Add MI "-break-insert --qualified"
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
344
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
350
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
355
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
360 #
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
364 #
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
369 #
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
376 #
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
379 #
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
384 #
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
387 #
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
392 # serious shakedown.
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
394 #
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
399 # never be called.
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
402 #
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
409
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
413
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
418
419 # Some architectures can display additional information for specific
420 # signals.
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
426 # all (-1).
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
442
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
447
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
455 # frame.
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
460
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
464
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
467
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
476
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
479 #
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
482
483 #
484 v;int;believe_pcc_promotion;;;;;;;
485 #
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
494 #
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
498
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
510
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
517
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
530 # is not used.
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
532
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
535
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
538
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
543
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
548
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
553
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
561
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
563
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
567
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
570
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
576
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
578 #
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
585 #
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
589 #
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
601
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
607
608 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
609 # indicates if the target needs software single step. An ISA method to
610 # implement it.
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613 # target can single step. If not, then implement single step using breakpoints.
614 #
615 # Return a vector of addresses on which the software single step
616 # breakpoints should be inserted. NULL means software single step is
617 # not used.
618 # Multiple breakpoints may be inserted for some instructions such as
619 # conditional branch. However, each implementation must always evaluate
620 # the condition and only put the breakpoint at the branch destination if
621 # the condition is true, so that we ensure forward progress when stepping
622 # past a conditional branch to self.
623 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
624
625 # Return non-zero if the processor is executing a delay slot and a
626 # further single-step is needed before the instruction finishes.
627 M;int;single_step_through_delay;struct frame_info *frame;frame
628 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
629 # disassembler. Perhaps objdump can handle it?
630 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
631 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
632
633
634 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
635 # evaluates non-zero, this is the address where the debugger will place
636 # a step-resume breakpoint to get us past the dynamic linker.
637 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
638 # Some systems also have trampoline code for returning from shared libs.
639 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
640
641 # Return true if PC lies inside an indirect branch thunk.
642 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
643
644 # A target might have problems with watchpoints as soon as the stack
645 # frame of the current function has been destroyed. This mostly happens
646 # as the first action in a function's epilogue. stack_frame_destroyed_p()
647 # is defined to return a non-zero value if either the given addr is one
648 # instruction after the stack destroying instruction up to the trailing
649 # return instruction or if we can figure out that the stack frame has
650 # already been invalidated regardless of the value of addr. Targets
651 # which don't suffer from that problem could just let this functionality
652 # untouched.
653 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
654 # Process an ELF symbol in the minimal symbol table in a backend-specific
655 # way. Normally this hook is supposed to do nothing, however if required,
656 # then this hook can be used to apply tranformations to symbols that are
657 # considered special in some way. For example the MIPS backend uses it
658 # to interpret \`st_other' information to mark compressed code symbols so
659 # that they can be treated in the appropriate manner in the processing of
660 # the main symbol table and DWARF-2 records.
661 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
662 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
663 # Process a symbol in the main symbol table in a backend-specific way.
664 # Normally this hook is supposed to do nothing, however if required,
665 # then this hook can be used to apply tranformations to symbols that
666 # are considered special in some way. This is currently used by the
667 # MIPS backend to make sure compressed code symbols have the ISA bit
668 # set. This in turn is needed for symbol values seen in GDB to match
669 # the values used at the runtime by the program itself, for function
670 # and label references.
671 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
672 # Adjust the address retrieved from a DWARF-2 record other than a line
673 # entry in a backend-specific way. Normally this hook is supposed to
674 # return the address passed unchanged, however if that is incorrect for
675 # any reason, then this hook can be used to fix the address up in the
676 # required manner. This is currently used by the MIPS backend to make
677 # sure addresses in FDE, range records, etc. referring to compressed
678 # code have the ISA bit set, matching line information and the symbol
679 # table.
680 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
681 # Adjust the address updated by a line entry in a backend-specific way.
682 # Normally this hook is supposed to return the address passed unchanged,
683 # however in the case of inconsistencies in these records, this hook can
684 # be used to fix them up in the required manner. This is currently used
685 # by the MIPS backend to make sure all line addresses in compressed code
686 # are presented with the ISA bit set, which is not always the case. This
687 # in turn ensures breakpoint addresses are correctly matched against the
688 # stop PC.
689 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
690 v;int;cannot_step_breakpoint;;;0;0;;0
691 # See comment in target.h about continuable, steppable and
692 # non-steppable watchpoints.
693 v;int;have_nonsteppable_watchpoint;;;0;0;;0
694 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
695 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
696 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
697 # FS are passed from the generic execute_cfa_program function.
698 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
699
700 # Return the appropriate type_flags for the supplied address class.
701 # This function should return 1 if the address class was recognized and
702 # type_flags was set, zero otherwise.
703 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
704 # Is a register in a group
705 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
706 # Fetch the pointer to the ith function argument.
707 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
708
709 # Iterate over all supported register notes in a core file. For each
710 # supported register note section, the iterator must call CB and pass
711 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
712 # the supported register note sections based on the current register
713 # values. Otherwise it should enumerate all supported register note
714 # sections.
715 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
716
717 # Create core file notes
718 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
719
720 # Find core file memory regions
721 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
722
723 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
724 # core file into buffer READBUF with length LEN. Return the number of bytes read
725 # (zero indicates failure).
726 # failed, otherwise, return the red length of READBUF.
727 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
728
729 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
730 # libraries list from core file into buffer READBUF with length LEN.
731 # Return the number of bytes read (zero indicates failure).
732 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
733
734 # How the core target converts a PTID from a core file to a string.
735 M;std::string;core_pid_to_str;ptid_t ptid;ptid
736
737 # How the core target extracts the name of a thread from a core file.
738 M;const char *;core_thread_name;struct thread_info *thr;thr
739
740 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
741 # from core file into buffer READBUF with length LEN. Return the number
742 # of bytes read (zero indicates EOF, a negative value indicates failure).
743 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
744
745 # BFD target to use when generating a core file.
746 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
747
748 # If the elements of C++ vtables are in-place function descriptors rather
749 # than normal function pointers (which may point to code or a descriptor),
750 # set this to one.
751 v;int;vtable_function_descriptors;;;0;0;;0
752
753 # Set if the least significant bit of the delta is used instead of the least
754 # significant bit of the pfn for pointers to virtual member functions.
755 v;int;vbit_in_delta;;;0;0;;0
756
757 # Advance PC to next instruction in order to skip a permanent breakpoint.
758 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
759
760 # The maximum length of an instruction on this architecture in bytes.
761 V;ULONGEST;max_insn_length;;;0;0
762
763 # Copy the instruction at FROM to TO, and make any adjustments
764 # necessary to single-step it at that address.
765 #
766 # REGS holds the state the thread's registers will have before
767 # executing the copied instruction; the PC in REGS will refer to FROM,
768 # not the copy at TO. The caller should update it to point at TO later.
769 #
770 # Return a pointer to data of the architecture's choice to be passed
771 # to gdbarch_displaced_step_fixup.
772 #
773 # For a general explanation of displaced stepping and how GDB uses it,
774 # see the comments in infrun.c.
775 #
776 # The TO area is only guaranteed to have space for
777 # gdbarch_max_insn_length (arch) bytes, so this function must not
778 # write more bytes than that to that area.
779 #
780 # If you do not provide this function, GDB assumes that the
781 # architecture does not support displaced stepping.
782 #
783 # If the instruction cannot execute out of line, return NULL. The
784 # core falls back to stepping past the instruction in-line instead in
785 # that case.
786 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
787
788 # Return true if GDB should use hardware single-stepping to execute
789 # the displaced instruction identified by CLOSURE. If false,
790 # GDB will simply restart execution at the displaced instruction
791 # location, and it is up to the target to ensure GDB will receive
792 # control again (e.g. by placing a software breakpoint instruction
793 # into the displaced instruction buffer).
794 #
795 # The default implementation returns false on all targets that
796 # provide a gdbarch_software_single_step routine, and true otherwise.
797 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
798
799 # Fix up the state resulting from successfully single-stepping a
800 # displaced instruction, to give the result we would have gotten from
801 # stepping the instruction in its original location.
802 #
803 # REGS is the register state resulting from single-stepping the
804 # displaced instruction.
805 #
806 # CLOSURE is the result from the matching call to
807 # gdbarch_displaced_step_copy_insn.
808 #
809 # If you provide gdbarch_displaced_step_copy_insn.but not this
810 # function, then GDB assumes that no fixup is needed after
811 # single-stepping the instruction.
812 #
813 # For a general explanation of displaced stepping and how GDB uses it,
814 # see the comments in infrun.c.
815 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
816
817 # Return the address of an appropriate place to put displaced
818 # instructions while we step over them. There need only be one such
819 # place, since we're only stepping one thread over a breakpoint at a
820 # time.
821 #
822 # For a general explanation of displaced stepping and how GDB uses it,
823 # see the comments in infrun.c.
824 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
825
826 # Relocate an instruction to execute at a different address. OLDLOC
827 # is the address in the inferior memory where the instruction to
828 # relocate is currently at. On input, TO points to the destination
829 # where we want the instruction to be copied (and possibly adjusted)
830 # to. On output, it points to one past the end of the resulting
831 # instruction(s). The effect of executing the instruction at TO shall
832 # be the same as if executing it at FROM. For example, call
833 # instructions that implicitly push the return address on the stack
834 # should be adjusted to return to the instruction after OLDLOC;
835 # relative branches, and other PC-relative instructions need the
836 # offset adjusted; etc.
837 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
838
839 # Refresh overlay mapped state for section OSECT.
840 F;void;overlay_update;struct obj_section *osect;osect
841
842 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
843
844 # Set if the address in N_SO or N_FUN stabs may be zero.
845 v;int;sofun_address_maybe_missing;;;0;0;;0
846
847 # Parse the instruction at ADDR storing in the record execution log
848 # the registers REGCACHE and memory ranges that will be affected when
849 # the instruction executes, along with their current values.
850 # Return -1 if something goes wrong, 0 otherwise.
851 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
852
853 # Save process state after a signal.
854 # Return -1 if something goes wrong, 0 otherwise.
855 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
856
857 # Signal translation: translate inferior's signal (target's) number
858 # into GDB's representation. The implementation of this method must
859 # be host independent. IOW, don't rely on symbols of the NAT_FILE
860 # header (the nm-*.h files), the host <signal.h> header, or similar
861 # headers. This is mainly used when cross-debugging core files ---
862 # "Live" targets hide the translation behind the target interface
863 # (target_wait, target_resume, etc.).
864 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
865
866 # Signal translation: translate the GDB's internal signal number into
867 # the inferior's signal (target's) representation. The implementation
868 # of this method must be host independent. IOW, don't rely on symbols
869 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
870 # header, or similar headers.
871 # Return the target signal number if found, or -1 if the GDB internal
872 # signal number is invalid.
873 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
874
875 # Extra signal info inspection.
876 #
877 # Return a type suitable to inspect extra signal information.
878 M;struct type *;get_siginfo_type;void;
879
880 # Record architecture-specific information from the symbol table.
881 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
882
883 # Function for the 'catch syscall' feature.
884
885 # Get architecture-specific system calls information from registers.
886 M;LONGEST;get_syscall_number;thread_info *thread;thread
887
888 # The filename of the XML syscall for this architecture.
889 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
890
891 # Information about system calls from this architecture
892 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
893
894 # SystemTap related fields and functions.
895
896 # A NULL-terminated array of prefixes used to mark an integer constant
897 # on the architecture's assembly.
898 # For example, on x86 integer constants are written as:
899 #
900 # \$10 ;; integer constant 10
901 #
902 # in this case, this prefix would be the character \`\$\'.
903 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
904
905 # A NULL-terminated array of suffixes used to mark an integer constant
906 # on the architecture's assembly.
907 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
908
909 # A NULL-terminated array of prefixes used to mark a register name on
910 # the architecture's assembly.
911 # For example, on x86 the register name is written as:
912 #
913 # \%eax ;; register eax
914 #
915 # in this case, this prefix would be the character \`\%\'.
916 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
917
918 # A NULL-terminated array of suffixes used to mark a register name on
919 # the architecture's assembly.
920 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
921
922 # A NULL-terminated array of prefixes used to mark a register
923 # indirection on the architecture's assembly.
924 # For example, on x86 the register indirection is written as:
925 #
926 # \(\%eax\) ;; indirecting eax
927 #
928 # in this case, this prefix would be the charater \`\(\'.
929 #
930 # Please note that we use the indirection prefix also for register
931 # displacement, e.g., \`4\(\%eax\)\' on x86.
932 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
933
934 # A NULL-terminated array of suffixes used to mark a register
935 # indirection on the architecture's assembly.
936 # For example, on x86 the register indirection is written as:
937 #
938 # \(\%eax\) ;; indirecting eax
939 #
940 # in this case, this prefix would be the charater \`\)\'.
941 #
942 # Please note that we use the indirection suffix also for register
943 # displacement, e.g., \`4\(\%eax\)\' on x86.
944 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
945
946 # Prefix(es) used to name a register using GDB's nomenclature.
947 #
948 # For example, on PPC a register is represented by a number in the assembly
949 # language (e.g., \`10\' is the 10th general-purpose register). However,
950 # inside GDB this same register has an \`r\' appended to its name, so the 10th
951 # register would be represented as \`r10\' internally.
952 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
953
954 # Suffix used to name a register using GDB's nomenclature.
955 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
956
957 # Check if S is a single operand.
958 #
959 # Single operands can be:
960 # \- Literal integers, e.g. \`\$10\' on x86
961 # \- Register access, e.g. \`\%eax\' on x86
962 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
963 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
964 #
965 # This function should check for these patterns on the string
966 # and return 1 if some were found, or zero otherwise. Please try to match
967 # as much info as you can from the string, i.e., if you have to match
968 # something like \`\(\%\', do not match just the \`\(\'.
969 M;int;stap_is_single_operand;const char *s;s
970
971 # Function used to handle a "special case" in the parser.
972 #
973 # A "special case" is considered to be an unknown token, i.e., a token
974 # that the parser does not know how to parse. A good example of special
975 # case would be ARM's register displacement syntax:
976 #
977 # [R0, #4] ;; displacing R0 by 4
978 #
979 # Since the parser assumes that a register displacement is of the form:
980 #
981 # <number> <indirection_prefix> <register_name> <indirection_suffix>
982 #
983 # it means that it will not be able to recognize and parse this odd syntax.
984 # Therefore, we should add a special case function that will handle this token.
985 #
986 # This function should generate the proper expression form of the expression
987 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
988 # and so on). It should also return 1 if the parsing was successful, or zero
989 # if the token was not recognized as a special token (in this case, returning
990 # zero means that the special parser is deferring the parsing to the generic
991 # parser), and should advance the buffer pointer (p->arg).
992 M;int;stap_parse_special_token;struct stap_parse_info *p;p
993
994 # Perform arch-dependent adjustments to a register name.
995 #
996 # In very specific situations, it may be necessary for the register
997 # name present in a SystemTap probe's argument to be handled in a
998 # special way. For example, on i386, GCC may over-optimize the
999 # register allocation and use smaller registers than necessary. In
1000 # such cases, the client that is reading and evaluating the SystemTap
1001 # probe (ourselves) will need to actually fetch values from the wider
1002 # version of the register in question.
1003 #
1004 # To illustrate the example, consider the following probe argument
1005 # (i386):
1006 #
1007 # 4@%ax
1008 #
1009 # This argument says that its value can be found at the %ax register,
1010 # which is a 16-bit register. However, the argument's prefix says
1011 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1012 # this case, GDB should actually fetch the probe's value from register
1013 # %eax, not %ax. In this scenario, this function would actually
1014 # replace the register name from %ax to %eax.
1015 #
1016 # The rationale for this can be found at PR breakpoints/24541.
1017 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1018
1019 # DTrace related functions.
1020
1021 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1022 # NARG must be >= 0.
1023 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1024
1025 # True if the given ADDR does not contain the instruction sequence
1026 # corresponding to a disabled DTrace is-enabled probe.
1027 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1028
1029 # Enable a DTrace is-enabled probe at ADDR.
1030 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1031
1032 # Disable a DTrace is-enabled probe at ADDR.
1033 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1034
1035 # True if the list of shared libraries is one and only for all
1036 # processes, as opposed to a list of shared libraries per inferior.
1037 # This usually means that all processes, although may or may not share
1038 # an address space, will see the same set of symbols at the same
1039 # addresses.
1040 v;int;has_global_solist;;;0;0;;0
1041
1042 # On some targets, even though each inferior has its own private
1043 # address space, the debug interface takes care of making breakpoints
1044 # visible to all address spaces automatically. For such cases,
1045 # this property should be set to true.
1046 v;int;has_global_breakpoints;;;0;0;;0
1047
1048 # True if inferiors share an address space (e.g., uClinux).
1049 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1050
1051 # True if a fast tracepoint can be set at an address.
1052 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1053
1054 # Guess register state based on tracepoint location. Used for tracepoints
1055 # where no registers have been collected, but there's only one location,
1056 # allowing us to guess the PC value, and perhaps some other registers.
1057 # On entry, regcache has all registers marked as unavailable.
1058 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1059
1060 # Return the "auto" target charset.
1061 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1062 # Return the "auto" target wide charset.
1063 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1064
1065 # If non-empty, this is a file extension that will be opened in place
1066 # of the file extension reported by the shared library list.
1067 #
1068 # This is most useful for toolchains that use a post-linker tool,
1069 # where the names of the files run on the target differ in extension
1070 # compared to the names of the files GDB should load for debug info.
1071 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1072
1073 # If true, the target OS has DOS-based file system semantics. That
1074 # is, absolute paths include a drive name, and the backslash is
1075 # considered a directory separator.
1076 v;int;has_dos_based_file_system;;;0;0;;0
1077
1078 # Generate bytecodes to collect the return address in a frame.
1079 # Since the bytecodes run on the target, possibly with GDB not even
1080 # connected, the full unwinding machinery is not available, and
1081 # typically this function will issue bytecodes for one or more likely
1082 # places that the return address may be found.
1083 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1084
1085 # Implement the "info proc" command.
1086 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1087
1088 # Implement the "info proc" command for core files. Noe that there
1089 # are two "info_proc"-like methods on gdbarch -- one for core files,
1090 # one for live targets.
1091 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1092
1093 # Iterate over all objfiles in the order that makes the most sense
1094 # for the architecture to make global symbol searches.
1095 #
1096 # CB is a callback function where OBJFILE is the objfile to be searched,
1097 # and CB_DATA a pointer to user-defined data (the same data that is passed
1098 # when calling this gdbarch method). The iteration stops if this function
1099 # returns nonzero.
1100 #
1101 # CB_DATA is a pointer to some user-defined data to be passed to
1102 # the callback.
1103 #
1104 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1105 # inspected when the symbol search was requested.
1106 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1107
1108 # Ravenscar arch-dependent ops.
1109 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1110
1111 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1112 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1113
1114 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1115 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1116
1117 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1118 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1119
1120 # Return true if there's a program/permanent breakpoint planted in
1121 # memory at ADDRESS, return false otherwise.
1122 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1123
1124 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1125 # Return 0 if *READPTR is already at the end of the buffer.
1126 # Return -1 if there is insufficient buffer for a whole entry.
1127 # Return 1 if an entry was read into *TYPEP and *VALP.
1128 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1129
1130 # Print the description of a single auxv entry described by TYPE and VAL
1131 # to FILE.
1132 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1133
1134 # Find the address range of the current inferior's vsyscall/vDSO, and
1135 # write it to *RANGE. If the vsyscall's length can't be determined, a
1136 # range with zero length is returned. Returns true if the vsyscall is
1137 # found, false otherwise.
1138 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1139
1140 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1141 # PROT has GDB_MMAP_PROT_* bitmask format.
1142 # Throw an error if it is not possible. Returned address is always valid.
1143 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1144
1145 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1146 # Print a warning if it is not possible.
1147 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1148
1149 # Return string (caller has to use xfree for it) with options for GCC
1150 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1151 # These options are put before CU's DW_AT_producer compilation options so that
1152 # they can override it.
1153 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1154
1155 # Return a regular expression that matches names used by this
1156 # architecture in GNU configury triplets. The result is statically
1157 # allocated and must not be freed. The default implementation simply
1158 # returns the BFD architecture name, which is correct in nearly every
1159 # case.
1160 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1161
1162 # Return the size in 8-bit bytes of an addressable memory unit on this
1163 # architecture. This corresponds to the number of 8-bit bytes associated to
1164 # each address in memory.
1165 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1166
1167 # Functions for allowing a target to modify its disassembler options.
1168 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1169 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1170 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1171
1172 # Type alignment override method. Return the architecture specific
1173 # alignment required for TYPE. If there is no special handling
1174 # required for TYPE then return the value 0, GDB will then apply the
1175 # default rules as laid out in gdbtypes.c:type_align.
1176 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1177
1178 # Return a string containing any flags for the given PC in the given FRAME.
1179 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1180
1181 # Read core file mappings
1182 m;void;read_core_file_mappings;struct bfd *cbfd,gdb::function_view<void (ULONGEST count)> pre_loop_cb,gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename, const void *other)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1183
1184 EOF
1185 }
1186
1187 #
1188 # The .log file
1189 #
1190 exec > gdbarch.log
1191 function_list | while do_read
1192 do
1193 cat <<EOF
1194 ${class} ${returntype:-} ${function} (${formal:-})
1195 EOF
1196 for r in ${read}
1197 do
1198 eval echo "\" ${r}=\${${r}}\""
1199 done
1200 if class_is_predicate_p && fallback_default_p
1201 then
1202 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1203 kill $$
1204 exit 1
1205 fi
1206 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1207 then
1208 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1209 kill $$
1210 exit 1
1211 fi
1212 if class_is_multiarch_p
1213 then
1214 if class_is_predicate_p ; then :
1215 elif test "x${predefault}" = "x"
1216 then
1217 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1218 kill $$
1219 exit 1
1220 fi
1221 fi
1222 echo ""
1223 done
1224
1225 exec 1>&2
1226
1227
1228 copyright ()
1229 {
1230 cat <<EOF
1231 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1232 /* vi:set ro: */
1233
1234 /* Dynamic architecture support for GDB, the GNU debugger.
1235
1236 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1237
1238 This file is part of GDB.
1239
1240 This program is free software; you can redistribute it and/or modify
1241 it under the terms of the GNU General Public License as published by
1242 the Free Software Foundation; either version 3 of the License, or
1243 (at your option) any later version.
1244
1245 This program is distributed in the hope that it will be useful,
1246 but WITHOUT ANY WARRANTY; without even the implied warranty of
1247 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1248 GNU General Public License for more details.
1249
1250 You should have received a copy of the GNU General Public License
1251 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1252
1253 /* This file was created with the aid of \`\`gdbarch.sh''. */
1254
1255 EOF
1256 }
1257
1258 #
1259 # The .h file
1260 #
1261
1262 exec > new-gdbarch.h
1263 copyright
1264 cat <<EOF
1265 #ifndef GDBARCH_H
1266 #define GDBARCH_H
1267
1268 #include <vector>
1269 #include "frame.h"
1270 #include "dis-asm.h"
1271 #include "gdb_obstack.h"
1272 #include "infrun.h"
1273 #include "osabi.h"
1274
1275 struct floatformat;
1276 struct ui_file;
1277 struct value;
1278 struct objfile;
1279 struct obj_section;
1280 struct minimal_symbol;
1281 struct regcache;
1282 struct reggroup;
1283 struct regset;
1284 struct disassemble_info;
1285 struct target_ops;
1286 struct obstack;
1287 struct bp_target_info;
1288 struct target_desc;
1289 struct symbol;
1290 struct syscall;
1291 struct agent_expr;
1292 struct axs_value;
1293 struct stap_parse_info;
1294 struct expr_builder;
1295 struct ravenscar_arch_ops;
1296 struct mem_range;
1297 struct syscalls_info;
1298 struct thread_info;
1299 struct ui_out;
1300
1301 #include "regcache.h"
1302
1303 /* The architecture associated with the inferior through the
1304 connection to the target.
1305
1306 The architecture vector provides some information that is really a
1307 property of the inferior, accessed through a particular target:
1308 ptrace operations; the layout of certain RSP packets; the solib_ops
1309 vector; etc. To differentiate architecture accesses to
1310 per-inferior/target properties from
1311 per-thread/per-frame/per-objfile properties, accesses to
1312 per-inferior/target properties should be made through this
1313 gdbarch. */
1314
1315 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1316 extern struct gdbarch *target_gdbarch (void);
1317
1318 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1319 gdbarch method. */
1320
1321 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1322 (struct objfile *objfile, void *cb_data);
1323
1324 /* Callback type for regset section iterators. The callback usually
1325 invokes the REGSET's supply or collect method, to which it must
1326 pass a buffer - for collects this buffer will need to be created using
1327 COLLECT_SIZE, for supply the existing buffer being read from should
1328 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1329 is used for diagnostic messages. CB_DATA should have been passed
1330 unchanged through the iterator. */
1331
1332 typedef void (iterate_over_regset_sections_cb)
1333 (const char *sect_name, int supply_size, int collect_size,
1334 const struct regset *regset, const char *human_name, void *cb_data);
1335
1336 /* For a function call, does the function return a value using a
1337 normal value return or a structure return - passing a hidden
1338 argument pointing to storage. For the latter, there are two
1339 cases: language-mandated structure return and target ABI
1340 structure return. */
1341
1342 enum function_call_return_method
1343 {
1344 /* Standard value return. */
1345 return_method_normal = 0,
1346
1347 /* Language ABI structure return. This is handled
1348 by passing the return location as the first parameter to
1349 the function, even preceding "this". */
1350 return_method_hidden_param,
1351
1352 /* Target ABI struct return. This is target-specific; for instance,
1353 on ia64 the first argument is passed in out0 but the hidden
1354 structure return pointer would normally be passed in r8. */
1355 return_method_struct,
1356 };
1357
1358 EOF
1359
1360 # function typedef's
1361 printf "\n"
1362 printf "\n"
1363 printf "/* The following are pre-initialized by GDBARCH. */\n"
1364 function_list | while do_read
1365 do
1366 if class_is_info_p
1367 then
1368 printf "\n"
1369 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1370 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1371 fi
1372 done
1373
1374 # function typedef's
1375 printf "\n"
1376 printf "\n"
1377 printf "/* The following are initialized by the target dependent code. */\n"
1378 function_list | while do_read
1379 do
1380 if [ -n "${comment}" ]
1381 then
1382 echo "${comment}" | sed \
1383 -e '2 s,#,/*,' \
1384 -e '3,$ s,#, ,' \
1385 -e '$ s,$, */,'
1386 fi
1387
1388 if class_is_predicate_p
1389 then
1390 printf "\n"
1391 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1392 fi
1393 if class_is_variable_p
1394 then
1395 printf "\n"
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1398 fi
1399 if class_is_function_p
1400 then
1401 printf "\n"
1402 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1403 then
1404 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1405 elif class_is_multiarch_p
1406 then
1407 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1408 else
1409 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1410 fi
1411 if [ "x${formal}" = "xvoid" ]
1412 then
1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1414 else
1415 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1416 fi
1417 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1418 fi
1419 done
1420
1421 # close it off
1422 cat <<EOF
1423
1424 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1425
1426
1427 /* Mechanism for co-ordinating the selection of a specific
1428 architecture.
1429
1430 GDB targets (*-tdep.c) can register an interest in a specific
1431 architecture. Other GDB components can register a need to maintain
1432 per-architecture data.
1433
1434 The mechanisms below ensures that there is only a loose connection
1435 between the set-architecture command and the various GDB
1436 components. Each component can independently register their need
1437 to maintain architecture specific data with gdbarch.
1438
1439 Pragmatics:
1440
1441 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1442 didn't scale.
1443
1444 The more traditional mega-struct containing architecture specific
1445 data for all the various GDB components was also considered. Since
1446 GDB is built from a variable number of (fairly independent)
1447 components it was determined that the global aproach was not
1448 applicable. */
1449
1450
1451 /* Register a new architectural family with GDB.
1452
1453 Register support for the specified ARCHITECTURE with GDB. When
1454 gdbarch determines that the specified architecture has been
1455 selected, the corresponding INIT function is called.
1456
1457 --
1458
1459 The INIT function takes two parameters: INFO which contains the
1460 information available to gdbarch about the (possibly new)
1461 architecture; ARCHES which is a list of the previously created
1462 \`\`struct gdbarch'' for this architecture.
1463
1464 The INFO parameter is, as far as possible, be pre-initialized with
1465 information obtained from INFO.ABFD or the global defaults.
1466
1467 The ARCHES parameter is a linked list (sorted most recently used)
1468 of all the previously created architures for this architecture
1469 family. The (possibly NULL) ARCHES->gdbarch can used to access
1470 values from the previously selected architecture for this
1471 architecture family.
1472
1473 The INIT function shall return any of: NULL - indicating that it
1474 doesn't recognize the selected architecture; an existing \`\`struct
1475 gdbarch'' from the ARCHES list - indicating that the new
1476 architecture is just a synonym for an earlier architecture (see
1477 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1478 - that describes the selected architecture (see gdbarch_alloc()).
1479
1480 The DUMP_TDEP function shall print out all target specific values.
1481 Care should be taken to ensure that the function works in both the
1482 multi-arch and non- multi-arch cases. */
1483
1484 struct gdbarch_list
1485 {
1486 struct gdbarch *gdbarch;
1487 struct gdbarch_list *next;
1488 };
1489
1490 struct gdbarch_info
1491 {
1492 /* Use default: NULL (ZERO). */
1493 const struct bfd_arch_info *bfd_arch_info;
1494
1495 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1496 enum bfd_endian byte_order;
1497
1498 enum bfd_endian byte_order_for_code;
1499
1500 /* Use default: NULL (ZERO). */
1501 bfd *abfd;
1502
1503 /* Use default: NULL (ZERO). */
1504 union
1505 {
1506 /* Architecture-specific information. The generic form for targets
1507 that have extra requirements. */
1508 struct gdbarch_tdep_info *tdep_info;
1509
1510 /* Architecture-specific target description data. Numerous targets
1511 need only this, so give them an easy way to hold it. */
1512 struct tdesc_arch_data *tdesc_data;
1513
1514 /* SPU file system ID. This is a single integer, so using the
1515 generic form would only complicate code. Other targets may
1516 reuse this member if suitable. */
1517 int *id;
1518 };
1519
1520 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1521 enum gdb_osabi osabi;
1522
1523 /* Use default: NULL (ZERO). */
1524 const struct target_desc *target_desc;
1525 };
1526
1527 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1528 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1529
1530 /* DEPRECATED - use gdbarch_register() */
1531 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1532
1533 extern void gdbarch_register (enum bfd_architecture architecture,
1534 gdbarch_init_ftype *,
1535 gdbarch_dump_tdep_ftype *);
1536
1537
1538 /* Return a freshly allocated, NULL terminated, array of the valid
1539 architecture names. Since architectures are registered during the
1540 _initialize phase this function only returns useful information
1541 once initialization has been completed. */
1542
1543 extern const char **gdbarch_printable_names (void);
1544
1545
1546 /* Helper function. Search the list of ARCHES for a GDBARCH that
1547 matches the information provided by INFO. */
1548
1549 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1550
1551
1552 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1553 basic initialization using values obtained from the INFO and TDEP
1554 parameters. set_gdbarch_*() functions are called to complete the
1555 initialization of the object. */
1556
1557 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1558
1559
1560 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1561 It is assumed that the caller freeds the \`\`struct
1562 gdbarch_tdep''. */
1563
1564 extern void gdbarch_free (struct gdbarch *);
1565
1566 /* Get the obstack owned by ARCH. */
1567
1568 extern obstack *gdbarch_obstack (gdbarch *arch);
1569
1570 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1571 obstack. The memory is freed when the corresponding architecture
1572 is also freed. */
1573
1574 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1575 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1576
1577 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1578 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1579
1580 /* Duplicate STRING, returning an equivalent string that's allocated on the
1581 obstack associated with GDBARCH. The string is freed when the corresponding
1582 architecture is also freed. */
1583
1584 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1585
1586 /* Helper function. Force an update of the current architecture.
1587
1588 The actual architecture selected is determined by INFO, \`\`(gdb) set
1589 architecture'' et.al., the existing architecture and BFD's default
1590 architecture. INFO should be initialized to zero and then selected
1591 fields should be updated.
1592
1593 Returns non-zero if the update succeeds. */
1594
1595 extern int gdbarch_update_p (struct gdbarch_info info);
1596
1597
1598 /* Helper function. Find an architecture matching info.
1599
1600 INFO should be initialized using gdbarch_info_init, relevant fields
1601 set, and then finished using gdbarch_info_fill.
1602
1603 Returns the corresponding architecture, or NULL if no matching
1604 architecture was found. */
1605
1606 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1607
1608
1609 /* Helper function. Set the target gdbarch to "gdbarch". */
1610
1611 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1612
1613
1614 /* Register per-architecture data-pointer.
1615
1616 Reserve space for a per-architecture data-pointer. An identifier
1617 for the reserved data-pointer is returned. That identifer should
1618 be saved in a local static variable.
1619
1620 Memory for the per-architecture data shall be allocated using
1621 gdbarch_obstack_zalloc. That memory will be deleted when the
1622 corresponding architecture object is deleted.
1623
1624 When a previously created architecture is re-selected, the
1625 per-architecture data-pointer for that previous architecture is
1626 restored. INIT() is not re-called.
1627
1628 Multiple registrarants for any architecture are allowed (and
1629 strongly encouraged). */
1630
1631 struct gdbarch_data;
1632
1633 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1634 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1635 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1636 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1637
1638 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1639
1640
1641 /* Set the dynamic target-system-dependent parameters (architecture,
1642 byte-order, ...) using information found in the BFD. */
1643
1644 extern void set_gdbarch_from_file (bfd *);
1645
1646
1647 /* Initialize the current architecture to the "first" one we find on
1648 our list. */
1649
1650 extern void initialize_current_architecture (void);
1651
1652 /* gdbarch trace variable */
1653 extern unsigned int gdbarch_debug;
1654
1655 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1656
1657 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1658
1659 static inline int
1660 gdbarch_num_cooked_regs (gdbarch *arch)
1661 {
1662 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1663 }
1664
1665 #endif
1666 EOF
1667 exec 1>&2
1668 ../move-if-change new-gdbarch.h gdbarch.h
1669 rm -f new-gdbarch.h
1670
1671
1672 #
1673 # C file
1674 #
1675
1676 exec > new-gdbarch.c
1677 copyright
1678 cat <<EOF
1679
1680 #include "defs.h"
1681 #include "arch-utils.h"
1682
1683 #include "gdbcmd.h"
1684 #include "inferior.h"
1685 #include "symcat.h"
1686
1687 #include "floatformat.h"
1688 #include "reggroups.h"
1689 #include "osabi.h"
1690 #include "gdb_obstack.h"
1691 #include "observable.h"
1692 #include "regcache.h"
1693 #include "objfiles.h"
1694 #include "auxv.h"
1695 #include "frame-unwind.h"
1696 #include "dummy-frame.h"
1697
1698 /* Static function declarations */
1699
1700 static void alloc_gdbarch_data (struct gdbarch *);
1701
1702 /* Non-zero if we want to trace architecture code. */
1703
1704 #ifndef GDBARCH_DEBUG
1705 #define GDBARCH_DEBUG 0
1706 #endif
1707 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1708 static void
1709 show_gdbarch_debug (struct ui_file *file, int from_tty,
1710 struct cmd_list_element *c, const char *value)
1711 {
1712 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1713 }
1714
1715 static const char *
1716 pformat (const struct floatformat **format)
1717 {
1718 if (format == NULL)
1719 return "(null)";
1720 else
1721 /* Just print out one of them - this is only for diagnostics. */
1722 return format[0]->name;
1723 }
1724
1725 static const char *
1726 pstring (const char *string)
1727 {
1728 if (string == NULL)
1729 return "(null)";
1730 return string;
1731 }
1732
1733 static const char *
1734 pstring_ptr (char **string)
1735 {
1736 if (string == NULL || *string == NULL)
1737 return "(null)";
1738 return *string;
1739 }
1740
1741 /* Helper function to print a list of strings, represented as "const
1742 char *const *". The list is printed comma-separated. */
1743
1744 static const char *
1745 pstring_list (const char *const *list)
1746 {
1747 static char ret[100];
1748 const char *const *p;
1749 size_t offset = 0;
1750
1751 if (list == NULL)
1752 return "(null)";
1753
1754 ret[0] = '\0';
1755 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1756 {
1757 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1758 offset += 2 + s;
1759 }
1760
1761 if (offset > 0)
1762 {
1763 gdb_assert (offset - 2 < sizeof (ret));
1764 ret[offset - 2] = '\0';
1765 }
1766
1767 return ret;
1768 }
1769
1770 EOF
1771
1772 # gdbarch open the gdbarch object
1773 printf "\n"
1774 printf "/* Maintain the struct gdbarch object. */\n"
1775 printf "\n"
1776 printf "struct gdbarch\n"
1777 printf "{\n"
1778 printf " /* Has this architecture been fully initialized? */\n"
1779 printf " int initialized_p;\n"
1780 printf "\n"
1781 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1782 printf " struct obstack *obstack;\n"
1783 printf "\n"
1784 printf " /* basic architectural information. */\n"
1785 function_list | while do_read
1786 do
1787 if class_is_info_p
1788 then
1789 printf " %s %s;\n" "$returntype" "$function"
1790 fi
1791 done
1792 printf "\n"
1793 printf " /* target specific vector. */\n"
1794 printf " struct gdbarch_tdep *tdep;\n"
1795 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1796 printf "\n"
1797 printf " /* per-architecture data-pointers. */\n"
1798 printf " unsigned nr_data;\n"
1799 printf " void **data;\n"
1800 printf "\n"
1801 cat <<EOF
1802 /* Multi-arch values.
1803
1804 When extending this structure you must:
1805
1806 Add the field below.
1807
1808 Declare set/get functions and define the corresponding
1809 macro in gdbarch.h.
1810
1811 gdbarch_alloc(): If zero/NULL is not a suitable default,
1812 initialize the new field.
1813
1814 verify_gdbarch(): Confirm that the target updated the field
1815 correctly.
1816
1817 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1818 field is dumped out
1819
1820 get_gdbarch(): Implement the set/get functions (probably using
1821 the macro's as shortcuts).
1822
1823 */
1824
1825 EOF
1826 function_list | while do_read
1827 do
1828 if class_is_variable_p
1829 then
1830 printf " %s %s;\n" "$returntype" "$function"
1831 elif class_is_function_p
1832 then
1833 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1834 fi
1835 done
1836 printf "};\n"
1837
1838 # Create a new gdbarch struct
1839 cat <<EOF
1840
1841 /* Create a new \`\`struct gdbarch'' based on information provided by
1842 \`\`struct gdbarch_info''. */
1843 EOF
1844 printf "\n"
1845 cat <<EOF
1846 struct gdbarch *
1847 gdbarch_alloc (const struct gdbarch_info *info,
1848 struct gdbarch_tdep *tdep)
1849 {
1850 struct gdbarch *gdbarch;
1851
1852 /* Create an obstack for allocating all the per-architecture memory,
1853 then use that to allocate the architecture vector. */
1854 struct obstack *obstack = XNEW (struct obstack);
1855 obstack_init (obstack);
1856 gdbarch = XOBNEW (obstack, struct gdbarch);
1857 memset (gdbarch, 0, sizeof (*gdbarch));
1858 gdbarch->obstack = obstack;
1859
1860 alloc_gdbarch_data (gdbarch);
1861
1862 gdbarch->tdep = tdep;
1863 EOF
1864 printf "\n"
1865 function_list | while do_read
1866 do
1867 if class_is_info_p
1868 then
1869 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1870 fi
1871 done
1872 printf "\n"
1873 printf " /* Force the explicit initialization of these. */\n"
1874 function_list | while do_read
1875 do
1876 if class_is_function_p || class_is_variable_p
1877 then
1878 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1879 then
1880 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1881 fi
1882 fi
1883 done
1884 cat <<EOF
1885 /* gdbarch_alloc() */
1886
1887 return gdbarch;
1888 }
1889 EOF
1890
1891 # Free a gdbarch struct.
1892 printf "\n"
1893 printf "\n"
1894 cat <<EOF
1895
1896 obstack *gdbarch_obstack (gdbarch *arch)
1897 {
1898 return arch->obstack;
1899 }
1900
1901 /* See gdbarch.h. */
1902
1903 char *
1904 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1905 {
1906 return obstack_strdup (arch->obstack, string);
1907 }
1908
1909
1910 /* Free a gdbarch struct. This should never happen in normal
1911 operation --- once you've created a gdbarch, you keep it around.
1912 However, if an architecture's init function encounters an error
1913 building the structure, it may need to clean up a partially
1914 constructed gdbarch. */
1915
1916 void
1917 gdbarch_free (struct gdbarch *arch)
1918 {
1919 struct obstack *obstack;
1920
1921 gdb_assert (arch != NULL);
1922 gdb_assert (!arch->initialized_p);
1923 obstack = arch->obstack;
1924 obstack_free (obstack, 0); /* Includes the ARCH. */
1925 xfree (obstack);
1926 }
1927 EOF
1928
1929 # verify a new architecture
1930 cat <<EOF
1931
1932
1933 /* Ensure that all values in a GDBARCH are reasonable. */
1934
1935 static void
1936 verify_gdbarch (struct gdbarch *gdbarch)
1937 {
1938 string_file log;
1939
1940 /* fundamental */
1941 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1942 log.puts ("\n\tbyte-order");
1943 if (gdbarch->bfd_arch_info == NULL)
1944 log.puts ("\n\tbfd_arch_info");
1945 /* Check those that need to be defined for the given multi-arch level. */
1946 EOF
1947 function_list | while do_read
1948 do
1949 if class_is_function_p || class_is_variable_p
1950 then
1951 if [ "x${invalid_p}" = "x0" ]
1952 then
1953 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1954 elif class_is_predicate_p
1955 then
1956 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1957 # FIXME: See do_read for potential simplification
1958 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1959 then
1960 printf " if (%s)\n" "$invalid_p"
1961 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1962 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1963 then
1964 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1965 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1966 elif [ -n "${postdefault}" ]
1967 then
1968 printf " if (gdbarch->%s == 0)\n" "$function"
1969 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1970 elif [ -n "${invalid_p}" ]
1971 then
1972 printf " if (%s)\n" "$invalid_p"
1973 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1974 elif [ -n "${predefault}" ]
1975 then
1976 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1977 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1978 fi
1979 fi
1980 done
1981 cat <<EOF
1982 if (!log.empty ())
1983 internal_error (__FILE__, __LINE__,
1984 _("verify_gdbarch: the following are invalid ...%s"),
1985 log.c_str ());
1986 }
1987 EOF
1988
1989 # dump the structure
1990 printf "\n"
1991 printf "\n"
1992 cat <<EOF
1993 /* Print out the details of the current architecture. */
1994
1995 void
1996 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1997 {
1998 const char *gdb_nm_file = "<not-defined>";
1999
2000 #if defined (GDB_NM_FILE)
2001 gdb_nm_file = GDB_NM_FILE;
2002 #endif
2003 fprintf_unfiltered (file,
2004 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2005 gdb_nm_file);
2006 EOF
2007 function_list | sort '-t;' -k 3 | while do_read
2008 do
2009 # First the predicate
2010 if class_is_predicate_p
2011 then
2012 printf " fprintf_unfiltered (file,\n"
2013 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2014 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2015 fi
2016 # Print the corresponding value.
2017 if class_is_function_p
2018 then
2019 printf " fprintf_unfiltered (file,\n"
2020 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2021 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2022 else
2023 # It is a variable
2024 case "${print}:${returntype}" in
2025 :CORE_ADDR )
2026 fmt="%s"
2027 print="core_addr_to_string_nz (gdbarch->${function})"
2028 ;;
2029 :* )
2030 fmt="%s"
2031 print="plongest (gdbarch->${function})"
2032 ;;
2033 * )
2034 fmt="%s"
2035 ;;
2036 esac
2037 printf " fprintf_unfiltered (file,\n"
2038 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2039 printf " %s);\n" "$print"
2040 fi
2041 done
2042 cat <<EOF
2043 if (gdbarch->dump_tdep != NULL)
2044 gdbarch->dump_tdep (gdbarch, file);
2045 }
2046 EOF
2047
2048
2049 # GET/SET
2050 printf "\n"
2051 cat <<EOF
2052 struct gdbarch_tdep *
2053 gdbarch_tdep (struct gdbarch *gdbarch)
2054 {
2055 if (gdbarch_debug >= 2)
2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2057 return gdbarch->tdep;
2058 }
2059 EOF
2060 printf "\n"
2061 function_list | while do_read
2062 do
2063 if class_is_predicate_p
2064 then
2065 printf "\n"
2066 printf "int\n"
2067 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2068 printf "{\n"
2069 printf " gdb_assert (gdbarch != NULL);\n"
2070 printf " return %s;\n" "$predicate"
2071 printf "}\n"
2072 fi
2073 if class_is_function_p
2074 then
2075 printf "\n"
2076 printf "%s\n" "$returntype"
2077 if [ "x${formal}" = "xvoid" ]
2078 then
2079 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2080 else
2081 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2082 fi
2083 printf "{\n"
2084 printf " gdb_assert (gdbarch != NULL);\n"
2085 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2086 if class_is_predicate_p && test -n "${predefault}"
2087 then
2088 # Allow a call to a function with a predicate.
2089 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2090 fi
2091 printf " if (gdbarch_debug >= 2)\n"
2092 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2093 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2094 then
2095 if class_is_multiarch_p
2096 then
2097 params="gdbarch"
2098 else
2099 params=""
2100 fi
2101 else
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch, ${actual}"
2105 else
2106 params="${actual}"
2107 fi
2108 fi
2109 if [ "x${returntype}" = "xvoid" ]
2110 then
2111 printf " gdbarch->%s (%s);\n" "$function" "$params"
2112 else
2113 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2114 fi
2115 printf "}\n"
2116 printf "\n"
2117 printf "void\n"
2118 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2119 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2120 printf "{\n"
2121 printf " gdbarch->%s = %s;\n" "$function" "$function"
2122 printf "}\n"
2123 elif class_is_variable_p
2124 then
2125 printf "\n"
2126 printf "%s\n" "$returntype"
2127 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2128 printf "{\n"
2129 printf " gdb_assert (gdbarch != NULL);\n"
2130 if [ "x${invalid_p}" = "x0" ]
2131 then
2132 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2133 elif [ -n "${invalid_p}" ]
2134 then
2135 printf " /* Check variable is valid. */\n"
2136 printf " gdb_assert (!(%s));\n" "$invalid_p"
2137 elif [ -n "${predefault}" ]
2138 then
2139 printf " /* Check variable changed from pre-default. */\n"
2140 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2141 fi
2142 printf " if (gdbarch_debug >= 2)\n"
2143 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2144 printf " return gdbarch->%s;\n" "$function"
2145 printf "}\n"
2146 printf "\n"
2147 printf "void\n"
2148 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2149 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2150 printf "{\n"
2151 printf " gdbarch->%s = %s;\n" "$function" "$function"
2152 printf "}\n"
2153 elif class_is_info_p
2154 then
2155 printf "\n"
2156 printf "%s\n" "$returntype"
2157 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2158 printf "{\n"
2159 printf " gdb_assert (gdbarch != NULL);\n"
2160 printf " if (gdbarch_debug >= 2)\n"
2161 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2162 printf " return gdbarch->%s;\n" "$function"
2163 printf "}\n"
2164 fi
2165 done
2166
2167 # All the trailing guff
2168 cat <<EOF
2169
2170
2171 /* Keep a registry of per-architecture data-pointers required by GDB
2172 modules. */
2173
2174 struct gdbarch_data
2175 {
2176 unsigned index;
2177 int init_p;
2178 gdbarch_data_pre_init_ftype *pre_init;
2179 gdbarch_data_post_init_ftype *post_init;
2180 };
2181
2182 struct gdbarch_data_registration
2183 {
2184 struct gdbarch_data *data;
2185 struct gdbarch_data_registration *next;
2186 };
2187
2188 struct gdbarch_data_registry
2189 {
2190 unsigned nr;
2191 struct gdbarch_data_registration *registrations;
2192 };
2193
2194 struct gdbarch_data_registry gdbarch_data_registry =
2195 {
2196 0, NULL,
2197 };
2198
2199 static struct gdbarch_data *
2200 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2201 gdbarch_data_post_init_ftype *post_init)
2202 {
2203 struct gdbarch_data_registration **curr;
2204
2205 /* Append the new registration. */
2206 for (curr = &gdbarch_data_registry.registrations;
2207 (*curr) != NULL;
2208 curr = &(*curr)->next);
2209 (*curr) = XNEW (struct gdbarch_data_registration);
2210 (*curr)->next = NULL;
2211 (*curr)->data = XNEW (struct gdbarch_data);
2212 (*curr)->data->index = gdbarch_data_registry.nr++;
2213 (*curr)->data->pre_init = pre_init;
2214 (*curr)->data->post_init = post_init;
2215 (*curr)->data->init_p = 1;
2216 return (*curr)->data;
2217 }
2218
2219 struct gdbarch_data *
2220 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2221 {
2222 return gdbarch_data_register (pre_init, NULL);
2223 }
2224
2225 struct gdbarch_data *
2226 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2227 {
2228 return gdbarch_data_register (NULL, post_init);
2229 }
2230
2231 /* Create/delete the gdbarch data vector. */
2232
2233 static void
2234 alloc_gdbarch_data (struct gdbarch *gdbarch)
2235 {
2236 gdb_assert (gdbarch->data == NULL);
2237 gdbarch->nr_data = gdbarch_data_registry.nr;
2238 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2239 }
2240
2241 /* Return the current value of the specified per-architecture
2242 data-pointer. */
2243
2244 void *
2245 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2246 {
2247 gdb_assert (data->index < gdbarch->nr_data);
2248 if (gdbarch->data[data->index] == NULL)
2249 {
2250 /* The data-pointer isn't initialized, call init() to get a
2251 value. */
2252 if (data->pre_init != NULL)
2253 /* Mid architecture creation: pass just the obstack, and not
2254 the entire architecture, as that way it isn't possible for
2255 pre-init code to refer to undefined architecture
2256 fields. */
2257 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2258 else if (gdbarch->initialized_p
2259 && data->post_init != NULL)
2260 /* Post architecture creation: pass the entire architecture
2261 (as all fields are valid), but be careful to also detect
2262 recursive references. */
2263 {
2264 gdb_assert (data->init_p);
2265 data->init_p = 0;
2266 gdbarch->data[data->index] = data->post_init (gdbarch);
2267 data->init_p = 1;
2268 }
2269 else
2270 internal_error (__FILE__, __LINE__,
2271 _("gdbarch post-init data field can only be used "
2272 "after gdbarch is fully initialised"));
2273 gdb_assert (gdbarch->data[data->index] != NULL);
2274 }
2275 return gdbarch->data[data->index];
2276 }
2277
2278
2279 /* Keep a registry of the architectures known by GDB. */
2280
2281 struct gdbarch_registration
2282 {
2283 enum bfd_architecture bfd_architecture;
2284 gdbarch_init_ftype *init;
2285 gdbarch_dump_tdep_ftype *dump_tdep;
2286 struct gdbarch_list *arches;
2287 struct gdbarch_registration *next;
2288 };
2289
2290 static struct gdbarch_registration *gdbarch_registry = NULL;
2291
2292 static void
2293 append_name (const char ***buf, int *nr, const char *name)
2294 {
2295 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2296 (*buf)[*nr] = name;
2297 *nr += 1;
2298 }
2299
2300 const char **
2301 gdbarch_printable_names (void)
2302 {
2303 /* Accumulate a list of names based on the registed list of
2304 architectures. */
2305 int nr_arches = 0;
2306 const char **arches = NULL;
2307 struct gdbarch_registration *rego;
2308
2309 for (rego = gdbarch_registry;
2310 rego != NULL;
2311 rego = rego->next)
2312 {
2313 const struct bfd_arch_info *ap;
2314 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2315 if (ap == NULL)
2316 internal_error (__FILE__, __LINE__,
2317 _("gdbarch_architecture_names: multi-arch unknown"));
2318 do
2319 {
2320 append_name (&arches, &nr_arches, ap->printable_name);
2321 ap = ap->next;
2322 }
2323 while (ap != NULL);
2324 }
2325 append_name (&arches, &nr_arches, NULL);
2326 return arches;
2327 }
2328
2329
2330 void
2331 gdbarch_register (enum bfd_architecture bfd_architecture,
2332 gdbarch_init_ftype *init,
2333 gdbarch_dump_tdep_ftype *dump_tdep)
2334 {
2335 struct gdbarch_registration **curr;
2336 const struct bfd_arch_info *bfd_arch_info;
2337
2338 /* Check that BFD recognizes this architecture */
2339 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2340 if (bfd_arch_info == NULL)
2341 {
2342 internal_error (__FILE__, __LINE__,
2343 _("gdbarch: Attempt to register "
2344 "unknown architecture (%d)"),
2345 bfd_architecture);
2346 }
2347 /* Check that we haven't seen this architecture before. */
2348 for (curr = &gdbarch_registry;
2349 (*curr) != NULL;
2350 curr = &(*curr)->next)
2351 {
2352 if (bfd_architecture == (*curr)->bfd_architecture)
2353 internal_error (__FILE__, __LINE__,
2354 _("gdbarch: Duplicate registration "
2355 "of architecture (%s)"),
2356 bfd_arch_info->printable_name);
2357 }
2358 /* log it */
2359 if (gdbarch_debug)
2360 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2361 bfd_arch_info->printable_name,
2362 host_address_to_string (init));
2363 /* Append it */
2364 (*curr) = XNEW (struct gdbarch_registration);
2365 (*curr)->bfd_architecture = bfd_architecture;
2366 (*curr)->init = init;
2367 (*curr)->dump_tdep = dump_tdep;
2368 (*curr)->arches = NULL;
2369 (*curr)->next = NULL;
2370 }
2371
2372 void
2373 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2374 gdbarch_init_ftype *init)
2375 {
2376 gdbarch_register (bfd_architecture, init, NULL);
2377 }
2378
2379
2380 /* Look for an architecture using gdbarch_info. */
2381
2382 struct gdbarch_list *
2383 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2384 const struct gdbarch_info *info)
2385 {
2386 for (; arches != NULL; arches = arches->next)
2387 {
2388 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2389 continue;
2390 if (info->byte_order != arches->gdbarch->byte_order)
2391 continue;
2392 if (info->osabi != arches->gdbarch->osabi)
2393 continue;
2394 if (info->target_desc != arches->gdbarch->target_desc)
2395 continue;
2396 return arches;
2397 }
2398 return NULL;
2399 }
2400
2401
2402 /* Find an architecture that matches the specified INFO. Create a new
2403 architecture if needed. Return that new architecture. */
2404
2405 struct gdbarch *
2406 gdbarch_find_by_info (struct gdbarch_info info)
2407 {
2408 struct gdbarch *new_gdbarch;
2409 struct gdbarch_registration *rego;
2410
2411 /* Fill in missing parts of the INFO struct using a number of
2412 sources: "set ..."; INFOabfd supplied; and the global
2413 defaults. */
2414 gdbarch_info_fill (&info);
2415
2416 /* Must have found some sort of architecture. */
2417 gdb_assert (info.bfd_arch_info != NULL);
2418
2419 if (gdbarch_debug)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
2422 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2423 (info.bfd_arch_info != NULL
2424 ? info.bfd_arch_info->printable_name
2425 : "(null)"));
2426 fprintf_unfiltered (gdb_stdlog,
2427 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2428 info.byte_order,
2429 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2430 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2431 : "default"));
2432 fprintf_unfiltered (gdb_stdlog,
2433 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2434 info.osabi, gdbarch_osabi_name (info.osabi));
2435 fprintf_unfiltered (gdb_stdlog,
2436 "gdbarch_find_by_info: info.abfd %s\n",
2437 host_address_to_string (info.abfd));
2438 fprintf_unfiltered (gdb_stdlog,
2439 "gdbarch_find_by_info: info.tdep_info %s\n",
2440 host_address_to_string (info.tdep_info));
2441 }
2442
2443 /* Find the tdep code that knows about this architecture. */
2444 for (rego = gdbarch_registry;
2445 rego != NULL;
2446 rego = rego->next)
2447 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2448 break;
2449 if (rego == NULL)
2450 {
2451 if (gdbarch_debug)
2452 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2453 "No matching architecture\n");
2454 return 0;
2455 }
2456
2457 /* Ask the tdep code for an architecture that matches "info". */
2458 new_gdbarch = rego->init (info, rego->arches);
2459
2460 /* Did the tdep code like it? No. Reject the change and revert to
2461 the old architecture. */
2462 if (new_gdbarch == NULL)
2463 {
2464 if (gdbarch_debug)
2465 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2466 "Target rejected architecture\n");
2467 return NULL;
2468 }
2469
2470 /* Is this a pre-existing architecture (as determined by already
2471 being initialized)? Move it to the front of the architecture
2472 list (keeping the list sorted Most Recently Used). */
2473 if (new_gdbarch->initialized_p)
2474 {
2475 struct gdbarch_list **list;
2476 struct gdbarch_list *self;
2477 if (gdbarch_debug)
2478 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2479 "Previous architecture %s (%s) selected\n",
2480 host_address_to_string (new_gdbarch),
2481 new_gdbarch->bfd_arch_info->printable_name);
2482 /* Find the existing arch in the list. */
2483 for (list = &rego->arches;
2484 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2485 list = &(*list)->next);
2486 /* It had better be in the list of architectures. */
2487 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2488 /* Unlink SELF. */
2489 self = (*list);
2490 (*list) = self->next;
2491 /* Insert SELF at the front. */
2492 self->next = rego->arches;
2493 rego->arches = self;
2494 /* Return it. */
2495 return new_gdbarch;
2496 }
2497
2498 /* It's a new architecture. */
2499 if (gdbarch_debug)
2500 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2501 "New architecture %s (%s) selected\n",
2502 host_address_to_string (new_gdbarch),
2503 new_gdbarch->bfd_arch_info->printable_name);
2504
2505 /* Insert the new architecture into the front of the architecture
2506 list (keep the list sorted Most Recently Used). */
2507 {
2508 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2509 self->next = rego->arches;
2510 self->gdbarch = new_gdbarch;
2511 rego->arches = self;
2512 }
2513
2514 /* Check that the newly installed architecture is valid. Plug in
2515 any post init values. */
2516 new_gdbarch->dump_tdep = rego->dump_tdep;
2517 verify_gdbarch (new_gdbarch);
2518 new_gdbarch->initialized_p = 1;
2519
2520 if (gdbarch_debug)
2521 gdbarch_dump (new_gdbarch, gdb_stdlog);
2522
2523 return new_gdbarch;
2524 }
2525
2526 /* Make the specified architecture current. */
2527
2528 void
2529 set_target_gdbarch (struct gdbarch *new_gdbarch)
2530 {
2531 gdb_assert (new_gdbarch != NULL);
2532 gdb_assert (new_gdbarch->initialized_p);
2533 current_inferior ()->gdbarch = new_gdbarch;
2534 gdb::observers::architecture_changed.notify (new_gdbarch);
2535 registers_changed ();
2536 }
2537
2538 /* Return the current inferior's arch. */
2539
2540 struct gdbarch *
2541 target_gdbarch (void)
2542 {
2543 return current_inferior ()->gdbarch;
2544 }
2545
2546 void _initialize_gdbarch ();
2547 void
2548 _initialize_gdbarch ()
2549 {
2550 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2551 Set architecture debugging."), _("\\
2552 Show architecture debugging."), _("\\
2553 When non-zero, architecture debugging is enabled."),
2554 NULL,
2555 show_gdbarch_debug,
2556 &setdebuglist, &showdebuglist);
2557 }
2558 EOF
2559
2560 # close things off
2561 exec 1>&2
2562 ../move-if-change new-gdbarch.c gdbarch.c
2563 rm -f new-gdbarch.c
This page took 0.136017 seconds and 4 git commands to generate.