Replace 'core_regset_sections' by iterator method
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Iterate over all supported register notes in a core file. For each
659 # supported register note section, the iterator must call CB and pass
660 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
661 # the supported register note sections based on the current register
662 # values. Otherwise it should enumerate all supported register note
663 # sections.
664 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
665
666 # Create core file notes
667 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
668
669 # The elfcore writer hook to use to write Linux prpsinfo notes to core
670 # files. Most Linux architectures use the same prpsinfo32 or
671 # prpsinfo64 layouts, and so won't need to provide this hook, as we
672 # call the Linux generic routines in bfd to write prpsinfo notes by
673 # default.
674 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
675
676 # Find core file memory regions
677 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
678
679 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
680 # core file into buffer READBUF with length LEN. Return the number of bytes read
681 # (zero indicates failure).
682 # failed, otherwise, return the red length of READBUF.
683 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
686 # libraries list from core file into buffer READBUF with length LEN.
687 # Return the number of bytes read (zero indicates failure).
688 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
689
690 # How the core target converts a PTID from a core file to a string.
691 M:char *:core_pid_to_str:ptid_t ptid:ptid
692
693 # BFD target to use when generating a core file.
694 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
695
696 # If the elements of C++ vtables are in-place function descriptors rather
697 # than normal function pointers (which may point to code or a descriptor),
698 # set this to one.
699 v:int:vtable_function_descriptors:::0:0::0
700
701 # Set if the least significant bit of the delta is used instead of the least
702 # significant bit of the pfn for pointers to virtual member functions.
703 v:int:vbit_in_delta:::0:0::0
704
705 # Advance PC to next instruction in order to skip a permanent breakpoint.
706 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
707
708 # The maximum length of an instruction on this architecture in bytes.
709 V:ULONGEST:max_insn_length:::0:0
710
711 # Copy the instruction at FROM to TO, and make any adjustments
712 # necessary to single-step it at that address.
713 #
714 # REGS holds the state the thread's registers will have before
715 # executing the copied instruction; the PC in REGS will refer to FROM,
716 # not the copy at TO. The caller should update it to point at TO later.
717 #
718 # Return a pointer to data of the architecture's choice to be passed
719 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
720 # the instruction's effects have been completely simulated, with the
721 # resulting state written back to REGS.
722 #
723 # For a general explanation of displaced stepping and how GDB uses it,
724 # see the comments in infrun.c.
725 #
726 # The TO area is only guaranteed to have space for
727 # gdbarch_max_insn_length (arch) bytes, so this function must not
728 # write more bytes than that to that area.
729 #
730 # If you do not provide this function, GDB assumes that the
731 # architecture does not support displaced stepping.
732 #
733 # If your architecture doesn't need to adjust instructions before
734 # single-stepping them, consider using simple_displaced_step_copy_insn
735 # here.
736 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
737
738 # Return true if GDB should use hardware single-stepping to execute
739 # the displaced instruction identified by CLOSURE. If false,
740 # GDB will simply restart execution at the displaced instruction
741 # location, and it is up to the target to ensure GDB will receive
742 # control again (e.g. by placing a software breakpoint instruction
743 # into the displaced instruction buffer).
744 #
745 # The default implementation returns false on all targets that
746 # provide a gdbarch_software_single_step routine, and true otherwise.
747 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
748
749 # Fix up the state resulting from successfully single-stepping a
750 # displaced instruction, to give the result we would have gotten from
751 # stepping the instruction in its original location.
752 #
753 # REGS is the register state resulting from single-stepping the
754 # displaced instruction.
755 #
756 # CLOSURE is the result from the matching call to
757 # gdbarch_displaced_step_copy_insn.
758 #
759 # If you provide gdbarch_displaced_step_copy_insn.but not this
760 # function, then GDB assumes that no fixup is needed after
761 # single-stepping the instruction.
762 #
763 # For a general explanation of displaced stepping and how GDB uses it,
764 # see the comments in infrun.c.
765 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
766
767 # Free a closure returned by gdbarch_displaced_step_copy_insn.
768 #
769 # If you provide gdbarch_displaced_step_copy_insn, you must provide
770 # this function as well.
771 #
772 # If your architecture uses closures that don't need to be freed, then
773 # you can use simple_displaced_step_free_closure here.
774 #
775 # For a general explanation of displaced stepping and how GDB uses it,
776 # see the comments in infrun.c.
777 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
778
779 # Return the address of an appropriate place to put displaced
780 # instructions while we step over them. There need only be one such
781 # place, since we're only stepping one thread over a breakpoint at a
782 # time.
783 #
784 # For a general explanation of displaced stepping and how GDB uses it,
785 # see the comments in infrun.c.
786 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
787
788 # Relocate an instruction to execute at a different address. OLDLOC
789 # is the address in the inferior memory where the instruction to
790 # relocate is currently at. On input, TO points to the destination
791 # where we want the instruction to be copied (and possibly adjusted)
792 # to. On output, it points to one past the end of the resulting
793 # instruction(s). The effect of executing the instruction at TO shall
794 # be the same as if executing it at FROM. For example, call
795 # instructions that implicitly push the return address on the stack
796 # should be adjusted to return to the instruction after OLDLOC;
797 # relative branches, and other PC-relative instructions need the
798 # offset adjusted; etc.
799 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
800
801 # Refresh overlay mapped state for section OSECT.
802 F:void:overlay_update:struct obj_section *osect:osect
803
804 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
805
806 # Handle special encoding of static variables in stabs debug info.
807 F:const char *:static_transform_name:const char *name:name
808 # Set if the address in N_SO or N_FUN stabs may be zero.
809 v:int:sofun_address_maybe_missing:::0:0::0
810
811 # Parse the instruction at ADDR storing in the record execution log
812 # the registers REGCACHE and memory ranges that will be affected when
813 # the instruction executes, along with their current values.
814 # Return -1 if something goes wrong, 0 otherwise.
815 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
816
817 # Save process state after a signal.
818 # Return -1 if something goes wrong, 0 otherwise.
819 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
820
821 # Signal translation: translate inferior's signal (target's) number
822 # into GDB's representation. The implementation of this method must
823 # be host independent. IOW, don't rely on symbols of the NAT_FILE
824 # header (the nm-*.h files), the host <signal.h> header, or similar
825 # headers. This is mainly used when cross-debugging core files ---
826 # "Live" targets hide the translation behind the target interface
827 # (target_wait, target_resume, etc.).
828 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
829
830 # Signal translation: translate the GDB's internal signal number into
831 # the inferior's signal (target's) representation. The implementation
832 # of this method must be host independent. IOW, don't rely on symbols
833 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
834 # header, or similar headers.
835 # Return the target signal number if found, or -1 if the GDB internal
836 # signal number is invalid.
837 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
838
839 # Extra signal info inspection.
840 #
841 # Return a type suitable to inspect extra signal information.
842 M:struct type *:get_siginfo_type:void:
843
844 # Record architecture-specific information from the symbol table.
845 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
846
847 # Function for the 'catch syscall' feature.
848
849 # Get architecture-specific system calls information from registers.
850 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
851
852 # SystemTap related fields and functions.
853
854 # A NULL-terminated array of prefixes used to mark an integer constant
855 # on the architecture's assembly.
856 # For example, on x86 integer constants are written as:
857 #
858 # \$10 ;; integer constant 10
859 #
860 # in this case, this prefix would be the character \`\$\'.
861 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
862
863 # A NULL-terminated array of suffixes used to mark an integer constant
864 # on the architecture's assembly.
865 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
866
867 # A NULL-terminated array of prefixes used to mark a register name on
868 # the architecture's assembly.
869 # For example, on x86 the register name is written as:
870 #
871 # \%eax ;; register eax
872 #
873 # in this case, this prefix would be the character \`\%\'.
874 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
875
876 # A NULL-terminated array of suffixes used to mark a register name on
877 # the architecture's assembly.
878 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
879
880 # A NULL-terminated array of prefixes used to mark a register
881 # indirection on the architecture's assembly.
882 # For example, on x86 the register indirection is written as:
883 #
884 # \(\%eax\) ;; indirecting eax
885 #
886 # in this case, this prefix would be the charater \`\(\'.
887 #
888 # Please note that we use the indirection prefix also for register
889 # displacement, e.g., \`4\(\%eax\)\' on x86.
890 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
891
892 # A NULL-terminated array of suffixes used to mark a register
893 # indirection on the architecture's assembly.
894 # For example, on x86 the register indirection is written as:
895 #
896 # \(\%eax\) ;; indirecting eax
897 #
898 # in this case, this prefix would be the charater \`\)\'.
899 #
900 # Please note that we use the indirection suffix also for register
901 # displacement, e.g., \`4\(\%eax\)\' on x86.
902 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
903
904 # Prefix(es) used to name a register using GDB's nomenclature.
905 #
906 # For example, on PPC a register is represented by a number in the assembly
907 # language (e.g., \`10\' is the 10th general-purpose register). However,
908 # inside GDB this same register has an \`r\' appended to its name, so the 10th
909 # register would be represented as \`r10\' internally.
910 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
911
912 # Suffix used to name a register using GDB's nomenclature.
913 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
914
915 # Check if S is a single operand.
916 #
917 # Single operands can be:
918 # \- Literal integers, e.g. \`\$10\' on x86
919 # \- Register access, e.g. \`\%eax\' on x86
920 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
921 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
922 #
923 # This function should check for these patterns on the string
924 # and return 1 if some were found, or zero otherwise. Please try to match
925 # as much info as you can from the string, i.e., if you have to match
926 # something like \`\(\%\', do not match just the \`\(\'.
927 M:int:stap_is_single_operand:const char *s:s
928
929 # Function used to handle a "special case" in the parser.
930 #
931 # A "special case" is considered to be an unknown token, i.e., a token
932 # that the parser does not know how to parse. A good example of special
933 # case would be ARM's register displacement syntax:
934 #
935 # [R0, #4] ;; displacing R0 by 4
936 #
937 # Since the parser assumes that a register displacement is of the form:
938 #
939 # <number> <indirection_prefix> <register_name> <indirection_suffix>
940 #
941 # it means that it will not be able to recognize and parse this odd syntax.
942 # Therefore, we should add a special case function that will handle this token.
943 #
944 # This function should generate the proper expression form of the expression
945 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
946 # and so on). It should also return 1 if the parsing was successful, or zero
947 # if the token was not recognized as a special token (in this case, returning
948 # zero means that the special parser is deferring the parsing to the generic
949 # parser), and should advance the buffer pointer (p->arg).
950 M:int:stap_parse_special_token:struct stap_parse_info *p:p
951
952
953 # True if the list of shared libraries is one and only for all
954 # processes, as opposed to a list of shared libraries per inferior.
955 # This usually means that all processes, although may or may not share
956 # an address space, will see the same set of symbols at the same
957 # addresses.
958 v:int:has_global_solist:::0:0::0
959
960 # On some targets, even though each inferior has its own private
961 # address space, the debug interface takes care of making breakpoints
962 # visible to all address spaces automatically. For such cases,
963 # this property should be set to true.
964 v:int:has_global_breakpoints:::0:0::0
965
966 # True if inferiors share an address space (e.g., uClinux).
967 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
968
969 # True if a fast tracepoint can be set at an address.
970 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
971
972 # Return the "auto" target charset.
973 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
974 # Return the "auto" target wide charset.
975 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
976
977 # If non-empty, this is a file extension that will be opened in place
978 # of the file extension reported by the shared library list.
979 #
980 # This is most useful for toolchains that use a post-linker tool,
981 # where the names of the files run on the target differ in extension
982 # compared to the names of the files GDB should load for debug info.
983 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
984
985 # If true, the target OS has DOS-based file system semantics. That
986 # is, absolute paths include a drive name, and the backslash is
987 # considered a directory separator.
988 v:int:has_dos_based_file_system:::0:0::0
989
990 # Generate bytecodes to collect the return address in a frame.
991 # Since the bytecodes run on the target, possibly with GDB not even
992 # connected, the full unwinding machinery is not available, and
993 # typically this function will issue bytecodes for one or more likely
994 # places that the return address may be found.
995 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
996
997 # Implement the "info proc" command.
998 M:void:info_proc:const char *args, enum info_proc_what what:args, what
999
1000 # Implement the "info proc" command for core files. Noe that there
1001 # are two "info_proc"-like methods on gdbarch -- one for core files,
1002 # one for live targets.
1003 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1004
1005 # Iterate over all objfiles in the order that makes the most sense
1006 # for the architecture to make global symbol searches.
1007 #
1008 # CB is a callback function where OBJFILE is the objfile to be searched,
1009 # and CB_DATA a pointer to user-defined data (the same data that is passed
1010 # when calling this gdbarch method). The iteration stops if this function
1011 # returns nonzero.
1012 #
1013 # CB_DATA is a pointer to some user-defined data to be passed to
1014 # the callback.
1015 #
1016 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1017 # inspected when the symbol search was requested.
1018 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1019
1020 # Ravenscar arch-dependent ops.
1021 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1022
1023 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1024 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1025
1026 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1027 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1028
1029 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1030 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1031
1032 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1033 # Return 0 if *READPTR is already at the end of the buffer.
1034 # Return -1 if there is insufficient buffer for a whole entry.
1035 # Return 1 if an entry was read into *TYPEP and *VALP.
1036 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1037 EOF
1038 }
1039
1040 #
1041 # The .log file
1042 #
1043 exec > new-gdbarch.log
1044 function_list | while do_read
1045 do
1046 cat <<EOF
1047 ${class} ${returntype} ${function} ($formal)
1048 EOF
1049 for r in ${read}
1050 do
1051 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1052 done
1053 if class_is_predicate_p && fallback_default_p
1054 then
1055 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1056 kill $$
1057 exit 1
1058 fi
1059 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1060 then
1061 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1062 kill $$
1063 exit 1
1064 fi
1065 if class_is_multiarch_p
1066 then
1067 if class_is_predicate_p ; then :
1068 elif test "x${predefault}" = "x"
1069 then
1070 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1071 kill $$
1072 exit 1
1073 fi
1074 fi
1075 echo ""
1076 done
1077
1078 exec 1>&2
1079 compare_new gdbarch.log
1080
1081
1082 copyright ()
1083 {
1084 cat <<EOF
1085 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1086 /* vi:set ro: */
1087
1088 /* Dynamic architecture support for GDB, the GNU debugger.
1089
1090 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1091
1092 This file is part of GDB.
1093
1094 This program is free software; you can redistribute it and/or modify
1095 it under the terms of the GNU General Public License as published by
1096 the Free Software Foundation; either version 3 of the License, or
1097 (at your option) any later version.
1098
1099 This program is distributed in the hope that it will be useful,
1100 but WITHOUT ANY WARRANTY; without even the implied warranty of
1101 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1102 GNU General Public License for more details.
1103
1104 You should have received a copy of the GNU General Public License
1105 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1106
1107 /* This file was created with the aid of \`\`gdbarch.sh''.
1108
1109 The Bourne shell script \`\`gdbarch.sh'' creates the files
1110 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1111 against the existing \`\`gdbarch.[hc]''. Any differences found
1112 being reported.
1113
1114 If editing this file, please also run gdbarch.sh and merge any
1115 changes into that script. Conversely, when making sweeping changes
1116 to this file, modifying gdbarch.sh and using its output may prove
1117 easier. */
1118
1119 EOF
1120 }
1121
1122 #
1123 # The .h file
1124 #
1125
1126 exec > new-gdbarch.h
1127 copyright
1128 cat <<EOF
1129 #ifndef GDBARCH_H
1130 #define GDBARCH_H
1131
1132 #include "frame.h"
1133
1134 struct floatformat;
1135 struct ui_file;
1136 struct value;
1137 struct objfile;
1138 struct obj_section;
1139 struct minimal_symbol;
1140 struct regcache;
1141 struct reggroup;
1142 struct regset;
1143 struct disassemble_info;
1144 struct target_ops;
1145 struct obstack;
1146 struct bp_target_info;
1147 struct target_desc;
1148 struct displaced_step_closure;
1149 struct core_regset_section;
1150 struct syscall;
1151 struct agent_expr;
1152 struct axs_value;
1153 struct stap_parse_info;
1154 struct ravenscar_arch_ops;
1155 struct elf_internal_linux_prpsinfo;
1156
1157 /* The architecture associated with the inferior through the
1158 connection to the target.
1159
1160 The architecture vector provides some information that is really a
1161 property of the inferior, accessed through a particular target:
1162 ptrace operations; the layout of certain RSP packets; the solib_ops
1163 vector; etc. To differentiate architecture accesses to
1164 per-inferior/target properties from
1165 per-thread/per-frame/per-objfile properties, accesses to
1166 per-inferior/target properties should be made through this
1167 gdbarch. */
1168
1169 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1170 extern struct gdbarch *target_gdbarch (void);
1171
1172 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1173 gdbarch method. */
1174
1175 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1176 (struct objfile *objfile, void *cb_data);
1177
1178 typedef void (iterate_over_regset_sections_cb)
1179 (const char *sect_name, int size, const char *human_name, void *cb_data);
1180 EOF
1181
1182 # function typedef's
1183 printf "\n"
1184 printf "\n"
1185 printf "/* The following are pre-initialized by GDBARCH. */\n"
1186 function_list | while do_read
1187 do
1188 if class_is_info_p
1189 then
1190 printf "\n"
1191 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1192 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1193 fi
1194 done
1195
1196 # function typedef's
1197 printf "\n"
1198 printf "\n"
1199 printf "/* The following are initialized by the target dependent code. */\n"
1200 function_list | while do_read
1201 do
1202 if [ -n "${comment}" ]
1203 then
1204 echo "${comment}" | sed \
1205 -e '2 s,#,/*,' \
1206 -e '3,$ s,#, ,' \
1207 -e '$ s,$, */,'
1208 fi
1209
1210 if class_is_predicate_p
1211 then
1212 printf "\n"
1213 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1214 fi
1215 if class_is_variable_p
1216 then
1217 printf "\n"
1218 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1219 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1220 fi
1221 if class_is_function_p
1222 then
1223 printf "\n"
1224 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1225 then
1226 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1227 elif class_is_multiarch_p
1228 then
1229 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1230 else
1231 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1232 fi
1233 if [ "x${formal}" = "xvoid" ]
1234 then
1235 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1236 else
1237 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1238 fi
1239 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1240 fi
1241 done
1242
1243 # close it off
1244 cat <<EOF
1245
1246 /* Definition for an unknown syscall, used basically in error-cases. */
1247 #define UNKNOWN_SYSCALL (-1)
1248
1249 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1250
1251
1252 /* Mechanism for co-ordinating the selection of a specific
1253 architecture.
1254
1255 GDB targets (*-tdep.c) can register an interest in a specific
1256 architecture. Other GDB components can register a need to maintain
1257 per-architecture data.
1258
1259 The mechanisms below ensures that there is only a loose connection
1260 between the set-architecture command and the various GDB
1261 components. Each component can independently register their need
1262 to maintain architecture specific data with gdbarch.
1263
1264 Pragmatics:
1265
1266 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1267 didn't scale.
1268
1269 The more traditional mega-struct containing architecture specific
1270 data for all the various GDB components was also considered. Since
1271 GDB is built from a variable number of (fairly independent)
1272 components it was determined that the global aproach was not
1273 applicable. */
1274
1275
1276 /* Register a new architectural family with GDB.
1277
1278 Register support for the specified ARCHITECTURE with GDB. When
1279 gdbarch determines that the specified architecture has been
1280 selected, the corresponding INIT function is called.
1281
1282 --
1283
1284 The INIT function takes two parameters: INFO which contains the
1285 information available to gdbarch about the (possibly new)
1286 architecture; ARCHES which is a list of the previously created
1287 \`\`struct gdbarch'' for this architecture.
1288
1289 The INFO parameter is, as far as possible, be pre-initialized with
1290 information obtained from INFO.ABFD or the global defaults.
1291
1292 The ARCHES parameter is a linked list (sorted most recently used)
1293 of all the previously created architures for this architecture
1294 family. The (possibly NULL) ARCHES->gdbarch can used to access
1295 values from the previously selected architecture for this
1296 architecture family.
1297
1298 The INIT function shall return any of: NULL - indicating that it
1299 doesn't recognize the selected architecture; an existing \`\`struct
1300 gdbarch'' from the ARCHES list - indicating that the new
1301 architecture is just a synonym for an earlier architecture (see
1302 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1303 - that describes the selected architecture (see gdbarch_alloc()).
1304
1305 The DUMP_TDEP function shall print out all target specific values.
1306 Care should be taken to ensure that the function works in both the
1307 multi-arch and non- multi-arch cases. */
1308
1309 struct gdbarch_list
1310 {
1311 struct gdbarch *gdbarch;
1312 struct gdbarch_list *next;
1313 };
1314
1315 struct gdbarch_info
1316 {
1317 /* Use default: NULL (ZERO). */
1318 const struct bfd_arch_info *bfd_arch_info;
1319
1320 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1321 enum bfd_endian byte_order;
1322
1323 enum bfd_endian byte_order_for_code;
1324
1325 /* Use default: NULL (ZERO). */
1326 bfd *abfd;
1327
1328 /* Use default: NULL (ZERO). */
1329 struct gdbarch_tdep_info *tdep_info;
1330
1331 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1332 enum gdb_osabi osabi;
1333
1334 /* Use default: NULL (ZERO). */
1335 const struct target_desc *target_desc;
1336 };
1337
1338 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1339 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1340
1341 /* DEPRECATED - use gdbarch_register() */
1342 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1343
1344 extern void gdbarch_register (enum bfd_architecture architecture,
1345 gdbarch_init_ftype *,
1346 gdbarch_dump_tdep_ftype *);
1347
1348
1349 /* Return a freshly allocated, NULL terminated, array of the valid
1350 architecture names. Since architectures are registered during the
1351 _initialize phase this function only returns useful information
1352 once initialization has been completed. */
1353
1354 extern const char **gdbarch_printable_names (void);
1355
1356
1357 /* Helper function. Search the list of ARCHES for a GDBARCH that
1358 matches the information provided by INFO. */
1359
1360 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1361
1362
1363 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1364 basic initialization using values obtained from the INFO and TDEP
1365 parameters. set_gdbarch_*() functions are called to complete the
1366 initialization of the object. */
1367
1368 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1369
1370
1371 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1372 It is assumed that the caller freeds the \`\`struct
1373 gdbarch_tdep''. */
1374
1375 extern void gdbarch_free (struct gdbarch *);
1376
1377
1378 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1379 obstack. The memory is freed when the corresponding architecture
1380 is also freed. */
1381
1382 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1383 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1384 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1385
1386
1387 /* Helper function. Force an update of the current architecture.
1388
1389 The actual architecture selected is determined by INFO, \`\`(gdb) set
1390 architecture'' et.al., the existing architecture and BFD's default
1391 architecture. INFO should be initialized to zero and then selected
1392 fields should be updated.
1393
1394 Returns non-zero if the update succeeds. */
1395
1396 extern int gdbarch_update_p (struct gdbarch_info info);
1397
1398
1399 /* Helper function. Find an architecture matching info.
1400
1401 INFO should be initialized using gdbarch_info_init, relevant fields
1402 set, and then finished using gdbarch_info_fill.
1403
1404 Returns the corresponding architecture, or NULL if no matching
1405 architecture was found. */
1406
1407 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1408
1409
1410 /* Helper function. Set the target gdbarch to "gdbarch". */
1411
1412 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1413
1414
1415 /* Register per-architecture data-pointer.
1416
1417 Reserve space for a per-architecture data-pointer. An identifier
1418 for the reserved data-pointer is returned. That identifer should
1419 be saved in a local static variable.
1420
1421 Memory for the per-architecture data shall be allocated using
1422 gdbarch_obstack_zalloc. That memory will be deleted when the
1423 corresponding architecture object is deleted.
1424
1425 When a previously created architecture is re-selected, the
1426 per-architecture data-pointer for that previous architecture is
1427 restored. INIT() is not re-called.
1428
1429 Multiple registrarants for any architecture are allowed (and
1430 strongly encouraged). */
1431
1432 struct gdbarch_data;
1433
1434 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1435 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1436 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1437 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1438 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1439 struct gdbarch_data *data,
1440 void *pointer);
1441
1442 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1443
1444
1445 /* Set the dynamic target-system-dependent parameters (architecture,
1446 byte-order, ...) using information found in the BFD. */
1447
1448 extern void set_gdbarch_from_file (bfd *);
1449
1450
1451 /* Initialize the current architecture to the "first" one we find on
1452 our list. */
1453
1454 extern void initialize_current_architecture (void);
1455
1456 /* gdbarch trace variable */
1457 extern unsigned int gdbarch_debug;
1458
1459 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1460
1461 #endif
1462 EOF
1463 exec 1>&2
1464 #../move-if-change new-gdbarch.h gdbarch.h
1465 compare_new gdbarch.h
1466
1467
1468 #
1469 # C file
1470 #
1471
1472 exec > new-gdbarch.c
1473 copyright
1474 cat <<EOF
1475
1476 #include "defs.h"
1477 #include "arch-utils.h"
1478
1479 #include "gdbcmd.h"
1480 #include "inferior.h"
1481 #include "symcat.h"
1482
1483 #include "floatformat.h"
1484 #include "reggroups.h"
1485 #include "osabi.h"
1486 #include "gdb_obstack.h"
1487 #include "observer.h"
1488 #include "regcache.h"
1489 #include "objfiles.h"
1490
1491 /* Static function declarations */
1492
1493 static void alloc_gdbarch_data (struct gdbarch *);
1494
1495 /* Non-zero if we want to trace architecture code. */
1496
1497 #ifndef GDBARCH_DEBUG
1498 #define GDBARCH_DEBUG 0
1499 #endif
1500 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1501 static void
1502 show_gdbarch_debug (struct ui_file *file, int from_tty,
1503 struct cmd_list_element *c, const char *value)
1504 {
1505 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1506 }
1507
1508 static const char *
1509 pformat (const struct floatformat **format)
1510 {
1511 if (format == NULL)
1512 return "(null)";
1513 else
1514 /* Just print out one of them - this is only for diagnostics. */
1515 return format[0]->name;
1516 }
1517
1518 static const char *
1519 pstring (const char *string)
1520 {
1521 if (string == NULL)
1522 return "(null)";
1523 return string;
1524 }
1525
1526 /* Helper function to print a list of strings, represented as "const
1527 char *const *". The list is printed comma-separated. */
1528
1529 static char *
1530 pstring_list (const char *const *list)
1531 {
1532 static char ret[100];
1533 const char *const *p;
1534 size_t offset = 0;
1535
1536 if (list == NULL)
1537 return "(null)";
1538
1539 ret[0] = '\0';
1540 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1541 {
1542 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1543 offset += 2 + s;
1544 }
1545
1546 if (offset > 0)
1547 {
1548 gdb_assert (offset - 2 < sizeof (ret));
1549 ret[offset - 2] = '\0';
1550 }
1551
1552 return ret;
1553 }
1554
1555 EOF
1556
1557 # gdbarch open the gdbarch object
1558 printf "\n"
1559 printf "/* Maintain the struct gdbarch object. */\n"
1560 printf "\n"
1561 printf "struct gdbarch\n"
1562 printf "{\n"
1563 printf " /* Has this architecture been fully initialized? */\n"
1564 printf " int initialized_p;\n"
1565 printf "\n"
1566 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1567 printf " struct obstack *obstack;\n"
1568 printf "\n"
1569 printf " /* basic architectural information. */\n"
1570 function_list | while do_read
1571 do
1572 if class_is_info_p
1573 then
1574 printf " ${returntype} ${function};\n"
1575 fi
1576 done
1577 printf "\n"
1578 printf " /* target specific vector. */\n"
1579 printf " struct gdbarch_tdep *tdep;\n"
1580 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1581 printf "\n"
1582 printf " /* per-architecture data-pointers. */\n"
1583 printf " unsigned nr_data;\n"
1584 printf " void **data;\n"
1585 printf "\n"
1586 cat <<EOF
1587 /* Multi-arch values.
1588
1589 When extending this structure you must:
1590
1591 Add the field below.
1592
1593 Declare set/get functions and define the corresponding
1594 macro in gdbarch.h.
1595
1596 gdbarch_alloc(): If zero/NULL is not a suitable default,
1597 initialize the new field.
1598
1599 verify_gdbarch(): Confirm that the target updated the field
1600 correctly.
1601
1602 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1603 field is dumped out
1604
1605 get_gdbarch(): Implement the set/get functions (probably using
1606 the macro's as shortcuts).
1607
1608 */
1609
1610 EOF
1611 function_list | while do_read
1612 do
1613 if class_is_variable_p
1614 then
1615 printf " ${returntype} ${function};\n"
1616 elif class_is_function_p
1617 then
1618 printf " gdbarch_${function}_ftype *${function};\n"
1619 fi
1620 done
1621 printf "};\n"
1622
1623 # Create a new gdbarch struct
1624 cat <<EOF
1625
1626 /* Create a new \`\`struct gdbarch'' based on information provided by
1627 \`\`struct gdbarch_info''. */
1628 EOF
1629 printf "\n"
1630 cat <<EOF
1631 struct gdbarch *
1632 gdbarch_alloc (const struct gdbarch_info *info,
1633 struct gdbarch_tdep *tdep)
1634 {
1635 struct gdbarch *gdbarch;
1636
1637 /* Create an obstack for allocating all the per-architecture memory,
1638 then use that to allocate the architecture vector. */
1639 struct obstack *obstack = XNEW (struct obstack);
1640 obstack_init (obstack);
1641 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1642 memset (gdbarch, 0, sizeof (*gdbarch));
1643 gdbarch->obstack = obstack;
1644
1645 alloc_gdbarch_data (gdbarch);
1646
1647 gdbarch->tdep = tdep;
1648 EOF
1649 printf "\n"
1650 function_list | while do_read
1651 do
1652 if class_is_info_p
1653 then
1654 printf " gdbarch->${function} = info->${function};\n"
1655 fi
1656 done
1657 printf "\n"
1658 printf " /* Force the explicit initialization of these. */\n"
1659 function_list | while do_read
1660 do
1661 if class_is_function_p || class_is_variable_p
1662 then
1663 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1664 then
1665 printf " gdbarch->${function} = ${predefault};\n"
1666 fi
1667 fi
1668 done
1669 cat <<EOF
1670 /* gdbarch_alloc() */
1671
1672 return gdbarch;
1673 }
1674 EOF
1675
1676 # Free a gdbarch struct.
1677 printf "\n"
1678 printf "\n"
1679 cat <<EOF
1680 /* Allocate extra space using the per-architecture obstack. */
1681
1682 void *
1683 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1684 {
1685 void *data = obstack_alloc (arch->obstack, size);
1686
1687 memset (data, 0, size);
1688 return data;
1689 }
1690
1691
1692 /* Free a gdbarch struct. This should never happen in normal
1693 operation --- once you've created a gdbarch, you keep it around.
1694 However, if an architecture's init function encounters an error
1695 building the structure, it may need to clean up a partially
1696 constructed gdbarch. */
1697
1698 void
1699 gdbarch_free (struct gdbarch *arch)
1700 {
1701 struct obstack *obstack;
1702
1703 gdb_assert (arch != NULL);
1704 gdb_assert (!arch->initialized_p);
1705 obstack = arch->obstack;
1706 obstack_free (obstack, 0); /* Includes the ARCH. */
1707 xfree (obstack);
1708 }
1709 EOF
1710
1711 # verify a new architecture
1712 cat <<EOF
1713
1714
1715 /* Ensure that all values in a GDBARCH are reasonable. */
1716
1717 static void
1718 verify_gdbarch (struct gdbarch *gdbarch)
1719 {
1720 struct ui_file *log;
1721 struct cleanup *cleanups;
1722 long length;
1723 char *buf;
1724
1725 log = mem_fileopen ();
1726 cleanups = make_cleanup_ui_file_delete (log);
1727 /* fundamental */
1728 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1729 fprintf_unfiltered (log, "\n\tbyte-order");
1730 if (gdbarch->bfd_arch_info == NULL)
1731 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1732 /* Check those that need to be defined for the given multi-arch level. */
1733 EOF
1734 function_list | while do_read
1735 do
1736 if class_is_function_p || class_is_variable_p
1737 then
1738 if [ "x${invalid_p}" = "x0" ]
1739 then
1740 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1741 elif class_is_predicate_p
1742 then
1743 printf " /* Skip verify of ${function}, has predicate. */\n"
1744 # FIXME: See do_read for potential simplification
1745 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1746 then
1747 printf " if (${invalid_p})\n"
1748 printf " gdbarch->${function} = ${postdefault};\n"
1749 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1750 then
1751 printf " if (gdbarch->${function} == ${predefault})\n"
1752 printf " gdbarch->${function} = ${postdefault};\n"
1753 elif [ -n "${postdefault}" ]
1754 then
1755 printf " if (gdbarch->${function} == 0)\n"
1756 printf " gdbarch->${function} = ${postdefault};\n"
1757 elif [ -n "${invalid_p}" ]
1758 then
1759 printf " if (${invalid_p})\n"
1760 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1761 elif [ -n "${predefault}" ]
1762 then
1763 printf " if (gdbarch->${function} == ${predefault})\n"
1764 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1765 fi
1766 fi
1767 done
1768 cat <<EOF
1769 buf = ui_file_xstrdup (log, &length);
1770 make_cleanup (xfree, buf);
1771 if (length > 0)
1772 internal_error (__FILE__, __LINE__,
1773 _("verify_gdbarch: the following are invalid ...%s"),
1774 buf);
1775 do_cleanups (cleanups);
1776 }
1777 EOF
1778
1779 # dump the structure
1780 printf "\n"
1781 printf "\n"
1782 cat <<EOF
1783 /* Print out the details of the current architecture. */
1784
1785 void
1786 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1787 {
1788 const char *gdb_nm_file = "<not-defined>";
1789
1790 #if defined (GDB_NM_FILE)
1791 gdb_nm_file = GDB_NM_FILE;
1792 #endif
1793 fprintf_unfiltered (file,
1794 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1795 gdb_nm_file);
1796 EOF
1797 function_list | sort -t: -k 3 | while do_read
1798 do
1799 # First the predicate
1800 if class_is_predicate_p
1801 then
1802 printf " fprintf_unfiltered (file,\n"
1803 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1804 printf " gdbarch_${function}_p (gdbarch));\n"
1805 fi
1806 # Print the corresponding value.
1807 if class_is_function_p
1808 then
1809 printf " fprintf_unfiltered (file,\n"
1810 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1811 printf " host_address_to_string (gdbarch->${function}));\n"
1812 else
1813 # It is a variable
1814 case "${print}:${returntype}" in
1815 :CORE_ADDR )
1816 fmt="%s"
1817 print="core_addr_to_string_nz (gdbarch->${function})"
1818 ;;
1819 :* )
1820 fmt="%s"
1821 print="plongest (gdbarch->${function})"
1822 ;;
1823 * )
1824 fmt="%s"
1825 ;;
1826 esac
1827 printf " fprintf_unfiltered (file,\n"
1828 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1829 printf " ${print});\n"
1830 fi
1831 done
1832 cat <<EOF
1833 if (gdbarch->dump_tdep != NULL)
1834 gdbarch->dump_tdep (gdbarch, file);
1835 }
1836 EOF
1837
1838
1839 # GET/SET
1840 printf "\n"
1841 cat <<EOF
1842 struct gdbarch_tdep *
1843 gdbarch_tdep (struct gdbarch *gdbarch)
1844 {
1845 if (gdbarch_debug >= 2)
1846 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1847 return gdbarch->tdep;
1848 }
1849 EOF
1850 printf "\n"
1851 function_list | while do_read
1852 do
1853 if class_is_predicate_p
1854 then
1855 printf "\n"
1856 printf "int\n"
1857 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1858 printf "{\n"
1859 printf " gdb_assert (gdbarch != NULL);\n"
1860 printf " return ${predicate};\n"
1861 printf "}\n"
1862 fi
1863 if class_is_function_p
1864 then
1865 printf "\n"
1866 printf "${returntype}\n"
1867 if [ "x${formal}" = "xvoid" ]
1868 then
1869 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1870 else
1871 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1872 fi
1873 printf "{\n"
1874 printf " gdb_assert (gdbarch != NULL);\n"
1875 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1876 if class_is_predicate_p && test -n "${predefault}"
1877 then
1878 # Allow a call to a function with a predicate.
1879 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1880 fi
1881 printf " if (gdbarch_debug >= 2)\n"
1882 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1883 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1884 then
1885 if class_is_multiarch_p
1886 then
1887 params="gdbarch"
1888 else
1889 params=""
1890 fi
1891 else
1892 if class_is_multiarch_p
1893 then
1894 params="gdbarch, ${actual}"
1895 else
1896 params="${actual}"
1897 fi
1898 fi
1899 if [ "x${returntype}" = "xvoid" ]
1900 then
1901 printf " gdbarch->${function} (${params});\n"
1902 else
1903 printf " return gdbarch->${function} (${params});\n"
1904 fi
1905 printf "}\n"
1906 printf "\n"
1907 printf "void\n"
1908 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1909 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1910 printf "{\n"
1911 printf " gdbarch->${function} = ${function};\n"
1912 printf "}\n"
1913 elif class_is_variable_p
1914 then
1915 printf "\n"
1916 printf "${returntype}\n"
1917 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1918 printf "{\n"
1919 printf " gdb_assert (gdbarch != NULL);\n"
1920 if [ "x${invalid_p}" = "x0" ]
1921 then
1922 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1923 elif [ -n "${invalid_p}" ]
1924 then
1925 printf " /* Check variable is valid. */\n"
1926 printf " gdb_assert (!(${invalid_p}));\n"
1927 elif [ -n "${predefault}" ]
1928 then
1929 printf " /* Check variable changed from pre-default. */\n"
1930 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1931 fi
1932 printf " if (gdbarch_debug >= 2)\n"
1933 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1934 printf " return gdbarch->${function};\n"
1935 printf "}\n"
1936 printf "\n"
1937 printf "void\n"
1938 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1939 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1940 printf "{\n"
1941 printf " gdbarch->${function} = ${function};\n"
1942 printf "}\n"
1943 elif class_is_info_p
1944 then
1945 printf "\n"
1946 printf "${returntype}\n"
1947 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1948 printf "{\n"
1949 printf " gdb_assert (gdbarch != NULL);\n"
1950 printf " if (gdbarch_debug >= 2)\n"
1951 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1952 printf " return gdbarch->${function};\n"
1953 printf "}\n"
1954 fi
1955 done
1956
1957 # All the trailing guff
1958 cat <<EOF
1959
1960
1961 /* Keep a registry of per-architecture data-pointers required by GDB
1962 modules. */
1963
1964 struct gdbarch_data
1965 {
1966 unsigned index;
1967 int init_p;
1968 gdbarch_data_pre_init_ftype *pre_init;
1969 gdbarch_data_post_init_ftype *post_init;
1970 };
1971
1972 struct gdbarch_data_registration
1973 {
1974 struct gdbarch_data *data;
1975 struct gdbarch_data_registration *next;
1976 };
1977
1978 struct gdbarch_data_registry
1979 {
1980 unsigned nr;
1981 struct gdbarch_data_registration *registrations;
1982 };
1983
1984 struct gdbarch_data_registry gdbarch_data_registry =
1985 {
1986 0, NULL,
1987 };
1988
1989 static struct gdbarch_data *
1990 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1991 gdbarch_data_post_init_ftype *post_init)
1992 {
1993 struct gdbarch_data_registration **curr;
1994
1995 /* Append the new registration. */
1996 for (curr = &gdbarch_data_registry.registrations;
1997 (*curr) != NULL;
1998 curr = &(*curr)->next);
1999 (*curr) = XNEW (struct gdbarch_data_registration);
2000 (*curr)->next = NULL;
2001 (*curr)->data = XNEW (struct gdbarch_data);
2002 (*curr)->data->index = gdbarch_data_registry.nr++;
2003 (*curr)->data->pre_init = pre_init;
2004 (*curr)->data->post_init = post_init;
2005 (*curr)->data->init_p = 1;
2006 return (*curr)->data;
2007 }
2008
2009 struct gdbarch_data *
2010 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2011 {
2012 return gdbarch_data_register (pre_init, NULL);
2013 }
2014
2015 struct gdbarch_data *
2016 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2017 {
2018 return gdbarch_data_register (NULL, post_init);
2019 }
2020
2021 /* Create/delete the gdbarch data vector. */
2022
2023 static void
2024 alloc_gdbarch_data (struct gdbarch *gdbarch)
2025 {
2026 gdb_assert (gdbarch->data == NULL);
2027 gdbarch->nr_data = gdbarch_data_registry.nr;
2028 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2029 }
2030
2031 /* Initialize the current value of the specified per-architecture
2032 data-pointer. */
2033
2034 void
2035 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2036 struct gdbarch_data *data,
2037 void *pointer)
2038 {
2039 gdb_assert (data->index < gdbarch->nr_data);
2040 gdb_assert (gdbarch->data[data->index] == NULL);
2041 gdb_assert (data->pre_init == NULL);
2042 gdbarch->data[data->index] = pointer;
2043 }
2044
2045 /* Return the current value of the specified per-architecture
2046 data-pointer. */
2047
2048 void *
2049 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2050 {
2051 gdb_assert (data->index < gdbarch->nr_data);
2052 if (gdbarch->data[data->index] == NULL)
2053 {
2054 /* The data-pointer isn't initialized, call init() to get a
2055 value. */
2056 if (data->pre_init != NULL)
2057 /* Mid architecture creation: pass just the obstack, and not
2058 the entire architecture, as that way it isn't possible for
2059 pre-init code to refer to undefined architecture
2060 fields. */
2061 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2062 else if (gdbarch->initialized_p
2063 && data->post_init != NULL)
2064 /* Post architecture creation: pass the entire architecture
2065 (as all fields are valid), but be careful to also detect
2066 recursive references. */
2067 {
2068 gdb_assert (data->init_p);
2069 data->init_p = 0;
2070 gdbarch->data[data->index] = data->post_init (gdbarch);
2071 data->init_p = 1;
2072 }
2073 else
2074 /* The architecture initialization hasn't completed - punt -
2075 hope that the caller knows what they are doing. Once
2076 deprecated_set_gdbarch_data has been initialized, this can be
2077 changed to an internal error. */
2078 return NULL;
2079 gdb_assert (gdbarch->data[data->index] != NULL);
2080 }
2081 return gdbarch->data[data->index];
2082 }
2083
2084
2085 /* Keep a registry of the architectures known by GDB. */
2086
2087 struct gdbarch_registration
2088 {
2089 enum bfd_architecture bfd_architecture;
2090 gdbarch_init_ftype *init;
2091 gdbarch_dump_tdep_ftype *dump_tdep;
2092 struct gdbarch_list *arches;
2093 struct gdbarch_registration *next;
2094 };
2095
2096 static struct gdbarch_registration *gdbarch_registry = NULL;
2097
2098 static void
2099 append_name (const char ***buf, int *nr, const char *name)
2100 {
2101 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2102 (*buf)[*nr] = name;
2103 *nr += 1;
2104 }
2105
2106 const char **
2107 gdbarch_printable_names (void)
2108 {
2109 /* Accumulate a list of names based on the registed list of
2110 architectures. */
2111 int nr_arches = 0;
2112 const char **arches = NULL;
2113 struct gdbarch_registration *rego;
2114
2115 for (rego = gdbarch_registry;
2116 rego != NULL;
2117 rego = rego->next)
2118 {
2119 const struct bfd_arch_info *ap;
2120 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2121 if (ap == NULL)
2122 internal_error (__FILE__, __LINE__,
2123 _("gdbarch_architecture_names: multi-arch unknown"));
2124 do
2125 {
2126 append_name (&arches, &nr_arches, ap->printable_name);
2127 ap = ap->next;
2128 }
2129 while (ap != NULL);
2130 }
2131 append_name (&arches, &nr_arches, NULL);
2132 return arches;
2133 }
2134
2135
2136 void
2137 gdbarch_register (enum bfd_architecture bfd_architecture,
2138 gdbarch_init_ftype *init,
2139 gdbarch_dump_tdep_ftype *dump_tdep)
2140 {
2141 struct gdbarch_registration **curr;
2142 const struct bfd_arch_info *bfd_arch_info;
2143
2144 /* Check that BFD recognizes this architecture */
2145 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2146 if (bfd_arch_info == NULL)
2147 {
2148 internal_error (__FILE__, __LINE__,
2149 _("gdbarch: Attempt to register "
2150 "unknown architecture (%d)"),
2151 bfd_architecture);
2152 }
2153 /* Check that we haven't seen this architecture before. */
2154 for (curr = &gdbarch_registry;
2155 (*curr) != NULL;
2156 curr = &(*curr)->next)
2157 {
2158 if (bfd_architecture == (*curr)->bfd_architecture)
2159 internal_error (__FILE__, __LINE__,
2160 _("gdbarch: Duplicate registration "
2161 "of architecture (%s)"),
2162 bfd_arch_info->printable_name);
2163 }
2164 /* log it */
2165 if (gdbarch_debug)
2166 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2167 bfd_arch_info->printable_name,
2168 host_address_to_string (init));
2169 /* Append it */
2170 (*curr) = XNEW (struct gdbarch_registration);
2171 (*curr)->bfd_architecture = bfd_architecture;
2172 (*curr)->init = init;
2173 (*curr)->dump_tdep = dump_tdep;
2174 (*curr)->arches = NULL;
2175 (*curr)->next = NULL;
2176 }
2177
2178 void
2179 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2180 gdbarch_init_ftype *init)
2181 {
2182 gdbarch_register (bfd_architecture, init, NULL);
2183 }
2184
2185
2186 /* Look for an architecture using gdbarch_info. */
2187
2188 struct gdbarch_list *
2189 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2190 const struct gdbarch_info *info)
2191 {
2192 for (; arches != NULL; arches = arches->next)
2193 {
2194 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2195 continue;
2196 if (info->byte_order != arches->gdbarch->byte_order)
2197 continue;
2198 if (info->osabi != arches->gdbarch->osabi)
2199 continue;
2200 if (info->target_desc != arches->gdbarch->target_desc)
2201 continue;
2202 return arches;
2203 }
2204 return NULL;
2205 }
2206
2207
2208 /* Find an architecture that matches the specified INFO. Create a new
2209 architecture if needed. Return that new architecture. */
2210
2211 struct gdbarch *
2212 gdbarch_find_by_info (struct gdbarch_info info)
2213 {
2214 struct gdbarch *new_gdbarch;
2215 struct gdbarch_registration *rego;
2216
2217 /* Fill in missing parts of the INFO struct using a number of
2218 sources: "set ..."; INFOabfd supplied; and the global
2219 defaults. */
2220 gdbarch_info_fill (&info);
2221
2222 /* Must have found some sort of architecture. */
2223 gdb_assert (info.bfd_arch_info != NULL);
2224
2225 if (gdbarch_debug)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2229 (info.bfd_arch_info != NULL
2230 ? info.bfd_arch_info->printable_name
2231 : "(null)"));
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2234 info.byte_order,
2235 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2236 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2237 : "default"));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2240 info.osabi, gdbarch_osabi_name (info.osabi));
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_find_by_info: info.abfd %s\n",
2243 host_address_to_string (info.abfd));
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_find_by_info: info.tdep_info %s\n",
2246 host_address_to_string (info.tdep_info));
2247 }
2248
2249 /* Find the tdep code that knows about this architecture. */
2250 for (rego = gdbarch_registry;
2251 rego != NULL;
2252 rego = rego->next)
2253 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2254 break;
2255 if (rego == NULL)
2256 {
2257 if (gdbarch_debug)
2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2259 "No matching architecture\n");
2260 return 0;
2261 }
2262
2263 /* Ask the tdep code for an architecture that matches "info". */
2264 new_gdbarch = rego->init (info, rego->arches);
2265
2266 /* Did the tdep code like it? No. Reject the change and revert to
2267 the old architecture. */
2268 if (new_gdbarch == NULL)
2269 {
2270 if (gdbarch_debug)
2271 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2272 "Target rejected architecture\n");
2273 return NULL;
2274 }
2275
2276 /* Is this a pre-existing architecture (as determined by already
2277 being initialized)? Move it to the front of the architecture
2278 list (keeping the list sorted Most Recently Used). */
2279 if (new_gdbarch->initialized_p)
2280 {
2281 struct gdbarch_list **list;
2282 struct gdbarch_list *this;
2283 if (gdbarch_debug)
2284 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2285 "Previous architecture %s (%s) selected\n",
2286 host_address_to_string (new_gdbarch),
2287 new_gdbarch->bfd_arch_info->printable_name);
2288 /* Find the existing arch in the list. */
2289 for (list = &rego->arches;
2290 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2291 list = &(*list)->next);
2292 /* It had better be in the list of architectures. */
2293 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2294 /* Unlink THIS. */
2295 this = (*list);
2296 (*list) = this->next;
2297 /* Insert THIS at the front. */
2298 this->next = rego->arches;
2299 rego->arches = this;
2300 /* Return it. */
2301 return new_gdbarch;
2302 }
2303
2304 /* It's a new architecture. */
2305 if (gdbarch_debug)
2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2307 "New architecture %s (%s) selected\n",
2308 host_address_to_string (new_gdbarch),
2309 new_gdbarch->bfd_arch_info->printable_name);
2310
2311 /* Insert the new architecture into the front of the architecture
2312 list (keep the list sorted Most Recently Used). */
2313 {
2314 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2315 this->next = rego->arches;
2316 this->gdbarch = new_gdbarch;
2317 rego->arches = this;
2318 }
2319
2320 /* Check that the newly installed architecture is valid. Plug in
2321 any post init values. */
2322 new_gdbarch->dump_tdep = rego->dump_tdep;
2323 verify_gdbarch (new_gdbarch);
2324 new_gdbarch->initialized_p = 1;
2325
2326 if (gdbarch_debug)
2327 gdbarch_dump (new_gdbarch, gdb_stdlog);
2328
2329 return new_gdbarch;
2330 }
2331
2332 /* Make the specified architecture current. */
2333
2334 void
2335 set_target_gdbarch (struct gdbarch *new_gdbarch)
2336 {
2337 gdb_assert (new_gdbarch != NULL);
2338 gdb_assert (new_gdbarch->initialized_p);
2339 current_inferior ()->gdbarch = new_gdbarch;
2340 observer_notify_architecture_changed (new_gdbarch);
2341 registers_changed ();
2342 }
2343
2344 /* Return the current inferior's arch. */
2345
2346 struct gdbarch *
2347 target_gdbarch (void)
2348 {
2349 return current_inferior ()->gdbarch;
2350 }
2351
2352 extern void _initialize_gdbarch (void);
2353
2354 void
2355 _initialize_gdbarch (void)
2356 {
2357 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2358 Set architecture debugging."), _("\\
2359 Show architecture debugging."), _("\\
2360 When non-zero, architecture debugging is enabled."),
2361 NULL,
2362 show_gdbarch_debug,
2363 &setdebuglist, &showdebuglist);
2364 }
2365 EOF
2366
2367 # close things off
2368 exec 1>&2
2369 #../move-if-change new-gdbarch.c gdbarch.c
2370 compare_new gdbarch.c
This page took 0.084005 seconds and 4 git commands to generate.