2005-02-09 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 # Make certain that the script is running in an internationalized
25 # environment.
26 LANG=c ; export LANG
27 LC_ALL=c ; export LC_ALL
28
29
30 compare_new ()
31 {
32 file=$1
33 if test ! -r ${file}
34 then
35 echo "${file} missing? cp new-${file} ${file}" 1>&2
36 elif diff -u ${file} new-${file}
37 then
38 echo "${file} unchanged" 1>&2
39 else
40 echo "${file} has changed? cp new-${file} ${file}" 1>&2
41 fi
42 }
43
44
45 # Format of the input table
46 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
47
48 do_read ()
49 {
50 comment=""
51 class=""
52 while read line
53 do
54 if test "${line}" = ""
55 then
56 continue
57 elif test "${line}" = "#" -a "${comment}" = ""
58 then
59 continue
60 elif expr "${line}" : "#" > /dev/null
61 then
62 comment="${comment}
63 ${line}"
64 else
65
66 # The semantics of IFS varies between different SH's. Some
67 # treat ``::' as three fields while some treat it as just too.
68 # Work around this by eliminating ``::'' ....
69 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
70
71 OFS="${IFS}" ; IFS="[:]"
72 eval read ${read} <<EOF
73 ${line}
74 EOF
75 IFS="${OFS}"
76
77 if test -n "${garbage_at_eol}"
78 then
79 echo "Garbage at end-of-line in ${line}" 1>&2
80 kill $$
81 exit 1
82 fi
83
84 # .... and then going back through each field and strip out those
85 # that ended up with just that space character.
86 for r in ${read}
87 do
88 if eval test \"\${${r}}\" = \"\ \"
89 then
90 eval ${r}=""
91 fi
92 done
93
94 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
95 if test "x${macro}" = "x="
96 then
97 # Provide a UCASE version of function (for when there isn't MACRO)
98 macro="${FUNCTION}"
99 elif test "${macro}" = "${FUNCTION}"
100 then
101 echo "${function}: Specify = for macro field" 1>&2
102 kill $$
103 exit 1
104 fi
105
106 # Check that macro definition wasn't supplied for multi-arch
107 case "${class}" in
108 [mM] )
109 if test "${macro}" != ""
110 then
111 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
112 kill $$
113 exit 1
114 fi
115 esac
116
117 case "${class}" in
118 m ) staticdefault="${predefault}" ;;
119 M ) staticdefault="0" ;;
120 * ) test "${staticdefault}" || staticdefault=0 ;;
121 esac
122
123 case "${class}" in
124 F | V | M )
125 case "${invalid_p}" in
126 "" )
127 if test -n "${predefault}"
128 then
129 #invalid_p="gdbarch->${function} == ${predefault}"
130 predicate="gdbarch->${function} != ${predefault}"
131 elif class_is_variable_p
132 then
133 predicate="gdbarch->${function} != 0"
134 elif class_is_function_p
135 then
136 predicate="gdbarch->${function} != NULL"
137 fi
138 ;;
139 * )
140 echo "Predicate function ${function} with invalid_p." 1>&2
141 kill $$
142 exit 1
143 ;;
144 esac
145 esac
146
147 # PREDEFAULT is a valid fallback definition of MEMBER when
148 # multi-arch is not enabled. This ensures that the
149 # default value, when multi-arch is the same as the
150 # default value when not multi-arch. POSTDEFAULT is
151 # always a valid definition of MEMBER as this again
152 # ensures consistency.
153
154 if [ -n "${postdefault}" ]
155 then
156 fallbackdefault="${postdefault}"
157 elif [ -n "${predefault}" ]
158 then
159 fallbackdefault="${predefault}"
160 else
161 fallbackdefault="0"
162 fi
163
164 #NOT YET: See gdbarch.log for basic verification of
165 # database
166
167 break
168 fi
169 done
170 if [ -n "${class}" ]
171 then
172 true
173 else
174 false
175 fi
176 }
177
178
179 fallback_default_p ()
180 {
181 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
182 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
183 }
184
185 class_is_variable_p ()
186 {
187 case "${class}" in
188 *v* | *V* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_function_p ()
194 {
195 case "${class}" in
196 *f* | *F* | *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_multiarch_p ()
202 {
203 case "${class}" in
204 *m* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_predicate_p ()
210 {
211 case "${class}" in
212 *F* | *V* | *M* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217 class_is_info_p ()
218 {
219 case "${class}" in
220 *i* ) true ;;
221 * ) false ;;
222 esac
223 }
224
225
226 # dump out/verify the doco
227 for field in ${read}
228 do
229 case ${field} in
230
231 class ) : ;;
232
233 # # -> line disable
234 # f -> function
235 # hiding a function
236 # F -> function + predicate
237 # hiding a function + predicate to test function validity
238 # v -> variable
239 # hiding a variable
240 # V -> variable + predicate
241 # hiding a variable + predicate to test variables validity
242 # i -> set from info
243 # hiding something from the ``struct info'' object
244 # m -> multi-arch function
245 # hiding a multi-arch function (parameterised with the architecture)
246 # M -> multi-arch function + predicate
247 # hiding a multi-arch function + predicate to test function validity
248
249 macro ) : ;;
250
251 # The name of the legacy C macro by which this method can be
252 # accessed. If empty, no macro is defined. If "=", a macro
253 # formed from the upper-case function name is used.
254
255 returntype ) : ;;
256
257 # For functions, the return type; for variables, the data type
258
259 function ) : ;;
260
261 # For functions, the member function name; for variables, the
262 # variable name. Member function names are always prefixed with
263 # ``gdbarch_'' for name-space purity.
264
265 formal ) : ;;
266
267 # The formal argument list. It is assumed that the formal
268 # argument list includes the actual name of each list element.
269 # A function with no arguments shall have ``void'' as the
270 # formal argument list.
271
272 actual ) : ;;
273
274 # The list of actual arguments. The arguments specified shall
275 # match the FORMAL list given above. Functions with out
276 # arguments leave this blank.
277
278 staticdefault ) : ;;
279
280 # To help with the GDB startup a static gdbarch object is
281 # created. STATICDEFAULT is the value to insert into that
282 # static gdbarch object. Since this a static object only
283 # simple expressions can be used.
284
285 # If STATICDEFAULT is empty, zero is used.
286
287 predefault ) : ;;
288
289 # An initial value to assign to MEMBER of the freshly
290 # malloc()ed gdbarch object. After initialization, the
291 # freshly malloc()ed object is passed to the target
292 # architecture code for further updates.
293
294 # If PREDEFAULT is empty, zero is used.
295
296 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
297 # INVALID_P are specified, PREDEFAULT will be used as the
298 # default for the non- multi-arch target.
299
300 # A zero PREDEFAULT function will force the fallback to call
301 # internal_error().
302
303 # Variable declarations can refer to ``gdbarch'' which will
304 # contain the current architecture. Care should be taken.
305
306 postdefault ) : ;;
307
308 # A value to assign to MEMBER of the new gdbarch object should
309 # the target architecture code fail to change the PREDEFAULT
310 # value.
311
312 # If POSTDEFAULT is empty, no post update is performed.
313
314 # If both INVALID_P and POSTDEFAULT are non-empty then
315 # INVALID_P will be used to determine if MEMBER should be
316 # changed to POSTDEFAULT.
317
318 # If a non-empty POSTDEFAULT and a zero INVALID_P are
319 # specified, POSTDEFAULT will be used as the default for the
320 # non- multi-arch target (regardless of the value of
321 # PREDEFAULT).
322
323 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
324
325 # Variable declarations can refer to ``current_gdbarch'' which
326 # will contain the current architecture. Care should be
327 # taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 print ) : ;;
347
348 # An optional expression that convers MEMBER to a value
349 # suitable for formatting using %s.
350
351 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
352 # (anything else) is used.
353
354 garbage_at_eol ) : ;;
355
356 # Catches stray fields.
357
358 *)
359 echo "Bad field ${field}"
360 exit 1;;
361 esac
362 done
363
364
365 function_list ()
366 {
367 # See below (DOCO) for description of each field
368 cat <<EOF
369 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
370 #
371 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
372 #
373 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
374 # Number of bits in a char or unsigned char for the target machine.
375 # Just like CHAR_BIT in <limits.h> but describes the target machine.
376 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
377 #
378 # Number of bits in a short or unsigned short for the target machine.
379 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
380 # Number of bits in an int or unsigned int for the target machine.
381 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
382 # Number of bits in a long or unsigned long for the target machine.
383 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
384 # Number of bits in a long long or unsigned long long for the target
385 # machine.
386 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
387
388 # The ABI default bit-size and format for "float", "double", and "long
389 # double". These bit/format pairs should eventually be combined into
390 # a single object. For the moment, just initialize them as a pair.
391
392 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
394 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
396 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
398
399 # For most targets, a pointer on the target and its representation as an
400 # address in GDB have the same size and "look the same". For such a
401 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
402 # / addr_bit will be set from it.
403 #
404 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
405 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
406 #
407 # ptr_bit is the size of a pointer on the target
408 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
409 # addr_bit is the size of a target address as represented in gdb
410 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
411 # Number of bits in a BFD_VMA for the target object file format.
412 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
413 #
414 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
415 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
416 #
417 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
418 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
419 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
420 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
428 #
429 v:=:int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v:=:int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
440 v:=:int:sp_regnum:::-1:-1::0
441 v:=:int:pc_regnum:::-1:-1::0
442 v:=:int:ps_regnum:::-1:-1::0
443 v:=:int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f:=:const char *:register_name:int regnr:regnr
454
455 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
456 M::struct type *:register_type:int reg_nr:reg_nr
457 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
458 # register offsets computed using just REGISTER_TYPE, this can be
459 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
460 # function with predicate has a valid (callable) initial value. As a
461 # consequence, even when the predicate is false, the corresponding
462 # function works. This simplifies the migration process - old code,
463 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
464 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
465
466 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
467 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
468 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
469 # DEPRECATED_FP_REGNUM.
470 v:=:int:deprecated_fp_regnum:::-1:-1::0
471
472 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
473 # replacement for DEPRECATED_PUSH_ARGUMENTS.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
476 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
499 #
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const bfd_byte *buf:type, buf
503 #
504 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
506
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
510
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
514
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
516
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 # RETURN_VALUE.
521
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
527
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
535 # function call.
536
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
544 # function is used.
545
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548
549 #
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
569 #
570 v:=:CORE_ADDR:frame_args_skip:::0:::0
571 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
572 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
573 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
574 # frame-base. Enable frame-base before frame-unwind.
575 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
576 F:=:int:frame_num_args:struct frame_info *frame:frame
577 #
578 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
579 # to frame_align and the requirement that methods such as
580 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
581 # alignment.
582 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
583 M::CORE_ADDR:frame_align:CORE_ADDR address:address
584 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
585 # stabs_argument_has_addr.
586 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
587 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
588 v:=:int:frame_red_zone_size
589 #
590 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
601 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
602 # ADDR_BITS_REMOVE.
603 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
605 # the target needs software single step. An ISA method to implement it.
606 #
607 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
608 # using the breakpoint system instead of blatting memory directly (as with rs6000).
609 #
610 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
611 # single step. If not, then implement single step using breakpoints.
612 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M::int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
620
621
622 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
628
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a funtion's epilogue. in_function_epilogue_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
637 # untouched.
638 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
639 # Given a vector of command-line arguments, return a newly allocated
640 # string which, when passed to the create_inferior function, will be
641 # parsed (on Unix systems, by the shell) to yield the same vector.
642 # This function should call error() if the argument vector is not
643 # representable for this target or if this target does not support
644 # command-line arguments.
645 # ARGC is the number of elements in the vector.
646 # ARGV is an array of strings, one per argument.
647 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
648 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
649 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
650 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
651 v:=:int:cannot_step_breakpoint:::0:0::0
652 v:=:int:have_nonsteppable_watchpoint:::0:0::0
653 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
654 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
655 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
656 # Is a register in a group
657 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
658 # Fetch the pointer to the ith function argument.
659 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
660
661 # Return the appropriate register set for a core file section with
662 # name SECT_NAME and size SECT_SIZE.
663 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
664 EOF
665 }
666
667 #
668 # The .log file
669 #
670 exec > new-gdbarch.log
671 function_list | while do_read
672 do
673 cat <<EOF
674 ${class} ${returntype} ${function} ($formal)
675 EOF
676 for r in ${read}
677 do
678 eval echo \"\ \ \ \ ${r}=\${${r}}\"
679 done
680 if class_is_predicate_p && fallback_default_p
681 then
682 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
683 kill $$
684 exit 1
685 fi
686 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
687 then
688 echo "Error: postdefault is useless when invalid_p=0" 1>&2
689 kill $$
690 exit 1
691 fi
692 if class_is_multiarch_p
693 then
694 if class_is_predicate_p ; then :
695 elif test "x${predefault}" = "x"
696 then
697 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
698 kill $$
699 exit 1
700 fi
701 fi
702 echo ""
703 done
704
705 exec 1>&2
706 compare_new gdbarch.log
707
708
709 copyright ()
710 {
711 cat <<EOF
712 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
713
714 /* Dynamic architecture support for GDB, the GNU debugger.
715
716 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
717 Software Foundation, Inc.
718
719 This file is part of GDB.
720
721 This program is free software; you can redistribute it and/or modify
722 it under the terms of the GNU General Public License as published by
723 the Free Software Foundation; either version 2 of the License, or
724 (at your option) any later version.
725
726 This program is distributed in the hope that it will be useful,
727 but WITHOUT ANY WARRANTY; without even the implied warranty of
728 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
729 GNU General Public License for more details.
730
731 You should have received a copy of the GNU General Public License
732 along with this program; if not, write to the Free Software
733 Foundation, Inc., 59 Temple Place - Suite 330,
734 Boston, MA 02111-1307, USA. */
735
736 /* This file was created with the aid of \`\`gdbarch.sh''.
737
738 The Bourne shell script \`\`gdbarch.sh'' creates the files
739 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
740 against the existing \`\`gdbarch.[hc]''. Any differences found
741 being reported.
742
743 If editing this file, please also run gdbarch.sh and merge any
744 changes into that script. Conversely, when making sweeping changes
745 to this file, modifying gdbarch.sh and using its output may prove
746 easier. */
747
748 EOF
749 }
750
751 #
752 # The .h file
753 #
754
755 exec > new-gdbarch.h
756 copyright
757 cat <<EOF
758 #ifndef GDBARCH_H
759 #define GDBARCH_H
760
761 struct floatformat;
762 struct ui_file;
763 struct frame_info;
764 struct value;
765 struct objfile;
766 struct minimal_symbol;
767 struct regcache;
768 struct reggroup;
769 struct regset;
770 struct disassemble_info;
771 struct target_ops;
772 struct obstack;
773
774 extern struct gdbarch *current_gdbarch;
775 EOF
776
777 # function typedef's
778 printf "\n"
779 printf "\n"
780 printf "/* The following are pre-initialized by GDBARCH. */\n"
781 function_list | while do_read
782 do
783 if class_is_info_p
784 then
785 printf "\n"
786 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
787 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
788 if test -n "${macro}"
789 then
790 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
791 printf "#error \"Non multi-arch definition of ${macro}\"\n"
792 printf "#endif\n"
793 printf "#if !defined (${macro})\n"
794 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
795 printf "#endif\n"
796 fi
797 fi
798 done
799
800 # function typedef's
801 printf "\n"
802 printf "\n"
803 printf "/* The following are initialized by the target dependent code. */\n"
804 function_list | while do_read
805 do
806 if [ -n "${comment}" ]
807 then
808 echo "${comment}" | sed \
809 -e '2 s,#,/*,' \
810 -e '3,$ s,#, ,' \
811 -e '$ s,$, */,'
812 fi
813
814 if class_is_predicate_p
815 then
816 if test -n "${macro}"
817 then
818 printf "\n"
819 printf "#if defined (${macro})\n"
820 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
821 printf "#if !defined (${macro}_P)\n"
822 printf "#define ${macro}_P() (1)\n"
823 printf "#endif\n"
824 printf "#endif\n"
825 fi
826 printf "\n"
827 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
828 if test -n "${macro}"
829 then
830 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
831 printf "#error \"Non multi-arch definition of ${macro}\"\n"
832 printf "#endif\n"
833 printf "#if !defined (${macro}_P)\n"
834 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
835 printf "#endif\n"
836 fi
837 fi
838 if class_is_variable_p
839 then
840 printf "\n"
841 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
842 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
843 if test -n "${macro}"
844 then
845 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
846 printf "#error \"Non multi-arch definition of ${macro}\"\n"
847 printf "#endif\n"
848 printf "#if !defined (${macro})\n"
849 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
850 printf "#endif\n"
851 fi
852 fi
853 if class_is_function_p
854 then
855 printf "\n"
856 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
857 then
858 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
859 elif class_is_multiarch_p
860 then
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
862 else
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
864 fi
865 if [ "x${formal}" = "xvoid" ]
866 then
867 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
868 else
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
870 fi
871 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
872 if test -n "${macro}"
873 then
874 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
875 printf "#error \"Non multi-arch definition of ${macro}\"\n"
876 printf "#endif\n"
877 if [ "x${actual}" = "x" ]
878 then
879 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
880 elif [ "x${actual}" = "x-" ]
881 then
882 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
883 else
884 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
885 fi
886 printf "#if !defined (${macro})\n"
887 if [ "x${actual}" = "x" ]
888 then
889 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
890 elif [ "x${actual}" = "x-" ]
891 then
892 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
893 else
894 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
895 fi
896 printf "#endif\n"
897 fi
898 fi
899 done
900
901 # close it off
902 cat <<EOF
903
904 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
905
906
907 /* Mechanism for co-ordinating the selection of a specific
908 architecture.
909
910 GDB targets (*-tdep.c) can register an interest in a specific
911 architecture. Other GDB components can register a need to maintain
912 per-architecture data.
913
914 The mechanisms below ensures that there is only a loose connection
915 between the set-architecture command and the various GDB
916 components. Each component can independently register their need
917 to maintain architecture specific data with gdbarch.
918
919 Pragmatics:
920
921 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
922 didn't scale.
923
924 The more traditional mega-struct containing architecture specific
925 data for all the various GDB components was also considered. Since
926 GDB is built from a variable number of (fairly independent)
927 components it was determined that the global aproach was not
928 applicable. */
929
930
931 /* Register a new architectural family with GDB.
932
933 Register support for the specified ARCHITECTURE with GDB. When
934 gdbarch determines that the specified architecture has been
935 selected, the corresponding INIT function is called.
936
937 --
938
939 The INIT function takes two parameters: INFO which contains the
940 information available to gdbarch about the (possibly new)
941 architecture; ARCHES which is a list of the previously created
942 \`\`struct gdbarch'' for this architecture.
943
944 The INFO parameter is, as far as possible, be pre-initialized with
945 information obtained from INFO.ABFD or the previously selected
946 architecture.
947
948 The ARCHES parameter is a linked list (sorted most recently used)
949 of all the previously created architures for this architecture
950 family. The (possibly NULL) ARCHES->gdbarch can used to access
951 values from the previously selected architecture for this
952 architecture family. The global \`\`current_gdbarch'' shall not be
953 used.
954
955 The INIT function shall return any of: NULL - indicating that it
956 doesn't recognize the selected architecture; an existing \`\`struct
957 gdbarch'' from the ARCHES list - indicating that the new
958 architecture is just a synonym for an earlier architecture (see
959 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
960 - that describes the selected architecture (see gdbarch_alloc()).
961
962 The DUMP_TDEP function shall print out all target specific values.
963 Care should be taken to ensure that the function works in both the
964 multi-arch and non- multi-arch cases. */
965
966 struct gdbarch_list
967 {
968 struct gdbarch *gdbarch;
969 struct gdbarch_list *next;
970 };
971
972 struct gdbarch_info
973 {
974 /* Use default: NULL (ZERO). */
975 const struct bfd_arch_info *bfd_arch_info;
976
977 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
978 int byte_order;
979
980 /* Use default: NULL (ZERO). */
981 bfd *abfd;
982
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
985
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
988 };
989
990 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
991 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
992
993 /* DEPRECATED - use gdbarch_register() */
994 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
995
996 extern void gdbarch_register (enum bfd_architecture architecture,
997 gdbarch_init_ftype *,
998 gdbarch_dump_tdep_ftype *);
999
1000
1001 /* Return a freshly allocated, NULL terminated, array of the valid
1002 architecture names. Since architectures are registered during the
1003 _initialize phase this function only returns useful information
1004 once initialization has been completed. */
1005
1006 extern const char **gdbarch_printable_names (void);
1007
1008
1009 /* Helper function. Search the list of ARCHES for a GDBARCH that
1010 matches the information provided by INFO. */
1011
1012 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1013
1014
1015 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1016 basic initialization using values obtained from the INFO andTDEP
1017 parameters. set_gdbarch_*() functions are called to complete the
1018 initialization of the object. */
1019
1020 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1021
1022
1023 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1024 It is assumed that the caller freeds the \`\`struct
1025 gdbarch_tdep''. */
1026
1027 extern void gdbarch_free (struct gdbarch *);
1028
1029
1030 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1031 obstack. The memory is freed when the corresponding architecture
1032 is also freed. */
1033
1034 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1035 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1036 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1037
1038
1039 /* Helper function. Force an update of the current architecture.
1040
1041 The actual architecture selected is determined by INFO, \`\`(gdb) set
1042 architecture'' et.al., the existing architecture and BFD's default
1043 architecture. INFO should be initialized to zero and then selected
1044 fields should be updated.
1045
1046 Returns non-zero if the update succeeds */
1047
1048 extern int gdbarch_update_p (struct gdbarch_info info);
1049
1050
1051 /* Helper function. Find an architecture matching info.
1052
1053 INFO should be initialized using gdbarch_info_init, relevant fields
1054 set, and then finished using gdbarch_info_fill.
1055
1056 Returns the corresponding architecture, or NULL if no matching
1057 architecture was found. "current_gdbarch" is not updated. */
1058
1059 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1060
1061
1062 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1063
1064 FIXME: kettenis/20031124: Of the functions that follow, only
1065 gdbarch_from_bfd is supposed to survive. The others will
1066 dissappear since in the future GDB will (hopefully) be truly
1067 multi-arch. However, for now we're still stuck with the concept of
1068 a single active architecture. */
1069
1070 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1071
1072
1073 /* Register per-architecture data-pointer.
1074
1075 Reserve space for a per-architecture data-pointer. An identifier
1076 for the reserved data-pointer is returned. That identifer should
1077 be saved in a local static variable.
1078
1079 Memory for the per-architecture data shall be allocated using
1080 gdbarch_obstack_zalloc. That memory will be deleted when the
1081 corresponding architecture object is deleted.
1082
1083 When a previously created architecture is re-selected, the
1084 per-architecture data-pointer for that previous architecture is
1085 restored. INIT() is not re-called.
1086
1087 Multiple registrarants for any architecture are allowed (and
1088 strongly encouraged). */
1089
1090 struct gdbarch_data;
1091
1092 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1093 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1094 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1095 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1096 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1097 struct gdbarch_data *data,
1098 void *pointer);
1099
1100 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1101
1102
1103
1104 /* Register per-architecture memory region.
1105
1106 Provide a memory-region swap mechanism. Per-architecture memory
1107 region are created. These memory regions are swapped whenever the
1108 architecture is changed. For a new architecture, the memory region
1109 is initialized with zero (0) and the INIT function is called.
1110
1111 Memory regions are swapped / initialized in the order that they are
1112 registered. NULL DATA and/or INIT values can be specified.
1113
1114 New code should use gdbarch_data_register_*(). */
1115
1116 typedef void (gdbarch_swap_ftype) (void);
1117 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1118 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1119
1120
1121
1122 /* Set the dynamic target-system-dependent parameters (architecture,
1123 byte-order, ...) using information found in the BFD */
1124
1125 extern void set_gdbarch_from_file (bfd *);
1126
1127
1128 /* Initialize the current architecture to the "first" one we find on
1129 our list. */
1130
1131 extern void initialize_current_architecture (void);
1132
1133 /* gdbarch trace variable */
1134 extern int gdbarch_debug;
1135
1136 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1137
1138 #endif
1139 EOF
1140 exec 1>&2
1141 #../move-if-change new-gdbarch.h gdbarch.h
1142 compare_new gdbarch.h
1143
1144
1145 #
1146 # C file
1147 #
1148
1149 exec > new-gdbarch.c
1150 copyright
1151 cat <<EOF
1152
1153 #include "defs.h"
1154 #include "arch-utils.h"
1155
1156 #include "gdbcmd.h"
1157 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1158 #include "symcat.h"
1159
1160 #include "floatformat.h"
1161
1162 #include "gdb_assert.h"
1163 #include "gdb_string.h"
1164 #include "gdb-events.h"
1165 #include "reggroups.h"
1166 #include "osabi.h"
1167 #include "gdb_obstack.h"
1168
1169 /* Static function declarations */
1170
1171 static void alloc_gdbarch_data (struct gdbarch *);
1172
1173 /* Non-zero if we want to trace architecture code. */
1174
1175 #ifndef GDBARCH_DEBUG
1176 #define GDBARCH_DEBUG 0
1177 #endif
1178 int gdbarch_debug = GDBARCH_DEBUG;
1179
1180 static const char *
1181 pformat (const struct floatformat *format)
1182 {
1183 if (format == NULL)
1184 return "(null)";
1185 else
1186 return format->name;
1187 }
1188
1189 EOF
1190
1191 # gdbarch open the gdbarch object
1192 printf "\n"
1193 printf "/* Maintain the struct gdbarch object */\n"
1194 printf "\n"
1195 printf "struct gdbarch\n"
1196 printf "{\n"
1197 printf " /* Has this architecture been fully initialized? */\n"
1198 printf " int initialized_p;\n"
1199 printf "\n"
1200 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1201 printf " struct obstack *obstack;\n"
1202 printf "\n"
1203 printf " /* basic architectural information */\n"
1204 function_list | while do_read
1205 do
1206 if class_is_info_p
1207 then
1208 printf " ${returntype} ${function};\n"
1209 fi
1210 done
1211 printf "\n"
1212 printf " /* target specific vector. */\n"
1213 printf " struct gdbarch_tdep *tdep;\n"
1214 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1215 printf "\n"
1216 printf " /* per-architecture data-pointers */\n"
1217 printf " unsigned nr_data;\n"
1218 printf " void **data;\n"
1219 printf "\n"
1220 printf " /* per-architecture swap-regions */\n"
1221 printf " struct gdbarch_swap *swap;\n"
1222 printf "\n"
1223 cat <<EOF
1224 /* Multi-arch values.
1225
1226 When extending this structure you must:
1227
1228 Add the field below.
1229
1230 Declare set/get functions and define the corresponding
1231 macro in gdbarch.h.
1232
1233 gdbarch_alloc(): If zero/NULL is not a suitable default,
1234 initialize the new field.
1235
1236 verify_gdbarch(): Confirm that the target updated the field
1237 correctly.
1238
1239 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1240 field is dumped out
1241
1242 \`\`startup_gdbarch()'': Append an initial value to the static
1243 variable (base values on the host's c-type system).
1244
1245 get_gdbarch(): Implement the set/get functions (probably using
1246 the macro's as shortcuts).
1247
1248 */
1249
1250 EOF
1251 function_list | while do_read
1252 do
1253 if class_is_variable_p
1254 then
1255 printf " ${returntype} ${function};\n"
1256 elif class_is_function_p
1257 then
1258 printf " gdbarch_${function}_ftype *${function};\n"
1259 fi
1260 done
1261 printf "};\n"
1262
1263 # A pre-initialized vector
1264 printf "\n"
1265 printf "\n"
1266 cat <<EOF
1267 /* The default architecture uses host values (for want of a better
1268 choice). */
1269 EOF
1270 printf "\n"
1271 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1272 printf "\n"
1273 printf "struct gdbarch startup_gdbarch =\n"
1274 printf "{\n"
1275 printf " 1, /* Always initialized. */\n"
1276 printf " NULL, /* The obstack. */\n"
1277 printf " /* basic architecture information */\n"
1278 function_list | while do_read
1279 do
1280 if class_is_info_p
1281 then
1282 printf " ${staticdefault}, /* ${function} */\n"
1283 fi
1284 done
1285 cat <<EOF
1286 /* target specific vector and its dump routine */
1287 NULL, NULL,
1288 /*per-architecture data-pointers and swap regions */
1289 0, NULL, NULL,
1290 /* Multi-arch values */
1291 EOF
1292 function_list | while do_read
1293 do
1294 if class_is_function_p || class_is_variable_p
1295 then
1296 printf " ${staticdefault}, /* ${function} */\n"
1297 fi
1298 done
1299 cat <<EOF
1300 /* startup_gdbarch() */
1301 };
1302
1303 struct gdbarch *current_gdbarch = &startup_gdbarch;
1304 EOF
1305
1306 # Create a new gdbarch struct
1307 cat <<EOF
1308
1309 /* Create a new \`\`struct gdbarch'' based on information provided by
1310 \`\`struct gdbarch_info''. */
1311 EOF
1312 printf "\n"
1313 cat <<EOF
1314 struct gdbarch *
1315 gdbarch_alloc (const struct gdbarch_info *info,
1316 struct gdbarch_tdep *tdep)
1317 {
1318 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1319 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1320 the current local architecture and not the previous global
1321 architecture. This ensures that the new architectures initial
1322 values are not influenced by the previous architecture. Once
1323 everything is parameterised with gdbarch, this will go away. */
1324 struct gdbarch *current_gdbarch;
1325
1326 /* Create an obstack for allocating all the per-architecture memory,
1327 then use that to allocate the architecture vector. */
1328 struct obstack *obstack = XMALLOC (struct obstack);
1329 obstack_init (obstack);
1330 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1331 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1332 current_gdbarch->obstack = obstack;
1333
1334 alloc_gdbarch_data (current_gdbarch);
1335
1336 current_gdbarch->tdep = tdep;
1337 EOF
1338 printf "\n"
1339 function_list | while do_read
1340 do
1341 if class_is_info_p
1342 then
1343 printf " current_gdbarch->${function} = info->${function};\n"
1344 fi
1345 done
1346 printf "\n"
1347 printf " /* Force the explicit initialization of these. */\n"
1348 function_list | while do_read
1349 do
1350 if class_is_function_p || class_is_variable_p
1351 then
1352 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1353 then
1354 printf " current_gdbarch->${function} = ${predefault};\n"
1355 fi
1356 fi
1357 done
1358 cat <<EOF
1359 /* gdbarch_alloc() */
1360
1361 return current_gdbarch;
1362 }
1363 EOF
1364
1365 # Free a gdbarch struct.
1366 printf "\n"
1367 printf "\n"
1368 cat <<EOF
1369 /* Allocate extra space using the per-architecture obstack. */
1370
1371 void *
1372 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1373 {
1374 void *data = obstack_alloc (arch->obstack, size);
1375 memset (data, 0, size);
1376 return data;
1377 }
1378
1379
1380 /* Free a gdbarch struct. This should never happen in normal
1381 operation --- once you've created a gdbarch, you keep it around.
1382 However, if an architecture's init function encounters an error
1383 building the structure, it may need to clean up a partially
1384 constructed gdbarch. */
1385
1386 void
1387 gdbarch_free (struct gdbarch *arch)
1388 {
1389 struct obstack *obstack;
1390 gdb_assert (arch != NULL);
1391 gdb_assert (!arch->initialized_p);
1392 obstack = arch->obstack;
1393 obstack_free (obstack, 0); /* Includes the ARCH. */
1394 xfree (obstack);
1395 }
1396 EOF
1397
1398 # verify a new architecture
1399 cat <<EOF
1400
1401
1402 /* Ensure that all values in a GDBARCH are reasonable. */
1403
1404 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1405 just happens to match the global variable \`\`current_gdbarch''. That
1406 way macros refering to that variable get the local and not the global
1407 version - ulgh. Once everything is parameterised with gdbarch, this
1408 will go away. */
1409
1410 static void
1411 verify_gdbarch (struct gdbarch *current_gdbarch)
1412 {
1413 struct ui_file *log;
1414 struct cleanup *cleanups;
1415 long dummy;
1416 char *buf;
1417 log = mem_fileopen ();
1418 cleanups = make_cleanup_ui_file_delete (log);
1419 /* fundamental */
1420 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1421 fprintf_unfiltered (log, "\n\tbyte-order");
1422 if (current_gdbarch->bfd_arch_info == NULL)
1423 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1424 /* Check those that need to be defined for the given multi-arch level. */
1425 EOF
1426 function_list | while do_read
1427 do
1428 if class_is_function_p || class_is_variable_p
1429 then
1430 if [ "x${invalid_p}" = "x0" ]
1431 then
1432 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1433 elif class_is_predicate_p
1434 then
1435 printf " /* Skip verify of ${function}, has predicate */\n"
1436 # FIXME: See do_read for potential simplification
1437 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1438 then
1439 printf " if (${invalid_p})\n"
1440 printf " current_gdbarch->${function} = ${postdefault};\n"
1441 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1442 then
1443 printf " if (current_gdbarch->${function} == ${predefault})\n"
1444 printf " current_gdbarch->${function} = ${postdefault};\n"
1445 elif [ -n "${postdefault}" ]
1446 then
1447 printf " if (current_gdbarch->${function} == 0)\n"
1448 printf " current_gdbarch->${function} = ${postdefault};\n"
1449 elif [ -n "${invalid_p}" ]
1450 then
1451 printf " if (${invalid_p})\n"
1452 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1453 elif [ -n "${predefault}" ]
1454 then
1455 printf " if (current_gdbarch->${function} == ${predefault})\n"
1456 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1457 fi
1458 fi
1459 done
1460 cat <<EOF
1461 buf = ui_file_xstrdup (log, &dummy);
1462 make_cleanup (xfree, buf);
1463 if (strlen (buf) > 0)
1464 internal_error (__FILE__, __LINE__,
1465 "verify_gdbarch: the following are invalid ...%s",
1466 buf);
1467 do_cleanups (cleanups);
1468 }
1469 EOF
1470
1471 # dump the structure
1472 printf "\n"
1473 printf "\n"
1474 cat <<EOF
1475 /* Print out the details of the current architecture. */
1476
1477 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1478 just happens to match the global variable \`\`current_gdbarch''. That
1479 way macros refering to that variable get the local and not the global
1480 version - ulgh. Once everything is parameterised with gdbarch, this
1481 will go away. */
1482
1483 void
1484 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1485 {
1486 const char *gdb_xm_file = "<not-defined>";
1487 const char *gdb_nm_file = "<not-defined>";
1488 const char *gdb_tm_file = "<not-defined>";
1489 #if defined (GDB_XM_FILE)
1490 gdb_xm_file = GDB_XM_FILE;
1491 #endif
1492 fprintf_unfiltered (file,
1493 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1494 gdb_xm_file);
1495 #if defined (GDB_NM_FILE)
1496 gdb_nm_file = GDB_NM_FILE;
1497 #endif
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1500 gdb_nm_file);
1501 #if defined (GDB_TM_FILE)
1502 gdb_tm_file = GDB_TM_FILE;
1503 #endif
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1506 gdb_tm_file);
1507 EOF
1508 function_list | sort -t: -k 4 | while do_read
1509 do
1510 # First the predicate
1511 if class_is_predicate_p
1512 then
1513 if test -n "${macro}"
1514 then
1515 printf "#ifdef ${macro}_P\n"
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1518 printf " \"${macro}_P()\",\n"
1519 printf " XSTRING (${macro}_P ()));\n"
1520 printf "#endif\n"
1521 fi
1522 printf " fprintf_unfiltered (file,\n"
1523 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1524 printf " gdbarch_${function}_p (current_gdbarch));\n"
1525 fi
1526 # Print the macro definition.
1527 if test -n "${macro}"
1528 then
1529 printf "#ifdef ${macro}\n"
1530 if class_is_function_p
1531 then
1532 printf " fprintf_unfiltered (file,\n"
1533 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1534 printf " \"${macro}(${actual})\",\n"
1535 printf " XSTRING (${macro} (${actual})));\n"
1536 else
1537 printf " fprintf_unfiltered (file,\n"
1538 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1539 printf " XSTRING (${macro}));\n"
1540 fi
1541 printf "#endif\n"
1542 fi
1543 # Print the corresponding value.
1544 if class_is_function_p
1545 then
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1548 printf " (long) current_gdbarch->${function});\n"
1549 else
1550 # It is a variable
1551 case "${print}:${returntype}" in
1552 :CORE_ADDR )
1553 fmt="0x%s"
1554 print="paddr_nz (current_gdbarch->${function})"
1555 ;;
1556 :* )
1557 fmt="%s"
1558 print="paddr_d (current_gdbarch->${function})"
1559 ;;
1560 * )
1561 fmt="%s"
1562 ;;
1563 esac
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1566 printf " ${print});\n"
1567 fi
1568 done
1569 cat <<EOF
1570 if (current_gdbarch->dump_tdep != NULL)
1571 current_gdbarch->dump_tdep (current_gdbarch, file);
1572 }
1573 EOF
1574
1575
1576 # GET/SET
1577 printf "\n"
1578 cat <<EOF
1579 struct gdbarch_tdep *
1580 gdbarch_tdep (struct gdbarch *gdbarch)
1581 {
1582 if (gdbarch_debug >= 2)
1583 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1584 return gdbarch->tdep;
1585 }
1586 EOF
1587 printf "\n"
1588 function_list | while do_read
1589 do
1590 if class_is_predicate_p
1591 then
1592 printf "\n"
1593 printf "int\n"
1594 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1595 printf "{\n"
1596 printf " gdb_assert (gdbarch != NULL);\n"
1597 printf " return ${predicate};\n"
1598 printf "}\n"
1599 fi
1600 if class_is_function_p
1601 then
1602 printf "\n"
1603 printf "${returntype}\n"
1604 if [ "x${formal}" = "xvoid" ]
1605 then
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1607 else
1608 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1609 fi
1610 printf "{\n"
1611 printf " gdb_assert (gdbarch != NULL);\n"
1612 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1613 if class_is_predicate_p && test -n "${predefault}"
1614 then
1615 # Allow a call to a function with a predicate.
1616 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1617 fi
1618 printf " if (gdbarch_debug >= 2)\n"
1619 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1620 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1621 then
1622 if class_is_multiarch_p
1623 then
1624 params="gdbarch"
1625 else
1626 params=""
1627 fi
1628 else
1629 if class_is_multiarch_p
1630 then
1631 params="gdbarch, ${actual}"
1632 else
1633 params="${actual}"
1634 fi
1635 fi
1636 if [ "x${returntype}" = "xvoid" ]
1637 then
1638 printf " gdbarch->${function} (${params});\n"
1639 else
1640 printf " return gdbarch->${function} (${params});\n"
1641 fi
1642 printf "}\n"
1643 printf "\n"
1644 printf "void\n"
1645 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1646 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1647 printf "{\n"
1648 printf " gdbarch->${function} = ${function};\n"
1649 printf "}\n"
1650 elif class_is_variable_p
1651 then
1652 printf "\n"
1653 printf "${returntype}\n"
1654 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1655 printf "{\n"
1656 printf " gdb_assert (gdbarch != NULL);\n"
1657 if [ "x${invalid_p}" = "x0" ]
1658 then
1659 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1660 elif [ -n "${invalid_p}" ]
1661 then
1662 printf " /* Check variable is valid. */\n"
1663 printf " gdb_assert (!(${invalid_p}));\n"
1664 elif [ -n "${predefault}" ]
1665 then
1666 printf " /* Check variable changed from pre-default. */\n"
1667 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1668 fi
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 printf " return gdbarch->${function};\n"
1672 printf "}\n"
1673 printf "\n"
1674 printf "void\n"
1675 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1676 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1677 printf "{\n"
1678 printf " gdbarch->${function} = ${function};\n"
1679 printf "}\n"
1680 elif class_is_info_p
1681 then
1682 printf "\n"
1683 printf "${returntype}\n"
1684 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1685 printf "{\n"
1686 printf " gdb_assert (gdbarch != NULL);\n"
1687 printf " if (gdbarch_debug >= 2)\n"
1688 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1689 printf " return gdbarch->${function};\n"
1690 printf "}\n"
1691 fi
1692 done
1693
1694 # All the trailing guff
1695 cat <<EOF
1696
1697
1698 /* Keep a registry of per-architecture data-pointers required by GDB
1699 modules. */
1700
1701 struct gdbarch_data
1702 {
1703 unsigned index;
1704 int init_p;
1705 gdbarch_data_pre_init_ftype *pre_init;
1706 gdbarch_data_post_init_ftype *post_init;
1707 };
1708
1709 struct gdbarch_data_registration
1710 {
1711 struct gdbarch_data *data;
1712 struct gdbarch_data_registration *next;
1713 };
1714
1715 struct gdbarch_data_registry
1716 {
1717 unsigned nr;
1718 struct gdbarch_data_registration *registrations;
1719 };
1720
1721 struct gdbarch_data_registry gdbarch_data_registry =
1722 {
1723 0, NULL,
1724 };
1725
1726 static struct gdbarch_data *
1727 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1728 gdbarch_data_post_init_ftype *post_init)
1729 {
1730 struct gdbarch_data_registration **curr;
1731 /* Append the new registraration. */
1732 for (curr = &gdbarch_data_registry.registrations;
1733 (*curr) != NULL;
1734 curr = &(*curr)->next);
1735 (*curr) = XMALLOC (struct gdbarch_data_registration);
1736 (*curr)->next = NULL;
1737 (*curr)->data = XMALLOC (struct gdbarch_data);
1738 (*curr)->data->index = gdbarch_data_registry.nr++;
1739 (*curr)->data->pre_init = pre_init;
1740 (*curr)->data->post_init = post_init;
1741 (*curr)->data->init_p = 1;
1742 return (*curr)->data;
1743 }
1744
1745 struct gdbarch_data *
1746 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1747 {
1748 return gdbarch_data_register (pre_init, NULL);
1749 }
1750
1751 struct gdbarch_data *
1752 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1753 {
1754 return gdbarch_data_register (NULL, post_init);
1755 }
1756
1757 /* Create/delete the gdbarch data vector. */
1758
1759 static void
1760 alloc_gdbarch_data (struct gdbarch *gdbarch)
1761 {
1762 gdb_assert (gdbarch->data == NULL);
1763 gdbarch->nr_data = gdbarch_data_registry.nr;
1764 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1765 }
1766
1767 /* Initialize the current value of the specified per-architecture
1768 data-pointer. */
1769
1770 void
1771 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1772 struct gdbarch_data *data,
1773 void *pointer)
1774 {
1775 gdb_assert (data->index < gdbarch->nr_data);
1776 gdb_assert (gdbarch->data[data->index] == NULL);
1777 gdb_assert (data->pre_init == NULL);
1778 gdbarch->data[data->index] = pointer;
1779 }
1780
1781 /* Return the current value of the specified per-architecture
1782 data-pointer. */
1783
1784 void *
1785 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1786 {
1787 gdb_assert (data->index < gdbarch->nr_data);
1788 if (gdbarch->data[data->index] == NULL)
1789 {
1790 /* The data-pointer isn't initialized, call init() to get a
1791 value. */
1792 if (data->pre_init != NULL)
1793 /* Mid architecture creation: pass just the obstack, and not
1794 the entire architecture, as that way it isn't possible for
1795 pre-init code to refer to undefined architecture
1796 fields. */
1797 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1798 else if (gdbarch->initialized_p
1799 && data->post_init != NULL)
1800 /* Post architecture creation: pass the entire architecture
1801 (as all fields are valid), but be careful to also detect
1802 recursive references. */
1803 {
1804 gdb_assert (data->init_p);
1805 data->init_p = 0;
1806 gdbarch->data[data->index] = data->post_init (gdbarch);
1807 data->init_p = 1;
1808 }
1809 else
1810 /* The architecture initialization hasn't completed - punt -
1811 hope that the caller knows what they are doing. Once
1812 deprecated_set_gdbarch_data has been initialized, this can be
1813 changed to an internal error. */
1814 return NULL;
1815 gdb_assert (gdbarch->data[data->index] != NULL);
1816 }
1817 return gdbarch->data[data->index];
1818 }
1819
1820
1821
1822 /* Keep a registry of swapped data required by GDB modules. */
1823
1824 struct gdbarch_swap
1825 {
1826 void *swap;
1827 struct gdbarch_swap_registration *source;
1828 struct gdbarch_swap *next;
1829 };
1830
1831 struct gdbarch_swap_registration
1832 {
1833 void *data;
1834 unsigned long sizeof_data;
1835 gdbarch_swap_ftype *init;
1836 struct gdbarch_swap_registration *next;
1837 };
1838
1839 struct gdbarch_swap_registry
1840 {
1841 int nr;
1842 struct gdbarch_swap_registration *registrations;
1843 };
1844
1845 struct gdbarch_swap_registry gdbarch_swap_registry =
1846 {
1847 0, NULL,
1848 };
1849
1850 void
1851 deprecated_register_gdbarch_swap (void *data,
1852 unsigned long sizeof_data,
1853 gdbarch_swap_ftype *init)
1854 {
1855 struct gdbarch_swap_registration **rego;
1856 for (rego = &gdbarch_swap_registry.registrations;
1857 (*rego) != NULL;
1858 rego = &(*rego)->next);
1859 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1860 (*rego)->next = NULL;
1861 (*rego)->init = init;
1862 (*rego)->data = data;
1863 (*rego)->sizeof_data = sizeof_data;
1864 }
1865
1866 static void
1867 current_gdbarch_swap_init_hack (void)
1868 {
1869 struct gdbarch_swap_registration *rego;
1870 struct gdbarch_swap **curr = &current_gdbarch->swap;
1871 for (rego = gdbarch_swap_registry.registrations;
1872 rego != NULL;
1873 rego = rego->next)
1874 {
1875 if (rego->data != NULL)
1876 {
1877 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1878 struct gdbarch_swap);
1879 (*curr)->source = rego;
1880 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1881 rego->sizeof_data);
1882 (*curr)->next = NULL;
1883 curr = &(*curr)->next;
1884 }
1885 if (rego->init != NULL)
1886 rego->init ();
1887 }
1888 }
1889
1890 static struct gdbarch *
1891 current_gdbarch_swap_out_hack (void)
1892 {
1893 struct gdbarch *old_gdbarch = current_gdbarch;
1894 struct gdbarch_swap *curr;
1895
1896 gdb_assert (old_gdbarch != NULL);
1897 for (curr = old_gdbarch->swap;
1898 curr != NULL;
1899 curr = curr->next)
1900 {
1901 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1902 memset (curr->source->data, 0, curr->source->sizeof_data);
1903 }
1904 current_gdbarch = NULL;
1905 return old_gdbarch;
1906 }
1907
1908 static void
1909 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1910 {
1911 struct gdbarch_swap *curr;
1912
1913 gdb_assert (current_gdbarch == NULL);
1914 for (curr = new_gdbarch->swap;
1915 curr != NULL;
1916 curr = curr->next)
1917 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1918 current_gdbarch = new_gdbarch;
1919 }
1920
1921
1922 /* Keep a registry of the architectures known by GDB. */
1923
1924 struct gdbarch_registration
1925 {
1926 enum bfd_architecture bfd_architecture;
1927 gdbarch_init_ftype *init;
1928 gdbarch_dump_tdep_ftype *dump_tdep;
1929 struct gdbarch_list *arches;
1930 struct gdbarch_registration *next;
1931 };
1932
1933 static struct gdbarch_registration *gdbarch_registry = NULL;
1934
1935 static void
1936 append_name (const char ***buf, int *nr, const char *name)
1937 {
1938 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1939 (*buf)[*nr] = name;
1940 *nr += 1;
1941 }
1942
1943 const char **
1944 gdbarch_printable_names (void)
1945 {
1946 /* Accumulate a list of names based on the registed list of
1947 architectures. */
1948 enum bfd_architecture a;
1949 int nr_arches = 0;
1950 const char **arches = NULL;
1951 struct gdbarch_registration *rego;
1952 for (rego = gdbarch_registry;
1953 rego != NULL;
1954 rego = rego->next)
1955 {
1956 const struct bfd_arch_info *ap;
1957 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1958 if (ap == NULL)
1959 internal_error (__FILE__, __LINE__,
1960 "gdbarch_architecture_names: multi-arch unknown");
1961 do
1962 {
1963 append_name (&arches, &nr_arches, ap->printable_name);
1964 ap = ap->next;
1965 }
1966 while (ap != NULL);
1967 }
1968 append_name (&arches, &nr_arches, NULL);
1969 return arches;
1970 }
1971
1972
1973 void
1974 gdbarch_register (enum bfd_architecture bfd_architecture,
1975 gdbarch_init_ftype *init,
1976 gdbarch_dump_tdep_ftype *dump_tdep)
1977 {
1978 struct gdbarch_registration **curr;
1979 const struct bfd_arch_info *bfd_arch_info;
1980 /* Check that BFD recognizes this architecture */
1981 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1982 if (bfd_arch_info == NULL)
1983 {
1984 internal_error (__FILE__, __LINE__,
1985 "gdbarch: Attempt to register unknown architecture (%d)",
1986 bfd_architecture);
1987 }
1988 /* Check that we haven't seen this architecture before */
1989 for (curr = &gdbarch_registry;
1990 (*curr) != NULL;
1991 curr = &(*curr)->next)
1992 {
1993 if (bfd_architecture == (*curr)->bfd_architecture)
1994 internal_error (__FILE__, __LINE__,
1995 "gdbarch: Duplicate registraration of architecture (%s)",
1996 bfd_arch_info->printable_name);
1997 }
1998 /* log it */
1999 if (gdbarch_debug)
2000 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2001 bfd_arch_info->printable_name,
2002 (long) init);
2003 /* Append it */
2004 (*curr) = XMALLOC (struct gdbarch_registration);
2005 (*curr)->bfd_architecture = bfd_architecture;
2006 (*curr)->init = init;
2007 (*curr)->dump_tdep = dump_tdep;
2008 (*curr)->arches = NULL;
2009 (*curr)->next = NULL;
2010 }
2011
2012 void
2013 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2014 gdbarch_init_ftype *init)
2015 {
2016 gdbarch_register (bfd_architecture, init, NULL);
2017 }
2018
2019
2020 /* Look for an architecture using gdbarch_info. Base search on only
2021 BFD_ARCH_INFO and BYTE_ORDER. */
2022
2023 struct gdbarch_list *
2024 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2025 const struct gdbarch_info *info)
2026 {
2027 for (; arches != NULL; arches = arches->next)
2028 {
2029 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2030 continue;
2031 if (info->byte_order != arches->gdbarch->byte_order)
2032 continue;
2033 if (info->osabi != arches->gdbarch->osabi)
2034 continue;
2035 return arches;
2036 }
2037 return NULL;
2038 }
2039
2040
2041 /* Find an architecture that matches the specified INFO. Create a new
2042 architecture if needed. Return that new architecture. Assumes
2043 that there is no current architecture. */
2044
2045 static struct gdbarch *
2046 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2047 {
2048 struct gdbarch *new_gdbarch;
2049 struct gdbarch_registration *rego;
2050
2051 /* The existing architecture has been swapped out - all this code
2052 works from a clean slate. */
2053 gdb_assert (current_gdbarch == NULL);
2054
2055 /* Fill in missing parts of the INFO struct using a number of
2056 sources: "set ..."; INFOabfd supplied; and the existing
2057 architecture. */
2058 gdbarch_info_fill (old_gdbarch, &info);
2059
2060 /* Must have found some sort of architecture. */
2061 gdb_assert (info.bfd_arch_info != NULL);
2062
2063 if (gdbarch_debug)
2064 {
2065 fprintf_unfiltered (gdb_stdlog,
2066 "find_arch_by_info: info.bfd_arch_info %s\n",
2067 (info.bfd_arch_info != NULL
2068 ? info.bfd_arch_info->printable_name
2069 : "(null)"));
2070 fprintf_unfiltered (gdb_stdlog,
2071 "find_arch_by_info: info.byte_order %d (%s)\n",
2072 info.byte_order,
2073 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2074 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2075 : "default"));
2076 fprintf_unfiltered (gdb_stdlog,
2077 "find_arch_by_info: info.osabi %d (%s)\n",
2078 info.osabi, gdbarch_osabi_name (info.osabi));
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.abfd 0x%lx\n",
2081 (long) info.abfd);
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.tdep_info 0x%lx\n",
2084 (long) info.tdep_info);
2085 }
2086
2087 /* Find the tdep code that knows about this architecture. */
2088 for (rego = gdbarch_registry;
2089 rego != NULL;
2090 rego = rego->next)
2091 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2092 break;
2093 if (rego == NULL)
2094 {
2095 if (gdbarch_debug)
2096 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2097 "No matching architecture\n");
2098 return 0;
2099 }
2100
2101 /* Ask the tdep code for an architecture that matches "info". */
2102 new_gdbarch = rego->init (info, rego->arches);
2103
2104 /* Did the tdep code like it? No. Reject the change and revert to
2105 the old architecture. */
2106 if (new_gdbarch == NULL)
2107 {
2108 if (gdbarch_debug)
2109 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2110 "Target rejected architecture\n");
2111 return NULL;
2112 }
2113
2114 /* Is this a pre-existing architecture (as determined by already
2115 being initialized)? Move it to the front of the architecture
2116 list (keeping the list sorted Most Recently Used). */
2117 if (new_gdbarch->initialized_p)
2118 {
2119 struct gdbarch_list **list;
2120 struct gdbarch_list *this;
2121 if (gdbarch_debug)
2122 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2123 "Previous architecture 0x%08lx (%s) selected\n",
2124 (long) new_gdbarch,
2125 new_gdbarch->bfd_arch_info->printable_name);
2126 /* Find the existing arch in the list. */
2127 for (list = &rego->arches;
2128 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2129 list = &(*list)->next);
2130 /* It had better be in the list of architectures. */
2131 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2132 /* Unlink THIS. */
2133 this = (*list);
2134 (*list) = this->next;
2135 /* Insert THIS at the front. */
2136 this->next = rego->arches;
2137 rego->arches = this;
2138 /* Return it. */
2139 return new_gdbarch;
2140 }
2141
2142 /* It's a new architecture. */
2143 if (gdbarch_debug)
2144 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2145 "New architecture 0x%08lx (%s) selected\n",
2146 (long) new_gdbarch,
2147 new_gdbarch->bfd_arch_info->printable_name);
2148
2149 /* Insert the new architecture into the front of the architecture
2150 list (keep the list sorted Most Recently Used). */
2151 {
2152 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2153 this->next = rego->arches;
2154 this->gdbarch = new_gdbarch;
2155 rego->arches = this;
2156 }
2157
2158 /* Check that the newly installed architecture is valid. Plug in
2159 any post init values. */
2160 new_gdbarch->dump_tdep = rego->dump_tdep;
2161 verify_gdbarch (new_gdbarch);
2162 new_gdbarch->initialized_p = 1;
2163
2164 /* Initialize any per-architecture swap areas. This phase requires
2165 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2166 swap the entire architecture out. */
2167 current_gdbarch = new_gdbarch;
2168 current_gdbarch_swap_init_hack ();
2169 current_gdbarch_swap_out_hack ();
2170
2171 if (gdbarch_debug)
2172 gdbarch_dump (new_gdbarch, gdb_stdlog);
2173
2174 return new_gdbarch;
2175 }
2176
2177 struct gdbarch *
2178 gdbarch_find_by_info (struct gdbarch_info info)
2179 {
2180 /* Save the previously selected architecture, setting the global to
2181 NULL. This stops things like gdbarch->init() trying to use the
2182 previous architecture's configuration. The previous architecture
2183 may not even be of the same architecture family. The most recent
2184 architecture of the same family is found at the head of the
2185 rego->arches list. */
2186 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2187
2188 /* Find the specified architecture. */
2189 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2190
2191 /* Restore the existing architecture. */
2192 gdb_assert (current_gdbarch == NULL);
2193 current_gdbarch_swap_in_hack (old_gdbarch);
2194
2195 return new_gdbarch;
2196 }
2197
2198 /* Make the specified architecture current, swapping the existing one
2199 out. */
2200
2201 void
2202 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2203 {
2204 gdb_assert (new_gdbarch != NULL);
2205 gdb_assert (current_gdbarch != NULL);
2206 gdb_assert (new_gdbarch->initialized_p);
2207 current_gdbarch_swap_out_hack ();
2208 current_gdbarch_swap_in_hack (new_gdbarch);
2209 architecture_changed_event ();
2210 }
2211
2212 extern void _initialize_gdbarch (void);
2213
2214 void
2215 _initialize_gdbarch (void)
2216 {
2217 struct cmd_list_element *c;
2218
2219 deprecated_add_show_from_set
2220 (add_set_cmd ("arch",
2221 class_maintenance,
2222 var_zinteger,
2223 (char *)&gdbarch_debug,
2224 "Set architecture debugging.\\n\\
2225 When non-zero, architecture debugging is enabled.", &setdebuglist),
2226 &showdebuglist);
2227 }
2228 EOF
2229
2230 # close things off
2231 exec 1>&2
2232 #../move-if-change new-gdbarch.c gdbarch.c
2233 compare_new gdbarch.c
This page took 0.078819 seconds and 4 git commands to generate.