* gdbarch.sh (static_transform_name): New gdbarch callback.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
94 if test "x${macro}" = "x="
95 then
96 # Provide a UCASE version of function (for when there isn't MACRO)
97 macro="${FUNCTION}"
98 elif test "${macro}" = "${FUNCTION}"
99 then
100 echo "${function}: Specify = for macro field" 1>&2
101 kill $$
102 exit 1
103 fi
104
105 # Check that macro definition wasn't supplied for multi-arch
106 case "${class}" in
107 [mM] )
108 if test "${macro}" != ""
109 then
110 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
111 kill $$
112 exit 1
113 fi
114 esac
115
116 case "${class}" in
117 m ) staticdefault="${predefault}" ;;
118 M ) staticdefault="0" ;;
119 * ) test "${staticdefault}" || staticdefault=0 ;;
120 esac
121
122 case "${class}" in
123 F | V | M )
124 case "${invalid_p}" in
125 "" )
126 if test -n "${predefault}"
127 then
128 #invalid_p="gdbarch->${function} == ${predefault}"
129 predicate="gdbarch->${function} != ${predefault}"
130 elif class_is_variable_p
131 then
132 predicate="gdbarch->${function} != 0"
133 elif class_is_function_p
134 then
135 predicate="gdbarch->${function} != NULL"
136 fi
137 ;;
138 * )
139 echo "Predicate function ${function} with invalid_p." 1>&2
140 kill $$
141 exit 1
142 ;;
143 esac
144 esac
145
146 # PREDEFAULT is a valid fallback definition of MEMBER when
147 # multi-arch is not enabled. This ensures that the
148 # default value, when multi-arch is the same as the
149 # default value when not multi-arch. POSTDEFAULT is
150 # always a valid definition of MEMBER as this again
151 # ensures consistency.
152
153 if [ -n "${postdefault}" ]
154 then
155 fallbackdefault="${postdefault}"
156 elif [ -n "${predefault}" ]
157 then
158 fallbackdefault="${predefault}"
159 else
160 fallbackdefault="0"
161 fi
162
163 #NOT YET: See gdbarch.log for basic verification of
164 # database
165
166 break
167 fi
168 done
169 if [ -n "${class}" ]
170 then
171 true
172 else
173 false
174 fi
175 }
176
177
178 fallback_default_p ()
179 {
180 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
181 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
182 }
183
184 class_is_variable_p ()
185 {
186 case "${class}" in
187 *v* | *V* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_function_p ()
193 {
194 case "${class}" in
195 *f* | *F* | *m* | *M* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200 class_is_multiarch_p ()
201 {
202 case "${class}" in
203 *m* | *M* ) true ;;
204 * ) false ;;
205 esac
206 }
207
208 class_is_predicate_p ()
209 {
210 case "${class}" in
211 *F* | *V* | *M* ) true ;;
212 * ) false ;;
213 esac
214 }
215
216 class_is_info_p ()
217 {
218 case "${class}" in
219 *i* ) true ;;
220 * ) false ;;
221 esac
222 }
223
224
225 # dump out/verify the doco
226 for field in ${read}
227 do
228 case ${field} in
229
230 class ) : ;;
231
232 # # -> line disable
233 # f -> function
234 # hiding a function
235 # F -> function + predicate
236 # hiding a function + predicate to test function validity
237 # v -> variable
238 # hiding a variable
239 # V -> variable + predicate
240 # hiding a variable + predicate to test variables validity
241 # i -> set from info
242 # hiding something from the ``struct info'' object
243 # m -> multi-arch function
244 # hiding a multi-arch function (parameterised with the architecture)
245 # M -> multi-arch function + predicate
246 # hiding a multi-arch function + predicate to test function validity
247
248 macro ) : ;;
249
250 # The name of the legacy C macro by which this method can be
251 # accessed. If empty, no macro is defined. If "=", a macro
252 # formed from the upper-case function name is used.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 staticdefault ) : ;;
278
279 # To help with the GDB startup a static gdbarch object is
280 # created. STATICDEFAULT is the value to insert into that
281 # static gdbarch object. Since this a static object only
282 # simple expressions can be used.
283
284 # If STATICDEFAULT is empty, zero is used.
285
286 predefault ) : ;;
287
288 # An initial value to assign to MEMBER of the freshly
289 # malloc()ed gdbarch object. After initialization, the
290 # freshly malloc()ed object is passed to the target
291 # architecture code for further updates.
292
293 # If PREDEFAULT is empty, zero is used.
294
295 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
296 # INVALID_P are specified, PREDEFAULT will be used as the
297 # default for the non- multi-arch target.
298
299 # A zero PREDEFAULT function will force the fallback to call
300 # internal_error().
301
302 # Variable declarations can refer to ``gdbarch'' which will
303 # contain the current architecture. Care should be taken.
304
305 postdefault ) : ;;
306
307 # A value to assign to MEMBER of the new gdbarch object should
308 # the target architecture code fail to change the PREDEFAULT
309 # value.
310
311 # If POSTDEFAULT is empty, no post update is performed.
312
313 # If both INVALID_P and POSTDEFAULT are non-empty then
314 # INVALID_P will be used to determine if MEMBER should be
315 # changed to POSTDEFAULT.
316
317 # If a non-empty POSTDEFAULT and a zero INVALID_P are
318 # specified, POSTDEFAULT will be used as the default for the
319 # non- multi-arch target (regardless of the value of
320 # PREDEFAULT).
321
322 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
323
324 # Variable declarations can refer to ``current_gdbarch'' which
325 # will contain the current architecture. Care should be
326 # taken.
327
328 invalid_p ) : ;;
329
330 # A predicate equation that validates MEMBER. Non-zero is
331 # returned if the code creating the new architecture failed to
332 # initialize MEMBER or the initialized the member is invalid.
333 # If POSTDEFAULT is non-empty then MEMBER will be updated to
334 # that value. If POSTDEFAULT is empty then internal_error()
335 # is called.
336
337 # If INVALID_P is empty, a check that MEMBER is no longer
338 # equal to PREDEFAULT is used.
339
340 # The expression ``0'' disables the INVALID_P check making
341 # PREDEFAULT a legitimate value.
342
343 # See also PREDEFAULT and POSTDEFAULT.
344
345 print ) : ;;
346
347 # An optional expression that convers MEMBER to a value
348 # suitable for formatting using %s.
349
350 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
351 # (anything else) is used.
352
353 garbage_at_eol ) : ;;
354
355 # Catches stray fields.
356
357 *)
358 echo "Bad field ${field}"
359 exit 1;;
360 esac
361 done
362
363
364 function_list ()
365 {
366 # See below (DOCO) for description of each field
367 cat <<EOF
368 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
369 #
370 i::int:byte_order:::BFD_ENDIAN_BIG
371 #
372 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
373 #
374 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392 # Each format describes both the big and little endian layouts (if
393 # useful).
394
395 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
397 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
399 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
405 # / addr_bit will be set from it.
406 #
407 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
408 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
409 # as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
415 #
416 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
417 v::int:char_signed:::1:-1:1
418 #
419 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
420 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428 #
429 v::int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v::int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
440 v::int:sp_regnum:::-1:-1::0
441 v::int:pc_regnum:::-1:-1::0
442 v::int:ps_regnum:::-1:-1::0
443 v::int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f::const char *:register_name:int regnr:regnr
454
455 # Return the type of a register specified by the architecture. Only
456 # the register cache should call this function directly; others should
457 # use "register_type".
458 M::struct type *:register_type:int reg_nr:reg_nr
459
460 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
461 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
462 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
463 # deprecated_fp_regnum.
464 v::int:deprecated_fp_regnum:::-1:-1::0
465
466 # See gdbint.texinfo. See infcall.c.
467 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
468 v::int:call_dummy_location::::AT_ENTRY_POINT::0
469 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
470
471 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
472 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 # MAP a GDB RAW register number onto a simulator register number. See
475 # also include/...-sim.h.
476 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
477 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
478 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
479 # setjmp/longjmp support.
480 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
481 #
482 v::int:believe_pcc_promotion:::::::
483 #
484 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
485 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
486 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
492 #
493 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
494 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
495 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
496
497 # It has been suggested that this, well actually its predecessor,
498 # should take the type/value of the function to be called and not the
499 # return type. This is left as an exercise for the reader.
500
501 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
502
503 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
504 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
505 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
506 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
507 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
508 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
509 v::CORE_ADDR:decr_pc_after_break:::0:::0
510
511 # A function can be addressed by either it's "pointer" (possibly a
512 # descriptor address) or "entry point" (first executable instruction).
513 # The method "convert_from_func_ptr_addr" converting the former to the
514 # latter. gdbarch_deprecated_function_start_offset is being used to implement
515 # a simplified subset of that functionality - the function's address
516 # corresponds to the "function pointer" and the function's start
517 # corresponds to the "function entry point" - and hence is redundant.
518
519 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
520
521 # Return the remote protocol register number associated with this
522 # register. Normally the identity mapping.
523 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
524
525 # Fetch the target specific address used to represent a load module.
526 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
527 #
528 v::CORE_ADDR:frame_args_skip:::0:::0
529 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
530 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
531 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
532 # frame-base. Enable frame-base before frame-unwind.
533 F::int:frame_num_args:struct frame_info *frame:frame
534 #
535 M::CORE_ADDR:frame_align:CORE_ADDR address:address
536 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
537 v::int:frame_red_zone_size
538 #
539 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
540 # On some machines there are bits in addresses which are not really
541 # part of the address, but are used by the kernel, the hardware, etc.
542 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
543 # we get a "real" address such as one would find in a symbol table.
544 # This is used only for addresses of instructions, and even then I'm
545 # not sure it's used in all contexts. It exists to deal with there
546 # being a few stray bits in the PC which would mislead us, not as some
547 # sort of generic thing to handle alignment or segmentation (it's
548 # possible it should be in TARGET_READ_PC instead).
549 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
550 # It is not at all clear why gdbarch_smash_text_address is not folded into
551 # gdbarch_addr_bits_remove.
552 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
553
554 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
555 # indicates if the target needs software single step. An ISA method to
556 # implement it.
557 #
558 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
559 # breakpoints using the breakpoint system instead of blatting memory directly
560 # (as with rs6000).
561 #
562 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
563 # target can single step. If not, then implement single step using breakpoints.
564 #
565 # A return value of 1 means that the software_single_step breakpoints
566 # were inserted; 0 means they were not.
567 F::int:software_single_step:struct frame_info *frame:frame
568
569 # Return non-zero if the processor is executing a delay slot and a
570 # further single-step is needed before the instruction finishes.
571 M::int:single_step_through_delay:struct frame_info *frame:frame
572 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
573 # disassembler. Perhaps objdump can handle it?
574 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
575 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
576
577
578 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
579 # evaluates non-zero, this is the address where the debugger will place
580 # a step-resume breakpoint to get us past the dynamic linker.
581 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
582 # Some systems also have trampoline code for returning from shared libs.
583 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
584
585 # A target might have problems with watchpoints as soon as the stack
586 # frame of the current function has been destroyed. This mostly happens
587 # as the first action in a funtion's epilogue. in_function_epilogue_p()
588 # is defined to return a non-zero value if either the given addr is one
589 # instruction after the stack destroying instruction up to the trailing
590 # return instruction or if we can figure out that the stack frame has
591 # already been invalidated regardless of the value of addr. Targets
592 # which don't suffer from that problem could just let this functionality
593 # untouched.
594 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
595 # Given a vector of command-line arguments, return a newly allocated
596 # string which, when passed to the create_inferior function, will be
597 # parsed (on Unix systems, by the shell) to yield the same vector.
598 # This function should call error() if the argument vector is not
599 # representable for this target or if this target does not support
600 # command-line arguments.
601 # ARGC is the number of elements in the vector.
602 # ARGV is an array of strings, one per argument.
603 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
604 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
605 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
606 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
607 v::int:cannot_step_breakpoint:::0:0::0
608 v::int:have_nonsteppable_watchpoint:::0:0::0
609 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
610 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
611 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
612 # Is a register in a group
613 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
614 # Fetch the pointer to the ith function argument.
615 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
616
617 # Return the appropriate register set for a core file section with
618 # name SECT_NAME and size SECT_SIZE.
619 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
620
621 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
622 # core file into buffer READBUF with length LEN.
623 M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
624
625 # If the elements of C++ vtables are in-place function descriptors rather
626 # than normal function pointers (which may point to code or a descriptor),
627 # set this to one.
628 v::int:vtable_function_descriptors:::0:0::0
629
630 # Set if the least significant bit of the delta is used instead of the least
631 # significant bit of the pfn for pointers to virtual member functions.
632 v::int:vbit_in_delta:::0:0::0
633
634 # Advance PC to next instruction in order to skip a permanent breakpoint.
635 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
636
637 # Refresh overlay mapped state for section OSECT.
638 F::void:overlay_update:struct obj_section *osect:osect
639
640 M::const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
641
642 # Handle special encoding of static variables in stabs debug info.
643 F::char *:static_transform_name:char *name:name
644 EOF
645 }
646
647 #
648 # The .log file
649 #
650 exec > new-gdbarch.log
651 function_list | while do_read
652 do
653 cat <<EOF
654 ${class} ${returntype} ${function} ($formal)
655 EOF
656 for r in ${read}
657 do
658 eval echo \"\ \ \ \ ${r}=\${${r}}\"
659 done
660 if class_is_predicate_p && fallback_default_p
661 then
662 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
663 kill $$
664 exit 1
665 fi
666 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
667 then
668 echo "Error: postdefault is useless when invalid_p=0" 1>&2
669 kill $$
670 exit 1
671 fi
672 if class_is_multiarch_p
673 then
674 if class_is_predicate_p ; then :
675 elif test "x${predefault}" = "x"
676 then
677 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
678 kill $$
679 exit 1
680 fi
681 fi
682 echo ""
683 done
684
685 exec 1>&2
686 compare_new gdbarch.log
687
688
689 copyright ()
690 {
691 cat <<EOF
692 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
693
694 /* Dynamic architecture support for GDB, the GNU debugger.
695
696 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
697 Free Software Foundation, Inc.
698
699 This file is part of GDB.
700
701 This program is free software; you can redistribute it and/or modify
702 it under the terms of the GNU General Public License as published by
703 the Free Software Foundation; either version 3 of the License, or
704 (at your option) any later version.
705
706 This program is distributed in the hope that it will be useful,
707 but WITHOUT ANY WARRANTY; without even the implied warranty of
708 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
709 GNU General Public License for more details.
710
711 You should have received a copy of the GNU General Public License
712 along with this program. If not, see <http://www.gnu.org/licenses/>. */
713
714 /* This file was created with the aid of \`\`gdbarch.sh''.
715
716 The Bourne shell script \`\`gdbarch.sh'' creates the files
717 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
718 against the existing \`\`gdbarch.[hc]''. Any differences found
719 being reported.
720
721 If editing this file, please also run gdbarch.sh and merge any
722 changes into that script. Conversely, when making sweeping changes
723 to this file, modifying gdbarch.sh and using its output may prove
724 easier. */
725
726 EOF
727 }
728
729 #
730 # The .h file
731 #
732
733 exec > new-gdbarch.h
734 copyright
735 cat <<EOF
736 #ifndef GDBARCH_H
737 #define GDBARCH_H
738
739 struct floatformat;
740 struct ui_file;
741 struct frame_info;
742 struct value;
743 struct objfile;
744 struct obj_section;
745 struct minimal_symbol;
746 struct regcache;
747 struct reggroup;
748 struct regset;
749 struct disassemble_info;
750 struct target_ops;
751 struct obstack;
752 struct bp_target_info;
753 struct target_desc;
754
755 extern struct gdbarch *current_gdbarch;
756 EOF
757
758 # function typedef's
759 printf "\n"
760 printf "\n"
761 printf "/* The following are pre-initialized by GDBARCH. */\n"
762 function_list | while do_read
763 do
764 if class_is_info_p
765 then
766 printf "\n"
767 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
768 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
769 if test -n "${macro}"
770 then
771 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
772 printf "#error \"Non multi-arch definition of ${macro}\"\n"
773 printf "#endif\n"
774 printf "#if !defined (${macro})\n"
775 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
776 printf "#endif\n"
777 fi
778 fi
779 done
780
781 # function typedef's
782 printf "\n"
783 printf "\n"
784 printf "/* The following are initialized by the target dependent code. */\n"
785 function_list | while do_read
786 do
787 if [ -n "${comment}" ]
788 then
789 echo "${comment}" | sed \
790 -e '2 s,#,/*,' \
791 -e '3,$ s,#, ,' \
792 -e '$ s,$, */,'
793 fi
794
795 if class_is_predicate_p
796 then
797 if test -n "${macro}"
798 then
799 printf "\n"
800 printf "#if defined (${macro})\n"
801 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
802 printf "#if !defined (${macro}_P)\n"
803 printf "#define ${macro}_P() (1)\n"
804 printf "#endif\n"
805 printf "#endif\n"
806 fi
807 printf "\n"
808 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
809 if test -n "${macro}"
810 then
811 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
812 printf "#error \"Non multi-arch definition of ${macro}\"\n"
813 printf "#endif\n"
814 printf "#if !defined (${macro}_P)\n"
815 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
816 printf "#endif\n"
817 fi
818 fi
819 if class_is_variable_p
820 then
821 printf "\n"
822 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
823 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
824 if test -n "${macro}"
825 then
826 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
827 printf "#error \"Non multi-arch definition of ${macro}\"\n"
828 printf "#endif\n"
829 printf "#if !defined (${macro})\n"
830 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
831 printf "#endif\n"
832 fi
833 fi
834 if class_is_function_p
835 then
836 printf "\n"
837 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
838 then
839 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
840 elif class_is_multiarch_p
841 then
842 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
843 else
844 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
845 fi
846 if [ "x${formal}" = "xvoid" ]
847 then
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 else
850 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
851 fi
852 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
853 if test -n "${macro}"
854 then
855 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#endif\n"
858 if [ "x${actual}" = "x" ]
859 then
860 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
861 elif [ "x${actual}" = "x-" ]
862 then
863 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
864 else
865 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
866 fi
867 printf "#if !defined (${macro})\n"
868 if [ "x${actual}" = "x" ]
869 then
870 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
871 elif [ "x${actual}" = "x-" ]
872 then
873 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
874 else
875 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
876 fi
877 printf "#endif\n"
878 fi
879 fi
880 done
881
882 # close it off
883 cat <<EOF
884
885 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
886
887
888 /* Mechanism for co-ordinating the selection of a specific
889 architecture.
890
891 GDB targets (*-tdep.c) can register an interest in a specific
892 architecture. Other GDB components can register a need to maintain
893 per-architecture data.
894
895 The mechanisms below ensures that there is only a loose connection
896 between the set-architecture command and the various GDB
897 components. Each component can independently register their need
898 to maintain architecture specific data with gdbarch.
899
900 Pragmatics:
901
902 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
903 didn't scale.
904
905 The more traditional mega-struct containing architecture specific
906 data for all the various GDB components was also considered. Since
907 GDB is built from a variable number of (fairly independent)
908 components it was determined that the global aproach was not
909 applicable. */
910
911
912 /* Register a new architectural family with GDB.
913
914 Register support for the specified ARCHITECTURE with GDB. When
915 gdbarch determines that the specified architecture has been
916 selected, the corresponding INIT function is called.
917
918 --
919
920 The INIT function takes two parameters: INFO which contains the
921 information available to gdbarch about the (possibly new)
922 architecture; ARCHES which is a list of the previously created
923 \`\`struct gdbarch'' for this architecture.
924
925 The INFO parameter is, as far as possible, be pre-initialized with
926 information obtained from INFO.ABFD or the global defaults.
927
928 The ARCHES parameter is a linked list (sorted most recently used)
929 of all the previously created architures for this architecture
930 family. The (possibly NULL) ARCHES->gdbarch can used to access
931 values from the previously selected architecture for this
932 architecture family. The global \`\`current_gdbarch'' shall not be
933 used.
934
935 The INIT function shall return any of: NULL - indicating that it
936 doesn't recognize the selected architecture; an existing \`\`struct
937 gdbarch'' from the ARCHES list - indicating that the new
938 architecture is just a synonym for an earlier architecture (see
939 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
940 - that describes the selected architecture (see gdbarch_alloc()).
941
942 The DUMP_TDEP function shall print out all target specific values.
943 Care should be taken to ensure that the function works in both the
944 multi-arch and non- multi-arch cases. */
945
946 struct gdbarch_list
947 {
948 struct gdbarch *gdbarch;
949 struct gdbarch_list *next;
950 };
951
952 struct gdbarch_info
953 {
954 /* Use default: NULL (ZERO). */
955 const struct bfd_arch_info *bfd_arch_info;
956
957 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
958 int byte_order;
959
960 /* Use default: NULL (ZERO). */
961 bfd *abfd;
962
963 /* Use default: NULL (ZERO). */
964 struct gdbarch_tdep_info *tdep_info;
965
966 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
967 enum gdb_osabi osabi;
968
969 /* Use default: NULL (ZERO). */
970 const struct target_desc *target_desc;
971 };
972
973 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
974 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
975
976 /* DEPRECATED - use gdbarch_register() */
977 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
978
979 extern void gdbarch_register (enum bfd_architecture architecture,
980 gdbarch_init_ftype *,
981 gdbarch_dump_tdep_ftype *);
982
983
984 /* Return a freshly allocated, NULL terminated, array of the valid
985 architecture names. Since architectures are registered during the
986 _initialize phase this function only returns useful information
987 once initialization has been completed. */
988
989 extern const char **gdbarch_printable_names (void);
990
991
992 /* Helper function. Search the list of ARCHES for a GDBARCH that
993 matches the information provided by INFO. */
994
995 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
996
997
998 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
999 basic initialization using values obtained from the INFO and TDEP
1000 parameters. set_gdbarch_*() functions are called to complete the
1001 initialization of the object. */
1002
1003 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1004
1005
1006 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1007 It is assumed that the caller freeds the \`\`struct
1008 gdbarch_tdep''. */
1009
1010 extern void gdbarch_free (struct gdbarch *);
1011
1012
1013 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1014 obstack. The memory is freed when the corresponding architecture
1015 is also freed. */
1016
1017 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1018 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1019 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1020
1021
1022 /* Helper function. Force an update of the current architecture.
1023
1024 The actual architecture selected is determined by INFO, \`\`(gdb) set
1025 architecture'' et.al., the existing architecture and BFD's default
1026 architecture. INFO should be initialized to zero and then selected
1027 fields should be updated.
1028
1029 Returns non-zero if the update succeeds */
1030
1031 extern int gdbarch_update_p (struct gdbarch_info info);
1032
1033
1034 /* Helper function. Find an architecture matching info.
1035
1036 INFO should be initialized using gdbarch_info_init, relevant fields
1037 set, and then finished using gdbarch_info_fill.
1038
1039 Returns the corresponding architecture, or NULL if no matching
1040 architecture was found. "current_gdbarch" is not updated. */
1041
1042 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1043
1044
1045 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1046
1047 FIXME: kettenis/20031124: Of the functions that follow, only
1048 gdbarch_from_bfd is supposed to survive. The others will
1049 dissappear since in the future GDB will (hopefully) be truly
1050 multi-arch. However, for now we're still stuck with the concept of
1051 a single active architecture. */
1052
1053 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1054
1055
1056 /* Register per-architecture data-pointer.
1057
1058 Reserve space for a per-architecture data-pointer. An identifier
1059 for the reserved data-pointer is returned. That identifer should
1060 be saved in a local static variable.
1061
1062 Memory for the per-architecture data shall be allocated using
1063 gdbarch_obstack_zalloc. That memory will be deleted when the
1064 corresponding architecture object is deleted.
1065
1066 When a previously created architecture is re-selected, the
1067 per-architecture data-pointer for that previous architecture is
1068 restored. INIT() is not re-called.
1069
1070 Multiple registrarants for any architecture are allowed (and
1071 strongly encouraged). */
1072
1073 struct gdbarch_data;
1074
1075 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1076 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1077 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1078 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1079 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1080 struct gdbarch_data *data,
1081 void *pointer);
1082
1083 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1084
1085
1086 /* Set the dynamic target-system-dependent parameters (architecture,
1087 byte-order, ...) using information found in the BFD */
1088
1089 extern void set_gdbarch_from_file (bfd *);
1090
1091
1092 /* Initialize the current architecture to the "first" one we find on
1093 our list. */
1094
1095 extern void initialize_current_architecture (void);
1096
1097 /* gdbarch trace variable */
1098 extern int gdbarch_debug;
1099
1100 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1101
1102 #endif
1103 EOF
1104 exec 1>&2
1105 #../move-if-change new-gdbarch.h gdbarch.h
1106 compare_new gdbarch.h
1107
1108
1109 #
1110 # C file
1111 #
1112
1113 exec > new-gdbarch.c
1114 copyright
1115 cat <<EOF
1116
1117 #include "defs.h"
1118 #include "arch-utils.h"
1119
1120 #include "gdbcmd.h"
1121 #include "inferior.h"
1122 #include "symcat.h"
1123
1124 #include "floatformat.h"
1125
1126 #include "gdb_assert.h"
1127 #include "gdb_string.h"
1128 #include "gdb-events.h"
1129 #include "reggroups.h"
1130 #include "osabi.h"
1131 #include "gdb_obstack.h"
1132
1133 /* Static function declarations */
1134
1135 static void alloc_gdbarch_data (struct gdbarch *);
1136
1137 /* Non-zero if we want to trace architecture code. */
1138
1139 #ifndef GDBARCH_DEBUG
1140 #define GDBARCH_DEBUG 0
1141 #endif
1142 int gdbarch_debug = GDBARCH_DEBUG;
1143 static void
1144 show_gdbarch_debug (struct ui_file *file, int from_tty,
1145 struct cmd_list_element *c, const char *value)
1146 {
1147 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1148 }
1149
1150 static const char *
1151 pformat (const struct floatformat **format)
1152 {
1153 if (format == NULL)
1154 return "(null)";
1155 else
1156 /* Just print out one of them - this is only for diagnostics. */
1157 return format[0]->name;
1158 }
1159
1160 EOF
1161
1162 # gdbarch open the gdbarch object
1163 printf "\n"
1164 printf "/* Maintain the struct gdbarch object */\n"
1165 printf "\n"
1166 printf "struct gdbarch\n"
1167 printf "{\n"
1168 printf " /* Has this architecture been fully initialized? */\n"
1169 printf " int initialized_p;\n"
1170 printf "\n"
1171 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1172 printf " struct obstack *obstack;\n"
1173 printf "\n"
1174 printf " /* basic architectural information */\n"
1175 function_list | while do_read
1176 do
1177 if class_is_info_p
1178 then
1179 printf " ${returntype} ${function};\n"
1180 fi
1181 done
1182 printf "\n"
1183 printf " /* target specific vector. */\n"
1184 printf " struct gdbarch_tdep *tdep;\n"
1185 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1186 printf "\n"
1187 printf " /* per-architecture data-pointers */\n"
1188 printf " unsigned nr_data;\n"
1189 printf " void **data;\n"
1190 printf "\n"
1191 printf " /* per-architecture swap-regions */\n"
1192 printf " struct gdbarch_swap *swap;\n"
1193 printf "\n"
1194 cat <<EOF
1195 /* Multi-arch values.
1196
1197 When extending this structure you must:
1198
1199 Add the field below.
1200
1201 Declare set/get functions and define the corresponding
1202 macro in gdbarch.h.
1203
1204 gdbarch_alloc(): If zero/NULL is not a suitable default,
1205 initialize the new field.
1206
1207 verify_gdbarch(): Confirm that the target updated the field
1208 correctly.
1209
1210 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1211 field is dumped out
1212
1213 \`\`startup_gdbarch()'': Append an initial value to the static
1214 variable (base values on the host's c-type system).
1215
1216 get_gdbarch(): Implement the set/get functions (probably using
1217 the macro's as shortcuts).
1218
1219 */
1220
1221 EOF
1222 function_list | while do_read
1223 do
1224 if class_is_variable_p
1225 then
1226 printf " ${returntype} ${function};\n"
1227 elif class_is_function_p
1228 then
1229 printf " gdbarch_${function}_ftype *${function};\n"
1230 fi
1231 done
1232 printf "};\n"
1233
1234 # A pre-initialized vector
1235 printf "\n"
1236 printf "\n"
1237 cat <<EOF
1238 /* The default architecture uses host values (for want of a better
1239 choice). */
1240 EOF
1241 printf "\n"
1242 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1243 printf "\n"
1244 printf "struct gdbarch startup_gdbarch =\n"
1245 printf "{\n"
1246 printf " 1, /* Always initialized. */\n"
1247 printf " NULL, /* The obstack. */\n"
1248 printf " /* basic architecture information */\n"
1249 function_list | while do_read
1250 do
1251 if class_is_info_p
1252 then
1253 printf " ${staticdefault}, /* ${function} */\n"
1254 fi
1255 done
1256 cat <<EOF
1257 /* target specific vector and its dump routine */
1258 NULL, NULL,
1259 /*per-architecture data-pointers and swap regions */
1260 0, NULL, NULL,
1261 /* Multi-arch values */
1262 EOF
1263 function_list | while do_read
1264 do
1265 if class_is_function_p || class_is_variable_p
1266 then
1267 printf " ${staticdefault}, /* ${function} */\n"
1268 fi
1269 done
1270 cat <<EOF
1271 /* startup_gdbarch() */
1272 };
1273
1274 struct gdbarch *current_gdbarch = &startup_gdbarch;
1275 EOF
1276
1277 # Create a new gdbarch struct
1278 cat <<EOF
1279
1280 /* Create a new \`\`struct gdbarch'' based on information provided by
1281 \`\`struct gdbarch_info''. */
1282 EOF
1283 printf "\n"
1284 cat <<EOF
1285 struct gdbarch *
1286 gdbarch_alloc (const struct gdbarch_info *info,
1287 struct gdbarch_tdep *tdep)
1288 {
1289 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1290 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1291 the current local architecture and not the previous global
1292 architecture. This ensures that the new architectures initial
1293 values are not influenced by the previous architecture. Once
1294 everything is parameterised with gdbarch, this will go away. */
1295 struct gdbarch *current_gdbarch;
1296
1297 /* Create an obstack for allocating all the per-architecture memory,
1298 then use that to allocate the architecture vector. */
1299 struct obstack *obstack = XMALLOC (struct obstack);
1300 obstack_init (obstack);
1301 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1302 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1303 current_gdbarch->obstack = obstack;
1304
1305 alloc_gdbarch_data (current_gdbarch);
1306
1307 current_gdbarch->tdep = tdep;
1308 EOF
1309 printf "\n"
1310 function_list | while do_read
1311 do
1312 if class_is_info_p
1313 then
1314 printf " current_gdbarch->${function} = info->${function};\n"
1315 fi
1316 done
1317 printf "\n"
1318 printf " /* Force the explicit initialization of these. */\n"
1319 function_list | while do_read
1320 do
1321 if class_is_function_p || class_is_variable_p
1322 then
1323 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1324 then
1325 printf " current_gdbarch->${function} = ${predefault};\n"
1326 fi
1327 fi
1328 done
1329 cat <<EOF
1330 /* gdbarch_alloc() */
1331
1332 return current_gdbarch;
1333 }
1334 EOF
1335
1336 # Free a gdbarch struct.
1337 printf "\n"
1338 printf "\n"
1339 cat <<EOF
1340 /* Allocate extra space using the per-architecture obstack. */
1341
1342 void *
1343 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1344 {
1345 void *data = obstack_alloc (arch->obstack, size);
1346 memset (data, 0, size);
1347 return data;
1348 }
1349
1350
1351 /* Free a gdbarch struct. This should never happen in normal
1352 operation --- once you've created a gdbarch, you keep it around.
1353 However, if an architecture's init function encounters an error
1354 building the structure, it may need to clean up a partially
1355 constructed gdbarch. */
1356
1357 void
1358 gdbarch_free (struct gdbarch *arch)
1359 {
1360 struct obstack *obstack;
1361 gdb_assert (arch != NULL);
1362 gdb_assert (!arch->initialized_p);
1363 obstack = arch->obstack;
1364 obstack_free (obstack, 0); /* Includes the ARCH. */
1365 xfree (obstack);
1366 }
1367 EOF
1368
1369 # verify a new architecture
1370 cat <<EOF
1371
1372
1373 /* Ensure that all values in a GDBARCH are reasonable. */
1374
1375 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1376 just happens to match the global variable \`\`current_gdbarch''. That
1377 way macros refering to that variable get the local and not the global
1378 version - ulgh. Once everything is parameterised with gdbarch, this
1379 will go away. */
1380
1381 static void
1382 verify_gdbarch (struct gdbarch *current_gdbarch)
1383 {
1384 struct ui_file *log;
1385 struct cleanup *cleanups;
1386 long dummy;
1387 char *buf;
1388 log = mem_fileopen ();
1389 cleanups = make_cleanup_ui_file_delete (log);
1390 /* fundamental */
1391 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1392 fprintf_unfiltered (log, "\n\tbyte-order");
1393 if (current_gdbarch->bfd_arch_info == NULL)
1394 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1395 /* Check those that need to be defined for the given multi-arch level. */
1396 EOF
1397 function_list | while do_read
1398 do
1399 if class_is_function_p || class_is_variable_p
1400 then
1401 if [ "x${invalid_p}" = "x0" ]
1402 then
1403 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1404 elif class_is_predicate_p
1405 then
1406 printf " /* Skip verify of ${function}, has predicate */\n"
1407 # FIXME: See do_read for potential simplification
1408 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1409 then
1410 printf " if (${invalid_p})\n"
1411 printf " current_gdbarch->${function} = ${postdefault};\n"
1412 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1413 then
1414 printf " if (current_gdbarch->${function} == ${predefault})\n"
1415 printf " current_gdbarch->${function} = ${postdefault};\n"
1416 elif [ -n "${postdefault}" ]
1417 then
1418 printf " if (current_gdbarch->${function} == 0)\n"
1419 printf " current_gdbarch->${function} = ${postdefault};\n"
1420 elif [ -n "${invalid_p}" ]
1421 then
1422 printf " if (${invalid_p})\n"
1423 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1424 elif [ -n "${predefault}" ]
1425 then
1426 printf " if (current_gdbarch->${function} == ${predefault})\n"
1427 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1428 fi
1429 fi
1430 done
1431 cat <<EOF
1432 buf = ui_file_xstrdup (log, &dummy);
1433 make_cleanup (xfree, buf);
1434 if (strlen (buf) > 0)
1435 internal_error (__FILE__, __LINE__,
1436 _("verify_gdbarch: the following are invalid ...%s"),
1437 buf);
1438 do_cleanups (cleanups);
1439 }
1440 EOF
1441
1442 # dump the structure
1443 printf "\n"
1444 printf "\n"
1445 cat <<EOF
1446 /* Print out the details of the current architecture. */
1447
1448 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1449 just happens to match the global variable \`\`current_gdbarch''. That
1450 way macros refering to that variable get the local and not the global
1451 version - ulgh. Once everything is parameterised with gdbarch, this
1452 will go away. */
1453
1454 void
1455 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1456 {
1457 const char *gdb_xm_file = "<not-defined>";
1458 const char *gdb_nm_file = "<not-defined>";
1459 const char *gdb_tm_file = "<not-defined>";
1460 #if defined (GDB_XM_FILE)
1461 gdb_xm_file = GDB_XM_FILE;
1462 #endif
1463 fprintf_unfiltered (file,
1464 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1465 gdb_xm_file);
1466 #if defined (GDB_NM_FILE)
1467 gdb_nm_file = GDB_NM_FILE;
1468 #endif
1469 fprintf_unfiltered (file,
1470 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1471 gdb_nm_file);
1472 #if defined (GDB_TM_FILE)
1473 gdb_tm_file = GDB_TM_FILE;
1474 #endif
1475 fprintf_unfiltered (file,
1476 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1477 gdb_tm_file);
1478 EOF
1479 function_list | sort -t: -k 4 | while do_read
1480 do
1481 # First the predicate
1482 if class_is_predicate_p
1483 then
1484 if test -n "${macro}"
1485 then
1486 printf "#ifdef ${macro}_P\n"
1487 printf " fprintf_unfiltered (file,\n"
1488 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1489 printf " \"${macro}_P()\",\n"
1490 printf " XSTRING (${macro}_P ()));\n"
1491 printf "#endif\n"
1492 fi
1493 printf " fprintf_unfiltered (file,\n"
1494 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1495 printf " gdbarch_${function}_p (current_gdbarch));\n"
1496 fi
1497 # Print the macro definition.
1498 if test -n "${macro}"
1499 then
1500 printf "#ifdef ${macro}\n"
1501 if class_is_function_p
1502 then
1503 printf " fprintf_unfiltered (file,\n"
1504 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1505 printf " \"${macro}(${actual})\",\n"
1506 printf " XSTRING (${macro} (${actual})));\n"
1507 else
1508 printf " fprintf_unfiltered (file,\n"
1509 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1510 printf " XSTRING (${macro}));\n"
1511 fi
1512 printf "#endif\n"
1513 fi
1514 # Print the corresponding value.
1515 if class_is_function_p
1516 then
1517 printf " fprintf_unfiltered (file,\n"
1518 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1519 printf " (long) current_gdbarch->${function});\n"
1520 else
1521 # It is a variable
1522 case "${print}:${returntype}" in
1523 :CORE_ADDR )
1524 fmt="0x%s"
1525 print="paddr_nz (current_gdbarch->${function})"
1526 ;;
1527 :* )
1528 fmt="%s"
1529 print="paddr_d (current_gdbarch->${function})"
1530 ;;
1531 * )
1532 fmt="%s"
1533 ;;
1534 esac
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1537 printf " ${print});\n"
1538 fi
1539 done
1540 cat <<EOF
1541 if (current_gdbarch->dump_tdep != NULL)
1542 current_gdbarch->dump_tdep (current_gdbarch, file);
1543 }
1544 EOF
1545
1546
1547 # GET/SET
1548 printf "\n"
1549 cat <<EOF
1550 struct gdbarch_tdep *
1551 gdbarch_tdep (struct gdbarch *gdbarch)
1552 {
1553 if (gdbarch_debug >= 2)
1554 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1555 return gdbarch->tdep;
1556 }
1557 EOF
1558 printf "\n"
1559 function_list | while do_read
1560 do
1561 if class_is_predicate_p
1562 then
1563 printf "\n"
1564 printf "int\n"
1565 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1566 printf "{\n"
1567 printf " gdb_assert (gdbarch != NULL);\n"
1568 printf " return ${predicate};\n"
1569 printf "}\n"
1570 fi
1571 if class_is_function_p
1572 then
1573 printf "\n"
1574 printf "${returntype}\n"
1575 if [ "x${formal}" = "xvoid" ]
1576 then
1577 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1578 else
1579 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1580 fi
1581 printf "{\n"
1582 printf " gdb_assert (gdbarch != NULL);\n"
1583 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1584 if class_is_predicate_p && test -n "${predefault}"
1585 then
1586 # Allow a call to a function with a predicate.
1587 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1588 fi
1589 printf " if (gdbarch_debug >= 2)\n"
1590 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1591 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1592 then
1593 if class_is_multiarch_p
1594 then
1595 params="gdbarch"
1596 else
1597 params=""
1598 fi
1599 else
1600 if class_is_multiarch_p
1601 then
1602 params="gdbarch, ${actual}"
1603 else
1604 params="${actual}"
1605 fi
1606 fi
1607 if [ "x${returntype}" = "xvoid" ]
1608 then
1609 printf " gdbarch->${function} (${params});\n"
1610 else
1611 printf " return gdbarch->${function} (${params});\n"
1612 fi
1613 printf "}\n"
1614 printf "\n"
1615 printf "void\n"
1616 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1617 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1618 printf "{\n"
1619 printf " gdbarch->${function} = ${function};\n"
1620 printf "}\n"
1621 elif class_is_variable_p
1622 then
1623 printf "\n"
1624 printf "${returntype}\n"
1625 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1626 printf "{\n"
1627 printf " gdb_assert (gdbarch != NULL);\n"
1628 if [ "x${invalid_p}" = "x0" ]
1629 then
1630 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1631 elif [ -n "${invalid_p}" ]
1632 then
1633 printf " /* Check variable is valid. */\n"
1634 printf " gdb_assert (!(${invalid_p}));\n"
1635 elif [ -n "${predefault}" ]
1636 then
1637 printf " /* Check variable changed from pre-default. */\n"
1638 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1639 fi
1640 printf " if (gdbarch_debug >= 2)\n"
1641 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1642 printf " return gdbarch->${function};\n"
1643 printf "}\n"
1644 printf "\n"
1645 printf "void\n"
1646 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1647 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1648 printf "{\n"
1649 printf " gdbarch->${function} = ${function};\n"
1650 printf "}\n"
1651 elif class_is_info_p
1652 then
1653 printf "\n"
1654 printf "${returntype}\n"
1655 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1656 printf "{\n"
1657 printf " gdb_assert (gdbarch != NULL);\n"
1658 printf " if (gdbarch_debug >= 2)\n"
1659 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1660 printf " return gdbarch->${function};\n"
1661 printf "}\n"
1662 fi
1663 done
1664
1665 # All the trailing guff
1666 cat <<EOF
1667
1668
1669 /* Keep a registry of per-architecture data-pointers required by GDB
1670 modules. */
1671
1672 struct gdbarch_data
1673 {
1674 unsigned index;
1675 int init_p;
1676 gdbarch_data_pre_init_ftype *pre_init;
1677 gdbarch_data_post_init_ftype *post_init;
1678 };
1679
1680 struct gdbarch_data_registration
1681 {
1682 struct gdbarch_data *data;
1683 struct gdbarch_data_registration *next;
1684 };
1685
1686 struct gdbarch_data_registry
1687 {
1688 unsigned nr;
1689 struct gdbarch_data_registration *registrations;
1690 };
1691
1692 struct gdbarch_data_registry gdbarch_data_registry =
1693 {
1694 0, NULL,
1695 };
1696
1697 static struct gdbarch_data *
1698 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1699 gdbarch_data_post_init_ftype *post_init)
1700 {
1701 struct gdbarch_data_registration **curr;
1702 /* Append the new registraration. */
1703 for (curr = &gdbarch_data_registry.registrations;
1704 (*curr) != NULL;
1705 curr = &(*curr)->next);
1706 (*curr) = XMALLOC (struct gdbarch_data_registration);
1707 (*curr)->next = NULL;
1708 (*curr)->data = XMALLOC (struct gdbarch_data);
1709 (*curr)->data->index = gdbarch_data_registry.nr++;
1710 (*curr)->data->pre_init = pre_init;
1711 (*curr)->data->post_init = post_init;
1712 (*curr)->data->init_p = 1;
1713 return (*curr)->data;
1714 }
1715
1716 struct gdbarch_data *
1717 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1718 {
1719 return gdbarch_data_register (pre_init, NULL);
1720 }
1721
1722 struct gdbarch_data *
1723 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1724 {
1725 return gdbarch_data_register (NULL, post_init);
1726 }
1727
1728 /* Create/delete the gdbarch data vector. */
1729
1730 static void
1731 alloc_gdbarch_data (struct gdbarch *gdbarch)
1732 {
1733 gdb_assert (gdbarch->data == NULL);
1734 gdbarch->nr_data = gdbarch_data_registry.nr;
1735 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1736 }
1737
1738 /* Initialize the current value of the specified per-architecture
1739 data-pointer. */
1740
1741 void
1742 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1743 struct gdbarch_data *data,
1744 void *pointer)
1745 {
1746 gdb_assert (data->index < gdbarch->nr_data);
1747 gdb_assert (gdbarch->data[data->index] == NULL);
1748 gdb_assert (data->pre_init == NULL);
1749 gdbarch->data[data->index] = pointer;
1750 }
1751
1752 /* Return the current value of the specified per-architecture
1753 data-pointer. */
1754
1755 void *
1756 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1757 {
1758 gdb_assert (data->index < gdbarch->nr_data);
1759 if (gdbarch->data[data->index] == NULL)
1760 {
1761 /* The data-pointer isn't initialized, call init() to get a
1762 value. */
1763 if (data->pre_init != NULL)
1764 /* Mid architecture creation: pass just the obstack, and not
1765 the entire architecture, as that way it isn't possible for
1766 pre-init code to refer to undefined architecture
1767 fields. */
1768 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1769 else if (gdbarch->initialized_p
1770 && data->post_init != NULL)
1771 /* Post architecture creation: pass the entire architecture
1772 (as all fields are valid), but be careful to also detect
1773 recursive references. */
1774 {
1775 gdb_assert (data->init_p);
1776 data->init_p = 0;
1777 gdbarch->data[data->index] = data->post_init (gdbarch);
1778 data->init_p = 1;
1779 }
1780 else
1781 /* The architecture initialization hasn't completed - punt -
1782 hope that the caller knows what they are doing. Once
1783 deprecated_set_gdbarch_data has been initialized, this can be
1784 changed to an internal error. */
1785 return NULL;
1786 gdb_assert (gdbarch->data[data->index] != NULL);
1787 }
1788 return gdbarch->data[data->index];
1789 }
1790
1791
1792 /* Keep a registry of the architectures known by GDB. */
1793
1794 struct gdbarch_registration
1795 {
1796 enum bfd_architecture bfd_architecture;
1797 gdbarch_init_ftype *init;
1798 gdbarch_dump_tdep_ftype *dump_tdep;
1799 struct gdbarch_list *arches;
1800 struct gdbarch_registration *next;
1801 };
1802
1803 static struct gdbarch_registration *gdbarch_registry = NULL;
1804
1805 static void
1806 append_name (const char ***buf, int *nr, const char *name)
1807 {
1808 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1809 (*buf)[*nr] = name;
1810 *nr += 1;
1811 }
1812
1813 const char **
1814 gdbarch_printable_names (void)
1815 {
1816 /* Accumulate a list of names based on the registed list of
1817 architectures. */
1818 enum bfd_architecture a;
1819 int nr_arches = 0;
1820 const char **arches = NULL;
1821 struct gdbarch_registration *rego;
1822 for (rego = gdbarch_registry;
1823 rego != NULL;
1824 rego = rego->next)
1825 {
1826 const struct bfd_arch_info *ap;
1827 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1828 if (ap == NULL)
1829 internal_error (__FILE__, __LINE__,
1830 _("gdbarch_architecture_names: multi-arch unknown"));
1831 do
1832 {
1833 append_name (&arches, &nr_arches, ap->printable_name);
1834 ap = ap->next;
1835 }
1836 while (ap != NULL);
1837 }
1838 append_name (&arches, &nr_arches, NULL);
1839 return arches;
1840 }
1841
1842
1843 void
1844 gdbarch_register (enum bfd_architecture bfd_architecture,
1845 gdbarch_init_ftype *init,
1846 gdbarch_dump_tdep_ftype *dump_tdep)
1847 {
1848 struct gdbarch_registration **curr;
1849 const struct bfd_arch_info *bfd_arch_info;
1850 /* Check that BFD recognizes this architecture */
1851 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1852 if (bfd_arch_info == NULL)
1853 {
1854 internal_error (__FILE__, __LINE__,
1855 _("gdbarch: Attempt to register unknown architecture (%d)"),
1856 bfd_architecture);
1857 }
1858 /* Check that we haven't seen this architecture before */
1859 for (curr = &gdbarch_registry;
1860 (*curr) != NULL;
1861 curr = &(*curr)->next)
1862 {
1863 if (bfd_architecture == (*curr)->bfd_architecture)
1864 internal_error (__FILE__, __LINE__,
1865 _("gdbarch: Duplicate registraration of architecture (%s)"),
1866 bfd_arch_info->printable_name);
1867 }
1868 /* log it */
1869 if (gdbarch_debug)
1870 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1871 bfd_arch_info->printable_name,
1872 (long) init);
1873 /* Append it */
1874 (*curr) = XMALLOC (struct gdbarch_registration);
1875 (*curr)->bfd_architecture = bfd_architecture;
1876 (*curr)->init = init;
1877 (*curr)->dump_tdep = dump_tdep;
1878 (*curr)->arches = NULL;
1879 (*curr)->next = NULL;
1880 }
1881
1882 void
1883 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1884 gdbarch_init_ftype *init)
1885 {
1886 gdbarch_register (bfd_architecture, init, NULL);
1887 }
1888
1889
1890 /* Look for an architecture using gdbarch_info. */
1891
1892 struct gdbarch_list *
1893 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1894 const struct gdbarch_info *info)
1895 {
1896 for (; arches != NULL; arches = arches->next)
1897 {
1898 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1899 continue;
1900 if (info->byte_order != arches->gdbarch->byte_order)
1901 continue;
1902 if (info->osabi != arches->gdbarch->osabi)
1903 continue;
1904 if (info->target_desc != arches->gdbarch->target_desc)
1905 continue;
1906 return arches;
1907 }
1908 return NULL;
1909 }
1910
1911
1912 /* Find an architecture that matches the specified INFO. Create a new
1913 architecture if needed. Return that new architecture. Assumes
1914 that there is no current architecture. */
1915
1916 static struct gdbarch *
1917 find_arch_by_info (struct gdbarch_info info)
1918 {
1919 struct gdbarch *new_gdbarch;
1920 struct gdbarch_registration *rego;
1921
1922 /* The existing architecture has been swapped out - all this code
1923 works from a clean slate. */
1924 gdb_assert (current_gdbarch == NULL);
1925
1926 /* Fill in missing parts of the INFO struct using a number of
1927 sources: "set ..."; INFOabfd supplied; and the global
1928 defaults. */
1929 gdbarch_info_fill (&info);
1930
1931 /* Must have found some sort of architecture. */
1932 gdb_assert (info.bfd_arch_info != NULL);
1933
1934 if (gdbarch_debug)
1935 {
1936 fprintf_unfiltered (gdb_stdlog,
1937 "find_arch_by_info: info.bfd_arch_info %s\n",
1938 (info.bfd_arch_info != NULL
1939 ? info.bfd_arch_info->printable_name
1940 : "(null)"));
1941 fprintf_unfiltered (gdb_stdlog,
1942 "find_arch_by_info: info.byte_order %d (%s)\n",
1943 info.byte_order,
1944 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1945 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1946 : "default"));
1947 fprintf_unfiltered (gdb_stdlog,
1948 "find_arch_by_info: info.osabi %d (%s)\n",
1949 info.osabi, gdbarch_osabi_name (info.osabi));
1950 fprintf_unfiltered (gdb_stdlog,
1951 "find_arch_by_info: info.abfd 0x%lx\n",
1952 (long) info.abfd);
1953 fprintf_unfiltered (gdb_stdlog,
1954 "find_arch_by_info: info.tdep_info 0x%lx\n",
1955 (long) info.tdep_info);
1956 }
1957
1958 /* Find the tdep code that knows about this architecture. */
1959 for (rego = gdbarch_registry;
1960 rego != NULL;
1961 rego = rego->next)
1962 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1963 break;
1964 if (rego == NULL)
1965 {
1966 if (gdbarch_debug)
1967 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1968 "No matching architecture\n");
1969 return 0;
1970 }
1971
1972 /* Ask the tdep code for an architecture that matches "info". */
1973 new_gdbarch = rego->init (info, rego->arches);
1974
1975 /* Did the tdep code like it? No. Reject the change and revert to
1976 the old architecture. */
1977 if (new_gdbarch == NULL)
1978 {
1979 if (gdbarch_debug)
1980 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1981 "Target rejected architecture\n");
1982 return NULL;
1983 }
1984
1985 /* Is this a pre-existing architecture (as determined by already
1986 being initialized)? Move it to the front of the architecture
1987 list (keeping the list sorted Most Recently Used). */
1988 if (new_gdbarch->initialized_p)
1989 {
1990 struct gdbarch_list **list;
1991 struct gdbarch_list *this;
1992 if (gdbarch_debug)
1993 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1994 "Previous architecture 0x%08lx (%s) selected\n",
1995 (long) new_gdbarch,
1996 new_gdbarch->bfd_arch_info->printable_name);
1997 /* Find the existing arch in the list. */
1998 for (list = &rego->arches;
1999 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2000 list = &(*list)->next);
2001 /* It had better be in the list of architectures. */
2002 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2003 /* Unlink THIS. */
2004 this = (*list);
2005 (*list) = this->next;
2006 /* Insert THIS at the front. */
2007 this->next = rego->arches;
2008 rego->arches = this;
2009 /* Return it. */
2010 return new_gdbarch;
2011 }
2012
2013 /* It's a new architecture. */
2014 if (gdbarch_debug)
2015 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2016 "New architecture 0x%08lx (%s) selected\n",
2017 (long) new_gdbarch,
2018 new_gdbarch->bfd_arch_info->printable_name);
2019
2020 /* Insert the new architecture into the front of the architecture
2021 list (keep the list sorted Most Recently Used). */
2022 {
2023 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2024 this->next = rego->arches;
2025 this->gdbarch = new_gdbarch;
2026 rego->arches = this;
2027 }
2028
2029 /* Check that the newly installed architecture is valid. Plug in
2030 any post init values. */
2031 new_gdbarch->dump_tdep = rego->dump_tdep;
2032 verify_gdbarch (new_gdbarch);
2033 new_gdbarch->initialized_p = 1;
2034
2035 if (gdbarch_debug)
2036 gdbarch_dump (new_gdbarch, gdb_stdlog);
2037
2038 return new_gdbarch;
2039 }
2040
2041 struct gdbarch *
2042 gdbarch_find_by_info (struct gdbarch_info info)
2043 {
2044 struct gdbarch *new_gdbarch;
2045
2046 /* Save the previously selected architecture, setting the global to
2047 NULL. This stops things like gdbarch->init() trying to use the
2048 previous architecture's configuration. The previous architecture
2049 may not even be of the same architecture family. The most recent
2050 architecture of the same family is found at the head of the
2051 rego->arches list. */
2052 struct gdbarch *old_gdbarch = current_gdbarch;
2053 current_gdbarch = NULL;
2054
2055 /* Find the specified architecture. */
2056 new_gdbarch = find_arch_by_info (info);
2057
2058 /* Restore the existing architecture. */
2059 gdb_assert (current_gdbarch == NULL);
2060 current_gdbarch = old_gdbarch;
2061
2062 return new_gdbarch;
2063 }
2064
2065 /* Make the specified architecture current. */
2066
2067 void
2068 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2069 {
2070 gdb_assert (new_gdbarch != NULL);
2071 gdb_assert (current_gdbarch != NULL);
2072 gdb_assert (new_gdbarch->initialized_p);
2073 current_gdbarch = new_gdbarch;
2074 architecture_changed_event ();
2075 reinit_frame_cache ();
2076 }
2077
2078 extern void _initialize_gdbarch (void);
2079
2080 void
2081 _initialize_gdbarch (void)
2082 {
2083 struct cmd_list_element *c;
2084
2085 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2086 Set architecture debugging."), _("\\
2087 Show architecture debugging."), _("\\
2088 When non-zero, architecture debugging is enabled."),
2089 NULL,
2090 show_gdbarch_debug,
2091 &setdebuglist, &showdebuglist);
2092 }
2093 EOF
2094
2095 # close things off
2096 exec 1>&2
2097 #../move-if-change new-gdbarch.c gdbarch.c
2098 compare_new gdbarch.c
This page took 0.083768 seconds and 4 git commands to generate.