Consistent use of (C) after "Copyright".
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2013 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
482
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
493 #
494 v:int:believe_pcc_promotion:::::::
495 #
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
512 #
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
514 #
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
518 # for instance).
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
520
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
540
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
548
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
550
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
554
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
557 #
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
564 #
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
568 #
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # The elfcore writer hook to use to write Linux prpsinfo notes to core
645 # files. Most Linux architectures use the same prpsinfo32 or
646 # prpsinfo64 layouts, and so won't need to provide this hook, as we
647 # call the Linux generic routines in bfd to write prpsinfo notes by
648 # default.
649 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
650
651 # Find core file memory regions
652 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
653
654 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
655 # core file into buffer READBUF with length LEN.
656 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
657
658 # How the core target converts a PTID from a core file to a string.
659 M:char *:core_pid_to_str:ptid_t ptid:ptid
660
661 # BFD target to use when generating a core file.
662 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
663
664 # If the elements of C++ vtables are in-place function descriptors rather
665 # than normal function pointers (which may point to code or a descriptor),
666 # set this to one.
667 v:int:vtable_function_descriptors:::0:0::0
668
669 # Set if the least significant bit of the delta is used instead of the least
670 # significant bit of the pfn for pointers to virtual member functions.
671 v:int:vbit_in_delta:::0:0::0
672
673 # Advance PC to next instruction in order to skip a permanent breakpoint.
674 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
675
676 # The maximum length of an instruction on this architecture in bytes.
677 V:ULONGEST:max_insn_length:::0:0
678
679 # Copy the instruction at FROM to TO, and make any adjustments
680 # necessary to single-step it at that address.
681 #
682 # REGS holds the state the thread's registers will have before
683 # executing the copied instruction; the PC in REGS will refer to FROM,
684 # not the copy at TO. The caller should update it to point at TO later.
685 #
686 # Return a pointer to data of the architecture's choice to be passed
687 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
688 # the instruction's effects have been completely simulated, with the
689 # resulting state written back to REGS.
690 #
691 # For a general explanation of displaced stepping and how GDB uses it,
692 # see the comments in infrun.c.
693 #
694 # The TO area is only guaranteed to have space for
695 # gdbarch_max_insn_length (arch) bytes, so this function must not
696 # write more bytes than that to that area.
697 #
698 # If you do not provide this function, GDB assumes that the
699 # architecture does not support displaced stepping.
700 #
701 # If your architecture doesn't need to adjust instructions before
702 # single-stepping them, consider using simple_displaced_step_copy_insn
703 # here.
704 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
705
706 # Return true if GDB should use hardware single-stepping to execute
707 # the displaced instruction identified by CLOSURE. If false,
708 # GDB will simply restart execution at the displaced instruction
709 # location, and it is up to the target to ensure GDB will receive
710 # control again (e.g. by placing a software breakpoint instruction
711 # into the displaced instruction buffer).
712 #
713 # The default implementation returns false on all targets that
714 # provide a gdbarch_software_single_step routine, and true otherwise.
715 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
716
717 # Fix up the state resulting from successfully single-stepping a
718 # displaced instruction, to give the result we would have gotten from
719 # stepping the instruction in its original location.
720 #
721 # REGS is the register state resulting from single-stepping the
722 # displaced instruction.
723 #
724 # CLOSURE is the result from the matching call to
725 # gdbarch_displaced_step_copy_insn.
726 #
727 # If you provide gdbarch_displaced_step_copy_insn.but not this
728 # function, then GDB assumes that no fixup is needed after
729 # single-stepping the instruction.
730 #
731 # For a general explanation of displaced stepping and how GDB uses it,
732 # see the comments in infrun.c.
733 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
734
735 # Free a closure returned by gdbarch_displaced_step_copy_insn.
736 #
737 # If you provide gdbarch_displaced_step_copy_insn, you must provide
738 # this function as well.
739 #
740 # If your architecture uses closures that don't need to be freed, then
741 # you can use simple_displaced_step_free_closure here.
742 #
743 # For a general explanation of displaced stepping and how GDB uses it,
744 # see the comments in infrun.c.
745 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
746
747 # Return the address of an appropriate place to put displaced
748 # instructions while we step over them. There need only be one such
749 # place, since we're only stepping one thread over a breakpoint at a
750 # time.
751 #
752 # For a general explanation of displaced stepping and how GDB uses it,
753 # see the comments in infrun.c.
754 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
755
756 # Relocate an instruction to execute at a different address. OLDLOC
757 # is the address in the inferior memory where the instruction to
758 # relocate is currently at. On input, TO points to the destination
759 # where we want the instruction to be copied (and possibly adjusted)
760 # to. On output, it points to one past the end of the resulting
761 # instruction(s). The effect of executing the instruction at TO shall
762 # be the same as if executing it at FROM. For example, call
763 # instructions that implicitly push the return address on the stack
764 # should be adjusted to return to the instruction after OLDLOC;
765 # relative branches, and other PC-relative instructions need the
766 # offset adjusted; etc.
767 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
768
769 # Refresh overlay mapped state for section OSECT.
770 F:void:overlay_update:struct obj_section *osect:osect
771
772 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
773
774 # Handle special encoding of static variables in stabs debug info.
775 F:const char *:static_transform_name:const char *name:name
776 # Set if the address in N_SO or N_FUN stabs may be zero.
777 v:int:sofun_address_maybe_missing:::0:0::0
778
779 # Parse the instruction at ADDR storing in the record execution log
780 # the registers REGCACHE and memory ranges that will be affected when
781 # the instruction executes, along with their current values.
782 # Return -1 if something goes wrong, 0 otherwise.
783 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
784
785 # Save process state after a signal.
786 # Return -1 if something goes wrong, 0 otherwise.
787 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
788
789 # Signal translation: translate inferior's signal (target's) number
790 # into GDB's representation. The implementation of this method must
791 # be host independent. IOW, don't rely on symbols of the NAT_FILE
792 # header (the nm-*.h files), the host <signal.h> header, or similar
793 # headers. This is mainly used when cross-debugging core files ---
794 # "Live" targets hide the translation behind the target interface
795 # (target_wait, target_resume, etc.).
796 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
797
798 # Extra signal info inspection.
799 #
800 # Return a type suitable to inspect extra signal information.
801 M:struct type *:get_siginfo_type:void:
802
803 # Record architecture-specific information from the symbol table.
804 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
805
806 # Function for the 'catch syscall' feature.
807
808 # Get architecture-specific system calls information from registers.
809 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
810
811 # SystemTap related fields and functions.
812
813 # Prefix used to mark an integer constant on the architecture's assembly
814 # For example, on x86 integer constants are written as:
815 #
816 # \$10 ;; integer constant 10
817 #
818 # in this case, this prefix would be the character \`\$\'.
819 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
820
821 # Suffix used to mark an integer constant on the architecture's assembly.
822 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
823
824 # Prefix used to mark a register name on the architecture's assembly.
825 # For example, on x86 the register name is written as:
826 #
827 # \%eax ;; register eax
828 #
829 # in this case, this prefix would be the character \`\%\'.
830 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
831
832 # Suffix used to mark a register name on the architecture's assembly
833 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
834
835 # Prefix used to mark a register indirection on the architecture's assembly.
836 # For example, on x86 the register indirection is written as:
837 #
838 # \(\%eax\) ;; indirecting eax
839 #
840 # in this case, this prefix would be the charater \`\(\'.
841 #
842 # Please note that we use the indirection prefix also for register
843 # displacement, e.g., \`4\(\%eax\)\' on x86.
844 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
845
846 # Suffix used to mark a register indirection on the architecture's assembly.
847 # For example, on x86 the register indirection is written as:
848 #
849 # \(\%eax\) ;; indirecting eax
850 #
851 # in this case, this prefix would be the charater \`\)\'.
852 #
853 # Please note that we use the indirection suffix also for register
854 # displacement, e.g., \`4\(\%eax\)\' on x86.
855 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
856
857 # Prefix used to name a register using GDB's nomenclature.
858 #
859 # For example, on PPC a register is represented by a number in the assembly
860 # language (e.g., \`10\' is the 10th general-purpose register). However,
861 # inside GDB this same register has an \`r\' appended to its name, so the 10th
862 # register would be represented as \`r10\' internally.
863 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
864
865 # Suffix used to name a register using GDB's nomenclature.
866 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
867
868 # Check if S is a single operand.
869 #
870 # Single operands can be:
871 # \- Literal integers, e.g. \`\$10\' on x86
872 # \- Register access, e.g. \`\%eax\' on x86
873 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
874 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
875 #
876 # This function should check for these patterns on the string
877 # and return 1 if some were found, or zero otherwise. Please try to match
878 # as much info as you can from the string, i.e., if you have to match
879 # something like \`\(\%\', do not match just the \`\(\'.
880 M:int:stap_is_single_operand:const char *s:s
881
882 # Function used to handle a "special case" in the parser.
883 #
884 # A "special case" is considered to be an unknown token, i.e., a token
885 # that the parser does not know how to parse. A good example of special
886 # case would be ARM's register displacement syntax:
887 #
888 # [R0, #4] ;; displacing R0 by 4
889 #
890 # Since the parser assumes that a register displacement is of the form:
891 #
892 # <number> <indirection_prefix> <register_name> <indirection_suffix>
893 #
894 # it means that it will not be able to recognize and parse this odd syntax.
895 # Therefore, we should add a special case function that will handle this token.
896 #
897 # This function should generate the proper expression form of the expression
898 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
899 # and so on). It should also return 1 if the parsing was successful, or zero
900 # if the token was not recognized as a special token (in this case, returning
901 # zero means that the special parser is deferring the parsing to the generic
902 # parser), and should advance the buffer pointer (p->arg).
903 M:int:stap_parse_special_token:struct stap_parse_info *p:p
904
905
906 # True if the list of shared libraries is one and only for all
907 # processes, as opposed to a list of shared libraries per inferior.
908 # This usually means that all processes, although may or may not share
909 # an address space, will see the same set of symbols at the same
910 # addresses.
911 v:int:has_global_solist:::0:0::0
912
913 # On some targets, even though each inferior has its own private
914 # address space, the debug interface takes care of making breakpoints
915 # visible to all address spaces automatically. For such cases,
916 # this property should be set to true.
917 v:int:has_global_breakpoints:::0:0::0
918
919 # True if inferiors share an address space (e.g., uClinux).
920 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
921
922 # True if a fast tracepoint can be set at an address.
923 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
924
925 # Return the "auto" target charset.
926 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
927 # Return the "auto" target wide charset.
928 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
929
930 # If non-empty, this is a file extension that will be opened in place
931 # of the file extension reported by the shared library list.
932 #
933 # This is most useful for toolchains that use a post-linker tool,
934 # where the names of the files run on the target differ in extension
935 # compared to the names of the files GDB should load for debug info.
936 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
937
938 # If true, the target OS has DOS-based file system semantics. That
939 # is, absolute paths include a drive name, and the backslash is
940 # considered a directory separator.
941 v:int:has_dos_based_file_system:::0:0::0
942
943 # Generate bytecodes to collect the return address in a frame.
944 # Since the bytecodes run on the target, possibly with GDB not even
945 # connected, the full unwinding machinery is not available, and
946 # typically this function will issue bytecodes for one or more likely
947 # places that the return address may be found.
948 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
949
950 # Implement the "info proc" command.
951 M:void:info_proc:char *args, enum info_proc_what what:args, what
952
953 # Implement the "info proc" command for core files. Noe that there
954 # are two "info_proc"-like methods on gdbarch -- one for core files,
955 # one for live targets.
956 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
957
958 # Iterate over all objfiles in the order that makes the most sense
959 # for the architecture to make global symbol searches.
960 #
961 # CB is a callback function where OBJFILE is the objfile to be searched,
962 # and CB_DATA a pointer to user-defined data (the same data that is passed
963 # when calling this gdbarch method). The iteration stops if this function
964 # returns nonzero.
965 #
966 # CB_DATA is a pointer to some user-defined data to be passed to
967 # the callback.
968 #
969 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
970 # inspected when the symbol search was requested.
971 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
972
973 # Ravenscar arch-dependent ops.
974 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
975 EOF
976 }
977
978 #
979 # The .log file
980 #
981 exec > new-gdbarch.log
982 function_list | while do_read
983 do
984 cat <<EOF
985 ${class} ${returntype} ${function} ($formal)
986 EOF
987 for r in ${read}
988 do
989 eval echo \"\ \ \ \ ${r}=\${${r}}\"
990 done
991 if class_is_predicate_p && fallback_default_p
992 then
993 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
994 kill $$
995 exit 1
996 fi
997 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
998 then
999 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1000 kill $$
1001 exit 1
1002 fi
1003 if class_is_multiarch_p
1004 then
1005 if class_is_predicate_p ; then :
1006 elif test "x${predefault}" = "x"
1007 then
1008 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1009 kill $$
1010 exit 1
1011 fi
1012 fi
1013 echo ""
1014 done
1015
1016 exec 1>&2
1017 compare_new gdbarch.log
1018
1019
1020 copyright ()
1021 {
1022 cat <<EOF
1023 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1024 /* vi:set ro: */
1025
1026 /* Dynamic architecture support for GDB, the GNU debugger.
1027
1028 Copyright (C) 1998-2013 Free Software Foundation, Inc.
1029
1030 This file is part of GDB.
1031
1032 This program is free software; you can redistribute it and/or modify
1033 it under the terms of the GNU General Public License as published by
1034 the Free Software Foundation; either version 3 of the License, or
1035 (at your option) any later version.
1036
1037 This program is distributed in the hope that it will be useful,
1038 but WITHOUT ANY WARRANTY; without even the implied warranty of
1039 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1040 GNU General Public License for more details.
1041
1042 You should have received a copy of the GNU General Public License
1043 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1044
1045 /* This file was created with the aid of \`\`gdbarch.sh''.
1046
1047 The Bourne shell script \`\`gdbarch.sh'' creates the files
1048 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1049 against the existing \`\`gdbarch.[hc]''. Any differences found
1050 being reported.
1051
1052 If editing this file, please also run gdbarch.sh and merge any
1053 changes into that script. Conversely, when making sweeping changes
1054 to this file, modifying gdbarch.sh and using its output may prove
1055 easier. */
1056
1057 EOF
1058 }
1059
1060 #
1061 # The .h file
1062 #
1063
1064 exec > new-gdbarch.h
1065 copyright
1066 cat <<EOF
1067 #ifndef GDBARCH_H
1068 #define GDBARCH_H
1069
1070 struct floatformat;
1071 struct ui_file;
1072 struct frame_info;
1073 struct value;
1074 struct objfile;
1075 struct obj_section;
1076 struct minimal_symbol;
1077 struct regcache;
1078 struct reggroup;
1079 struct regset;
1080 struct disassemble_info;
1081 struct target_ops;
1082 struct obstack;
1083 struct bp_target_info;
1084 struct target_desc;
1085 struct displaced_step_closure;
1086 struct core_regset_section;
1087 struct syscall;
1088 struct agent_expr;
1089 struct axs_value;
1090 struct stap_parse_info;
1091 struct ravenscar_arch_ops;
1092 struct elf_internal_linux_prpsinfo;
1093
1094 /* The architecture associated with the inferior through the
1095 connection to the target.
1096
1097 The architecture vector provides some information that is really a
1098 property of the inferior, accessed through a particular target:
1099 ptrace operations; the layout of certain RSP packets; the solib_ops
1100 vector; etc. To differentiate architecture accesses to
1101 per-inferior/target properties from
1102 per-thread/per-frame/per-objfile properties, accesses to
1103 per-inferior/target properties should be made through this
1104 gdbarch. */
1105
1106 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1107 extern struct gdbarch *target_gdbarch (void);
1108
1109 /* The initial, default architecture. It uses host values (for want of a better
1110 choice). */
1111 extern struct gdbarch startup_gdbarch;
1112
1113
1114 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1115 gdbarch method. */
1116
1117 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1118 (struct objfile *objfile, void *cb_data);
1119 EOF
1120
1121 # function typedef's
1122 printf "\n"
1123 printf "\n"
1124 printf "/* The following are pre-initialized by GDBARCH. */\n"
1125 function_list | while do_read
1126 do
1127 if class_is_info_p
1128 then
1129 printf "\n"
1130 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1131 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1132 fi
1133 done
1134
1135 # function typedef's
1136 printf "\n"
1137 printf "\n"
1138 printf "/* The following are initialized by the target dependent code. */\n"
1139 function_list | while do_read
1140 do
1141 if [ -n "${comment}" ]
1142 then
1143 echo "${comment}" | sed \
1144 -e '2 s,#,/*,' \
1145 -e '3,$ s,#, ,' \
1146 -e '$ s,$, */,'
1147 fi
1148
1149 if class_is_predicate_p
1150 then
1151 printf "\n"
1152 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1153 fi
1154 if class_is_variable_p
1155 then
1156 printf "\n"
1157 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1158 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1159 fi
1160 if class_is_function_p
1161 then
1162 printf "\n"
1163 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1164 then
1165 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1166 elif class_is_multiarch_p
1167 then
1168 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1169 else
1170 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1171 fi
1172 if [ "x${formal}" = "xvoid" ]
1173 then
1174 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1175 else
1176 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1177 fi
1178 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1179 fi
1180 done
1181
1182 # close it off
1183 cat <<EOF
1184
1185 /* Definition for an unknown syscall, used basically in error-cases. */
1186 #define UNKNOWN_SYSCALL (-1)
1187
1188 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1189
1190
1191 /* Mechanism for co-ordinating the selection of a specific
1192 architecture.
1193
1194 GDB targets (*-tdep.c) can register an interest in a specific
1195 architecture. Other GDB components can register a need to maintain
1196 per-architecture data.
1197
1198 The mechanisms below ensures that there is only a loose connection
1199 between the set-architecture command and the various GDB
1200 components. Each component can independently register their need
1201 to maintain architecture specific data with gdbarch.
1202
1203 Pragmatics:
1204
1205 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1206 didn't scale.
1207
1208 The more traditional mega-struct containing architecture specific
1209 data for all the various GDB components was also considered. Since
1210 GDB is built from a variable number of (fairly independent)
1211 components it was determined that the global aproach was not
1212 applicable. */
1213
1214
1215 /* Register a new architectural family with GDB.
1216
1217 Register support for the specified ARCHITECTURE with GDB. When
1218 gdbarch determines that the specified architecture has been
1219 selected, the corresponding INIT function is called.
1220
1221 --
1222
1223 The INIT function takes two parameters: INFO which contains the
1224 information available to gdbarch about the (possibly new)
1225 architecture; ARCHES which is a list of the previously created
1226 \`\`struct gdbarch'' for this architecture.
1227
1228 The INFO parameter is, as far as possible, be pre-initialized with
1229 information obtained from INFO.ABFD or the global defaults.
1230
1231 The ARCHES parameter is a linked list (sorted most recently used)
1232 of all the previously created architures for this architecture
1233 family. The (possibly NULL) ARCHES->gdbarch can used to access
1234 values from the previously selected architecture for this
1235 architecture family.
1236
1237 The INIT function shall return any of: NULL - indicating that it
1238 doesn't recognize the selected architecture; an existing \`\`struct
1239 gdbarch'' from the ARCHES list - indicating that the new
1240 architecture is just a synonym for an earlier architecture (see
1241 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1242 - that describes the selected architecture (see gdbarch_alloc()).
1243
1244 The DUMP_TDEP function shall print out all target specific values.
1245 Care should be taken to ensure that the function works in both the
1246 multi-arch and non- multi-arch cases. */
1247
1248 struct gdbarch_list
1249 {
1250 struct gdbarch *gdbarch;
1251 struct gdbarch_list *next;
1252 };
1253
1254 struct gdbarch_info
1255 {
1256 /* Use default: NULL (ZERO). */
1257 const struct bfd_arch_info *bfd_arch_info;
1258
1259 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1260 int byte_order;
1261
1262 int byte_order_for_code;
1263
1264 /* Use default: NULL (ZERO). */
1265 bfd *abfd;
1266
1267 /* Use default: NULL (ZERO). */
1268 struct gdbarch_tdep_info *tdep_info;
1269
1270 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1271 enum gdb_osabi osabi;
1272
1273 /* Use default: NULL (ZERO). */
1274 const struct target_desc *target_desc;
1275 };
1276
1277 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1278 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1279
1280 /* DEPRECATED - use gdbarch_register() */
1281 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1282
1283 extern void gdbarch_register (enum bfd_architecture architecture,
1284 gdbarch_init_ftype *,
1285 gdbarch_dump_tdep_ftype *);
1286
1287
1288 /* Return a freshly allocated, NULL terminated, array of the valid
1289 architecture names. Since architectures are registered during the
1290 _initialize phase this function only returns useful information
1291 once initialization has been completed. */
1292
1293 extern const char **gdbarch_printable_names (void);
1294
1295
1296 /* Helper function. Search the list of ARCHES for a GDBARCH that
1297 matches the information provided by INFO. */
1298
1299 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1300
1301
1302 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1303 basic initialization using values obtained from the INFO and TDEP
1304 parameters. set_gdbarch_*() functions are called to complete the
1305 initialization of the object. */
1306
1307 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1308
1309
1310 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1311 It is assumed that the caller freeds the \`\`struct
1312 gdbarch_tdep''. */
1313
1314 extern void gdbarch_free (struct gdbarch *);
1315
1316
1317 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1318 obstack. The memory is freed when the corresponding architecture
1319 is also freed. */
1320
1321 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1322 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1323 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1324
1325
1326 /* Helper function. Force an update of the current architecture.
1327
1328 The actual architecture selected is determined by INFO, \`\`(gdb) set
1329 architecture'' et.al., the existing architecture and BFD's default
1330 architecture. INFO should be initialized to zero and then selected
1331 fields should be updated.
1332
1333 Returns non-zero if the update succeeds. */
1334
1335 extern int gdbarch_update_p (struct gdbarch_info info);
1336
1337
1338 /* Helper function. Find an architecture matching info.
1339
1340 INFO should be initialized using gdbarch_info_init, relevant fields
1341 set, and then finished using gdbarch_info_fill.
1342
1343 Returns the corresponding architecture, or NULL if no matching
1344 architecture was found. */
1345
1346 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1347
1348
1349 /* Helper function. Set the target gdbarch to "gdbarch". */
1350
1351 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1352
1353
1354 /* Register per-architecture data-pointer.
1355
1356 Reserve space for a per-architecture data-pointer. An identifier
1357 for the reserved data-pointer is returned. That identifer should
1358 be saved in a local static variable.
1359
1360 Memory for the per-architecture data shall be allocated using
1361 gdbarch_obstack_zalloc. That memory will be deleted when the
1362 corresponding architecture object is deleted.
1363
1364 When a previously created architecture is re-selected, the
1365 per-architecture data-pointer for that previous architecture is
1366 restored. INIT() is not re-called.
1367
1368 Multiple registrarants for any architecture are allowed (and
1369 strongly encouraged). */
1370
1371 struct gdbarch_data;
1372
1373 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1374 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1375 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1376 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1377 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1378 struct gdbarch_data *data,
1379 void *pointer);
1380
1381 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1382
1383
1384 /* Set the dynamic target-system-dependent parameters (architecture,
1385 byte-order, ...) using information found in the BFD. */
1386
1387 extern void set_gdbarch_from_file (bfd *);
1388
1389
1390 /* Initialize the current architecture to the "first" one we find on
1391 our list. */
1392
1393 extern void initialize_current_architecture (void);
1394
1395 /* gdbarch trace variable */
1396 extern unsigned int gdbarch_debug;
1397
1398 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1399
1400 #endif
1401 EOF
1402 exec 1>&2
1403 #../move-if-change new-gdbarch.h gdbarch.h
1404 compare_new gdbarch.h
1405
1406
1407 #
1408 # C file
1409 #
1410
1411 exec > new-gdbarch.c
1412 copyright
1413 cat <<EOF
1414
1415 #include "defs.h"
1416 #include "arch-utils.h"
1417
1418 #include "gdbcmd.h"
1419 #include "inferior.h"
1420 #include "symcat.h"
1421
1422 #include "floatformat.h"
1423
1424 #include "gdb_assert.h"
1425 #include "gdb_string.h"
1426 #include "reggroups.h"
1427 #include "osabi.h"
1428 #include "gdb_obstack.h"
1429 #include "observer.h"
1430 #include "regcache.h"
1431 #include "objfiles.h"
1432
1433 /* Static function declarations */
1434
1435 static void alloc_gdbarch_data (struct gdbarch *);
1436
1437 /* Non-zero if we want to trace architecture code. */
1438
1439 #ifndef GDBARCH_DEBUG
1440 #define GDBARCH_DEBUG 0
1441 #endif
1442 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1443 static void
1444 show_gdbarch_debug (struct ui_file *file, int from_tty,
1445 struct cmd_list_element *c, const char *value)
1446 {
1447 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1448 }
1449
1450 static const char *
1451 pformat (const struct floatformat **format)
1452 {
1453 if (format == NULL)
1454 return "(null)";
1455 else
1456 /* Just print out one of them - this is only for diagnostics. */
1457 return format[0]->name;
1458 }
1459
1460 static const char *
1461 pstring (const char *string)
1462 {
1463 if (string == NULL)
1464 return "(null)";
1465 return string;
1466 }
1467
1468 EOF
1469
1470 # gdbarch open the gdbarch object
1471 printf "\n"
1472 printf "/* Maintain the struct gdbarch object. */\n"
1473 printf "\n"
1474 printf "struct gdbarch\n"
1475 printf "{\n"
1476 printf " /* Has this architecture been fully initialized? */\n"
1477 printf " int initialized_p;\n"
1478 printf "\n"
1479 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1480 printf " struct obstack *obstack;\n"
1481 printf "\n"
1482 printf " /* basic architectural information. */\n"
1483 function_list | while do_read
1484 do
1485 if class_is_info_p
1486 then
1487 printf " ${returntype} ${function};\n"
1488 fi
1489 done
1490 printf "\n"
1491 printf " /* target specific vector. */\n"
1492 printf " struct gdbarch_tdep *tdep;\n"
1493 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1494 printf "\n"
1495 printf " /* per-architecture data-pointers. */\n"
1496 printf " unsigned nr_data;\n"
1497 printf " void **data;\n"
1498 printf "\n"
1499 cat <<EOF
1500 /* Multi-arch values.
1501
1502 When extending this structure you must:
1503
1504 Add the field below.
1505
1506 Declare set/get functions and define the corresponding
1507 macro in gdbarch.h.
1508
1509 gdbarch_alloc(): If zero/NULL is not a suitable default,
1510 initialize the new field.
1511
1512 verify_gdbarch(): Confirm that the target updated the field
1513 correctly.
1514
1515 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1516 field is dumped out
1517
1518 \`\`startup_gdbarch()'': Append an initial value to the static
1519 variable (base values on the host's c-type system).
1520
1521 get_gdbarch(): Implement the set/get functions (probably using
1522 the macro's as shortcuts).
1523
1524 */
1525
1526 EOF
1527 function_list | while do_read
1528 do
1529 if class_is_variable_p
1530 then
1531 printf " ${returntype} ${function};\n"
1532 elif class_is_function_p
1533 then
1534 printf " gdbarch_${function}_ftype *${function};\n"
1535 fi
1536 done
1537 printf "};\n"
1538
1539 # A pre-initialized vector
1540 printf "\n"
1541 printf "\n"
1542 cat <<EOF
1543 /* The default architecture uses host values (for want of a better
1544 choice). */
1545 EOF
1546 printf "\n"
1547 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1548 printf "\n"
1549 printf "struct gdbarch startup_gdbarch =\n"
1550 printf "{\n"
1551 printf " 1, /* Always initialized. */\n"
1552 printf " NULL, /* The obstack. */\n"
1553 printf " /* basic architecture information. */\n"
1554 function_list | while do_read
1555 do
1556 if class_is_info_p
1557 then
1558 printf " ${staticdefault}, /* ${function} */\n"
1559 fi
1560 done
1561 cat <<EOF
1562 /* target specific vector and its dump routine. */
1563 NULL, NULL,
1564 /*per-architecture data-pointers. */
1565 0, NULL,
1566 /* Multi-arch values */
1567 EOF
1568 function_list | while do_read
1569 do
1570 if class_is_function_p || class_is_variable_p
1571 then
1572 printf " ${staticdefault}, /* ${function} */\n"
1573 fi
1574 done
1575 cat <<EOF
1576 /* startup_gdbarch() */
1577 };
1578
1579 EOF
1580
1581 # Create a new gdbarch struct
1582 cat <<EOF
1583
1584 /* Create a new \`\`struct gdbarch'' based on information provided by
1585 \`\`struct gdbarch_info''. */
1586 EOF
1587 printf "\n"
1588 cat <<EOF
1589 struct gdbarch *
1590 gdbarch_alloc (const struct gdbarch_info *info,
1591 struct gdbarch_tdep *tdep)
1592 {
1593 struct gdbarch *gdbarch;
1594
1595 /* Create an obstack for allocating all the per-architecture memory,
1596 then use that to allocate the architecture vector. */
1597 struct obstack *obstack = XMALLOC (struct obstack);
1598 obstack_init (obstack);
1599 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1600 memset (gdbarch, 0, sizeof (*gdbarch));
1601 gdbarch->obstack = obstack;
1602
1603 alloc_gdbarch_data (gdbarch);
1604
1605 gdbarch->tdep = tdep;
1606 EOF
1607 printf "\n"
1608 function_list | while do_read
1609 do
1610 if class_is_info_p
1611 then
1612 printf " gdbarch->${function} = info->${function};\n"
1613 fi
1614 done
1615 printf "\n"
1616 printf " /* Force the explicit initialization of these. */\n"
1617 function_list | while do_read
1618 do
1619 if class_is_function_p || class_is_variable_p
1620 then
1621 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1622 then
1623 printf " gdbarch->${function} = ${predefault};\n"
1624 fi
1625 fi
1626 done
1627 cat <<EOF
1628 /* gdbarch_alloc() */
1629
1630 return gdbarch;
1631 }
1632 EOF
1633
1634 # Free a gdbarch struct.
1635 printf "\n"
1636 printf "\n"
1637 cat <<EOF
1638 /* Allocate extra space using the per-architecture obstack. */
1639
1640 void *
1641 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1642 {
1643 void *data = obstack_alloc (arch->obstack, size);
1644
1645 memset (data, 0, size);
1646 return data;
1647 }
1648
1649
1650 /* Free a gdbarch struct. This should never happen in normal
1651 operation --- once you've created a gdbarch, you keep it around.
1652 However, if an architecture's init function encounters an error
1653 building the structure, it may need to clean up a partially
1654 constructed gdbarch. */
1655
1656 void
1657 gdbarch_free (struct gdbarch *arch)
1658 {
1659 struct obstack *obstack;
1660
1661 gdb_assert (arch != NULL);
1662 gdb_assert (!arch->initialized_p);
1663 obstack = arch->obstack;
1664 obstack_free (obstack, 0); /* Includes the ARCH. */
1665 xfree (obstack);
1666 }
1667 EOF
1668
1669 # verify a new architecture
1670 cat <<EOF
1671
1672
1673 /* Ensure that all values in a GDBARCH are reasonable. */
1674
1675 static void
1676 verify_gdbarch (struct gdbarch *gdbarch)
1677 {
1678 struct ui_file *log;
1679 struct cleanup *cleanups;
1680 long length;
1681 char *buf;
1682
1683 log = mem_fileopen ();
1684 cleanups = make_cleanup_ui_file_delete (log);
1685 /* fundamental */
1686 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1687 fprintf_unfiltered (log, "\n\tbyte-order");
1688 if (gdbarch->bfd_arch_info == NULL)
1689 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1690 /* Check those that need to be defined for the given multi-arch level. */
1691 EOF
1692 function_list | while do_read
1693 do
1694 if class_is_function_p || class_is_variable_p
1695 then
1696 if [ "x${invalid_p}" = "x0" ]
1697 then
1698 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1699 elif class_is_predicate_p
1700 then
1701 printf " /* Skip verify of ${function}, has predicate. */\n"
1702 # FIXME: See do_read for potential simplification
1703 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1704 then
1705 printf " if (${invalid_p})\n"
1706 printf " gdbarch->${function} = ${postdefault};\n"
1707 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1708 then
1709 printf " if (gdbarch->${function} == ${predefault})\n"
1710 printf " gdbarch->${function} = ${postdefault};\n"
1711 elif [ -n "${postdefault}" ]
1712 then
1713 printf " if (gdbarch->${function} == 0)\n"
1714 printf " gdbarch->${function} = ${postdefault};\n"
1715 elif [ -n "${invalid_p}" ]
1716 then
1717 printf " if (${invalid_p})\n"
1718 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1719 elif [ -n "${predefault}" ]
1720 then
1721 printf " if (gdbarch->${function} == ${predefault})\n"
1722 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1723 fi
1724 fi
1725 done
1726 cat <<EOF
1727 buf = ui_file_xstrdup (log, &length);
1728 make_cleanup (xfree, buf);
1729 if (length > 0)
1730 internal_error (__FILE__, __LINE__,
1731 _("verify_gdbarch: the following are invalid ...%s"),
1732 buf);
1733 do_cleanups (cleanups);
1734 }
1735 EOF
1736
1737 # dump the structure
1738 printf "\n"
1739 printf "\n"
1740 cat <<EOF
1741 /* Print out the details of the current architecture. */
1742
1743 void
1744 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1745 {
1746 const char *gdb_nm_file = "<not-defined>";
1747
1748 #if defined (GDB_NM_FILE)
1749 gdb_nm_file = GDB_NM_FILE;
1750 #endif
1751 fprintf_unfiltered (file,
1752 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1753 gdb_nm_file);
1754 EOF
1755 function_list | sort -t: -k 3 | while do_read
1756 do
1757 # First the predicate
1758 if class_is_predicate_p
1759 then
1760 printf " fprintf_unfiltered (file,\n"
1761 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1762 printf " gdbarch_${function}_p (gdbarch));\n"
1763 fi
1764 # Print the corresponding value.
1765 if class_is_function_p
1766 then
1767 printf " fprintf_unfiltered (file,\n"
1768 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1769 printf " host_address_to_string (gdbarch->${function}));\n"
1770 else
1771 # It is a variable
1772 case "${print}:${returntype}" in
1773 :CORE_ADDR )
1774 fmt="%s"
1775 print="core_addr_to_string_nz (gdbarch->${function})"
1776 ;;
1777 :* )
1778 fmt="%s"
1779 print="plongest (gdbarch->${function})"
1780 ;;
1781 * )
1782 fmt="%s"
1783 ;;
1784 esac
1785 printf " fprintf_unfiltered (file,\n"
1786 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1787 printf " ${print});\n"
1788 fi
1789 done
1790 cat <<EOF
1791 if (gdbarch->dump_tdep != NULL)
1792 gdbarch->dump_tdep (gdbarch, file);
1793 }
1794 EOF
1795
1796
1797 # GET/SET
1798 printf "\n"
1799 cat <<EOF
1800 struct gdbarch_tdep *
1801 gdbarch_tdep (struct gdbarch *gdbarch)
1802 {
1803 if (gdbarch_debug >= 2)
1804 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1805 return gdbarch->tdep;
1806 }
1807 EOF
1808 printf "\n"
1809 function_list | while do_read
1810 do
1811 if class_is_predicate_p
1812 then
1813 printf "\n"
1814 printf "int\n"
1815 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1816 printf "{\n"
1817 printf " gdb_assert (gdbarch != NULL);\n"
1818 printf " return ${predicate};\n"
1819 printf "}\n"
1820 fi
1821 if class_is_function_p
1822 then
1823 printf "\n"
1824 printf "${returntype}\n"
1825 if [ "x${formal}" = "xvoid" ]
1826 then
1827 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1828 else
1829 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1830 fi
1831 printf "{\n"
1832 printf " gdb_assert (gdbarch != NULL);\n"
1833 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1834 if class_is_predicate_p && test -n "${predefault}"
1835 then
1836 # Allow a call to a function with a predicate.
1837 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1838 fi
1839 printf " if (gdbarch_debug >= 2)\n"
1840 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1841 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1842 then
1843 if class_is_multiarch_p
1844 then
1845 params="gdbarch"
1846 else
1847 params=""
1848 fi
1849 else
1850 if class_is_multiarch_p
1851 then
1852 params="gdbarch, ${actual}"
1853 else
1854 params="${actual}"
1855 fi
1856 fi
1857 if [ "x${returntype}" = "xvoid" ]
1858 then
1859 printf " gdbarch->${function} (${params});\n"
1860 else
1861 printf " return gdbarch->${function} (${params});\n"
1862 fi
1863 printf "}\n"
1864 printf "\n"
1865 printf "void\n"
1866 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1867 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1868 printf "{\n"
1869 printf " gdbarch->${function} = ${function};\n"
1870 printf "}\n"
1871 elif class_is_variable_p
1872 then
1873 printf "\n"
1874 printf "${returntype}\n"
1875 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1876 printf "{\n"
1877 printf " gdb_assert (gdbarch != NULL);\n"
1878 if [ "x${invalid_p}" = "x0" ]
1879 then
1880 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1881 elif [ -n "${invalid_p}" ]
1882 then
1883 printf " /* Check variable is valid. */\n"
1884 printf " gdb_assert (!(${invalid_p}));\n"
1885 elif [ -n "${predefault}" ]
1886 then
1887 printf " /* Check variable changed from pre-default. */\n"
1888 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1889 fi
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 printf " return gdbarch->${function};\n"
1893 printf "}\n"
1894 printf "\n"
1895 printf "void\n"
1896 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1897 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1898 printf "{\n"
1899 printf " gdbarch->${function} = ${function};\n"
1900 printf "}\n"
1901 elif class_is_info_p
1902 then
1903 printf "\n"
1904 printf "${returntype}\n"
1905 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1906 printf "{\n"
1907 printf " gdb_assert (gdbarch != NULL);\n"
1908 printf " if (gdbarch_debug >= 2)\n"
1909 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1910 printf " return gdbarch->${function};\n"
1911 printf "}\n"
1912 fi
1913 done
1914
1915 # All the trailing guff
1916 cat <<EOF
1917
1918
1919 /* Keep a registry of per-architecture data-pointers required by GDB
1920 modules. */
1921
1922 struct gdbarch_data
1923 {
1924 unsigned index;
1925 int init_p;
1926 gdbarch_data_pre_init_ftype *pre_init;
1927 gdbarch_data_post_init_ftype *post_init;
1928 };
1929
1930 struct gdbarch_data_registration
1931 {
1932 struct gdbarch_data *data;
1933 struct gdbarch_data_registration *next;
1934 };
1935
1936 struct gdbarch_data_registry
1937 {
1938 unsigned nr;
1939 struct gdbarch_data_registration *registrations;
1940 };
1941
1942 struct gdbarch_data_registry gdbarch_data_registry =
1943 {
1944 0, NULL,
1945 };
1946
1947 static struct gdbarch_data *
1948 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1949 gdbarch_data_post_init_ftype *post_init)
1950 {
1951 struct gdbarch_data_registration **curr;
1952
1953 /* Append the new registration. */
1954 for (curr = &gdbarch_data_registry.registrations;
1955 (*curr) != NULL;
1956 curr = &(*curr)->next);
1957 (*curr) = XMALLOC (struct gdbarch_data_registration);
1958 (*curr)->next = NULL;
1959 (*curr)->data = XMALLOC (struct gdbarch_data);
1960 (*curr)->data->index = gdbarch_data_registry.nr++;
1961 (*curr)->data->pre_init = pre_init;
1962 (*curr)->data->post_init = post_init;
1963 (*curr)->data->init_p = 1;
1964 return (*curr)->data;
1965 }
1966
1967 struct gdbarch_data *
1968 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1969 {
1970 return gdbarch_data_register (pre_init, NULL);
1971 }
1972
1973 struct gdbarch_data *
1974 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1975 {
1976 return gdbarch_data_register (NULL, post_init);
1977 }
1978
1979 /* Create/delete the gdbarch data vector. */
1980
1981 static void
1982 alloc_gdbarch_data (struct gdbarch *gdbarch)
1983 {
1984 gdb_assert (gdbarch->data == NULL);
1985 gdbarch->nr_data = gdbarch_data_registry.nr;
1986 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1987 }
1988
1989 /* Initialize the current value of the specified per-architecture
1990 data-pointer. */
1991
1992 void
1993 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1994 struct gdbarch_data *data,
1995 void *pointer)
1996 {
1997 gdb_assert (data->index < gdbarch->nr_data);
1998 gdb_assert (gdbarch->data[data->index] == NULL);
1999 gdb_assert (data->pre_init == NULL);
2000 gdbarch->data[data->index] = pointer;
2001 }
2002
2003 /* Return the current value of the specified per-architecture
2004 data-pointer. */
2005
2006 void *
2007 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2008 {
2009 gdb_assert (data->index < gdbarch->nr_data);
2010 if (gdbarch->data[data->index] == NULL)
2011 {
2012 /* The data-pointer isn't initialized, call init() to get a
2013 value. */
2014 if (data->pre_init != NULL)
2015 /* Mid architecture creation: pass just the obstack, and not
2016 the entire architecture, as that way it isn't possible for
2017 pre-init code to refer to undefined architecture
2018 fields. */
2019 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2020 else if (gdbarch->initialized_p
2021 && data->post_init != NULL)
2022 /* Post architecture creation: pass the entire architecture
2023 (as all fields are valid), but be careful to also detect
2024 recursive references. */
2025 {
2026 gdb_assert (data->init_p);
2027 data->init_p = 0;
2028 gdbarch->data[data->index] = data->post_init (gdbarch);
2029 data->init_p = 1;
2030 }
2031 else
2032 /* The architecture initialization hasn't completed - punt -
2033 hope that the caller knows what they are doing. Once
2034 deprecated_set_gdbarch_data has been initialized, this can be
2035 changed to an internal error. */
2036 return NULL;
2037 gdb_assert (gdbarch->data[data->index] != NULL);
2038 }
2039 return gdbarch->data[data->index];
2040 }
2041
2042
2043 /* Keep a registry of the architectures known by GDB. */
2044
2045 struct gdbarch_registration
2046 {
2047 enum bfd_architecture bfd_architecture;
2048 gdbarch_init_ftype *init;
2049 gdbarch_dump_tdep_ftype *dump_tdep;
2050 struct gdbarch_list *arches;
2051 struct gdbarch_registration *next;
2052 };
2053
2054 static struct gdbarch_registration *gdbarch_registry = NULL;
2055
2056 static void
2057 append_name (const char ***buf, int *nr, const char *name)
2058 {
2059 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2060 (*buf)[*nr] = name;
2061 *nr += 1;
2062 }
2063
2064 const char **
2065 gdbarch_printable_names (void)
2066 {
2067 /* Accumulate a list of names based on the registed list of
2068 architectures. */
2069 int nr_arches = 0;
2070 const char **arches = NULL;
2071 struct gdbarch_registration *rego;
2072
2073 for (rego = gdbarch_registry;
2074 rego != NULL;
2075 rego = rego->next)
2076 {
2077 const struct bfd_arch_info *ap;
2078 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2079 if (ap == NULL)
2080 internal_error (__FILE__, __LINE__,
2081 _("gdbarch_architecture_names: multi-arch unknown"));
2082 do
2083 {
2084 append_name (&arches, &nr_arches, ap->printable_name);
2085 ap = ap->next;
2086 }
2087 while (ap != NULL);
2088 }
2089 append_name (&arches, &nr_arches, NULL);
2090 return arches;
2091 }
2092
2093
2094 void
2095 gdbarch_register (enum bfd_architecture bfd_architecture,
2096 gdbarch_init_ftype *init,
2097 gdbarch_dump_tdep_ftype *dump_tdep)
2098 {
2099 struct gdbarch_registration **curr;
2100 const struct bfd_arch_info *bfd_arch_info;
2101
2102 /* Check that BFD recognizes this architecture */
2103 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2104 if (bfd_arch_info == NULL)
2105 {
2106 internal_error (__FILE__, __LINE__,
2107 _("gdbarch: Attempt to register "
2108 "unknown architecture (%d)"),
2109 bfd_architecture);
2110 }
2111 /* Check that we haven't seen this architecture before. */
2112 for (curr = &gdbarch_registry;
2113 (*curr) != NULL;
2114 curr = &(*curr)->next)
2115 {
2116 if (bfd_architecture == (*curr)->bfd_architecture)
2117 internal_error (__FILE__, __LINE__,
2118 _("gdbarch: Duplicate registration "
2119 "of architecture (%s)"),
2120 bfd_arch_info->printable_name);
2121 }
2122 /* log it */
2123 if (gdbarch_debug)
2124 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2125 bfd_arch_info->printable_name,
2126 host_address_to_string (init));
2127 /* Append it */
2128 (*curr) = XMALLOC (struct gdbarch_registration);
2129 (*curr)->bfd_architecture = bfd_architecture;
2130 (*curr)->init = init;
2131 (*curr)->dump_tdep = dump_tdep;
2132 (*curr)->arches = NULL;
2133 (*curr)->next = NULL;
2134 }
2135
2136 void
2137 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2138 gdbarch_init_ftype *init)
2139 {
2140 gdbarch_register (bfd_architecture, init, NULL);
2141 }
2142
2143
2144 /* Look for an architecture using gdbarch_info. */
2145
2146 struct gdbarch_list *
2147 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2148 const struct gdbarch_info *info)
2149 {
2150 for (; arches != NULL; arches = arches->next)
2151 {
2152 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2153 continue;
2154 if (info->byte_order != arches->gdbarch->byte_order)
2155 continue;
2156 if (info->osabi != arches->gdbarch->osabi)
2157 continue;
2158 if (info->target_desc != arches->gdbarch->target_desc)
2159 continue;
2160 return arches;
2161 }
2162 return NULL;
2163 }
2164
2165
2166 /* Find an architecture that matches the specified INFO. Create a new
2167 architecture if needed. Return that new architecture. */
2168
2169 struct gdbarch *
2170 gdbarch_find_by_info (struct gdbarch_info info)
2171 {
2172 struct gdbarch *new_gdbarch;
2173 struct gdbarch_registration *rego;
2174
2175 /* Fill in missing parts of the INFO struct using a number of
2176 sources: "set ..."; INFOabfd supplied; and the global
2177 defaults. */
2178 gdbarch_info_fill (&info);
2179
2180 /* Must have found some sort of architecture. */
2181 gdb_assert (info.bfd_arch_info != NULL);
2182
2183 if (gdbarch_debug)
2184 {
2185 fprintf_unfiltered (gdb_stdlog,
2186 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2187 (info.bfd_arch_info != NULL
2188 ? info.bfd_arch_info->printable_name
2189 : "(null)"));
2190 fprintf_unfiltered (gdb_stdlog,
2191 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2192 info.byte_order,
2193 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2194 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2195 : "default"));
2196 fprintf_unfiltered (gdb_stdlog,
2197 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2198 info.osabi, gdbarch_osabi_name (info.osabi));
2199 fprintf_unfiltered (gdb_stdlog,
2200 "gdbarch_find_by_info: info.abfd %s\n",
2201 host_address_to_string (info.abfd));
2202 fprintf_unfiltered (gdb_stdlog,
2203 "gdbarch_find_by_info: info.tdep_info %s\n",
2204 host_address_to_string (info.tdep_info));
2205 }
2206
2207 /* Find the tdep code that knows about this architecture. */
2208 for (rego = gdbarch_registry;
2209 rego != NULL;
2210 rego = rego->next)
2211 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2212 break;
2213 if (rego == NULL)
2214 {
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2217 "No matching architecture\n");
2218 return 0;
2219 }
2220
2221 /* Ask the tdep code for an architecture that matches "info". */
2222 new_gdbarch = rego->init (info, rego->arches);
2223
2224 /* Did the tdep code like it? No. Reject the change and revert to
2225 the old architecture. */
2226 if (new_gdbarch == NULL)
2227 {
2228 if (gdbarch_debug)
2229 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2230 "Target rejected architecture\n");
2231 return NULL;
2232 }
2233
2234 /* Is this a pre-existing architecture (as determined by already
2235 being initialized)? Move it to the front of the architecture
2236 list (keeping the list sorted Most Recently Used). */
2237 if (new_gdbarch->initialized_p)
2238 {
2239 struct gdbarch_list **list;
2240 struct gdbarch_list *this;
2241 if (gdbarch_debug)
2242 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2243 "Previous architecture %s (%s) selected\n",
2244 host_address_to_string (new_gdbarch),
2245 new_gdbarch->bfd_arch_info->printable_name);
2246 /* Find the existing arch in the list. */
2247 for (list = &rego->arches;
2248 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2249 list = &(*list)->next);
2250 /* It had better be in the list of architectures. */
2251 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2252 /* Unlink THIS. */
2253 this = (*list);
2254 (*list) = this->next;
2255 /* Insert THIS at the front. */
2256 this->next = rego->arches;
2257 rego->arches = this;
2258 /* Return it. */
2259 return new_gdbarch;
2260 }
2261
2262 /* It's a new architecture. */
2263 if (gdbarch_debug)
2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2265 "New architecture %s (%s) selected\n",
2266 host_address_to_string (new_gdbarch),
2267 new_gdbarch->bfd_arch_info->printable_name);
2268
2269 /* Insert the new architecture into the front of the architecture
2270 list (keep the list sorted Most Recently Used). */
2271 {
2272 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2273 this->next = rego->arches;
2274 this->gdbarch = new_gdbarch;
2275 rego->arches = this;
2276 }
2277
2278 /* Check that the newly installed architecture is valid. Plug in
2279 any post init values. */
2280 new_gdbarch->dump_tdep = rego->dump_tdep;
2281 verify_gdbarch (new_gdbarch);
2282 new_gdbarch->initialized_p = 1;
2283
2284 if (gdbarch_debug)
2285 gdbarch_dump (new_gdbarch, gdb_stdlog);
2286
2287 return new_gdbarch;
2288 }
2289
2290 /* Make the specified architecture current. */
2291
2292 void
2293 set_target_gdbarch (struct gdbarch *new_gdbarch)
2294 {
2295 gdb_assert (new_gdbarch != NULL);
2296 gdb_assert (new_gdbarch->initialized_p);
2297 current_inferior ()->gdbarch = new_gdbarch;
2298 observer_notify_architecture_changed (new_gdbarch);
2299 registers_changed ();
2300 }
2301
2302 /* Return the current inferior's arch. */
2303
2304 struct gdbarch *
2305 target_gdbarch (void)
2306 {
2307 return current_inferior ()->gdbarch;
2308 }
2309
2310 extern void _initialize_gdbarch (void);
2311
2312 void
2313 _initialize_gdbarch (void)
2314 {
2315 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2316 Set architecture debugging."), _("\\
2317 Show architecture debugging."), _("\\
2318 When non-zero, architecture debugging is enabled."),
2319 NULL,
2320 show_gdbarch_debug,
2321 &setdebuglist, &showdebuglist);
2322 }
2323 EOF
2324
2325 # close things off
2326 exec 1>&2
2327 #../move-if-change new-gdbarch.c gdbarch.c
2328 compare_new gdbarch.c
This page took 0.081612 seconds and 4 git commands to generate.