2007-06-06 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i::int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
407 # / addr_bit will be set from it.
408 #
409 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
411 # as well.
412 #
413 # ptr_bit is the size of a pointer on the target
414 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
415 # addr_bit is the size of a target address as represented in gdb
416 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
417 # Number of bits in a BFD_VMA for the target object file format.
418 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
419 #
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v::int:char_signed:::1:-1:1
422 #
423 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
424 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
429 #
430 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v::int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v::int:num_pseudo_regs:::0:0::0
439
440 # GDB's standard (or well known) register numbers. These can map onto
441 # a real register or a pseudo (computed) register or not be defined at
442 # all (-1).
443 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
444 v:=:int:sp_regnum:::-1:-1::0
445 v:=:int:pc_regnum:::-1:-1::0
446 v:=:int:ps_regnum:::-1:-1::0
447 v:=:int:fp0_regnum:::0:-1::0
448 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
449 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
451 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
452 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
453 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
454 # Convert from an sdb register number to an internal gdb register number.
455 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
456 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
457 f:=:const char *:register_name:int regnr:regnr
458
459 # Return the type of a register specified by the architecture. Only
460 # the register cache should call this function directly; others should
461 # use "register_type".
462 M::struct type *:register_type:int reg_nr:reg_nr
463
464 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
465 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
466 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
467 # DEPRECATED_FP_REGNUM.
468 v:=:int:deprecated_fp_regnum:::-1:-1::0
469
470 # See gdbint.texinfo. See infcall.c.
471 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
472 # DEPRECATED_REGISTER_SIZE can be deleted.
473 v:=:int:deprecated_register_size
474 v::int:call_dummy_location::::AT_ENTRY_POINT::0
475 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
476
477 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
478 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
479 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 # MAP a GDB RAW register number onto a simulator register number. See
481 # also include/...-sim.h.
482 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
483 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
484 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
485 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
486 # setjmp/longjmp support.
487 F::int:get_longjmp_target:CORE_ADDR *pc:pc
488 #
489 v:=:int:believe_pcc_promotion:::::::
490 #
491 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
492 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
493 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
494 # Construct a value representing the contents of register REGNUM in
495 # frame FRAME, interpreted as type TYPE. The routine needs to
496 # allocate and return a struct value with all value attributes
497 # (but not the value contents) filled in.
498 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
499 #
500 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503
504 # It has been suggested that this, well actually its predecessor,
505 # should take the type/value of the function to be called and not the
506 # return type. This is left as an exercise for the reader.
507
508 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
509 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
510 # (via legacy_return_value), when a small struct is involved.
511
512 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
513
514 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
515 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
516 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
517 # RETURN_VALUE.
518
519 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
520 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
521 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
522
523 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
524 # ABI suitable for the implementation of a robust extract
525 # struct-convention return-value address method (the sparc saves the
526 # address in the callers frame). All the other cases so far examined,
527 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
528 # erreneous - the code was incorrectly assuming that the return-value
529 # address, stored in a register, was preserved across the entire
530 # function call.
531
532 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
533 # the ABIs that are still to be analyzed - perhaps this should simply
534 # be deleted. The commented out extract_returned_value_address method
535 # is provided as a starting point for the 32-bit SPARC. It, or
536 # something like it, along with changes to both infcmd.c and stack.c
537 # will be needed for that case to work. NB: It is passed the callers
538 # frame since it is only after the callee has returned that this
539 # function is used.
540
541 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
542 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
543
544 #
545 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
546 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
549 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
550 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
551 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
552
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
560
561 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
562
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
566
567 # Fetch the target specific address used to represent a load module.
568 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
569 #
570 v:=:CORE_ADDR:frame_args_skip:::0:::0
571 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
572 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
573 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
574 # frame-base. Enable frame-base before frame-unwind.
575 F:=:int:frame_num_args:struct frame_info *frame:frame
576 #
577 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
578 # to frame_align and the requirement that methods such as
579 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
580 # alignment.
581 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
582 M::CORE_ADDR:frame_align:CORE_ADDR address:address
583 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
584 # stabs_argument_has_addr.
585 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
586 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
587 v:=:int:frame_red_zone_size
588 #
589 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
600 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
601 # ADDR_BITS_REMOVE.
602 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
603
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
605 # indicates if the target needs software single step. An ISA method to
606 # implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
609 # breakpoints using the breakpoint system instead of blatting memory directly
610 # (as with rs6000).
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613 # target can single step. If not, then implement single step using breakpoints.
614 #
615 # A return value of 1 means that the software_single_step breakpoints
616 # were inserted; 0 means they were not.
617 F:=:int:software_single_step:struct regcache *regcache:regcache
618
619 # Return non-zero if the processor is executing a delay slot and a
620 # further single-step is needed before the instruction finishes.
621 M::int:single_step_through_delay:struct frame_info *frame:frame
622 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
623 # disassembler. Perhaps objdump can handle it?
624 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
625 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
626
627
628 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
629 # evaluates non-zero, this is the address where the debugger will place
630 # a step-resume breakpoint to get us past the dynamic linker.
631 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
632 # Some systems also have trampoline code for returning from shared libs.
633 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
634
635 # A target might have problems with watchpoints as soon as the stack
636 # frame of the current function has been destroyed. This mostly happens
637 # as the first action in a funtion's epilogue. in_function_epilogue_p()
638 # is defined to return a non-zero value if either the given addr is one
639 # instruction after the stack destroying instruction up to the trailing
640 # return instruction or if we can figure out that the stack frame has
641 # already been invalidated regardless of the value of addr. Targets
642 # which don't suffer from that problem could just let this functionality
643 # untouched.
644 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
645 # Given a vector of command-line arguments, return a newly allocated
646 # string which, when passed to the create_inferior function, will be
647 # parsed (on Unix systems, by the shell) to yield the same vector.
648 # This function should call error() if the argument vector is not
649 # representable for this target or if this target does not support
650 # command-line arguments.
651 # ARGC is the number of elements in the vector.
652 # ARGV is an array of strings, one per argument.
653 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
654 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
655 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
656 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
657 v:=:int:cannot_step_breakpoint:::0:0::0
658 v:=:int:have_nonsteppable_watchpoint:::0:0::0
659 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
660 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
661 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
662 # Is a register in a group
663 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
664 # Fetch the pointer to the ith function argument.
665 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
666
667 # Return the appropriate register set for a core file section with
668 # name SECT_NAME and size SECT_SIZE.
669 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
670
671 # If the elements of C++ vtables are in-place function descriptors rather
672 # than normal function pointers (which may point to code or a descriptor),
673 # set this to one.
674 v::int:vtable_function_descriptors:::0:0::0
675
676 # Set if the least significant bit of the delta is used instead of the least
677 # significant bit of the pfn for pointers to virtual member functions.
678 v::int:vbit_in_delta:::0:0::0
679
680 # Advance PC to next instruction in order to skip a permanent breakpoint.
681 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
682
683 # Refresh overlay mapped state for section OSECT.
684 F::void:overlay_update:struct obj_section *osect:osect
685 EOF
686 }
687
688 #
689 # The .log file
690 #
691 exec > new-gdbarch.log
692 function_list | while do_read
693 do
694 cat <<EOF
695 ${class} ${returntype} ${function} ($formal)
696 EOF
697 for r in ${read}
698 do
699 eval echo \"\ \ \ \ ${r}=\${${r}}\"
700 done
701 if class_is_predicate_p && fallback_default_p
702 then
703 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
704 kill $$
705 exit 1
706 fi
707 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
708 then
709 echo "Error: postdefault is useless when invalid_p=0" 1>&2
710 kill $$
711 exit 1
712 fi
713 if class_is_multiarch_p
714 then
715 if class_is_predicate_p ; then :
716 elif test "x${predefault}" = "x"
717 then
718 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
719 kill $$
720 exit 1
721 fi
722 fi
723 echo ""
724 done
725
726 exec 1>&2
727 compare_new gdbarch.log
728
729
730 copyright ()
731 {
732 cat <<EOF
733 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
734
735 /* Dynamic architecture support for GDB, the GNU debugger.
736
737 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
738 Free Software Foundation, Inc.
739
740 This file is part of GDB.
741
742 This program is free software; you can redistribute it and/or modify
743 it under the terms of the GNU General Public License as published by
744 the Free Software Foundation; either version 2 of the License, or
745 (at your option) any later version.
746
747 This program is distributed in the hope that it will be useful,
748 but WITHOUT ANY WARRANTY; without even the implied warranty of
749 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
750 GNU General Public License for more details.
751
752 You should have received a copy of the GNU General Public License
753 along with this program; if not, write to the Free Software
754 Foundation, Inc., 51 Franklin Street, Fifth Floor,
755 Boston, MA 02110-1301, USA. */
756
757 /* This file was created with the aid of \`\`gdbarch.sh''.
758
759 The Bourne shell script \`\`gdbarch.sh'' creates the files
760 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
761 against the existing \`\`gdbarch.[hc]''. Any differences found
762 being reported.
763
764 If editing this file, please also run gdbarch.sh and merge any
765 changes into that script. Conversely, when making sweeping changes
766 to this file, modifying gdbarch.sh and using its output may prove
767 easier. */
768
769 EOF
770 }
771
772 #
773 # The .h file
774 #
775
776 exec > new-gdbarch.h
777 copyright
778 cat <<EOF
779 #ifndef GDBARCH_H
780 #define GDBARCH_H
781
782 struct floatformat;
783 struct ui_file;
784 struct frame_info;
785 struct value;
786 struct objfile;
787 struct obj_section;
788 struct minimal_symbol;
789 struct regcache;
790 struct reggroup;
791 struct regset;
792 struct disassemble_info;
793 struct target_ops;
794 struct obstack;
795 struct bp_target_info;
796 struct target_desc;
797
798 extern struct gdbarch *current_gdbarch;
799 EOF
800
801 # function typedef's
802 printf "\n"
803 printf "\n"
804 printf "/* The following are pre-initialized by GDBARCH. */\n"
805 function_list | while do_read
806 do
807 if class_is_info_p
808 then
809 printf "\n"
810 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
811 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
812 if test -n "${macro}"
813 then
814 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
815 printf "#error \"Non multi-arch definition of ${macro}\"\n"
816 printf "#endif\n"
817 printf "#if !defined (${macro})\n"
818 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
819 printf "#endif\n"
820 fi
821 fi
822 done
823
824 # function typedef's
825 printf "\n"
826 printf "\n"
827 printf "/* The following are initialized by the target dependent code. */\n"
828 function_list | while do_read
829 do
830 if [ -n "${comment}" ]
831 then
832 echo "${comment}" | sed \
833 -e '2 s,#,/*,' \
834 -e '3,$ s,#, ,' \
835 -e '$ s,$, */,'
836 fi
837
838 if class_is_predicate_p
839 then
840 if test -n "${macro}"
841 then
842 printf "\n"
843 printf "#if defined (${macro})\n"
844 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
845 printf "#if !defined (${macro}_P)\n"
846 printf "#define ${macro}_P() (1)\n"
847 printf "#endif\n"
848 printf "#endif\n"
849 fi
850 printf "\n"
851 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
852 if test -n "${macro}"
853 then
854 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
855 printf "#error \"Non multi-arch definition of ${macro}\"\n"
856 printf "#endif\n"
857 printf "#if !defined (${macro}_P)\n"
858 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
859 printf "#endif\n"
860 fi
861 fi
862 if class_is_variable_p
863 then
864 printf "\n"
865 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
866 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
867 if test -n "${macro}"
868 then
869 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#endif\n"
872 printf "#if !defined (${macro})\n"
873 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
874 printf "#endif\n"
875 fi
876 fi
877 if class_is_function_p
878 then
879 printf "\n"
880 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
881 then
882 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
883 elif class_is_multiarch_p
884 then
885 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
886 else
887 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
888 fi
889 if [ "x${formal}" = "xvoid" ]
890 then
891 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
892 else
893 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
894 fi
895 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
896 if test -n "${macro}"
897 then
898 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
901 if [ "x${actual}" = "x" ]
902 then
903 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
904 elif [ "x${actual}" = "x-" ]
905 then
906 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
907 else
908 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
909 fi
910 printf "#if !defined (${macro})\n"
911 if [ "x${actual}" = "x" ]
912 then
913 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
914 elif [ "x${actual}" = "x-" ]
915 then
916 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
917 else
918 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
919 fi
920 printf "#endif\n"
921 fi
922 fi
923 done
924
925 # close it off
926 cat <<EOF
927
928 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
929
930
931 /* Mechanism for co-ordinating the selection of a specific
932 architecture.
933
934 GDB targets (*-tdep.c) can register an interest in a specific
935 architecture. Other GDB components can register a need to maintain
936 per-architecture data.
937
938 The mechanisms below ensures that there is only a loose connection
939 between the set-architecture command and the various GDB
940 components. Each component can independently register their need
941 to maintain architecture specific data with gdbarch.
942
943 Pragmatics:
944
945 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
946 didn't scale.
947
948 The more traditional mega-struct containing architecture specific
949 data for all the various GDB components was also considered. Since
950 GDB is built from a variable number of (fairly independent)
951 components it was determined that the global aproach was not
952 applicable. */
953
954
955 /* Register a new architectural family with GDB.
956
957 Register support for the specified ARCHITECTURE with GDB. When
958 gdbarch determines that the specified architecture has been
959 selected, the corresponding INIT function is called.
960
961 --
962
963 The INIT function takes two parameters: INFO which contains the
964 information available to gdbarch about the (possibly new)
965 architecture; ARCHES which is a list of the previously created
966 \`\`struct gdbarch'' for this architecture.
967
968 The INFO parameter is, as far as possible, be pre-initialized with
969 information obtained from INFO.ABFD or the global defaults.
970
971 The ARCHES parameter is a linked list (sorted most recently used)
972 of all the previously created architures for this architecture
973 family. The (possibly NULL) ARCHES->gdbarch can used to access
974 values from the previously selected architecture for this
975 architecture family. The global \`\`current_gdbarch'' shall not be
976 used.
977
978 The INIT function shall return any of: NULL - indicating that it
979 doesn't recognize the selected architecture; an existing \`\`struct
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
983 - that describes the selected architecture (see gdbarch_alloc()).
984
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
988
989 struct gdbarch_list
990 {
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
993 };
994
995 struct gdbarch_info
996 {
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
999
1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1001 int byte_order;
1002
1003 /* Use default: NULL (ZERO). */
1004 bfd *abfd;
1005
1006 /* Use default: NULL (ZERO). */
1007 struct gdbarch_tdep_info *tdep_info;
1008
1009 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1010 enum gdb_osabi osabi;
1011
1012 /* Use default: NULL (ZERO). */
1013 const struct target_desc *target_desc;
1014 };
1015
1016 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1017 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1018
1019 /* DEPRECATED - use gdbarch_register() */
1020 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1021
1022 extern void gdbarch_register (enum bfd_architecture architecture,
1023 gdbarch_init_ftype *,
1024 gdbarch_dump_tdep_ftype *);
1025
1026
1027 /* Return a freshly allocated, NULL terminated, array of the valid
1028 architecture names. Since architectures are registered during the
1029 _initialize phase this function only returns useful information
1030 once initialization has been completed. */
1031
1032 extern const char **gdbarch_printable_names (void);
1033
1034
1035 /* Helper function. Search the list of ARCHES for a GDBARCH that
1036 matches the information provided by INFO. */
1037
1038 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1039
1040
1041 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1042 basic initialization using values obtained from the INFO and TDEP
1043 parameters. set_gdbarch_*() functions are called to complete the
1044 initialization of the object. */
1045
1046 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1047
1048
1049 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1050 It is assumed that the caller freeds the \`\`struct
1051 gdbarch_tdep''. */
1052
1053 extern void gdbarch_free (struct gdbarch *);
1054
1055
1056 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1057 obstack. The memory is freed when the corresponding architecture
1058 is also freed. */
1059
1060 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1061 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1062 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1063
1064
1065 /* Helper function. Force an update of the current architecture.
1066
1067 The actual architecture selected is determined by INFO, \`\`(gdb) set
1068 architecture'' et.al., the existing architecture and BFD's default
1069 architecture. INFO should be initialized to zero and then selected
1070 fields should be updated.
1071
1072 Returns non-zero if the update succeeds */
1073
1074 extern int gdbarch_update_p (struct gdbarch_info info);
1075
1076
1077 /* Helper function. Find an architecture matching info.
1078
1079 INFO should be initialized using gdbarch_info_init, relevant fields
1080 set, and then finished using gdbarch_info_fill.
1081
1082 Returns the corresponding architecture, or NULL if no matching
1083 architecture was found. "current_gdbarch" is not updated. */
1084
1085 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1086
1087
1088 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1089
1090 FIXME: kettenis/20031124: Of the functions that follow, only
1091 gdbarch_from_bfd is supposed to survive. The others will
1092 dissappear since in the future GDB will (hopefully) be truly
1093 multi-arch. However, for now we're still stuck with the concept of
1094 a single active architecture. */
1095
1096 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1097
1098
1099 /* Register per-architecture data-pointer.
1100
1101 Reserve space for a per-architecture data-pointer. An identifier
1102 for the reserved data-pointer is returned. That identifer should
1103 be saved in a local static variable.
1104
1105 Memory for the per-architecture data shall be allocated using
1106 gdbarch_obstack_zalloc. That memory will be deleted when the
1107 corresponding architecture object is deleted.
1108
1109 When a previously created architecture is re-selected, the
1110 per-architecture data-pointer for that previous architecture is
1111 restored. INIT() is not re-called.
1112
1113 Multiple registrarants for any architecture are allowed (and
1114 strongly encouraged). */
1115
1116 struct gdbarch_data;
1117
1118 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1119 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1120 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1121 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1122 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1123 struct gdbarch_data *data,
1124 void *pointer);
1125
1126 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1127
1128
1129
1130 /* Register per-architecture memory region.
1131
1132 Provide a memory-region swap mechanism. Per-architecture memory
1133 region are created. These memory regions are swapped whenever the
1134 architecture is changed. For a new architecture, the memory region
1135 is initialized with zero (0) and the INIT function is called.
1136
1137 Memory regions are swapped / initialized in the order that they are
1138 registered. NULL DATA and/or INIT values can be specified.
1139
1140 New code should use gdbarch_data_register_*(). */
1141
1142 typedef void (gdbarch_swap_ftype) (void);
1143 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1144 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1145
1146
1147
1148 /* Set the dynamic target-system-dependent parameters (architecture,
1149 byte-order, ...) using information found in the BFD */
1150
1151 extern void set_gdbarch_from_file (bfd *);
1152
1153
1154 /* Initialize the current architecture to the "first" one we find on
1155 our list. */
1156
1157 extern void initialize_current_architecture (void);
1158
1159 /* gdbarch trace variable */
1160 extern int gdbarch_debug;
1161
1162 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1163
1164 #endif
1165 EOF
1166 exec 1>&2
1167 #../move-if-change new-gdbarch.h gdbarch.h
1168 compare_new gdbarch.h
1169
1170
1171 #
1172 # C file
1173 #
1174
1175 exec > new-gdbarch.c
1176 copyright
1177 cat <<EOF
1178
1179 #include "defs.h"
1180 #include "arch-utils.h"
1181
1182 #include "gdbcmd.h"
1183 #include "inferior.h"
1184 #include "symcat.h"
1185
1186 #include "floatformat.h"
1187
1188 #include "gdb_assert.h"
1189 #include "gdb_string.h"
1190 #include "gdb-events.h"
1191 #include "reggroups.h"
1192 #include "osabi.h"
1193 #include "gdb_obstack.h"
1194
1195 /* Static function declarations */
1196
1197 static void alloc_gdbarch_data (struct gdbarch *);
1198
1199 /* Non-zero if we want to trace architecture code. */
1200
1201 #ifndef GDBARCH_DEBUG
1202 #define GDBARCH_DEBUG 0
1203 #endif
1204 int gdbarch_debug = GDBARCH_DEBUG;
1205 static void
1206 show_gdbarch_debug (struct ui_file *file, int from_tty,
1207 struct cmd_list_element *c, const char *value)
1208 {
1209 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1210 }
1211
1212 static const char *
1213 pformat (const struct floatformat **format)
1214 {
1215 if (format == NULL)
1216 return "(null)";
1217 else
1218 /* Just print out one of them - this is only for diagnostics. */
1219 return format[0]->name;
1220 }
1221
1222 EOF
1223
1224 # gdbarch open the gdbarch object
1225 printf "\n"
1226 printf "/* Maintain the struct gdbarch object */\n"
1227 printf "\n"
1228 printf "struct gdbarch\n"
1229 printf "{\n"
1230 printf " /* Has this architecture been fully initialized? */\n"
1231 printf " int initialized_p;\n"
1232 printf "\n"
1233 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1234 printf " struct obstack *obstack;\n"
1235 printf "\n"
1236 printf " /* basic architectural information */\n"
1237 function_list | while do_read
1238 do
1239 if class_is_info_p
1240 then
1241 printf " ${returntype} ${function};\n"
1242 fi
1243 done
1244 printf "\n"
1245 printf " /* target specific vector. */\n"
1246 printf " struct gdbarch_tdep *tdep;\n"
1247 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1248 printf "\n"
1249 printf " /* per-architecture data-pointers */\n"
1250 printf " unsigned nr_data;\n"
1251 printf " void **data;\n"
1252 printf "\n"
1253 printf " /* per-architecture swap-regions */\n"
1254 printf " struct gdbarch_swap *swap;\n"
1255 printf "\n"
1256 cat <<EOF
1257 /* Multi-arch values.
1258
1259 When extending this structure you must:
1260
1261 Add the field below.
1262
1263 Declare set/get functions and define the corresponding
1264 macro in gdbarch.h.
1265
1266 gdbarch_alloc(): If zero/NULL is not a suitable default,
1267 initialize the new field.
1268
1269 verify_gdbarch(): Confirm that the target updated the field
1270 correctly.
1271
1272 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1273 field is dumped out
1274
1275 \`\`startup_gdbarch()'': Append an initial value to the static
1276 variable (base values on the host's c-type system).
1277
1278 get_gdbarch(): Implement the set/get functions (probably using
1279 the macro's as shortcuts).
1280
1281 */
1282
1283 EOF
1284 function_list | while do_read
1285 do
1286 if class_is_variable_p
1287 then
1288 printf " ${returntype} ${function};\n"
1289 elif class_is_function_p
1290 then
1291 printf " gdbarch_${function}_ftype *${function};\n"
1292 fi
1293 done
1294 printf "};\n"
1295
1296 # A pre-initialized vector
1297 printf "\n"
1298 printf "\n"
1299 cat <<EOF
1300 /* The default architecture uses host values (for want of a better
1301 choice). */
1302 EOF
1303 printf "\n"
1304 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1305 printf "\n"
1306 printf "struct gdbarch startup_gdbarch =\n"
1307 printf "{\n"
1308 printf " 1, /* Always initialized. */\n"
1309 printf " NULL, /* The obstack. */\n"
1310 printf " /* basic architecture information */\n"
1311 function_list | while do_read
1312 do
1313 if class_is_info_p
1314 then
1315 printf " ${staticdefault}, /* ${function} */\n"
1316 fi
1317 done
1318 cat <<EOF
1319 /* target specific vector and its dump routine */
1320 NULL, NULL,
1321 /*per-architecture data-pointers and swap regions */
1322 0, NULL, NULL,
1323 /* Multi-arch values */
1324 EOF
1325 function_list | while do_read
1326 do
1327 if class_is_function_p || class_is_variable_p
1328 then
1329 printf " ${staticdefault}, /* ${function} */\n"
1330 fi
1331 done
1332 cat <<EOF
1333 /* startup_gdbarch() */
1334 };
1335
1336 struct gdbarch *current_gdbarch = &startup_gdbarch;
1337 EOF
1338
1339 # Create a new gdbarch struct
1340 cat <<EOF
1341
1342 /* Create a new \`\`struct gdbarch'' based on information provided by
1343 \`\`struct gdbarch_info''. */
1344 EOF
1345 printf "\n"
1346 cat <<EOF
1347 struct gdbarch *
1348 gdbarch_alloc (const struct gdbarch_info *info,
1349 struct gdbarch_tdep *tdep)
1350 {
1351 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1352 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1353 the current local architecture and not the previous global
1354 architecture. This ensures that the new architectures initial
1355 values are not influenced by the previous architecture. Once
1356 everything is parameterised with gdbarch, this will go away. */
1357 struct gdbarch *current_gdbarch;
1358
1359 /* Create an obstack for allocating all the per-architecture memory,
1360 then use that to allocate the architecture vector. */
1361 struct obstack *obstack = XMALLOC (struct obstack);
1362 obstack_init (obstack);
1363 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1364 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1365 current_gdbarch->obstack = obstack;
1366
1367 alloc_gdbarch_data (current_gdbarch);
1368
1369 current_gdbarch->tdep = tdep;
1370 EOF
1371 printf "\n"
1372 function_list | while do_read
1373 do
1374 if class_is_info_p
1375 then
1376 printf " current_gdbarch->${function} = info->${function};\n"
1377 fi
1378 done
1379 printf "\n"
1380 printf " /* Force the explicit initialization of these. */\n"
1381 function_list | while do_read
1382 do
1383 if class_is_function_p || class_is_variable_p
1384 then
1385 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1386 then
1387 printf " current_gdbarch->${function} = ${predefault};\n"
1388 fi
1389 fi
1390 done
1391 cat <<EOF
1392 /* gdbarch_alloc() */
1393
1394 return current_gdbarch;
1395 }
1396 EOF
1397
1398 # Free a gdbarch struct.
1399 printf "\n"
1400 printf "\n"
1401 cat <<EOF
1402 /* Allocate extra space using the per-architecture obstack. */
1403
1404 void *
1405 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1406 {
1407 void *data = obstack_alloc (arch->obstack, size);
1408 memset (data, 0, size);
1409 return data;
1410 }
1411
1412
1413 /* Free a gdbarch struct. This should never happen in normal
1414 operation --- once you've created a gdbarch, you keep it around.
1415 However, if an architecture's init function encounters an error
1416 building the structure, it may need to clean up a partially
1417 constructed gdbarch. */
1418
1419 void
1420 gdbarch_free (struct gdbarch *arch)
1421 {
1422 struct obstack *obstack;
1423 gdb_assert (arch != NULL);
1424 gdb_assert (!arch->initialized_p);
1425 obstack = arch->obstack;
1426 obstack_free (obstack, 0); /* Includes the ARCH. */
1427 xfree (obstack);
1428 }
1429 EOF
1430
1431 # verify a new architecture
1432 cat <<EOF
1433
1434
1435 /* Ensure that all values in a GDBARCH are reasonable. */
1436
1437 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1438 just happens to match the global variable \`\`current_gdbarch''. That
1439 way macros refering to that variable get the local and not the global
1440 version - ulgh. Once everything is parameterised with gdbarch, this
1441 will go away. */
1442
1443 static void
1444 verify_gdbarch (struct gdbarch *current_gdbarch)
1445 {
1446 struct ui_file *log;
1447 struct cleanup *cleanups;
1448 long dummy;
1449 char *buf;
1450 log = mem_fileopen ();
1451 cleanups = make_cleanup_ui_file_delete (log);
1452 /* fundamental */
1453 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1454 fprintf_unfiltered (log, "\n\tbyte-order");
1455 if (current_gdbarch->bfd_arch_info == NULL)
1456 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1457 /* Check those that need to be defined for the given multi-arch level. */
1458 EOF
1459 function_list | while do_read
1460 do
1461 if class_is_function_p || class_is_variable_p
1462 then
1463 if [ "x${invalid_p}" = "x0" ]
1464 then
1465 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1466 elif class_is_predicate_p
1467 then
1468 printf " /* Skip verify of ${function}, has predicate */\n"
1469 # FIXME: See do_read for potential simplification
1470 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1471 then
1472 printf " if (${invalid_p})\n"
1473 printf " current_gdbarch->${function} = ${postdefault};\n"
1474 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1475 then
1476 printf " if (current_gdbarch->${function} == ${predefault})\n"
1477 printf " current_gdbarch->${function} = ${postdefault};\n"
1478 elif [ -n "${postdefault}" ]
1479 then
1480 printf " if (current_gdbarch->${function} == 0)\n"
1481 printf " current_gdbarch->${function} = ${postdefault};\n"
1482 elif [ -n "${invalid_p}" ]
1483 then
1484 printf " if (${invalid_p})\n"
1485 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1486 elif [ -n "${predefault}" ]
1487 then
1488 printf " if (current_gdbarch->${function} == ${predefault})\n"
1489 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1490 fi
1491 fi
1492 done
1493 cat <<EOF
1494 buf = ui_file_xstrdup (log, &dummy);
1495 make_cleanup (xfree, buf);
1496 if (strlen (buf) > 0)
1497 internal_error (__FILE__, __LINE__,
1498 _("verify_gdbarch: the following are invalid ...%s"),
1499 buf);
1500 do_cleanups (cleanups);
1501 }
1502 EOF
1503
1504 # dump the structure
1505 printf "\n"
1506 printf "\n"
1507 cat <<EOF
1508 /* Print out the details of the current architecture. */
1509
1510 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1511 just happens to match the global variable \`\`current_gdbarch''. That
1512 way macros refering to that variable get the local and not the global
1513 version - ulgh. Once everything is parameterised with gdbarch, this
1514 will go away. */
1515
1516 void
1517 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1518 {
1519 const char *gdb_xm_file = "<not-defined>";
1520 const char *gdb_nm_file = "<not-defined>";
1521 const char *gdb_tm_file = "<not-defined>";
1522 #if defined (GDB_XM_FILE)
1523 gdb_xm_file = GDB_XM_FILE;
1524 #endif
1525 fprintf_unfiltered (file,
1526 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1527 gdb_xm_file);
1528 #if defined (GDB_NM_FILE)
1529 gdb_nm_file = GDB_NM_FILE;
1530 #endif
1531 fprintf_unfiltered (file,
1532 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1533 gdb_nm_file);
1534 #if defined (GDB_TM_FILE)
1535 gdb_tm_file = GDB_TM_FILE;
1536 #endif
1537 fprintf_unfiltered (file,
1538 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1539 gdb_tm_file);
1540 EOF
1541 function_list | sort -t: -k 4 | while do_read
1542 do
1543 # First the predicate
1544 if class_is_predicate_p
1545 then
1546 if test -n "${macro}"
1547 then
1548 printf "#ifdef ${macro}_P\n"
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1551 printf " \"${macro}_P()\",\n"
1552 printf " XSTRING (${macro}_P ()));\n"
1553 printf "#endif\n"
1554 fi
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1557 printf " gdbarch_${function}_p (current_gdbarch));\n"
1558 fi
1559 # Print the macro definition.
1560 if test -n "${macro}"
1561 then
1562 printf "#ifdef ${macro}\n"
1563 if class_is_function_p
1564 then
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1567 printf " \"${macro}(${actual})\",\n"
1568 printf " XSTRING (${macro} (${actual})));\n"
1569 else
1570 printf " fprintf_unfiltered (file,\n"
1571 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1572 printf " XSTRING (${macro}));\n"
1573 fi
1574 printf "#endif\n"
1575 fi
1576 # Print the corresponding value.
1577 if class_is_function_p
1578 then
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1581 printf " (long) current_gdbarch->${function});\n"
1582 else
1583 # It is a variable
1584 case "${print}:${returntype}" in
1585 :CORE_ADDR )
1586 fmt="0x%s"
1587 print="paddr_nz (current_gdbarch->${function})"
1588 ;;
1589 :* )
1590 fmt="%s"
1591 print="paddr_d (current_gdbarch->${function})"
1592 ;;
1593 * )
1594 fmt="%s"
1595 ;;
1596 esac
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1599 printf " ${print});\n"
1600 fi
1601 done
1602 cat <<EOF
1603 if (current_gdbarch->dump_tdep != NULL)
1604 current_gdbarch->dump_tdep (current_gdbarch, file);
1605 }
1606 EOF
1607
1608
1609 # GET/SET
1610 printf "\n"
1611 cat <<EOF
1612 struct gdbarch_tdep *
1613 gdbarch_tdep (struct gdbarch *gdbarch)
1614 {
1615 if (gdbarch_debug >= 2)
1616 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1617 return gdbarch->tdep;
1618 }
1619 EOF
1620 printf "\n"
1621 function_list | while do_read
1622 do
1623 if class_is_predicate_p
1624 then
1625 printf "\n"
1626 printf "int\n"
1627 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1628 printf "{\n"
1629 printf " gdb_assert (gdbarch != NULL);\n"
1630 printf " return ${predicate};\n"
1631 printf "}\n"
1632 fi
1633 if class_is_function_p
1634 then
1635 printf "\n"
1636 printf "${returntype}\n"
1637 if [ "x${formal}" = "xvoid" ]
1638 then
1639 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1640 else
1641 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1642 fi
1643 printf "{\n"
1644 printf " gdb_assert (gdbarch != NULL);\n"
1645 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1646 if class_is_predicate_p && test -n "${predefault}"
1647 then
1648 # Allow a call to a function with a predicate.
1649 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1650 fi
1651 printf " if (gdbarch_debug >= 2)\n"
1652 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1654 then
1655 if class_is_multiarch_p
1656 then
1657 params="gdbarch"
1658 else
1659 params=""
1660 fi
1661 else
1662 if class_is_multiarch_p
1663 then
1664 params="gdbarch, ${actual}"
1665 else
1666 params="${actual}"
1667 fi
1668 fi
1669 if [ "x${returntype}" = "xvoid" ]
1670 then
1671 printf " gdbarch->${function} (${params});\n"
1672 else
1673 printf " return gdbarch->${function} (${params});\n"
1674 fi
1675 printf "}\n"
1676 printf "\n"
1677 printf "void\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1680 printf "{\n"
1681 printf " gdbarch->${function} = ${function};\n"
1682 printf "}\n"
1683 elif class_is_variable_p
1684 then
1685 printf "\n"
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1688 printf "{\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 if [ "x${invalid_p}" = "x0" ]
1691 then
1692 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1693 elif [ -n "${invalid_p}" ]
1694 then
1695 printf " /* Check variable is valid. */\n"
1696 printf " gdb_assert (!(${invalid_p}));\n"
1697 elif [ -n "${predefault}" ]
1698 then
1699 printf " /* Check variable changed from pre-default. */\n"
1700 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1701 fi
1702 printf " if (gdbarch_debug >= 2)\n"
1703 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1704 printf " return gdbarch->${function};\n"
1705 printf "}\n"
1706 printf "\n"
1707 printf "void\n"
1708 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1709 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1710 printf "{\n"
1711 printf " gdbarch->${function} = ${function};\n"
1712 printf "}\n"
1713 elif class_is_info_p
1714 then
1715 printf "\n"
1716 printf "${returntype}\n"
1717 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1718 printf "{\n"
1719 printf " gdb_assert (gdbarch != NULL);\n"
1720 printf " if (gdbarch_debug >= 2)\n"
1721 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1722 printf " return gdbarch->${function};\n"
1723 printf "}\n"
1724 fi
1725 done
1726
1727 # All the trailing guff
1728 cat <<EOF
1729
1730
1731 /* Keep a registry of per-architecture data-pointers required by GDB
1732 modules. */
1733
1734 struct gdbarch_data
1735 {
1736 unsigned index;
1737 int init_p;
1738 gdbarch_data_pre_init_ftype *pre_init;
1739 gdbarch_data_post_init_ftype *post_init;
1740 };
1741
1742 struct gdbarch_data_registration
1743 {
1744 struct gdbarch_data *data;
1745 struct gdbarch_data_registration *next;
1746 };
1747
1748 struct gdbarch_data_registry
1749 {
1750 unsigned nr;
1751 struct gdbarch_data_registration *registrations;
1752 };
1753
1754 struct gdbarch_data_registry gdbarch_data_registry =
1755 {
1756 0, NULL,
1757 };
1758
1759 static struct gdbarch_data *
1760 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1761 gdbarch_data_post_init_ftype *post_init)
1762 {
1763 struct gdbarch_data_registration **curr;
1764 /* Append the new registraration. */
1765 for (curr = &gdbarch_data_registry.registrations;
1766 (*curr) != NULL;
1767 curr = &(*curr)->next);
1768 (*curr) = XMALLOC (struct gdbarch_data_registration);
1769 (*curr)->next = NULL;
1770 (*curr)->data = XMALLOC (struct gdbarch_data);
1771 (*curr)->data->index = gdbarch_data_registry.nr++;
1772 (*curr)->data->pre_init = pre_init;
1773 (*curr)->data->post_init = post_init;
1774 (*curr)->data->init_p = 1;
1775 return (*curr)->data;
1776 }
1777
1778 struct gdbarch_data *
1779 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1780 {
1781 return gdbarch_data_register (pre_init, NULL);
1782 }
1783
1784 struct gdbarch_data *
1785 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1786 {
1787 return gdbarch_data_register (NULL, post_init);
1788 }
1789
1790 /* Create/delete the gdbarch data vector. */
1791
1792 static void
1793 alloc_gdbarch_data (struct gdbarch *gdbarch)
1794 {
1795 gdb_assert (gdbarch->data == NULL);
1796 gdbarch->nr_data = gdbarch_data_registry.nr;
1797 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1798 }
1799
1800 /* Initialize the current value of the specified per-architecture
1801 data-pointer. */
1802
1803 void
1804 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1805 struct gdbarch_data *data,
1806 void *pointer)
1807 {
1808 gdb_assert (data->index < gdbarch->nr_data);
1809 gdb_assert (gdbarch->data[data->index] == NULL);
1810 gdb_assert (data->pre_init == NULL);
1811 gdbarch->data[data->index] = pointer;
1812 }
1813
1814 /* Return the current value of the specified per-architecture
1815 data-pointer. */
1816
1817 void *
1818 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1819 {
1820 gdb_assert (data->index < gdbarch->nr_data);
1821 if (gdbarch->data[data->index] == NULL)
1822 {
1823 /* The data-pointer isn't initialized, call init() to get a
1824 value. */
1825 if (data->pre_init != NULL)
1826 /* Mid architecture creation: pass just the obstack, and not
1827 the entire architecture, as that way it isn't possible for
1828 pre-init code to refer to undefined architecture
1829 fields. */
1830 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1831 else if (gdbarch->initialized_p
1832 && data->post_init != NULL)
1833 /* Post architecture creation: pass the entire architecture
1834 (as all fields are valid), but be careful to also detect
1835 recursive references. */
1836 {
1837 gdb_assert (data->init_p);
1838 data->init_p = 0;
1839 gdbarch->data[data->index] = data->post_init (gdbarch);
1840 data->init_p = 1;
1841 }
1842 else
1843 /* The architecture initialization hasn't completed - punt -
1844 hope that the caller knows what they are doing. Once
1845 deprecated_set_gdbarch_data has been initialized, this can be
1846 changed to an internal error. */
1847 return NULL;
1848 gdb_assert (gdbarch->data[data->index] != NULL);
1849 }
1850 return gdbarch->data[data->index];
1851 }
1852
1853
1854
1855 /* Keep a registry of swapped data required by GDB modules. */
1856
1857 struct gdbarch_swap
1858 {
1859 void *swap;
1860 struct gdbarch_swap_registration *source;
1861 struct gdbarch_swap *next;
1862 };
1863
1864 struct gdbarch_swap_registration
1865 {
1866 void *data;
1867 unsigned long sizeof_data;
1868 gdbarch_swap_ftype *init;
1869 struct gdbarch_swap_registration *next;
1870 };
1871
1872 struct gdbarch_swap_registry
1873 {
1874 int nr;
1875 struct gdbarch_swap_registration *registrations;
1876 };
1877
1878 struct gdbarch_swap_registry gdbarch_swap_registry =
1879 {
1880 0, NULL,
1881 };
1882
1883 void
1884 deprecated_register_gdbarch_swap (void *data,
1885 unsigned long sizeof_data,
1886 gdbarch_swap_ftype *init)
1887 {
1888 struct gdbarch_swap_registration **rego;
1889 for (rego = &gdbarch_swap_registry.registrations;
1890 (*rego) != NULL;
1891 rego = &(*rego)->next);
1892 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1893 (*rego)->next = NULL;
1894 (*rego)->init = init;
1895 (*rego)->data = data;
1896 (*rego)->sizeof_data = sizeof_data;
1897 }
1898
1899 static void
1900 current_gdbarch_swap_init_hack (void)
1901 {
1902 struct gdbarch_swap_registration *rego;
1903 struct gdbarch_swap **curr = &current_gdbarch->swap;
1904 for (rego = gdbarch_swap_registry.registrations;
1905 rego != NULL;
1906 rego = rego->next)
1907 {
1908 if (rego->data != NULL)
1909 {
1910 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1911 struct gdbarch_swap);
1912 (*curr)->source = rego;
1913 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1914 rego->sizeof_data);
1915 (*curr)->next = NULL;
1916 curr = &(*curr)->next;
1917 }
1918 if (rego->init != NULL)
1919 rego->init ();
1920 }
1921 }
1922
1923 static struct gdbarch *
1924 current_gdbarch_swap_out_hack (void)
1925 {
1926 struct gdbarch *old_gdbarch = current_gdbarch;
1927 struct gdbarch_swap *curr;
1928
1929 gdb_assert (old_gdbarch != NULL);
1930 for (curr = old_gdbarch->swap;
1931 curr != NULL;
1932 curr = curr->next)
1933 {
1934 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1935 memset (curr->source->data, 0, curr->source->sizeof_data);
1936 }
1937 current_gdbarch = NULL;
1938 return old_gdbarch;
1939 }
1940
1941 static void
1942 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1943 {
1944 struct gdbarch_swap *curr;
1945
1946 gdb_assert (current_gdbarch == NULL);
1947 for (curr = new_gdbarch->swap;
1948 curr != NULL;
1949 curr = curr->next)
1950 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1951 current_gdbarch = new_gdbarch;
1952 }
1953
1954
1955 /* Keep a registry of the architectures known by GDB. */
1956
1957 struct gdbarch_registration
1958 {
1959 enum bfd_architecture bfd_architecture;
1960 gdbarch_init_ftype *init;
1961 gdbarch_dump_tdep_ftype *dump_tdep;
1962 struct gdbarch_list *arches;
1963 struct gdbarch_registration *next;
1964 };
1965
1966 static struct gdbarch_registration *gdbarch_registry = NULL;
1967
1968 static void
1969 append_name (const char ***buf, int *nr, const char *name)
1970 {
1971 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1972 (*buf)[*nr] = name;
1973 *nr += 1;
1974 }
1975
1976 const char **
1977 gdbarch_printable_names (void)
1978 {
1979 /* Accumulate a list of names based on the registed list of
1980 architectures. */
1981 enum bfd_architecture a;
1982 int nr_arches = 0;
1983 const char **arches = NULL;
1984 struct gdbarch_registration *rego;
1985 for (rego = gdbarch_registry;
1986 rego != NULL;
1987 rego = rego->next)
1988 {
1989 const struct bfd_arch_info *ap;
1990 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1991 if (ap == NULL)
1992 internal_error (__FILE__, __LINE__,
1993 _("gdbarch_architecture_names: multi-arch unknown"));
1994 do
1995 {
1996 append_name (&arches, &nr_arches, ap->printable_name);
1997 ap = ap->next;
1998 }
1999 while (ap != NULL);
2000 }
2001 append_name (&arches, &nr_arches, NULL);
2002 return arches;
2003 }
2004
2005
2006 void
2007 gdbarch_register (enum bfd_architecture bfd_architecture,
2008 gdbarch_init_ftype *init,
2009 gdbarch_dump_tdep_ftype *dump_tdep)
2010 {
2011 struct gdbarch_registration **curr;
2012 const struct bfd_arch_info *bfd_arch_info;
2013 /* Check that BFD recognizes this architecture */
2014 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2015 if (bfd_arch_info == NULL)
2016 {
2017 internal_error (__FILE__, __LINE__,
2018 _("gdbarch: Attempt to register unknown architecture (%d)"),
2019 bfd_architecture);
2020 }
2021 /* Check that we haven't seen this architecture before */
2022 for (curr = &gdbarch_registry;
2023 (*curr) != NULL;
2024 curr = &(*curr)->next)
2025 {
2026 if (bfd_architecture == (*curr)->bfd_architecture)
2027 internal_error (__FILE__, __LINE__,
2028 _("gdbarch: Duplicate registraration of architecture (%s)"),
2029 bfd_arch_info->printable_name);
2030 }
2031 /* log it */
2032 if (gdbarch_debug)
2033 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2034 bfd_arch_info->printable_name,
2035 (long) init);
2036 /* Append it */
2037 (*curr) = XMALLOC (struct gdbarch_registration);
2038 (*curr)->bfd_architecture = bfd_architecture;
2039 (*curr)->init = init;
2040 (*curr)->dump_tdep = dump_tdep;
2041 (*curr)->arches = NULL;
2042 (*curr)->next = NULL;
2043 }
2044
2045 void
2046 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2047 gdbarch_init_ftype *init)
2048 {
2049 gdbarch_register (bfd_architecture, init, NULL);
2050 }
2051
2052
2053 /* Look for an architecture using gdbarch_info. */
2054
2055 struct gdbarch_list *
2056 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2057 const struct gdbarch_info *info)
2058 {
2059 for (; arches != NULL; arches = arches->next)
2060 {
2061 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2062 continue;
2063 if (info->byte_order != arches->gdbarch->byte_order)
2064 continue;
2065 if (info->osabi != arches->gdbarch->osabi)
2066 continue;
2067 if (info->target_desc != arches->gdbarch->target_desc)
2068 continue;
2069 return arches;
2070 }
2071 return NULL;
2072 }
2073
2074
2075 /* Find an architecture that matches the specified INFO. Create a new
2076 architecture if needed. Return that new architecture. Assumes
2077 that there is no current architecture. */
2078
2079 static struct gdbarch *
2080 find_arch_by_info (struct gdbarch_info info)
2081 {
2082 struct gdbarch *new_gdbarch;
2083 struct gdbarch_registration *rego;
2084
2085 /* The existing architecture has been swapped out - all this code
2086 works from a clean slate. */
2087 gdb_assert (current_gdbarch == NULL);
2088
2089 /* Fill in missing parts of the INFO struct using a number of
2090 sources: "set ..."; INFOabfd supplied; and the global
2091 defaults. */
2092 gdbarch_info_fill (&info);
2093
2094 /* Must have found some sort of architecture. */
2095 gdb_assert (info.bfd_arch_info != NULL);
2096
2097 if (gdbarch_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog,
2100 "find_arch_by_info: info.bfd_arch_info %s\n",
2101 (info.bfd_arch_info != NULL
2102 ? info.bfd_arch_info->printable_name
2103 : "(null)"));
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.byte_order %d (%s)\n",
2106 info.byte_order,
2107 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2108 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2109 : "default"));
2110 fprintf_unfiltered (gdb_stdlog,
2111 "find_arch_by_info: info.osabi %d (%s)\n",
2112 info.osabi, gdbarch_osabi_name (info.osabi));
2113 fprintf_unfiltered (gdb_stdlog,
2114 "find_arch_by_info: info.abfd 0x%lx\n",
2115 (long) info.abfd);
2116 fprintf_unfiltered (gdb_stdlog,
2117 "find_arch_by_info: info.tdep_info 0x%lx\n",
2118 (long) info.tdep_info);
2119 }
2120
2121 /* Find the tdep code that knows about this architecture. */
2122 for (rego = gdbarch_registry;
2123 rego != NULL;
2124 rego = rego->next)
2125 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2126 break;
2127 if (rego == NULL)
2128 {
2129 if (gdbarch_debug)
2130 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2131 "No matching architecture\n");
2132 return 0;
2133 }
2134
2135 /* Ask the tdep code for an architecture that matches "info". */
2136 new_gdbarch = rego->init (info, rego->arches);
2137
2138 /* Did the tdep code like it? No. Reject the change and revert to
2139 the old architecture. */
2140 if (new_gdbarch == NULL)
2141 {
2142 if (gdbarch_debug)
2143 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2144 "Target rejected architecture\n");
2145 return NULL;
2146 }
2147
2148 /* Is this a pre-existing architecture (as determined by already
2149 being initialized)? Move it to the front of the architecture
2150 list (keeping the list sorted Most Recently Used). */
2151 if (new_gdbarch->initialized_p)
2152 {
2153 struct gdbarch_list **list;
2154 struct gdbarch_list *this;
2155 if (gdbarch_debug)
2156 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2157 "Previous architecture 0x%08lx (%s) selected\n",
2158 (long) new_gdbarch,
2159 new_gdbarch->bfd_arch_info->printable_name);
2160 /* Find the existing arch in the list. */
2161 for (list = &rego->arches;
2162 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2163 list = &(*list)->next);
2164 /* It had better be in the list of architectures. */
2165 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2166 /* Unlink THIS. */
2167 this = (*list);
2168 (*list) = this->next;
2169 /* Insert THIS at the front. */
2170 this->next = rego->arches;
2171 rego->arches = this;
2172 /* Return it. */
2173 return new_gdbarch;
2174 }
2175
2176 /* It's a new architecture. */
2177 if (gdbarch_debug)
2178 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2179 "New architecture 0x%08lx (%s) selected\n",
2180 (long) new_gdbarch,
2181 new_gdbarch->bfd_arch_info->printable_name);
2182
2183 /* Insert the new architecture into the front of the architecture
2184 list (keep the list sorted Most Recently Used). */
2185 {
2186 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2187 this->next = rego->arches;
2188 this->gdbarch = new_gdbarch;
2189 rego->arches = this;
2190 }
2191
2192 /* Check that the newly installed architecture is valid. Plug in
2193 any post init values. */
2194 new_gdbarch->dump_tdep = rego->dump_tdep;
2195 verify_gdbarch (new_gdbarch);
2196 new_gdbarch->initialized_p = 1;
2197
2198 /* Initialize any per-architecture swap areas. This phase requires
2199 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2200 swap the entire architecture out. */
2201 current_gdbarch = new_gdbarch;
2202 current_gdbarch_swap_init_hack ();
2203 current_gdbarch_swap_out_hack ();
2204
2205 if (gdbarch_debug)
2206 gdbarch_dump (new_gdbarch, gdb_stdlog);
2207
2208 return new_gdbarch;
2209 }
2210
2211 struct gdbarch *
2212 gdbarch_find_by_info (struct gdbarch_info info)
2213 {
2214 /* Save the previously selected architecture, setting the global to
2215 NULL. This stops things like gdbarch->init() trying to use the
2216 previous architecture's configuration. The previous architecture
2217 may not even be of the same architecture family. The most recent
2218 architecture of the same family is found at the head of the
2219 rego->arches list. */
2220 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2221
2222 /* Find the specified architecture. */
2223 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2224
2225 /* Restore the existing architecture. */
2226 gdb_assert (current_gdbarch == NULL);
2227 current_gdbarch_swap_in_hack (old_gdbarch);
2228
2229 return new_gdbarch;
2230 }
2231
2232 /* Make the specified architecture current, swapping the existing one
2233 out. */
2234
2235 void
2236 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2237 {
2238 gdb_assert (new_gdbarch != NULL);
2239 gdb_assert (current_gdbarch != NULL);
2240 gdb_assert (new_gdbarch->initialized_p);
2241 current_gdbarch_swap_out_hack ();
2242 current_gdbarch_swap_in_hack (new_gdbarch);
2243 architecture_changed_event ();
2244 reinit_frame_cache ();
2245 }
2246
2247 extern void _initialize_gdbarch (void);
2248
2249 void
2250 _initialize_gdbarch (void)
2251 {
2252 struct cmd_list_element *c;
2253
2254 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2255 Set architecture debugging."), _("\\
2256 Show architecture debugging."), _("\\
2257 When non-zero, architecture debugging is enabled."),
2258 NULL,
2259 show_gdbarch_debug,
2260 &setdebuglist, &showdebuglist);
2261 }
2262 EOF
2263
2264 # close things off
2265 exec 1>&2
2266 #../move-if-change new-gdbarch.c gdbarch.c
2267 compare_new gdbarch.c
This page took 0.083545 seconds and 4 git commands to generate.