2002-08-14 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
471 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
472 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473 # MAP a GDB RAW register number onto a simulator register number. See
474 # also include/...-sim.h.
475 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
476 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
477 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
478 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
479 # setjmp/longjmp support.
480 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
481 #
482 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
483 # much better but at least they are vaguely consistent). The headers
484 # and body contain convoluted #if/#else sequences for determine how
485 # things should be compiled. Instead of trying to mimic that
486 # behaviour here (and hence entrench it further) gdbarch simply
487 # reqires that these methods be set up from the word go. This also
488 # avoids any potential problems with moving beyond multi-arch partial.
489 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
490 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
491 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
492 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
493 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
494 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
495 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
496 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
497 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
498 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
499 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
500 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
502 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
503 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
504 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
505 #
506 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
507 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
508 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
509 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
510 #
511 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
512 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
513 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
514 #
515 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
516 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
517 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
518 #
519 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
520 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
521 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
522 #
523 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
524 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, char *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
525 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
533 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
534 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
535 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
536 #
537 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
538 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
539 #
540 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
541 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
542 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
543 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
544 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
545 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
546 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
547 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
548 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
549 #
550 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
551 #
552 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
553 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
554 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
555 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
556 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
557 # given frame is the outermost one and has no caller.
558 #
559 # XXXX - both default and alternate frame_chain_valid functions are
560 # deprecated. New code should use dummy frames and one of the generic
561 # functions.
562 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
563 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
564 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
565 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
566 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
567 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
568 #
569 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
570 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
571 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
572 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
573 v:2:PARM_BOUNDARY:int:parm_boundary
574 #
575 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
576 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
577 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
578 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
579 # On some machines there are bits in addresses which are not really
580 # part of the address, but are used by the kernel, the hardware, etc.
581 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
582 # we get a "real" address such as one would find in a symbol table.
583 # This is used only for addresses of instructions, and even then I'm
584 # not sure it's used in all contexts. It exists to deal with there
585 # being a few stray bits in the PC which would mislead us, not as some
586 # sort of generic thing to handle alignment or segmentation (it's
587 # possible it should be in TARGET_READ_PC instead).
588 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
589 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
590 # ADDR_BITS_REMOVE.
591 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
592 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
593 # the target needs software single step. An ISA method to implement it.
594 #
595 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
596 # using the breakpoint system instead of blatting memory directly (as with rs6000).
597 #
598 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
599 # single step. If not, then implement single step using breakpoints.
600 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
601 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
602 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
603 # For SVR4 shared libraries, each call goes through a small piece of
604 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
605 # to nonzero if we are current stopped in one of these.
606 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
607 # Sigtramp is a routine that the kernel calls (which then calls the
608 # signal handler). On most machines it is a library routine that is
609 # linked into the executable.
610 #
611 # This macro, given a program counter value and the name of the
612 # function in which that PC resides (which can be null if the name is
613 # not known), returns nonzero if the PC and name show that we are in
614 # sigtramp.
615 #
616 # On most machines just see if the name is sigtramp (and if we have
617 # no name, assume we are not in sigtramp).
618 #
619 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
620 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
621 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
622 # own local NAME lookup.
623 #
624 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
625 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
626 # does not.
627 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
638 # Given a vector of command-line arguments, return a newly allocated
639 # string which, when passed to the create_inferior function, will be
640 # parsed (on Unix systems, by the shell) to yield the same vector.
641 # This function should call error() if the argument vector is not
642 # representable for this target or if this target does not support
643 # command-line arguments.
644 # ARGC is the number of elements in the vector.
645 # ARGV is an array of strings, one per argument.
646 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
647 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
648 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
649 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
650 EOF
651 }
652
653 #
654 # The .log file
655 #
656 exec > new-gdbarch.log
657 function_list | while do_read
658 do
659 cat <<EOF
660 ${class} ${macro}(${actual})
661 ${returntype} ${function} ($formal)${attrib}
662 EOF
663 for r in ${read}
664 do
665 eval echo \"\ \ \ \ ${r}=\${${r}}\"
666 done
667 # #fallbackdefault=${fallbackdefault}
668 # #valid_p=${valid_p}
669 #EOF
670 if class_is_predicate_p && fallback_default_p
671 then
672 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
673 kill $$
674 exit 1
675 fi
676 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
677 then
678 echo "Error: postdefault is useless when invalid_p=0" 1>&2
679 kill $$
680 exit 1
681 fi
682 if class_is_multiarch_p
683 then
684 if class_is_predicate_p ; then :
685 elif test "x${predefault}" = "x"
686 then
687 echo "Error: pure multi-arch function must have a predefault" 1>&2
688 kill $$
689 exit 1
690 fi
691 fi
692 echo ""
693 done
694
695 exec 1>&2
696 compare_new gdbarch.log
697
698
699 copyright ()
700 {
701 cat <<EOF
702 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
703
704 /* Dynamic architecture support for GDB, the GNU debugger.
705 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
706
707 This file is part of GDB.
708
709 This program is free software; you can redistribute it and/or modify
710 it under the terms of the GNU General Public License as published by
711 the Free Software Foundation; either version 2 of the License, or
712 (at your option) any later version.
713
714 This program is distributed in the hope that it will be useful,
715 but WITHOUT ANY WARRANTY; without even the implied warranty of
716 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
717 GNU General Public License for more details.
718
719 You should have received a copy of the GNU General Public License
720 along with this program; if not, write to the Free Software
721 Foundation, Inc., 59 Temple Place - Suite 330,
722 Boston, MA 02111-1307, USA. */
723
724 /* This file was created with the aid of \`\`gdbarch.sh''.
725
726 The Bourne shell script \`\`gdbarch.sh'' creates the files
727 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
728 against the existing \`\`gdbarch.[hc]''. Any differences found
729 being reported.
730
731 If editing this file, please also run gdbarch.sh and merge any
732 changes into that script. Conversely, when making sweeping changes
733 to this file, modifying gdbarch.sh and using its output may prove
734 easier. */
735
736 EOF
737 }
738
739 #
740 # The .h file
741 #
742
743 exec > new-gdbarch.h
744 copyright
745 cat <<EOF
746 #ifndef GDBARCH_H
747 #define GDBARCH_H
748
749 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
750 #if !GDB_MULTI_ARCH
751 /* Pull in function declarations refered to, indirectly, via macros. */
752 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
753 #include "inferior.h" /* For unsigned_address_to_pointer(). */
754 #endif
755
756 struct frame_info;
757 struct value;
758 struct objfile;
759 struct minimal_symbol;
760 struct regcache;
761
762 extern struct gdbarch *current_gdbarch;
763
764
765 /* If any of the following are defined, the target wasn't correctly
766 converted. */
767
768 #if GDB_MULTI_ARCH
769 #if defined (EXTRA_FRAME_INFO)
770 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
771 #endif
772 #endif
773
774 #if GDB_MULTI_ARCH
775 #if defined (FRAME_FIND_SAVED_REGS)
776 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
777 #endif
778 #endif
779
780 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
781 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
782 #endif
783 EOF
784
785 # function typedef's
786 printf "\n"
787 printf "\n"
788 printf "/* The following are pre-initialized by GDBARCH. */\n"
789 function_list | while do_read
790 do
791 if class_is_info_p
792 then
793 printf "\n"
794 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
795 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
796 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
797 printf "#error \"Non multi-arch definition of ${macro}\"\n"
798 printf "#endif\n"
799 printf "#if GDB_MULTI_ARCH\n"
800 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
801 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
802 printf "#endif\n"
803 printf "#endif\n"
804 fi
805 done
806
807 # function typedef's
808 printf "\n"
809 printf "\n"
810 printf "/* The following are initialized by the target dependent code. */\n"
811 function_list | while do_read
812 do
813 if [ -n "${comment}" ]
814 then
815 echo "${comment}" | sed \
816 -e '2 s,#,/*,' \
817 -e '3,$ s,#, ,' \
818 -e '$ s,$, */,'
819 fi
820 if class_is_multiarch_p
821 then
822 if class_is_predicate_p
823 then
824 printf "\n"
825 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
826 fi
827 else
828 if class_is_predicate_p
829 then
830 printf "\n"
831 printf "#if defined (${macro})\n"
832 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
833 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
834 printf "#if !defined (${macro}_P)\n"
835 printf "#define ${macro}_P() (1)\n"
836 printf "#endif\n"
837 printf "#endif\n"
838 printf "\n"
839 printf "/* Default predicate for non- multi-arch targets. */\n"
840 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
841 printf "#define ${macro}_P() (0)\n"
842 printf "#endif\n"
843 printf "\n"
844 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
845 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
846 printf "#error \"Non multi-arch definition of ${macro}\"\n"
847 printf "#endif\n"
848 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
849 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
850 printf "#endif\n"
851 fi
852 fi
853 if class_is_variable_p
854 then
855 if fallback_default_p || class_is_predicate_p
856 then
857 printf "\n"
858 printf "/* Default (value) for non- multi-arch platforms. */\n"
859 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
860 echo "#define ${macro} (${fallbackdefault})" \
861 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
862 printf "#endif\n"
863 fi
864 printf "\n"
865 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
866 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
867 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
868 printf "#error \"Non multi-arch definition of ${macro}\"\n"
869 printf "#endif\n"
870 printf "#if GDB_MULTI_ARCH\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
872 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
873 printf "#endif\n"
874 printf "#endif\n"
875 fi
876 if class_is_function_p
877 then
878 if class_is_multiarch_p ; then :
879 elif fallback_default_p || class_is_predicate_p
880 then
881 printf "\n"
882 printf "/* Default (function) for non- multi-arch platforms. */\n"
883 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
884 if [ "x${fallbackdefault}" = "x0" ]
885 then
886 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
887 else
888 # FIXME: Should be passing current_gdbarch through!
889 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
890 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
891 fi
892 printf "#endif\n"
893 fi
894 printf "\n"
895 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
896 then
897 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
898 elif class_is_multiarch_p
899 then
900 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
901 else
902 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
903 fi
904 if [ "x${formal}" = "xvoid" ]
905 then
906 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
907 else
908 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
909 fi
910 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
911 if class_is_multiarch_p ; then :
912 else
913 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
914 printf "#error \"Non multi-arch definition of ${macro}\"\n"
915 printf "#endif\n"
916 printf "#if GDB_MULTI_ARCH\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
918 if [ "x${actual}" = "x" ]
919 then
920 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
921 elif [ "x${actual}" = "x-" ]
922 then
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 else
925 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
926 fi
927 printf "#endif\n"
928 printf "#endif\n"
929 fi
930 fi
931 done
932
933 # close it off
934 cat <<EOF
935
936 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
937
938
939 /* Mechanism for co-ordinating the selection of a specific
940 architecture.
941
942 GDB targets (*-tdep.c) can register an interest in a specific
943 architecture. Other GDB components can register a need to maintain
944 per-architecture data.
945
946 The mechanisms below ensures that there is only a loose connection
947 between the set-architecture command and the various GDB
948 components. Each component can independently register their need
949 to maintain architecture specific data with gdbarch.
950
951 Pragmatics:
952
953 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
954 didn't scale.
955
956 The more traditional mega-struct containing architecture specific
957 data for all the various GDB components was also considered. Since
958 GDB is built from a variable number of (fairly independent)
959 components it was determined that the global aproach was not
960 applicable. */
961
962
963 /* Register a new architectural family with GDB.
964
965 Register support for the specified ARCHITECTURE with GDB. When
966 gdbarch determines that the specified architecture has been
967 selected, the corresponding INIT function is called.
968
969 --
970
971 The INIT function takes two parameters: INFO which contains the
972 information available to gdbarch about the (possibly new)
973 architecture; ARCHES which is a list of the previously created
974 \`\`struct gdbarch'' for this architecture.
975
976 The INFO parameter is, as far as possible, be pre-initialized with
977 information obtained from INFO.ABFD or the previously selected
978 architecture.
979
980 The ARCHES parameter is a linked list (sorted most recently used)
981 of all the previously created architures for this architecture
982 family. The (possibly NULL) ARCHES->gdbarch can used to access
983 values from the previously selected architecture for this
984 architecture family. The global \`\`current_gdbarch'' shall not be
985 used.
986
987 The INIT function shall return any of: NULL - indicating that it
988 doesn't recognize the selected architecture; an existing \`\`struct
989 gdbarch'' from the ARCHES list - indicating that the new
990 architecture is just a synonym for an earlier architecture (see
991 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
992 - that describes the selected architecture (see gdbarch_alloc()).
993
994 The DUMP_TDEP function shall print out all target specific values.
995 Care should be taken to ensure that the function works in both the
996 multi-arch and non- multi-arch cases. */
997
998 struct gdbarch_list
999 {
1000 struct gdbarch *gdbarch;
1001 struct gdbarch_list *next;
1002 };
1003
1004 struct gdbarch_info
1005 {
1006 /* Use default: NULL (ZERO). */
1007 const struct bfd_arch_info *bfd_arch_info;
1008
1009 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1010 int byte_order;
1011
1012 /* Use default: NULL (ZERO). */
1013 bfd *abfd;
1014
1015 /* Use default: NULL (ZERO). */
1016 struct gdbarch_tdep_info *tdep_info;
1017 };
1018
1019 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1020 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1021
1022 /* DEPRECATED - use gdbarch_register() */
1023 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1024
1025 extern void gdbarch_register (enum bfd_architecture architecture,
1026 gdbarch_init_ftype *,
1027 gdbarch_dump_tdep_ftype *);
1028
1029
1030 /* Return a freshly allocated, NULL terminated, array of the valid
1031 architecture names. Since architectures are registered during the
1032 _initialize phase this function only returns useful information
1033 once initialization has been completed. */
1034
1035 extern const char **gdbarch_printable_names (void);
1036
1037
1038 /* Helper function. Search the list of ARCHES for a GDBARCH that
1039 matches the information provided by INFO. */
1040
1041 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1042
1043
1044 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1045 basic initialization using values obtained from the INFO andTDEP
1046 parameters. set_gdbarch_*() functions are called to complete the
1047 initialization of the object. */
1048
1049 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1050
1051
1052 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1053 It is assumed that the caller freeds the \`\`struct
1054 gdbarch_tdep''. */
1055
1056 extern void gdbarch_free (struct gdbarch *);
1057
1058
1059 /* Helper function. Force an update of the current architecture.
1060
1061 The actual architecture selected is determined by INFO, \`\`(gdb) set
1062 architecture'' et.al., the existing architecture and BFD's default
1063 architecture. INFO should be initialized to zero and then selected
1064 fields should be updated.
1065
1066 Returns non-zero if the update succeeds */
1067
1068 extern int gdbarch_update_p (struct gdbarch_info info);
1069
1070
1071
1072 /* Register per-architecture data-pointer.
1073
1074 Reserve space for a per-architecture data-pointer. An identifier
1075 for the reserved data-pointer is returned. That identifer should
1076 be saved in a local static variable.
1077
1078 The per-architecture data-pointer is either initialized explicitly
1079 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1080 gdbarch_data()). FREE() is called to delete either an existing
1081 data-pointer overridden by set_gdbarch_data() or when the
1082 architecture object is being deleted.
1083
1084 When a previously created architecture is re-selected, the
1085 per-architecture data-pointer for that previous architecture is
1086 restored. INIT() is not re-called.
1087
1088 Multiple registrarants for any architecture are allowed (and
1089 strongly encouraged). */
1090
1091 struct gdbarch_data;
1092
1093 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1094 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1095 void *pointer);
1096 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1097 gdbarch_data_free_ftype *free);
1098 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1099 struct gdbarch_data *data,
1100 void *pointer);
1101
1102 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1103
1104
1105 /* Register per-architecture memory region.
1106
1107 Provide a memory-region swap mechanism. Per-architecture memory
1108 region are created. These memory regions are swapped whenever the
1109 architecture is changed. For a new architecture, the memory region
1110 is initialized with zero (0) and the INIT function is called.
1111
1112 Memory regions are swapped / initialized in the order that they are
1113 registered. NULL DATA and/or INIT values can be specified.
1114
1115 New code should use register_gdbarch_data(). */
1116
1117 typedef void (gdbarch_swap_ftype) (void);
1118 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1119 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1120
1121
1122
1123 /* The target-system-dependent byte order is dynamic */
1124
1125 extern int target_byte_order;
1126 #ifndef TARGET_BYTE_ORDER
1127 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1128 #endif
1129
1130 extern int target_byte_order_auto;
1131 #ifndef TARGET_BYTE_ORDER_AUTO
1132 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1133 #endif
1134
1135
1136
1137 /* The target-system-dependent BFD architecture is dynamic */
1138
1139 extern int target_architecture_auto;
1140 #ifndef TARGET_ARCHITECTURE_AUTO
1141 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1142 #endif
1143
1144 extern const struct bfd_arch_info *target_architecture;
1145 #ifndef TARGET_ARCHITECTURE
1146 #define TARGET_ARCHITECTURE (target_architecture + 0)
1147 #endif
1148
1149
1150 /* The target-system-dependent disassembler is semi-dynamic */
1151
1152 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1153 unsigned int len, disassemble_info *info);
1154
1155 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1156 disassemble_info *info);
1157
1158 extern void dis_asm_print_address (bfd_vma addr,
1159 disassemble_info *info);
1160
1161 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1162 extern disassemble_info tm_print_insn_info;
1163 #ifndef TARGET_PRINT_INSN_INFO
1164 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1165 #endif
1166
1167
1168
1169 /* Set the dynamic target-system-dependent parameters (architecture,
1170 byte-order, ...) using information found in the BFD */
1171
1172 extern void set_gdbarch_from_file (bfd *);
1173
1174
1175 /* Initialize the current architecture to the "first" one we find on
1176 our list. */
1177
1178 extern void initialize_current_architecture (void);
1179
1180 /* For non-multiarched targets, do any initialization of the default
1181 gdbarch object necessary after the _initialize_MODULE functions
1182 have run. */
1183 extern void initialize_non_multiarch (void);
1184
1185 /* gdbarch trace variable */
1186 extern int gdbarch_debug;
1187
1188 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1189
1190 #endif
1191 EOF
1192 exec 1>&2
1193 #../move-if-change new-gdbarch.h gdbarch.h
1194 compare_new gdbarch.h
1195
1196
1197 #
1198 # C file
1199 #
1200
1201 exec > new-gdbarch.c
1202 copyright
1203 cat <<EOF
1204
1205 #include "defs.h"
1206 #include "arch-utils.h"
1207
1208 #if GDB_MULTI_ARCH
1209 #include "gdbcmd.h"
1210 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1211 #else
1212 /* Just include everything in sight so that the every old definition
1213 of macro is visible. */
1214 #include "gdb_string.h"
1215 #include <ctype.h>
1216 #include "symtab.h"
1217 #include "frame.h"
1218 #include "inferior.h"
1219 #include "breakpoint.h"
1220 #include "gdb_wait.h"
1221 #include "gdbcore.h"
1222 #include "gdbcmd.h"
1223 #include "target.h"
1224 #include "gdbthread.h"
1225 #include "annotate.h"
1226 #include "symfile.h" /* for overlay functions */
1227 #include "value.h" /* For old tm.h/nm.h macros. */
1228 #endif
1229 #include "symcat.h"
1230
1231 #include "floatformat.h"
1232
1233 #include "gdb_assert.h"
1234 #include "gdb_string.h"
1235 #include "gdb-events.h"
1236
1237 /* Static function declarations */
1238
1239 static void verify_gdbarch (struct gdbarch *gdbarch);
1240 static void alloc_gdbarch_data (struct gdbarch *);
1241 static void free_gdbarch_data (struct gdbarch *);
1242 static void init_gdbarch_swap (struct gdbarch *);
1243 static void clear_gdbarch_swap (struct gdbarch *);
1244 static void swapout_gdbarch_swap (struct gdbarch *);
1245 static void swapin_gdbarch_swap (struct gdbarch *);
1246
1247 /* Non-zero if we want to trace architecture code. */
1248
1249 #ifndef GDBARCH_DEBUG
1250 #define GDBARCH_DEBUG 0
1251 #endif
1252 int gdbarch_debug = GDBARCH_DEBUG;
1253
1254 EOF
1255
1256 # gdbarch open the gdbarch object
1257 printf "\n"
1258 printf "/* Maintain the struct gdbarch object */\n"
1259 printf "\n"
1260 printf "struct gdbarch\n"
1261 printf "{\n"
1262 printf " /* Has this architecture been fully initialized? */\n"
1263 printf " int initialized_p;\n"
1264 printf " /* basic architectural information */\n"
1265 function_list | while do_read
1266 do
1267 if class_is_info_p
1268 then
1269 printf " ${returntype} ${function};\n"
1270 fi
1271 done
1272 printf "\n"
1273 printf " /* target specific vector. */\n"
1274 printf " struct gdbarch_tdep *tdep;\n"
1275 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1276 printf "\n"
1277 printf " /* per-architecture data-pointers */\n"
1278 printf " unsigned nr_data;\n"
1279 printf " void **data;\n"
1280 printf "\n"
1281 printf " /* per-architecture swap-regions */\n"
1282 printf " struct gdbarch_swap *swap;\n"
1283 printf "\n"
1284 cat <<EOF
1285 /* Multi-arch values.
1286
1287 When extending this structure you must:
1288
1289 Add the field below.
1290
1291 Declare set/get functions and define the corresponding
1292 macro in gdbarch.h.
1293
1294 gdbarch_alloc(): If zero/NULL is not a suitable default,
1295 initialize the new field.
1296
1297 verify_gdbarch(): Confirm that the target updated the field
1298 correctly.
1299
1300 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1301 field is dumped out
1302
1303 \`\`startup_gdbarch()'': Append an initial value to the static
1304 variable (base values on the host's c-type system).
1305
1306 get_gdbarch(): Implement the set/get functions (probably using
1307 the macro's as shortcuts).
1308
1309 */
1310
1311 EOF
1312 function_list | while do_read
1313 do
1314 if class_is_variable_p
1315 then
1316 printf " ${returntype} ${function};\n"
1317 elif class_is_function_p
1318 then
1319 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1320 fi
1321 done
1322 printf "};\n"
1323
1324 # A pre-initialized vector
1325 printf "\n"
1326 printf "\n"
1327 cat <<EOF
1328 /* The default architecture uses host values (for want of a better
1329 choice). */
1330 EOF
1331 printf "\n"
1332 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1333 printf "\n"
1334 printf "struct gdbarch startup_gdbarch =\n"
1335 printf "{\n"
1336 printf " 1, /* Always initialized. */\n"
1337 printf " /* basic architecture information */\n"
1338 function_list | while do_read
1339 do
1340 if class_is_info_p
1341 then
1342 printf " ${staticdefault},\n"
1343 fi
1344 done
1345 cat <<EOF
1346 /* target specific vector and its dump routine */
1347 NULL, NULL,
1348 /*per-architecture data-pointers and swap regions */
1349 0, NULL, NULL,
1350 /* Multi-arch values */
1351 EOF
1352 function_list | while do_read
1353 do
1354 if class_is_function_p || class_is_variable_p
1355 then
1356 printf " ${staticdefault},\n"
1357 fi
1358 done
1359 cat <<EOF
1360 /* startup_gdbarch() */
1361 };
1362
1363 struct gdbarch *current_gdbarch = &startup_gdbarch;
1364
1365 /* Do any initialization needed for a non-multiarch configuration
1366 after the _initialize_MODULE functions have been run. */
1367 void
1368 initialize_non_multiarch (void)
1369 {
1370 alloc_gdbarch_data (&startup_gdbarch);
1371 /* Ensure that all swap areas are zeroed so that they again think
1372 they are starting from scratch. */
1373 clear_gdbarch_swap (&startup_gdbarch);
1374 init_gdbarch_swap (&startup_gdbarch);
1375 }
1376 EOF
1377
1378 # Create a new gdbarch struct
1379 printf "\n"
1380 printf "\n"
1381 cat <<EOF
1382 /* Create a new \`\`struct gdbarch'' based on information provided by
1383 \`\`struct gdbarch_info''. */
1384 EOF
1385 printf "\n"
1386 cat <<EOF
1387 struct gdbarch *
1388 gdbarch_alloc (const struct gdbarch_info *info,
1389 struct gdbarch_tdep *tdep)
1390 {
1391 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1392 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1393 the current local architecture and not the previous global
1394 architecture. This ensures that the new architectures initial
1395 values are not influenced by the previous architecture. Once
1396 everything is parameterised with gdbarch, this will go away. */
1397 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1398 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1399
1400 alloc_gdbarch_data (current_gdbarch);
1401
1402 current_gdbarch->tdep = tdep;
1403 EOF
1404 printf "\n"
1405 function_list | while do_read
1406 do
1407 if class_is_info_p
1408 then
1409 printf " current_gdbarch->${function} = info->${function};\n"
1410 fi
1411 done
1412 printf "\n"
1413 printf " /* Force the explicit initialization of these. */\n"
1414 function_list | while do_read
1415 do
1416 if class_is_function_p || class_is_variable_p
1417 then
1418 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1419 then
1420 printf " current_gdbarch->${function} = ${predefault};\n"
1421 fi
1422 fi
1423 done
1424 cat <<EOF
1425 /* gdbarch_alloc() */
1426
1427 return current_gdbarch;
1428 }
1429 EOF
1430
1431 # Free a gdbarch struct.
1432 printf "\n"
1433 printf "\n"
1434 cat <<EOF
1435 /* Free a gdbarch struct. This should never happen in normal
1436 operation --- once you've created a gdbarch, you keep it around.
1437 However, if an architecture's init function encounters an error
1438 building the structure, it may need to clean up a partially
1439 constructed gdbarch. */
1440
1441 void
1442 gdbarch_free (struct gdbarch *arch)
1443 {
1444 gdb_assert (arch != NULL);
1445 free_gdbarch_data (arch);
1446 xfree (arch);
1447 }
1448 EOF
1449
1450 # verify a new architecture
1451 printf "\n"
1452 printf "\n"
1453 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1454 printf "\n"
1455 cat <<EOF
1456 static void
1457 verify_gdbarch (struct gdbarch *gdbarch)
1458 {
1459 struct ui_file *log;
1460 struct cleanup *cleanups;
1461 long dummy;
1462 char *buf;
1463 /* Only perform sanity checks on a multi-arch target. */
1464 if (!GDB_MULTI_ARCH)
1465 return;
1466 log = mem_fileopen ();
1467 cleanups = make_cleanup_ui_file_delete (log);
1468 /* fundamental */
1469 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1470 fprintf_unfiltered (log, "\n\tbyte-order");
1471 if (gdbarch->bfd_arch_info == NULL)
1472 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1473 /* Check those that need to be defined for the given multi-arch level. */
1474 EOF
1475 function_list | while do_read
1476 do
1477 if class_is_function_p || class_is_variable_p
1478 then
1479 if [ "x${invalid_p}" = "x0" ]
1480 then
1481 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1482 elif class_is_predicate_p
1483 then
1484 printf " /* Skip verify of ${function}, has predicate */\n"
1485 # FIXME: See do_read for potential simplification
1486 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1487 then
1488 printf " if (${invalid_p})\n"
1489 printf " gdbarch->${function} = ${postdefault};\n"
1490 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1491 then
1492 printf " if (gdbarch->${function} == ${predefault})\n"
1493 printf " gdbarch->${function} = ${postdefault};\n"
1494 elif [ -n "${postdefault}" ]
1495 then
1496 printf " if (gdbarch->${function} == 0)\n"
1497 printf " gdbarch->${function} = ${postdefault};\n"
1498 elif [ -n "${invalid_p}" ]
1499 then
1500 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1501 printf " && (${invalid_p}))\n"
1502 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1503 elif [ -n "${predefault}" ]
1504 then
1505 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1506 printf " && (gdbarch->${function} == ${predefault}))\n"
1507 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1508 fi
1509 fi
1510 done
1511 cat <<EOF
1512 buf = ui_file_xstrdup (log, &dummy);
1513 make_cleanup (xfree, buf);
1514 if (strlen (buf) > 0)
1515 internal_error (__FILE__, __LINE__,
1516 "verify_gdbarch: the following are invalid ...%s",
1517 buf);
1518 do_cleanups (cleanups);
1519 }
1520 EOF
1521
1522 # dump the structure
1523 printf "\n"
1524 printf "\n"
1525 cat <<EOF
1526 /* Print out the details of the current architecture. */
1527
1528 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1529 just happens to match the global variable \`\`current_gdbarch''. That
1530 way macros refering to that variable get the local and not the global
1531 version - ulgh. Once everything is parameterised with gdbarch, this
1532 will go away. */
1533
1534 void
1535 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1536 {
1537 fprintf_unfiltered (file,
1538 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1539 GDB_MULTI_ARCH);
1540 EOF
1541 function_list | sort -t: +2 | while do_read
1542 do
1543 # multiarch functions don't have macros.
1544 if class_is_multiarch_p
1545 then
1546 printf " if (GDB_MULTI_ARCH)\n"
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1549 printf " (long) current_gdbarch->${function});\n"
1550 continue
1551 fi
1552 # Print the macro definition.
1553 printf "#ifdef ${macro}\n"
1554 if [ "x${returntype}" = "xvoid" ]
1555 then
1556 printf "#if GDB_MULTI_ARCH\n"
1557 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1558 fi
1559 if class_is_function_p
1560 then
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1563 printf " \"${macro}(${actual})\",\n"
1564 printf " XSTRING (${macro} (${actual})));\n"
1565 else
1566 printf " fprintf_unfiltered (file,\n"
1567 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1568 printf " XSTRING (${macro}));\n"
1569 fi
1570 # Print the architecture vector value
1571 if [ "x${returntype}" = "xvoid" ]
1572 then
1573 printf "#endif\n"
1574 fi
1575 if [ "x${print_p}" = "x()" ]
1576 then
1577 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1578 elif [ "x${print_p}" = "x0" ]
1579 then
1580 printf " /* skip print of ${macro}, print_p == 0. */\n"
1581 elif [ -n "${print_p}" ]
1582 then
1583 printf " if (${print_p})\n"
1584 printf " fprintf_unfiltered (file,\n"
1585 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1586 printf " ${print});\n"
1587 elif class_is_function_p
1588 then
1589 printf " if (GDB_MULTI_ARCH)\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1592 printf " (long) current_gdbarch->${function}\n"
1593 printf " /*${macro} ()*/);\n"
1594 else
1595 printf " fprintf_unfiltered (file,\n"
1596 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1597 printf " ${print});\n"
1598 fi
1599 printf "#endif\n"
1600 done
1601 cat <<EOF
1602 if (current_gdbarch->dump_tdep != NULL)
1603 current_gdbarch->dump_tdep (current_gdbarch, file);
1604 }
1605 EOF
1606
1607
1608 # GET/SET
1609 printf "\n"
1610 cat <<EOF
1611 struct gdbarch_tdep *
1612 gdbarch_tdep (struct gdbarch *gdbarch)
1613 {
1614 if (gdbarch_debug >= 2)
1615 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1616 return gdbarch->tdep;
1617 }
1618 EOF
1619 printf "\n"
1620 function_list | while do_read
1621 do
1622 if class_is_predicate_p
1623 then
1624 printf "\n"
1625 printf "int\n"
1626 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1627 printf "{\n"
1628 printf " gdb_assert (gdbarch != NULL);\n"
1629 if [ -n "${valid_p}" ]
1630 then
1631 printf " return ${valid_p};\n"
1632 else
1633 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1634 fi
1635 printf "}\n"
1636 fi
1637 if class_is_function_p
1638 then
1639 printf "\n"
1640 printf "${returntype}\n"
1641 if [ "x${formal}" = "xvoid" ]
1642 then
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 else
1645 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1646 fi
1647 printf "{\n"
1648 printf " gdb_assert (gdbarch != NULL);\n"
1649 printf " if (gdbarch->${function} == 0)\n"
1650 printf " internal_error (__FILE__, __LINE__,\n"
1651 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1652 printf " if (gdbarch_debug >= 2)\n"
1653 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1654 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1655 then
1656 if class_is_multiarch_p
1657 then
1658 params="gdbarch"
1659 else
1660 params=""
1661 fi
1662 else
1663 if class_is_multiarch_p
1664 then
1665 params="gdbarch, ${actual}"
1666 else
1667 params="${actual}"
1668 fi
1669 fi
1670 if [ "x${returntype}" = "xvoid" ]
1671 then
1672 printf " gdbarch->${function} (${params});\n"
1673 else
1674 printf " return gdbarch->${function} (${params});\n"
1675 fi
1676 printf "}\n"
1677 printf "\n"
1678 printf "void\n"
1679 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1680 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1681 printf "{\n"
1682 printf " gdbarch->${function} = ${function};\n"
1683 printf "}\n"
1684 elif class_is_variable_p
1685 then
1686 printf "\n"
1687 printf "${returntype}\n"
1688 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1689 printf "{\n"
1690 printf " gdb_assert (gdbarch != NULL);\n"
1691 if [ "x${invalid_p}" = "x0" ]
1692 then
1693 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1694 elif [ -n "${invalid_p}" ]
1695 then
1696 printf " if (${invalid_p})\n"
1697 printf " internal_error (__FILE__, __LINE__,\n"
1698 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1699 elif [ -n "${predefault}" ]
1700 then
1701 printf " if (gdbarch->${function} == ${predefault})\n"
1702 printf " internal_error (__FILE__, __LINE__,\n"
1703 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1704 fi
1705 printf " if (gdbarch_debug >= 2)\n"
1706 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1707 printf " return gdbarch->${function};\n"
1708 printf "}\n"
1709 printf "\n"
1710 printf "void\n"
1711 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1712 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1713 printf "{\n"
1714 printf " gdbarch->${function} = ${function};\n"
1715 printf "}\n"
1716 elif class_is_info_p
1717 then
1718 printf "\n"
1719 printf "${returntype}\n"
1720 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 printf "{\n"
1722 printf " gdb_assert (gdbarch != NULL);\n"
1723 printf " if (gdbarch_debug >= 2)\n"
1724 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1725 printf " return gdbarch->${function};\n"
1726 printf "}\n"
1727 fi
1728 done
1729
1730 # All the trailing guff
1731 cat <<EOF
1732
1733
1734 /* Keep a registry of per-architecture data-pointers required by GDB
1735 modules. */
1736
1737 struct gdbarch_data
1738 {
1739 unsigned index;
1740 int init_p;
1741 gdbarch_data_init_ftype *init;
1742 gdbarch_data_free_ftype *free;
1743 };
1744
1745 struct gdbarch_data_registration
1746 {
1747 struct gdbarch_data *data;
1748 struct gdbarch_data_registration *next;
1749 };
1750
1751 struct gdbarch_data_registry
1752 {
1753 unsigned nr;
1754 struct gdbarch_data_registration *registrations;
1755 };
1756
1757 struct gdbarch_data_registry gdbarch_data_registry =
1758 {
1759 0, NULL,
1760 };
1761
1762 struct gdbarch_data *
1763 register_gdbarch_data (gdbarch_data_init_ftype *init,
1764 gdbarch_data_free_ftype *free)
1765 {
1766 struct gdbarch_data_registration **curr;
1767 /* Append the new registraration. */
1768 for (curr = &gdbarch_data_registry.registrations;
1769 (*curr) != NULL;
1770 curr = &(*curr)->next);
1771 (*curr) = XMALLOC (struct gdbarch_data_registration);
1772 (*curr)->next = NULL;
1773 (*curr)->data = XMALLOC (struct gdbarch_data);
1774 (*curr)->data->index = gdbarch_data_registry.nr++;
1775 (*curr)->data->init = init;
1776 (*curr)->data->init_p = 1;
1777 (*curr)->data->free = free;
1778 return (*curr)->data;
1779 }
1780
1781
1782 /* Create/delete the gdbarch data vector. */
1783
1784 static void
1785 alloc_gdbarch_data (struct gdbarch *gdbarch)
1786 {
1787 gdb_assert (gdbarch->data == NULL);
1788 gdbarch->nr_data = gdbarch_data_registry.nr;
1789 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1790 }
1791
1792 static void
1793 free_gdbarch_data (struct gdbarch *gdbarch)
1794 {
1795 struct gdbarch_data_registration *rego;
1796 gdb_assert (gdbarch->data != NULL);
1797 for (rego = gdbarch_data_registry.registrations;
1798 rego != NULL;
1799 rego = rego->next)
1800 {
1801 struct gdbarch_data *data = rego->data;
1802 gdb_assert (data->index < gdbarch->nr_data);
1803 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1804 {
1805 data->free (gdbarch, gdbarch->data[data->index]);
1806 gdbarch->data[data->index] = NULL;
1807 }
1808 }
1809 xfree (gdbarch->data);
1810 gdbarch->data = NULL;
1811 }
1812
1813
1814 /* Initialize the current value of the specified per-architecture
1815 data-pointer. */
1816
1817 void
1818 set_gdbarch_data (struct gdbarch *gdbarch,
1819 struct gdbarch_data *data,
1820 void *pointer)
1821 {
1822 gdb_assert (data->index < gdbarch->nr_data);
1823 if (gdbarch->data[data->index] != NULL)
1824 {
1825 gdb_assert (data->free != NULL);
1826 data->free (gdbarch, gdbarch->data[data->index]);
1827 }
1828 gdbarch->data[data->index] = pointer;
1829 }
1830
1831 /* Return the current value of the specified per-architecture
1832 data-pointer. */
1833
1834 void *
1835 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1836 {
1837 gdb_assert (data->index < gdbarch->nr_data);
1838 /* The data-pointer isn't initialized, call init() to get a value but
1839 only if the architecture initializaiton has completed. Otherwise
1840 punt - hope that the caller knows what they are doing. */
1841 if (gdbarch->data[data->index] == NULL
1842 && gdbarch->initialized_p)
1843 {
1844 /* Be careful to detect an initialization cycle. */
1845 gdb_assert (data->init_p);
1846 data->init_p = 0;
1847 gdb_assert (data->init != NULL);
1848 gdbarch->data[data->index] = data->init (gdbarch);
1849 data->init_p = 1;
1850 gdb_assert (gdbarch->data[data->index] != NULL);
1851 }
1852 return gdbarch->data[data->index];
1853 }
1854
1855
1856
1857 /* Keep a registry of swapped data required by GDB modules. */
1858
1859 struct gdbarch_swap
1860 {
1861 void *swap;
1862 struct gdbarch_swap_registration *source;
1863 struct gdbarch_swap *next;
1864 };
1865
1866 struct gdbarch_swap_registration
1867 {
1868 void *data;
1869 unsigned long sizeof_data;
1870 gdbarch_swap_ftype *init;
1871 struct gdbarch_swap_registration *next;
1872 };
1873
1874 struct gdbarch_swap_registry
1875 {
1876 int nr;
1877 struct gdbarch_swap_registration *registrations;
1878 };
1879
1880 struct gdbarch_swap_registry gdbarch_swap_registry =
1881 {
1882 0, NULL,
1883 };
1884
1885 void
1886 register_gdbarch_swap (void *data,
1887 unsigned long sizeof_data,
1888 gdbarch_swap_ftype *init)
1889 {
1890 struct gdbarch_swap_registration **rego;
1891 for (rego = &gdbarch_swap_registry.registrations;
1892 (*rego) != NULL;
1893 rego = &(*rego)->next);
1894 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1895 (*rego)->next = NULL;
1896 (*rego)->init = init;
1897 (*rego)->data = data;
1898 (*rego)->sizeof_data = sizeof_data;
1899 }
1900
1901 static void
1902 clear_gdbarch_swap (struct gdbarch *gdbarch)
1903 {
1904 struct gdbarch_swap *curr;
1905 for (curr = gdbarch->swap;
1906 curr != NULL;
1907 curr = curr->next)
1908 {
1909 memset (curr->source->data, 0, curr->source->sizeof_data);
1910 }
1911 }
1912
1913 static void
1914 init_gdbarch_swap (struct gdbarch *gdbarch)
1915 {
1916 struct gdbarch_swap_registration *rego;
1917 struct gdbarch_swap **curr = &gdbarch->swap;
1918 for (rego = gdbarch_swap_registry.registrations;
1919 rego != NULL;
1920 rego = rego->next)
1921 {
1922 if (rego->data != NULL)
1923 {
1924 (*curr) = XMALLOC (struct gdbarch_swap);
1925 (*curr)->source = rego;
1926 (*curr)->swap = xmalloc (rego->sizeof_data);
1927 (*curr)->next = NULL;
1928 curr = &(*curr)->next;
1929 }
1930 if (rego->init != NULL)
1931 rego->init ();
1932 }
1933 }
1934
1935 static void
1936 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1937 {
1938 struct gdbarch_swap *curr;
1939 for (curr = gdbarch->swap;
1940 curr != NULL;
1941 curr = curr->next)
1942 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1943 }
1944
1945 static void
1946 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1947 {
1948 struct gdbarch_swap *curr;
1949 for (curr = gdbarch->swap;
1950 curr != NULL;
1951 curr = curr->next)
1952 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1953 }
1954
1955
1956 /* Keep a registry of the architectures known by GDB. */
1957
1958 struct gdbarch_registration
1959 {
1960 enum bfd_architecture bfd_architecture;
1961 gdbarch_init_ftype *init;
1962 gdbarch_dump_tdep_ftype *dump_tdep;
1963 struct gdbarch_list *arches;
1964 struct gdbarch_registration *next;
1965 };
1966
1967 static struct gdbarch_registration *gdbarch_registry = NULL;
1968
1969 static void
1970 append_name (const char ***buf, int *nr, const char *name)
1971 {
1972 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1973 (*buf)[*nr] = name;
1974 *nr += 1;
1975 }
1976
1977 const char **
1978 gdbarch_printable_names (void)
1979 {
1980 if (GDB_MULTI_ARCH)
1981 {
1982 /* Accumulate a list of names based on the registed list of
1983 architectures. */
1984 enum bfd_architecture a;
1985 int nr_arches = 0;
1986 const char **arches = NULL;
1987 struct gdbarch_registration *rego;
1988 for (rego = gdbarch_registry;
1989 rego != NULL;
1990 rego = rego->next)
1991 {
1992 const struct bfd_arch_info *ap;
1993 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1994 if (ap == NULL)
1995 internal_error (__FILE__, __LINE__,
1996 "gdbarch_architecture_names: multi-arch unknown");
1997 do
1998 {
1999 append_name (&arches, &nr_arches, ap->printable_name);
2000 ap = ap->next;
2001 }
2002 while (ap != NULL);
2003 }
2004 append_name (&arches, &nr_arches, NULL);
2005 return arches;
2006 }
2007 else
2008 /* Just return all the architectures that BFD knows. Assume that
2009 the legacy architecture framework supports them. */
2010 return bfd_arch_list ();
2011 }
2012
2013
2014 void
2015 gdbarch_register (enum bfd_architecture bfd_architecture,
2016 gdbarch_init_ftype *init,
2017 gdbarch_dump_tdep_ftype *dump_tdep)
2018 {
2019 struct gdbarch_registration **curr;
2020 const struct bfd_arch_info *bfd_arch_info;
2021 /* Check that BFD recognizes this architecture */
2022 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2023 if (bfd_arch_info == NULL)
2024 {
2025 internal_error (__FILE__, __LINE__,
2026 "gdbarch: Attempt to register unknown architecture (%d)",
2027 bfd_architecture);
2028 }
2029 /* Check that we haven't seen this architecture before */
2030 for (curr = &gdbarch_registry;
2031 (*curr) != NULL;
2032 curr = &(*curr)->next)
2033 {
2034 if (bfd_architecture == (*curr)->bfd_architecture)
2035 internal_error (__FILE__, __LINE__,
2036 "gdbarch: Duplicate registraration of architecture (%s)",
2037 bfd_arch_info->printable_name);
2038 }
2039 /* log it */
2040 if (gdbarch_debug)
2041 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2042 bfd_arch_info->printable_name,
2043 (long) init);
2044 /* Append it */
2045 (*curr) = XMALLOC (struct gdbarch_registration);
2046 (*curr)->bfd_architecture = bfd_architecture;
2047 (*curr)->init = init;
2048 (*curr)->dump_tdep = dump_tdep;
2049 (*curr)->arches = NULL;
2050 (*curr)->next = NULL;
2051 /* When non- multi-arch, install whatever target dump routine we've
2052 been provided - hopefully that routine has been written correctly
2053 and works regardless of multi-arch. */
2054 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2055 && startup_gdbarch.dump_tdep == NULL)
2056 startup_gdbarch.dump_tdep = dump_tdep;
2057 }
2058
2059 void
2060 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2061 gdbarch_init_ftype *init)
2062 {
2063 gdbarch_register (bfd_architecture, init, NULL);
2064 }
2065
2066
2067 /* Look for an architecture using gdbarch_info. Base search on only
2068 BFD_ARCH_INFO and BYTE_ORDER. */
2069
2070 struct gdbarch_list *
2071 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2072 const struct gdbarch_info *info)
2073 {
2074 for (; arches != NULL; arches = arches->next)
2075 {
2076 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2077 continue;
2078 if (info->byte_order != arches->gdbarch->byte_order)
2079 continue;
2080 return arches;
2081 }
2082 return NULL;
2083 }
2084
2085
2086 /* Update the current architecture. Return ZERO if the update request
2087 failed. */
2088
2089 int
2090 gdbarch_update_p (struct gdbarch_info info)
2091 {
2092 struct gdbarch *new_gdbarch;
2093 struct gdbarch *old_gdbarch;
2094 struct gdbarch_registration *rego;
2095
2096 /* Fill in missing parts of the INFO struct using a number of
2097 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2098
2099 /* \`\`(gdb) set architecture ...'' */
2100 if (info.bfd_arch_info == NULL
2101 && !TARGET_ARCHITECTURE_AUTO)
2102 info.bfd_arch_info = TARGET_ARCHITECTURE;
2103 if (info.bfd_arch_info == NULL
2104 && info.abfd != NULL
2105 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2106 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2107 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2108 if (info.bfd_arch_info == NULL)
2109 info.bfd_arch_info = TARGET_ARCHITECTURE;
2110
2111 /* \`\`(gdb) set byte-order ...'' */
2112 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2113 && !TARGET_BYTE_ORDER_AUTO)
2114 info.byte_order = TARGET_BYTE_ORDER;
2115 /* From the INFO struct. */
2116 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2117 && info.abfd != NULL)
2118 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2119 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2120 : BFD_ENDIAN_UNKNOWN);
2121 /* From the current target. */
2122 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2123 info.byte_order = TARGET_BYTE_ORDER;
2124
2125 /* Must have found some sort of architecture. */
2126 gdb_assert (info.bfd_arch_info != NULL);
2127
2128 if (gdbarch_debug)
2129 {
2130 fprintf_unfiltered (gdb_stdlog,
2131 "gdbarch_update: info.bfd_arch_info %s\n",
2132 (info.bfd_arch_info != NULL
2133 ? info.bfd_arch_info->printable_name
2134 : "(null)"));
2135 fprintf_unfiltered (gdb_stdlog,
2136 "gdbarch_update: info.byte_order %d (%s)\n",
2137 info.byte_order,
2138 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2139 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2140 : "default"));
2141 fprintf_unfiltered (gdb_stdlog,
2142 "gdbarch_update: info.abfd 0x%lx\n",
2143 (long) info.abfd);
2144 fprintf_unfiltered (gdb_stdlog,
2145 "gdbarch_update: info.tdep_info 0x%lx\n",
2146 (long) info.tdep_info);
2147 }
2148
2149 /* Find the target that knows about this architecture. */
2150 for (rego = gdbarch_registry;
2151 rego != NULL;
2152 rego = rego->next)
2153 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2154 break;
2155 if (rego == NULL)
2156 {
2157 if (gdbarch_debug)
2158 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2159 return 0;
2160 }
2161
2162 /* Swap the data belonging to the old target out setting the
2163 installed data to zero. This stops the ->init() function trying
2164 to refer to the previous architecture's global data structures. */
2165 swapout_gdbarch_swap (current_gdbarch);
2166 clear_gdbarch_swap (current_gdbarch);
2167
2168 /* Save the previously selected architecture, setting the global to
2169 NULL. This stops ->init() trying to use the previous
2170 architecture's configuration. The previous architecture may not
2171 even be of the same architecture family. The most recent
2172 architecture of the same family is found at the head of the
2173 rego->arches list. */
2174 old_gdbarch = current_gdbarch;
2175 current_gdbarch = NULL;
2176
2177 /* Ask the target for a replacement architecture. */
2178 new_gdbarch = rego->init (info, rego->arches);
2179
2180 /* Did the target like it? No. Reject the change and revert to the
2181 old architecture. */
2182 if (new_gdbarch == NULL)
2183 {
2184 if (gdbarch_debug)
2185 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2186 swapin_gdbarch_swap (old_gdbarch);
2187 current_gdbarch = old_gdbarch;
2188 return 0;
2189 }
2190
2191 /* Did the architecture change? No. Oops, put the old architecture
2192 back. */
2193 if (old_gdbarch == new_gdbarch)
2194 {
2195 if (gdbarch_debug)
2196 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2197 (long) new_gdbarch,
2198 new_gdbarch->bfd_arch_info->printable_name);
2199 swapin_gdbarch_swap (old_gdbarch);
2200 current_gdbarch = old_gdbarch;
2201 return 1;
2202 }
2203
2204 /* Is this a pre-existing architecture? Yes. Move it to the front
2205 of the list of architectures (keeping the list sorted Most
2206 Recently Used) and then copy it in. */
2207 {
2208 struct gdbarch_list **list;
2209 for (list = &rego->arches;
2210 (*list) != NULL;
2211 list = &(*list)->next)
2212 {
2213 if ((*list)->gdbarch == new_gdbarch)
2214 {
2215 struct gdbarch_list *this;
2216 if (gdbarch_debug)
2217 fprintf_unfiltered (gdb_stdlog,
2218 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2219 (long) new_gdbarch,
2220 new_gdbarch->bfd_arch_info->printable_name);
2221 /* Unlink this. */
2222 this = (*list);
2223 (*list) = this->next;
2224 /* Insert in the front. */
2225 this->next = rego->arches;
2226 rego->arches = this;
2227 /* Copy the new architecture in. */
2228 current_gdbarch = new_gdbarch;
2229 swapin_gdbarch_swap (new_gdbarch);
2230 architecture_changed_event ();
2231 return 1;
2232 }
2233 }
2234 }
2235
2236 /* Prepend this new architecture to the architecture list (keep the
2237 list sorted Most Recently Used). */
2238 {
2239 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2240 this->next = rego->arches;
2241 this->gdbarch = new_gdbarch;
2242 rego->arches = this;
2243 }
2244
2245 /* Switch to this new architecture marking it initialized. */
2246 current_gdbarch = new_gdbarch;
2247 current_gdbarch->initialized_p = 1;
2248 if (gdbarch_debug)
2249 {
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2252 (long) new_gdbarch,
2253 new_gdbarch->bfd_arch_info->printable_name);
2254 }
2255
2256 /* Check that the newly installed architecture is valid. Plug in
2257 any post init values. */
2258 new_gdbarch->dump_tdep = rego->dump_tdep;
2259 verify_gdbarch (new_gdbarch);
2260
2261 /* Initialize the per-architecture memory (swap) areas.
2262 CURRENT_GDBARCH must be update before these modules are
2263 called. */
2264 init_gdbarch_swap (new_gdbarch);
2265
2266 /* Initialize the per-architecture data. CURRENT_GDBARCH
2267 must be updated before these modules are called. */
2268 architecture_changed_event ();
2269
2270 if (gdbarch_debug)
2271 gdbarch_dump (current_gdbarch, gdb_stdlog);
2272
2273 return 1;
2274 }
2275
2276
2277 /* Disassembler */
2278
2279 /* Pointer to the target-dependent disassembly function. */
2280 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2281 disassemble_info tm_print_insn_info;
2282
2283
2284 extern void _initialize_gdbarch (void);
2285
2286 void
2287 _initialize_gdbarch (void)
2288 {
2289 struct cmd_list_element *c;
2290
2291 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2292 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2293 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2294 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2295 tm_print_insn_info.print_address_func = dis_asm_print_address;
2296
2297 add_show_from_set (add_set_cmd ("arch",
2298 class_maintenance,
2299 var_zinteger,
2300 (char *)&gdbarch_debug,
2301 "Set architecture debugging.\\n\\
2302 When non-zero, architecture debugging is enabled.", &setdebuglist),
2303 &showdebuglist);
2304 c = add_set_cmd ("archdebug",
2305 class_maintenance,
2306 var_zinteger,
2307 (char *)&gdbarch_debug,
2308 "Set architecture debugging.\\n\\
2309 When non-zero, architecture debugging is enabled.", &setlist);
2310
2311 deprecate_cmd (c, "set debug arch");
2312 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2313 }
2314 EOF
2315
2316 # close things off
2317 exec 1>&2
2318 #../move-if-change new-gdbarch.c gdbarch.c
2319 compare_new gdbarch.c
This page took 0.085375 seconds and 4 git commands to generate.