832 alloc_gdbarch_data (struct gdbarch *gdbarch)
1833 {
1834 gdb_assert (gdbarch->data == NULL);
1835 gdbarch->nr_data = gdbarch_data_registry.nr;
1836 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1837 }
1838
1839 /* Initialize the current value of the specified per-architecture
1840 data-pointer. */
1841
1842 void
1843 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1844 struct gdbarch_data *data,
1845 void *pointer)
1846 {
1847 gdb_assert (data->index < gdbarch->nr_data);
1848 gdb_assert (gdbarch->data[data->index] == NULL);
1849 gdb_assert (data->pre_init == NULL);
1850 gdbarch->data[data->index] = pointer;
1851 }
1852
1853 /* Return the current value of the specified per-architecture
1854 data-pointer. */
1855
1856 void *
1857 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1858 {
1859 gdb_assert (data->index < gdbarch->nr_data);
1860 if (gdbarch->data[data->index] == NULL)
1861 {
1862 /* The data-pointer isn't initialized, call init() to get a
1863 value. */
1864 if (data->pre_init != NULL)
1865 /* Mid architecture creation: pass just the obstack, and not
1866 the entire architecture, as that way it isn't possible for
1867 pre-init code to refer to undefined architecture
1868 fields. */
1869 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1870 else if (gdbarch->initialized_p
1871 && data->post_init != NULL)
1872 /* Post architecture creation: pass the entire architecture
1873 (as all fields are valid), but be careful to also detect
1874 recursive references. */
1875 {
1876 gdb_assert (data->init_p);
1877 data->init_p = 0;
1878 gdbarch->data[data->index] = data->post_init (gdbarch);
1879 data->init_p = 1;
1880 }
1881 else
1882 /* The architecture initialization hasn't completed - punt -
1883 hope that the caller knows what they are doing. Once
1884 deprecated_set_gdbarch_data has been initialized, this can be
1885 changed to an internal error. */
1886 return NULL;
1887 gdb_assert (gdbarch->data[data->index] != NULL);
1888 }
1889 return gdbarch->data[data->index];
1890 }
1891
1892
1893 /* Keep a registry of the architectures known by GDB. */
1894
1895 struct gdbarch_registration
1896 {
1897 enum bfd_architecture bfd_architecture;
1898 gdbarch_init_ftype *init;
1899 gdbarch_dump_tdep_ftype *dump_tdep;
1900 struct gdbarch_list *arches;
1901 struct gdbarch_registration *next;
1902 };
1903
1904 static struct gdbarch_registration *gdbarch_registry = NULL;
1905
1906 static void
1907 append_name (const char ***buf, int *nr, const char *name)
1908 {
1909 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1910 (*buf)[*nr] = name;
1911 *nr += 1;
1912 }
1913
1914 const char **
1915 gdbarch_printable_names (void)
1916 {
1917 /* Accumulate a list of names based on the registed list of
1918 architectures. */
1919 int nr_arches = 0;
1920 const char **arches = NULL;
1921 struct gdbarch_registration *rego;
1922
1923 for (rego = gdbarch_registry;
1924 rego != NULL;
1925 rego = rego->next)
1926 {
1927 const struct bfd_arch_info *ap;
1928 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1929 if (ap == NULL)
1930 internal_error (__FILE__, __LINE__,
1931 _("gdbarch_architecture_names: multi-arch unknown"));
1932 do
1933 {
1934 append_name (&arches, &nr_arches, ap->printable_name);
1935 ap = ap->next;
1936 }
1937 while (ap != NULL);
1938 }
1939 append_name (&arches, &nr_arches, NULL);
1940 return arches;
1941 }
1942
1943
1944 void
1945 gdbarch_register (enum bfd_architecture bfd_architecture,
1946 gdbarch_init_ftype *init,
1947 gdbarch_dump_tdep_ftype *dump_tdep)
1948 {
1949 struct gdbarch_registration **curr;
1950 const struct bfd_arch_info *bfd_arch_info;
1951
1952 /* Check that BFD recognizes this architecture */
1953 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1954 if (bfd_arch_info == NULL)
1955 {
1956 internal_error (__FILE__, __LINE__,
1957 _("gdbarch: Attempt to register "
1958 "unknown architecture (%d)"),
1959 bfd_architecture);
1960 }
1961 /* Check that we haven't seen this architecture before. */
1962 for (curr = &gdbarch_registry;
1963 (*curr) != NULL;
1964 curr = &(*curr)->next)
1965 {
1966 if (bfd_architecture == (*curr)->bfd_architecture)
1967 internal_error (__FILE__, __LINE__,
1968 _("gdbarch: Duplicate registration "
1969 "of architecture (%s)"),
1970 bfd_arch_info->printable_name);
1971 }
1972 /* log it */
1973 if (gdbarch_debug)
1974 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1975 bfd_arch_info->printable_name,
1976 host_address_to_string (init));
1977 /* Append it */
1978 (*curr) = XMALLOC (struct gdbarch_registration);
1979 (*curr)->bfd_architecture = bfd_architecture;
1980 (*curr)->init = init;
1981 (*curr)->dump_tdep = dump_tdep;
1982 (*curr)->arches = NULL;
1983 (*curr)->next = NULL;
1984 }
1985
1986 void
1987 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1988 gdbarch_init_ftype *init)
1989 {
1990 gdbarch_register (bfd_architecture, init, NULL);
1991 }
1992
1993
1994 /* Look for an architecture using gdbarch_info. */
1995
1996 struct gdbarch_list *
1997 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1998 const struct gdbarch_info *info)
1999 {
2000 for (; arches != NULL; arches = arches->next)
2001 {
2002 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2003 continue;
2004 if (info->byte_order != arches->gdbarch->byte_order)
2005 continue;
2006 if (info->osabi != arches->gdbarch->osabi)
2007 continue;
2008 if (info->target_desc != arches->gdbarch->target_desc)
2009 continue;
2010 return arches;
2011 }
2012 return NULL;
2013 }
2014
2015
2016 /* Find an architecture that matches the specified INFO. Create a new
2017 architecture if needed. Return that new architecture. */
2018
2019 struct gdbarch *
2020 gdbarch_find_by_info (struct gdbarch_info info)
2021 {
2022 struct gdbarch *new_gdbarch;
2023 struct gdbarch_registration *rego;
2024
2025 /* Fill in missing parts of the INFO struct using a number of
2026 sources: "set ..."; INFOabfd supplied; and the global
2027 defaults. */
2028 gdbarch_info_fill (&info);
2029
2030 /* Must have found some sort of architecture. */
2031 gdb_assert (info.bfd_arch_info != NULL);
2032
2033 if (gdbarch_debug)
2034 {
2035 fprintf_unfiltered (gdb_stdlog,
2036 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2037 (info.bfd_arch_info != NULL
2038 ? info.bfd_arch_info->printable_name
2039 : "(null)"));
2040 fprintf_unfiltered (gdb_stdlog,
2041 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2042 info.byte_order,
2043 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2044 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2045 : "default"));
2046 fprintf_unfiltered (gdb_stdlog,
2047 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2048 info.osabi, gdbarch_osabi_name (info.osabi));
2049 fprintf_unfiltered (gdb_stdlog,
2050 "gdbarch_find_by_info: info.abfd %s\n",
2051 host_address_to_string (info.abfd));
2052 fprintf_unfiltered (gdb_stdlog,
2053 "gdbarch_find_by_info: info.tdep_info %s\n",
2054 host_address_to_string (info.tdep_info));
2055 }
2056
2057 /* Find the tdep code that knows about this architecture. */
2058 for (rego = gdbarch_registry;
2059 rego != NULL;
2060 rego = rego->next)
2061 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2062 break;
2063 if (rego == NULL)
2064 {
2065 if (gdbarch_debug)
2066 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2067 "No matching architecture\n");
2068 return 0;
2069 }
2070
2071 /* Ask the tdep code for an architecture that matches "info". */
2072 new_gdbarch = rego->init (info, rego->arches);
2073
2074 /* Did the tdep code like it? No. Reject the change and revert to
2075 the old architecture. */
2076 if (new_gdbarch == NULL)
2077 {
2078 if (gdbarch_debug)
2079 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2080 "Target rejected architecture\n");
2081 return NULL;
2082 }
2083
2084 /* Is this a pre-existing architecture (as determined by already
2085 being initialized)? Move it to the front of the architecture
2086 list (keeping the list sorted Most Recently Used). */
2087 if (new_gdbarch->initialized_p)
2088 {
2089 struct gdbarch_list **list;
2090 struct gdbarch_list *this;
2091 if (gdbarch_debug)
2092 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2093 "Previous architecture %s (%s) selected\n",
2094 host_address_to_string (new_gdbarch),
2095 new_gdbarch->bfd_arch_info->printable_name);
2096 /* Find the existing arch in the list. */
2097 for (list = &rego->arches;
2098 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2099 list = &(*list)->next);
2100 /* It had better be in the list of architectures. */
2101 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2102 /* Unlink THIS. */
2103 this = (*list);
2104 (*list) = this->next;
2105 /* Insert THIS at the front. */
2106 this->next = rego->arches;
2107 rego->arches = this;
2108 /* Return it. */
2109 return new_gdbarch;
2110 }
2111
2112 /* It's a new architecture. */
2113 if (gdbarch_debug)
2114 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2115 "New architecture %s (%s) selected\n",
2116 host_address_to_string (new_gdbarch),
2117 new_gdbarch->bfd_arch_info->printable_name);
2118
2119 /* Insert the new architecture into the front of the architecture
2120 list (keep the list sorted Most Recently Used). */
2121 {
2122 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2123 this->next = rego->arches;
2124 this->gdbarch = new_gdbarch;
2125 rego->arches = this;
2126 }
2127
2128 /* Check that the newly installed architecture is valid. Plug in
2129 any post init values. */
2130 new_gdbarch->dump_tdep = rego->dump_tdep;
2131 verify_gdbarch (new_gdbarch);
2132 new_gdbarch->initialized_p = 1;
2133
2134 if (gdbarch_debug)
2135 gdbarch_dump (new_gdbarch, gdb_stdlog);
2136
2137 return new_gdbarch;
2138 }
2139
2140 /* Make the specified architecture current. */
2141
2142 void
2143 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2144 {
2145 gdb_assert (new_gdbarch != NULL);
2146 gdb_assert (new_gdbarch->initialized_p);
2147 target_gdbarch = new_gdbarch;
2148 observer_notify_architecture_changed (new_gdbarch);
2149 registers_changed ();
2150 }
2151
2152 extern void _initialize_gdbarch (void);
2153
2154 void
2155 _initialize_gdbarch (void)
2156 {
2157 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2158 Set architecture debugging."), _("\\
2159 Show architecture debugging."), _("\\
2160 When non-zero, architecture debugging is enabled."),
2161 NULL,
2162 show_gdbarch_debug,
2163 &setdebuglist, &showdebuglist);
2164 }
2165 EOF
2166
2167 # close things off
2168 exec 1>&2
2169 #../move-if-change new-gdbarch.c gdbarch.c
2170 compare_new gdbarch.c
This page took 0.092398 seconds and 4 git commands to generate.